[go: up one dir, main page]

CN114244691A - Video service fault positioning method and device and electronic equipment - Google Patents

Video service fault positioning method and device and electronic equipment Download PDF

Info

Publication number
CN114244691A
CN114244691A CN202010939982.6A CN202010939982A CN114244691A CN 114244691 A CN114244691 A CN 114244691A CN 202010939982 A CN202010939982 A CN 202010939982A CN 114244691 A CN114244691 A CN 114244691A
Authority
CN
China
Prior art keywords
data
network
index
index parameter
fault location
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010939982.6A
Other languages
Chinese (zh)
Other versions
CN114244691B (en
Inventor
朱艳宏
杨红伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Mobile Communications Group Co Ltd
Research Institute of China Mobile Communication Co Ltd
Original Assignee
China Mobile Communications Group Co Ltd
Research Institute of China Mobile Communication Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Mobile Communications Group Co Ltd, Research Institute of China Mobile Communication Co Ltd filed Critical China Mobile Communications Group Co Ltd
Priority to CN202010939982.6A priority Critical patent/CN114244691B/en
Publication of CN114244691A publication Critical patent/CN114244691A/en
Application granted granted Critical
Publication of CN114244691B publication Critical patent/CN114244691B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0677Localisation of faults
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/243Classification techniques relating to the number of classes
    • G06F18/24323Tree-organised classifiers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • G06N20/20Ensemble learning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • H04L41/145Network analysis or design involving simulating, designing, planning or modelling of a network

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Signal Processing (AREA)
  • Artificial Intelligence (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Medical Informatics (AREA)
  • Evolutionary Biology (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明公开了一种视频业务的故障定位方法、装置及电子设备,属于通信技术领域。具体实现方案包括:获取视频业务在多域网络中的第一指标参数的数据和第二指标参数的数据;基于预先训练的业务质量感知模型以及第一指标参数的数据,分析得到视频业务的用户体验质量信息;根据视频业务的用户体验质量信息,评估视频业务的业务质量;在评估得到视频业务的业务质量不满足预设要求的情况下,基于预先训练的故障定位模型集以及第二指标参数的数据,进行故障定位;该故障定位模型集中包括多个故障定位模型,每个故障定位模型对应于一个网络域。由此在面向视频业务时,可以自动化的实现面向全域网络的端到端的故障定位,提高定位效率。

Figure 202010939982

The invention discloses a fault location method, device and electronic equipment for video services, belonging to the technical field of communication. The specific implementation scheme includes: acquiring the data of the first index parameter and the data of the second index parameter of the video service in the multi-domain network; based on the pre-trained service quality perception model and the data of the first index parameter, analyzing and obtaining the users of the video service Experience quality information; evaluate the service quality of the video service according to the user experience quality information of the video service; if the service quality of the video service does not meet the preset requirements, based on the pre-trained fault location model set and the second index parameter The fault location model set includes multiple fault location models, and each fault location model corresponds to a network domain. As a result, in the case of video services, end-to-end fault location for the global network can be automatically implemented, and the location efficiency can be improved.

Figure 202010939982

Description

视频业务的故障定位方法、装置及电子设备Fault locating method, device and electronic device for video service

技术领域technical field

本发明属于通信技术领域,具体涉及一种视频业务的故障定位方法、装置及电子设备。The invention belongs to the technical field of communications, and in particular relates to a fault location method, device and electronic equipment for video services.

背景技术Background technique

目前在视频播放期间,常由于网络故障而出现初缓时延较长、卡顿次数频繁、黑屏花屏等异常情况。针对这种异常情况,现有采用的故障定位方法为,维修人员通过探针探测,对网络可能存在的故障点进行一一探测、排查。由此可以看出,现有的故障定位方法效率较低。Currently, during video playback, abnormal situations such as long initial delay, frequent freezes, and black and blurry screens often occur due to network failures. In response to this abnormal situation, the existing fault location method is that maintenance personnel detect and check the possible fault points of the network one by one through probe detection. It can be seen from this that the existing fault location method is inefficient.

发明内容SUMMARY OF THE INVENTION

本发明实施例的目的是提供一种视频业务的故障定位方法、装置及电子设备,以解决面向视频业务时,现有的故障定位方法效率较低的问题。The purpose of the embodiments of the present invention is to provide a fault location method, device and electronic device for video services, so as to solve the problem of low efficiency of existing fault location methods when facing video services.

为了解决上述技术问题,本发明是这样实现的:In order to solve the above-mentioned technical problems, the present invention is achieved in this way:

第一方面,本发明实施例提供了一种视频业务的故障定位方法,包括:In a first aspect, an embodiment of the present invention provides a fault location method for a video service, including:

获取视频业务在多域网络中的第一指标参数的数据和第二指标参数的数据;acquiring data of the first index parameter and data of the second index parameter of the video service in the multi-domain network;

基于预先训练的业务质量感知模型以及所述第一指标参数的数据,分析得到所述视频业务的用户体验质量信息;其中,所述业务质量感知模型用于表征第一指标参数的数据与用户体验质量信息之间的关联关系;Based on the pre-trained service quality perception model and the data of the first index parameter, the user experience quality information of the video service is obtained by analysis; wherein the service quality perception model is used to characterize the data of the first index parameter and user experience The relationship between quality information;

根据所述视频业务的用户体验质量信息,评估所述视频业务的业务质量;Evaluate the service quality of the video service according to the user experience quality information of the video service;

在评估得到所述视频业务的业务质量不满足预设要求的情况下,基于预先训练的故障定位模型集以及所述第二指标参数的数据,进行故障定位;Under the condition that the service quality of the video service does not meet the preset requirements, the fault location is performed based on the pre-trained fault location model set and the data of the second index parameter;

其中,所述故障定位模型集中包括多个故障定位模型,每个故障定位模型对应于一个网络域。Wherein, the fault location model set includes multiple fault location models, and each fault location model corresponds to a network domain.

可选的,所述基于预先训练的故障定位模型集以及所述第二指标参数的数据,进行故障定位,包括:Optionally, the fault location is performed based on the pre-trained fault location model set and the data of the second index parameter, including:

将所述第二指标参数的数据中的每个网络域的指标参数数据,分别输入到所述每个网络域对应的故障定位模型中,进行故障推理。The index parameter data of each network domain in the data of the second index parameter is respectively input into the fault location model corresponding to each network domain to perform fault inference.

可选的,所述第一指标参数包括:无线网中的指标参数、核心网中的指标参数和承载网中的指标参数。Optionally, the first index parameters include: index parameters in the wireless network, index parameters in the core network, and index parameters in the bearer network.

可选的,所述第二指标参数包括:无线网中的指标参数、传输网中的指标参数、核心网中的指标参数、承载网中的指标参数、用户数据中心处的指标参数。Optionally, the second index parameters include: index parameters in the wireless network, index parameters in the transmission network, index parameters in the core network, index parameters in the bearer network, and index parameters in the user data center.

可选的,所述获取视频业务在多域网络中的第一指标参数的数据和第二指标参数的数据之前,所述方法包括:Optionally, before the acquisition of the data of the first index parameter and the data of the second index parameter of the video service in the multi-domain network, the method includes:

针对每个网络域,分别执行以下过程,获得所述故障定位模型集:For each network domain, perform the following processes respectively to obtain the fault location model set:

获取所述网络域的第一样本数据集;其中,所述第一样本数据集中包括所述网络域的指标参数数据;obtaining a first sample data set of the network domain; wherein, the first sample data set includes index parameter data of the network domain;

利用所述第一样本数据集进行模型训练,得到所述网络域对应的故障定位模型。Model training is performed by using the first sample data set to obtain a fault location model corresponding to the network domain.

可选的,所述获取视频业务在多域网络中的第一指标参数的数据和第二指标参数的数据之前,所述方法包括:Optionally, before the acquisition of the data of the first index parameter and the data of the second index parameter of the video service in the multi-domain network, the method includes:

获取第二样本数据集;其中,所述第二样本数据集中包括视频业务在多域网络中的指标参数数据以及用户体验质量信息;Obtaining a second sample data set; wherein, the second sample data set includes the index parameter data of the video service in the multi-domain network and the user experience quality information;

对所述第二样本数据集进行预处理,得到目标数据集;Preprocessing the second sample data set to obtain a target data set;

利用所述目标数据集进行模型训练,得到所述业务质量感知模型。Model training is performed using the target data set to obtain the service quality perception model.

可选的,所述对所第二述样本数据集进行预处理,得到目标数据集,包括:Optionally, performing preprocessing on the second sample data set to obtain a target data set, including:

利用最大信息系数法,计算所述指标参数数据中的每一类指标参数的数据与相关联的用户体验质量信息之间的最大信息系数;Using the maximum information coefficient method, calculate the maximum information coefficient between the data of each type of index parameter in the index parameter data and the associated user experience quality information;

根据计算得到的最大信息系数,从所述第二样本数据集中选取所述目标数据集;其中,所述目标数据集中包括所述指标参数数据中的第一指标参数的数据和与所述第一指标参数的数据相关联的用户体验质量信息,所述第一指标参数的数据和所述用户体验质量信息之间的最大信息系数大于预设阈值。According to the calculated maximum information coefficient, the target data set is selected from the second sample data set; wherein, the target data set includes the data of the first index parameter in the index parameter data and the data of the first index parameter and the first index parameter. The user experience quality information associated with the data of the index parameter, and the maximum information coefficient between the data of the first index parameter and the user experience quality information is greater than a preset threshold.

可选的,在进行故障定位之后,所述方法还包括:Optionally, after the fault location is performed, the method further includes:

将得到的故障信息发送到发生故障的网络域。Send the resulting failure information to the failed network domain.

第二方面,本发明实施例提供了一种视频业务的故障定位装置,包括:In a second aspect, an embodiment of the present invention provides a fault location device for a video service, including:

第一获取模块,用于获取视频业务在多域网络中的第一指标参数的数据和第二指标参数的数据;a first acquisition module, configured to acquire the data of the first index parameter and the data of the second index parameter of the video service in the multi-domain network;

分析模块,用于基于预先训练的业务质量感知模型以及所述第一指标参数的数据,分析得到所述视频业务的用户体验质量信息;其中,所述业务质量感知模型用于表征第一指标参数的数据与用户体验质量信息之间的关联关系;an analysis module, configured to analyze and obtain the user experience quality information of the video service based on the pre-trained service quality perception model and the data of the first index parameter; wherein the service quality perception model is used to represent the first index parameter The relationship between the data and user experience quality information;

评估模块,用于根据所述视频业务的用户体验质量信息,评估所述视频业务的业务质量An evaluation module, configured to evaluate the service quality of the video service according to the user experience quality information of the video service

故障定位模块,用于在评估得到所述视频业务的业务质量不满足预设要求的情况下,基于预先训练的故障定位模型集以及所述第二指标参数的数据,进行故障定位;a fault location module, configured to perform fault location based on the pre-trained fault location model set and the data of the second index parameter under the condition that the service quality of the video service does not meet the preset requirements;

其中,所述故障定位模型集中包括多个故障定位模型,每个故障定位模型对应于一个网络域。Wherein, the fault location model set includes multiple fault location models, and each fault location model corresponds to a network domain.

可选的,所述故障定位模块具体用于:Optionally, the fault location module is specifically used for:

将所述第二指标参数的数据中的每个网络域的指标参数数据,分别输入到所述每个网络域对应的故障定位模型中,进行故障推理。The index parameter data of each network domain in the data of the second index parameter is respectively input into the fault location model corresponding to each network domain to perform fault inference.

可选的,所述第一指标参数包括:无线网中的指标参数、核心网中的指标参数和承载网中的指标参数。Optionally, the first index parameters include: index parameters in the wireless network, index parameters in the core network, and index parameters in the bearer network.

可选的,所述第二指标参数包括:无线网中的指标参数、传输网中的指标参数、核心网中的指标参数、承载网中的指标参数、用户数据中心处的指标参数。Optionally, the second index parameters include: index parameters in the wireless network, index parameters in the transmission network, index parameters in the core network, index parameters in the bearer network, and index parameters in the user data center.

可选的,该质量感知装置还包括:Optionally, the quality perception device further includes:

执行模块,用于针对每个网络域,分别执行以下过程,获得所述故障定位模型集:The execution module is configured to execute the following processes for each network domain to obtain the fault location model set:

获取所述网络域的第一样本数据集;其中,所述第一样本数据集中包括所述网络域的指标参数数据;obtaining a first sample data set of the network domain; wherein, the first sample data set includes index parameter data of the network domain;

利用所述第一样本数据集进行模型训练,得到所述网络域对应的故障定位模型。Model training is performed by using the first sample data set to obtain a fault location model corresponding to the network domain.

可选的,该质量感知装置还包括:Optionally, the quality perception device further includes:

第二获取模块,用于获取第二样本数据集;其中,所述第二样本数据集中包括视频业务在多域网络中的指标参数数据以及用户体验质量信息;a second obtaining module, configured to obtain a second sample data set; wherein, the second sample data set includes the index parameter data of the video service in the multi-domain network and the user experience quality information;

预处理模块,用于对所述第二样本数据集进行预处理,得到目标数据集;a preprocessing module for preprocessing the second sample data set to obtain a target data set;

训练模块,用于利用所述目标数据集进行模型训练,得到所述业务质量感知模型。A training module, configured to perform model training by using the target data set to obtain the service quality perception model.

可选的,所述预处理模块包括:Optionally, the preprocessing module includes:

计算单元,用于利用最大信息系数法,计算所述指标参数数据中的每一类指标参数的数据与相关联的用户体验质量信息之间的最大信息系数;a calculation unit, configured to use the maximum information coefficient method to calculate the maximum information coefficient between the data of each type of index parameter in the index parameter data and the associated user experience quality information;

选取单元,用于根据计算得到的最大信息系数,从所述第二样本数据集中选取所述目标数据集;其中,所述目标数据集中包括所述指标参数数据中的第一指标参数的数据和与所述第一指标参数的数据相关联的用户体验质量信息,所述第一指标参数的数据和所述用户体验质量信息之间的最大信息系数大于预设阈值。A selection unit, configured to select the target data set from the second sample data set according to the calculated maximum information coefficient; wherein, the target data set includes the data of the first index parameter in the index parameter data and The user experience quality information associated with the data of the first index parameter, the maximum information coefficient between the data of the first index parameter and the user experience quality information is greater than a preset threshold.

可选的,该质量感知装置还包括:Optionally, the quality perception device further includes:

发送模块,用于将得到的故障信息发送到发生故障的网络域。The sending module is used for sending the obtained fault information to the network domain where the fault occurs.

第三方面,本发明实施例提供了一种电子设备,该电子设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。In a third aspect, an embodiment of the present invention provides an electronic device, the electronic device includes a processor, a memory, and a program or instruction stored in the memory and executable on the processor, the program or instruction being The processor implements the steps of the method according to the first aspect when executed.

第四方面,本发明实施例提供了一种计算机可读存储介质,所述计算机可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤。In a fourth aspect, an embodiment of the present invention provides a computer-readable storage medium, where a program or an instruction is stored on the computer-readable storage medium, and when the program or instruction is executed by a processor, the method according to the first aspect is implemented A step of.

在本发明实施例中,可以获取视频业务在多域网络中的第一指标参数的数据和第二指标参数的数据,基于预先训练的业务质量感知模型以及所述第一指标参数的数据,分析得到所述视频业务的用户体验质量信息,根据所述视频业务的用户体验质量信息,评估所述视频业务的业务质量,并在评估得到所述视频业务的业务质量不满足预设要求的情况下,基于预先训练的故障定位模型集以及所述第二指标参数的数据,进行故障定位。由此在面向视频业务时,可以自动化的实现面向全域网络的端到端的故障定位,提高定位效率,并且通过预先训练的业务质量感知模型,可以实现面向用户体验的网络质量及时感知,从而可以在用户大量投诉之前提前精准且全面感知到异常情况,从而在大量投诉之前及时进行故障定位,提升用户体验。In the embodiment of the present invention, the data of the first index parameter and the data of the second index parameter of the video service in the multi-domain network can be obtained, and based on the pre-trained service quality perception model and the data of the first index parameter, analysis Obtaining the user experience quality information of the video service, evaluating the service quality of the video service according to the user experience quality information of the video service, and under the condition that the service quality of the video service does not meet the preset requirements. , and perform fault location based on the pre-trained fault location model set and the data of the second index parameter. Therefore, in the case of video services, end-to-end fault location for the global network can be automatically realized, improving the location efficiency, and through the pre-trained service quality perception model, the user experience-oriented network quality can be perceived in time. Users can accurately and comprehensively perceive abnormal situations in advance before a large number of complaints, so as to locate faults in time before a large number of complaints, and improve user experience.

附图说明Description of drawings

图1是本发明实施例的视频业务的故障定位方法的流程图;1 is a flowchart of a method for locating a fault of a video service according to an embodiment of the present invention;

图2是本发明实施例中的业务处理过程的流程图;2 is a flowchart of a service processing process in an embodiment of the present invention;

图3是本发明实施例中的面向视频业务的端到端质量感知和故障定位系统的结构示意图;3 is a schematic structural diagram of a video service-oriented end-to-end quality perception and fault location system in an embodiment of the present invention;

图4是本发明实施例中的业务质量感知模型和网络故障定位模型的训练过程的流程图;4 is a flowchart of a training process of a service quality perception model and a network fault location model in an embodiment of the present invention;

图5是本发明实施例中的业务质量感知和网络故障定位推理过程的流程图;5 is a flowchart of a service quality perception and network fault location reasoning process in an embodiment of the present invention;

图6是本发明实施例的视频业务的故障定位装置的结构示意图;6 is a schematic structural diagram of a fault locating device for a video service according to an embodiment of the present invention;

图7是本发明实施例的电子设备的结构示意图。FIG. 7 is a schematic structural diagram of an electronic device according to an embodiment of the present invention.

具体实施方式Detailed ways

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.

本发明的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。The terms "first", "second" and the like in the description and claims of the present invention are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that embodiments of the invention can be practiced in sequences other than those illustrated or described herein, and distinguish between "first", "second", etc. The objects are usually of one type, and the number of objects is not limited. For example, the first object may be one or more than one. In addition, "and/or" in the description and claims indicates at least one of the connected objects, and the character "/" generally indicates that the associated objects are in an "or" relationship.

下面结合附图,通过具体的实施例及其应用场景对本发明实施例提供的视频业务的故障定位方法进行详细地说明。The method for locating the fault of the video service provided by the embodiment of the present invention will be described in detail below with reference to the accompanying drawings through specific embodiments and application scenarios thereof.

请参见图1,图1是本发明实施例提供的一种视频业务的故障定位方法的流程图,该方法应用于电子设备,如图1所示,该方法包括如下步骤:Please refer to FIG. 1. FIG. 1 is a flowchart of a method for locating a fault of a video service provided by an embodiment of the present invention. The method is applied to an electronic device. As shown in FIG. 1, the method includes the following steps:

步骤101:获取视频业务在多域网络中的第一指标参数的数据和第二指标参数的数据。Step 101: Acquire the data of the first index parameter and the data of the second index parameter of the video service in the multi-domain network.

本实施例中,第一指标参数可以包括无线网中的指标参数、核心网中的指标参数和承载网中的指标参数等。第一指标参数的数据比如为相应网络中的深度报文检测(DeepPacket Inspection,DPI)数据。In this embodiment, the first index parameter may include index parameters in the wireless network, index parameters in the core network, index parameters in the bearer network, and the like. The data of the first index parameter is, for example, deep packet inspection (Deep Packet Inspection, DPI) data in the corresponding network.

可选的,对于第一指标参数,无线网中的指标参数包括但不限于空口时延、信号强度、上下行往返时延(Round-Trip Time,RTT)等;核心网的指标参数包括但不限于传输控制协议(Transmission Control Protocol,TCP)建链时长、包重传数、包乱序数、上下行RTT时延等;承载网的指标参数包括但不限于TCP建链成功率、承载网双向时延、承载网丢包率等。Optionally, for the first index parameter, the index parameters in the wireless network include but are not limited to air interface delay, signal strength, uplink and downlink round-trip delay (Round-Trip Time, RTT), etc.; the index parameters of the core network include but are not limited to. Limited to Transmission Control Protocol (TCP) chain establishment time, number of packet retransmissions, number of out-of-order packets, uplink and downlink RTT delay, etc.; bearer network indicators include but are not limited to TCP link establishment success rate, bearer network bidirectional Delay, bearer network packet loss rate, etc.

本实施例中,第二指标参数可以包括无线网中的指标参数、传输网中的指标参数、核心网中的指标参数、承载网中的指标参数、用户数据中心处的指标参数。第二指标参数的数据比如为相应网络中的网管数据。In this embodiment, the second index parameters may include index parameters in the wireless network, index parameters in the transmission network, index parameters in the core network, index parameters in the bearer network, and index parameters in the user data center. The data of the second index parameter is, for example, network management data in the corresponding network.

可选的,对于第二指标参数,无线网中的指标参数包括但不限于:物理资源块(physical resource block,PRB)利用率、无线资源控制(Radio Resource Control,RRC)用户数、弱覆盖类指标比如参考信号接收功率(Reference Signal Receiving Power,RSRP)等、干扰类指标比如信号与干扰加噪声比(Signal to Interference plus NoiseRatio,SINR)等、切换类指标等;传输网中的指标参数包括但不限于带宽利用率、CPU利用率、时延和丢包率等指标;核心网中的指标参数包括但不限于接口带宽利用率、CPU利用率、路由质量等指标;承载网中的指标参数包括但不限于接口带宽利用率、CPU利用率、磁盘输入/输出(Input/output,I/O)能力、路由性能等指标;用户数据中心处的指标参数包括但不限于服务器性能(比如CPU能力、I/O总线能力、调度能力等)、服务器带宽、内容分发网络(Content Delivery Network,CDN)命中率、域名系统(Domain Name System,DNS)节点负荷等指标。Optionally, for the second index parameter, the index parameter in the wireless network includes but is not limited to: physical resource block (physical resource block, PRB) utilization rate, radio resource control (Radio Resource Control, RRC) number of users, weak coverage type Indicators such as Reference Signal Receiving Power (RSRP), etc., interference indicators such as Signal to Interference plus Noise Ratio (SINR), etc., switching indicators, etc.; indicators in the transmission network include but Not limited to indicators such as bandwidth utilization, CPU utilization, delay, and packet loss rate; indicators in the core network include but are not limited to indicators such as interface bandwidth utilization, CPU utilization, and routing quality; indicators in the bearer network include However, it is not limited to indicators such as interface bandwidth utilization, CPU utilization, disk input/output (I/O) capability, and routing performance; the indicator parameters at the user data center include but are not limited to server performance (such as CPU capability, I/O bus capability, scheduling capability, etc.), server bandwidth, Content Delivery Network (CDN) hit rate, Domain Name System (Domain Name System, DNS) node load and other indicators.

步骤102:基于预先训练的业务质量感知模型以及所述第一指标参数的数据,分析得到所述视频业务的用户体验质量信息。Step 102: Based on the pre-trained service quality perception model and the data of the first index parameter, analyze and obtain the user experience quality information of the video service.

本实施例中,该业务质量感知模型用于表征第一指标参数的数据与用户体验质量信息之间的关联关系。In this embodiment, the service quality perception model is used to represent the correlation between the data of the first index parameter and the user experience quality information.

一种实施方式中,用户体验质量信息可选为终端侧的QoE数据。该QoE数据比如为视频质量平均主观意见分(Mean Opinion Score for Video,vMOS)。In an embodiment, the user experience quality information can be selected as QoE data on the terminal side. The QoE data is, for example, a video quality Mean Opinion Score for Video (vMOS).

另一种实施方式中,用户体验质量信息可选为用户体验质量等级。比如针对用户体验质量等级,可以划分为五个等级,分别为等级1、等级2、等级3、等级4和等级5。In another implementation manner, the user experience quality information can be selected as a user experience quality level. For example, the user experience quality level can be divided into five levels, namely level 1, level 2, level 3, level 4 and level 5.

步骤103:根据所述视频业务的用户体验质量信息,评估所述视频业务的业务质量。Step 103: Evaluate the service quality of the video service according to the user experience quality information of the video service.

可选的,为了评估视频业务的业务质量,可以预先建立用户体验质量信息与业务质量之间的对应关系,从而在分析得到用户体验质量信息之后,评估出对应的业务质量。比如,用户体验质量等级分为五个等级,分别对应于业务质量的很好、较好、好、差和很差。Optionally, in order to evaluate the service quality of the video service, a corresponding relationship between the user experience quality information and the service quality may be established in advance, so that after analyzing and obtaining the user experience quality information, the corresponding service quality is evaluated. For example, the user experience quality level is divided into five levels, respectively corresponding to very good, good, good, poor and very poor service quality.

步骤104:在评估得到视频业务的业务质量不满足预设要求的情况下,基于预先训练的故障定位模型集以及第二指标参数的数据,进行故障定位。Step 104: In the case that the service quality of the video service does not meet the preset requirements, the fault location is performed based on the pre-trained fault location model set and the data of the second index parameter.

其中,所述故障定位模型集中包括多个故障定位模型,每个故障定位模型对应于一个网络域。比如,对于无线网、传输网、核心网、承载网和用户数据中心,可以分别对应一个故障定位模型,所有的故障定位模型构成故障定位模型集。Wherein, the fault location model set includes multiple fault location models, and each fault location model corresponds to a network domain. For example, the wireless network, transmission network, core network, bearer network, and user data center may respectively correspond to a fault location model, and all fault location models constitute a fault location model set.

可选的,上述步骤104可包括:将所述第二指标参数的数据中的每个网络域的指标参数数据,分别输入到每个网络域对应的故障定位模型中,进行故障推理。这样可以实现面向全域网络的端到端的实时精准故障定位。Optionally, the above step 104 may include: inputting the index parameter data of each network domain in the data of the second index parameter into the fault location model corresponding to each network domain, respectively, to perform fault inference. In this way, end-to-end real-time accurate fault location can be realized for the global network.

在本发明实施例中,可以获取视频业务在多域网络中的第一指标参数的数据和第二指标参数的数据,基于预先训练的业务质量感知模型以及所述第一指标参数的数据,分析得到所述视频业务的用户体验质量信息,根据所述视频业务的用户体验质量信息,评估所述视频业务的业务质量,并在评估得到所述视频业务的业务质量不满足预设要求的情况下,基于预先训练的故障定位模型集以及所述第二指标参数的数据,进行故障定位。由此在面向视频业务时,可以自动化的实现面向全域网络的端到端的故障定位,提高定位效率,并且通过预先训练的业务质量感知模型,可以实现面向用户体验的网络质量及时感知,从而可以在用户大量投诉之前提前精准且全面感知到异常情况,从而在大量投诉之前及时进行故障定位,提升用户体验。In the embodiment of the present invention, the data of the first index parameter and the data of the second index parameter of the video service in the multi-domain network can be obtained, and based on the pre-trained service quality perception model and the data of the first index parameter, analysis Obtaining the user experience quality information of the video service, evaluating the service quality of the video service according to the user experience quality information of the video service, and under the condition that the service quality of the video service does not meet the preset requirements. , and perform fault location based on the pre-trained fault location model set and the data of the second index parameter. Therefore, in the case of video services, end-to-end fault location for the global network can be automatically realized, improving the location efficiency, and through the pre-trained service quality perception model, the user experience-oriented network quality can be perceived in time. Users can accurately and comprehensively perceive abnormal situations in advance before a large number of complaints, so as to locate faults in time before a large number of complaints, and improve user experience.

本发明实施例中,上述业务质量感知模型可选为但不限于深度学习模型、神经网络模型、决策树模型等。上述业务质量感知模型可以利用XGBoost算法进行模型训练得到。该XGBoost算法是一种集成算法,用

Figure BDA0002673295790000081
进行表示,
Figure BDA0002673295790000082
表示最后的分类器模型,fk表示决策树,每个决策树根据输入样本Xi={x1,x2,…xm}产生预测结果,最终通过投票确定最后的分类类别。比如结果是按照vMOS值分为1,2,3,4,5五个等级,分别代表业务质量很好、较好、好、差、很差。In the embodiment of the present invention, the above-mentioned service quality perception model can be selected from, but is not limited to, a deep learning model, a neural network model, a decision tree model, and the like. The above service quality perception model can be obtained by model training using the XGBoost algorithm. The XGBoost algorithm is an ensemble algorithm that uses
Figure BDA0002673295790000081
to express,
Figure BDA0002673295790000082
represents the final classifier model, f k represents the decision tree, each decision tree produces prediction results according to the input samples X i ={x 1 , x 2 ,...x m }, and finally determines the final classification category by voting. For example, the result is divided into five grades: 1, 2, 3, 4, and 5 according to the vMOS value, which represent the service quality is very good, good, good, poor, and very poor.

可选的,上述步骤101之前,可以预先训练得到业务质量感知模型。该业务质量感知模型的训练过程可以包括:Optionally, before the above step 101, a service quality perception model may be obtained by pre-training. The training process of the service quality perception model may include:

获取第二样本数据集;其中,所述第二样本数据集中包括视频业务在多域网络中的指标参数数据以及与所述指标参数数据关联的用户体验质量信息;该指标参数数据比如为无线网、核心网和承载网中的DPI数据;Obtain a second sample data set; wherein, the second sample data set includes index parameter data of the video service in the multi-domain network and user experience quality information associated with the index parameter data; the index parameter data is, for example, a wireless network , DPI data in the core network and bearer network;

对所述第二样本数据集进行预处理,得到目标数据集;Preprocessing the second sample data set to obtain a target data set;

利用所述目标数据集进行模型训练,得到所述业务质量感知模型。Model training is performed using the target data set to obtain the service quality perception model.

进一步的,上述针对第二样本数据集的预处理过程可以包括:首先对第二样本数据集中的数据进行清洗、去重、归一化等处理,然后通过五元组、开始和结束时间等,对指标参数数据和用户体验质量信息进行数据关联,以得到目标数据集。该五元组比如为源IP地址、源端口、目的IP地址、目的端口和传输层协议组成的集合。Further, the above-mentioned preprocessing process for the second sample data set may include: first, cleaning, deduplicating, and normalizing the data in the second sample data set, and then processing by quintuple, start and end time, etc. Data association is performed between the indicator parameter data and the user experience quality information to obtain the target data set. The five-tuple is, for example, a set consisting of a source IP address, a source port, a destination IP address, a destination port and a transport layer protocol.

此外为了提高模型训练的速度,在对第二样本数据集进行预处理时,还可以从第二样本数据集中挑选与用户体验质量信息关联性大的指标参数数据,并基于挑选后的训练数据集进行模型训练。比如在挑选指标参数数据时,可以利用最大信息系数法,借助求取的最大信息系数(Maximal information coefficient,MIC)来进行挑选。In addition, in order to improve the speed of model training, when preprocessing the second sample data set, it is also possible to select the index parameter data that is closely related to the user experience quality information from the second sample data set, and based on the selected training data set Perform model training. For example, when selecting index parameter data, the maximum information coefficient method can be used to select by the obtained maximum information coefficient (Maximal information coefficient, MIC).

可选的,上述对样本数据集进行预处理的过程可以包括:首先利用最大信息系数法,计算所述指标参数数据中的每一类指标参数的数据与相关联的用户体验质量信息之间的最大信息系数MIC,然后根据计算得到的最大信息系数,从第二样本数据集中选取目标数据集。其中,所述目标数据集中包括所述指标参数数据中的第一指标参数的数据和与所述第一指标参数的数据相关联的用户体验质量信息,所述第一指标参数的数据和所述用户体验质量信息之间的最大信息系数大于预设阈值。该预设阈值可以基于实际需求预先设置。这样,利用最大信息系数法可以选择出关联性大的指标参数数据和用户体验质量信息,从而在保证模型精度的前提下,提高模型训练的速度。Optionally, the above process of preprocessing the sample data set may include: first, using the maximum information coefficient method to calculate the relationship between the data of each type of index parameter in the index parameter data and the associated user experience quality information. maximum information coefficient MIC, and then select the target data set from the second sample data set according to the calculated maximum information coefficient. Wherein, the target data set includes data of the first indicator parameter in the indicator parameter data and user experience quality information associated with the data of the first indicator parameter, the data of the first indicator parameter and the The maximum information coefficient between user experience quality information is greater than the preset threshold. The preset threshold can be preset based on actual requirements. In this way, the most relevant index parameter data and user experience quality information can be selected by using the maximum information coefficient method, so as to improve the speed of model training on the premise of ensuring the accuracy of the model.

例如,假设利用最大信息系数法从样本数据集D中挑选目标数据集,可以采用如下公式(1)和(2),依次计算数据集D的每一类指标参数的数据X与标签数据即用户体验质量信息Y之间的MIC,若MIC[X,Y]大于某个阈值(可根据场景需求设定),则相应的X和Y被选出,直至循环完毕,选出的数据组成新的数据集来用于模型训练。For example, assuming that the maximum information coefficient method is used to select the target data set from the sample data set D, the following formulas (1) and (2) can be used to sequentially calculate the data X and the label data of each type of index parameter of the data set D, that is, the user The MIC between the quality of experience information Y, if the MIC[X, Y] is greater than a certain threshold (which can be set according to the needs of the scene), the corresponding X and Y are selected until the cycle is completed, and the selected data forms a new dataset for model training.

Figure BDA0002673295790000091
Figure BDA0002673295790000091

Figure BDA0002673295790000092
Figure BDA0002673295790000092

上述公式(1)和(2)中,P(X)表示X的概率分布;P(Y)表示Y的概率分布;P(X,Y)表示X、Y的联合概率分布;min(|x|,|y|)表示取在X方向划分的网格数和在Y方向划分的网格数中较小的值。In the above formulas (1) and (2), P(X) represents the probability distribution of X; P(Y) represents the probability distribution of Y; P(X, Y) represents the joint probability distribution of X and Y; min(|x |,|y|) means the smaller of the number of grids divided in the X direction and the number of grids divided in the Y direction.

可选的,对于业务质量感知模型的训练,可以将选择出的新的相关系数较大的特征数据作为输入数据,将用户体验质量信息比如vMOS作为输出数据,利用XGBoost算法进行模型训练。具体过程可包括:Optionally, for the training of the service quality perception model, the selected new feature data with a large correlation coefficient may be used as input data, and user experience quality information such as vMOS may be used as output data, and the XGBoost algorithm may be used for model training. Specific processes may include:

S1,给定数据集D={(Xi,yi)}(|D|=n,Xi∈Rm,yi∈R),数据集的样本数量为n,特征数据量为m,根据数据集初始化集成决策树:S1, given a dataset D={(X i , y i )} (|D|=n, X i ∈ R m , y i ∈ R), the number of samples in the dataset is n, and the amount of feature data is m, Initialize an ensemble decision tree from the dataset:

Figure BDA0002673295790000093
Figure BDA0002673295790000093

其中,w为输出叶子向量,T为叶子节点个数。Among them, w is the output leaf vector, and T is the number of leaf nodes.

S2,确定损失函数,算法以加性方式进行训练,第t轮训练时目标函数表示为:S2, determine the loss function, the algorithm is trained in an additive manner, and the objective function in the t-th round of training is expressed as:

Figure BDA0002673295790000101
Figure BDA0002673295790000101

其中,

Figure BDA0002673295790000102
为正则项,γ和λ为常量,l()为交叉熵损失函数。定义节点分裂损失降低函数为:in,
Figure BDA0002673295790000102
is the regular term, γ and λ are constants, and l() is the cross-entropy loss function. Define the node splitting loss reduction function as:

Figure BDA0002673295790000103
Figure BDA0002673295790000103

Figure BDA0002673295790000104
Figure BDA0002673295790000104

Figure BDA0002673295790000105
Figure BDA0002673295790000105

其中,gi为损失函数的一阶梯度,hi为损失函数的二阶梯度。I为样本实例集,G、H为对应于实例I的一阶梯度以及二级梯度总和,GL、HL、GR、HR分别为对应左节点实例IL和右节点实例IR的一阶梯度以及二级梯度总和。Among them, gi is the first-order gradient of the loss function, and hi is the second-order gradient of the loss function. I is the sample instance set, G and H are the first-order gradient and the second-order gradient sum corresponding to the instance I, and GL , HL , GR , and HR are the corresponding left node instance IL and right node instance IR respectively . The sum of the first-order gradient and the second-order gradient.

S3,进行决策树节点分裂查找,生成集成决策树。进行决策树节点分裂的具体步骤如下:首先根据当前节点实例集I初始化一阶梯度G=∑i∈Igi,二阶梯度H=∑i∈Ihi,左分裂节点一阶梯度GL=0,右分裂节点一阶梯度GR=G,左分裂节点二阶梯度HL=0,右分裂节点二阶梯度HR=H;逐样本逐特征更新GL、HL、GR、HR,更新遵从GL←GL+gi,HL←HL+hj,GR←G-GL,HR←H-HL,并求得最大的分裂损失降低值为Lsplit,根据分裂损失降低值最大节点分裂情况进行节点分裂。重复该过程,直至构建整个决策树。S3, perform a decision tree node split search to generate an integrated decision tree. The specific steps of splitting decision tree nodes are as follows: First, according to the current node instance set I, initialize the first-order gradient G=∑ i∈I g i , the second-order gradient H=∑ i∈I h i , and the left-split node first-order gradient G L =0, the first-order gradient of the right split node G R =G, the second-order gradient of the left split node H L =0, the second-order gradient of the right split node H R =H; update GL , HL , GR , H R , the update follows G L ←G L +g i , H L ←H L +h j , G R ←GG L , H R ←HH L , and the maximum split loss reduction value is L split , according to the split The loss reduction value is the largest node split case for node splitting. This process is repeated until the entire decision tree is constructed.

S4,对生成的决策树使用测试样本生成预测结果,概率最大的叶节点的对应的类别为最终的分类结果。训练完成的XGBoost模型为业务质量感知模型,可通过无线网、核心网和承载网的DPI数据精确推理异常用户体验。S4, use the test sample to generate a prediction result for the generated decision tree, and the category corresponding to the leaf node with the largest probability is the final classification result. The trained XGBoost model is a service quality perception model, which can accurately infer abnormal user experience through the DPI data of the wireless network, core network, and bearer network.

本发明实施例中,上述故障定位模型集的训练过程可包括:In the embodiment of the present invention, the training process of the above fault location model set may include:

针对每个网络域,分别执行以下过程,获得所述故障定位模型集:For each network domain, perform the following processes respectively to obtain the fault location model set:

获取所述网络域的第一样本数据集;其中,所述第一样本数据集中包括所述网络域的指标参数数据;obtaining a first sample data set of the network domain; wherein, the first sample data set includes index parameter data of the network domain;

利用所述第一样本数据集进行模型训练,得到所述网络域对应的故障定位模型。Model training is performed by using the first sample data set to obtain a fault location model corresponding to the network domain.

也就是说,针对每个网络域比如无线网、传输网、核心网、承载网、或用户数据中心,可以分别训练得到对应的故障定位模型。之后对训练得到的故障定位模型进行整合,得到故障定位模型集。比如,在训练故障定位模型时,可以通过无监督学习比如孤立森林iForest算法进行模型训练。That is to say, for each network domain such as a wireless network, a transmission network, a core network, a bearer network, or a user data center, a corresponding fault location model can be obtained by training separately. Then, the fault localization models obtained by training are integrated to obtain a fault localization model set. For example, when training a fault location model, the model can be trained through unsupervised learning such as the isolated forest iForest algorithm.

例如,以无线网对应的故障定位模型为例,无线网侧的样本数据集为Z,采用孤立森林iForest算法进行模型训练,iForest由t个孤立树(Isolation Tree,iTree)组成,每个iTree是一个二叉树结构。针对无线网的故障定位模型的训练过程可以包括:For example, taking the fault location model corresponding to the wireless network as an example, the sample data set on the wireless network side is Z, and the isolated forest iForest algorithm is used for model training. The iForest consists of t isolation trees (Isolation Tree, iTree), each iTree is A binary tree structure. The training process of the fault location model for the wireless network may include:

a)从样本数据集Z中随机选择Ψ个样本点作为子样本,放入树的根节点;a) randomly select Ψ sample points as subsamples from the sample data set Z, and put them into the root node of the tree;

b)随机指定一个维度,在当前节点数据中随机产生一个切割点p,切割点产生于当前节点数据中指定维度的最大值和最小值之间;b) Randomly specify a dimension, randomly generate a cut point p in the current node data, and the cut point is generated between the maximum value and the minimum value of the specified dimension in the current node data;

c)以此切割点生成一个超平面,然后将当前节点数据空间划分为2个子空间,将指定维度小于p的数据放在当前节点的左边,将大于或等于p的数据放在当前节点的右边;c) Generate a hyperplane at this cutting point, then divide the current node data space into 2 subspaces, place the data with the specified dimension less than p on the left side of the current node, and place the data greater than or equal to p on the right side of the current node ;

d)在子节点中递归b)和c),不断构造新的子节点,直到子节点中只有一个数据(无法再继续切割)或子节点已到达限定高度。在得到t个iTree之后,iForest模型的训练结束。d) Recursively b) and c) in the child nodes, and continuously construct new child nodes, until there is only one data in the child node (can no longer continue to cut) or the child node has reached the limit height. After getting t iTrees, the training of the iForest model ends.

之后,可以将训练完成的故障定位模型部署于云服务器,以便后续进行故障推理。推理流程如下:首先将用户体验异常的相关时间段内的数据x输入故障定位模型,令其遍历每一个iTree,然后计算数据x最终落在每个iTree的第几层(x在树的高度),最后计算数据x在每个iTree的高度平均值。若该高度平均值低于预设阈值,则确定为故障,否则没有故障。该预设阈值可以基于实际需求预先设置。Afterwards, the trained fault location model can be deployed on the cloud server for subsequent fault inference. The reasoning process is as follows: first, input the data x in the relevant time period of the abnormal user experience into the fault location model, make it traverse each iTree, and then calculate which layer of each iTree the data x finally falls on (x is at the height of the tree) , and finally calculate the average height of data x in each iTree. If the average height is lower than the preset threshold, it is determined to be a fault, otherwise there is no fault. The preset threshold can be preset based on actual requirements.

可选的,在进行故障定位之后,可以将得到的故障信息发送到发生故障的网络域,以针对故障网络发出告警,实现自动化运维。Optionally, after the fault location is performed, the obtained fault information may be sent to the network domain where the fault occurs, so as to issue an alarm for the faulty network to realize automatic operation and maintenance.

下面结合具体实施例和附图对本申请进行说明。The present application will be described below with reference to specific embodiments and accompanying drawings.

如图2所示,本申请实施例涉及的业务处理过程可包括:As shown in FIG. 2 , the service processing process involved in this embodiment of the present application may include:

步骤21:采集数据。其中,此步骤中采集的数据包括三类:1)无线网、核心网、承载网的DPI数据;2)无线网、传输网、核心网、承载网、用户数据中心的网管数据;3)视频终端的QoE数据。Step 21: Collect data. Wherein, the data collected in this step includes three types: 1) DPI data of wireless network, core network, and bearer network; 2) network management data of wireless network, transmission network, core network, bearer network, and user data center; 3) Video QoE data of the terminal.

步骤22:对步骤21采集的数据进行预处理,比如进行清洗、去重、归一化等处理,然后通过五元组、开始结束时间戳等把无线网、核心网、承载网DPI数据及视频QoE数据进行数据关联。Step 22: Preprocess the data collected in Step 21, such as cleaning, deduplication, normalization, etc., and then convert the wireless network, core network, bearer network DPI data and video through quintuple, start and end timestamps, etc. QoE data for data association.

步骤23:判断是否已部署训练完成的业务质量感知模型和网络故障定位模型。若已部署,则可以直接进行模型推理,若未进行模型初始化训练,则开始模型训练。Step 23: Determine whether the trained service quality perception model and network fault location model have been deployed. If it has been deployed, model inference can be performed directly. If model initialization training has not been performed, model training will be started.

步骤24:进行业务质量感知模型和网络故障定位模型的训练,并部署到云服务器。其中,对于业务质量感知模型和网络故障定位模型的训练过程,可以参见上述内容,在此不再赘述。Step 24: Train the service quality perception model and the network fault location model, and deploy them to the cloud server. For the training process of the service quality perception model and the network fault location model, reference may be made to the above content, and details are not repeated here.

步骤25:利用训练完成的业务质量感知模块进行业务监测。Step 25: Use the trained service quality perception module to monitor the service.

步骤26:判断是否存在用户体验异常。若判断出存在用户异常体验,执行步骤27,否则执行步骤29。Step 26: Determine whether there is abnormal user experience. If it is determined that there is an abnormal user experience, step 27 is performed; otherwise, step 29 is performed.

步骤27:利用网络故障定位模型集进行故障定位。Step 27: Use the network fault location model set to locate the fault.

步骤28:针对故障网络发送告警通知。Step 28: Send an alarm notification for the faulty network.

步骤29:结束相关流程或开始下一监测周期。Step 29: End the relevant process or start the next monitoring cycle.

参见图3所示,本发明实施例还提供了一种面向视频业务的端到端质量感知和故障定位系统,主要包括网络物理设施层、部署于云服务器的数据收集处理模块、部署于云服务器的模型训练模块、以及部署于云服务器的模型推理模块。其中,该数据收集处理模块包括数据收集子模块和数据处理子模块,该数据收集子模块可以从物理层如无线网、传输网、核心网、承载网、用户数据中心网中收集数据,收集的数据可以由数据处理子模块进行预处理。该模型训练模块包括业务质量感知模型和网络故障定位模型集,该业务质量感知模型为基于视频vMOS标签和业务关联数据训练监督学习模型得到,该网络故障定位模型集分别基于各域数据进行无监督学习得到。该模型推理模块包括业务质量感知模块、网络故障定位模块及告警通知模块,该业务质量感知模块用于异常用户识别,该网络故障定位模块用于故障定位,该告警通知模块用于告警通知。需指出的,该数据收集处理模块和模型推理模块可以设置在一个设备上,也可以分别设置在不同的实体设备上。Referring to FIG. 3 , an embodiment of the present invention further provides an end-to-end quality perception and fault location system for video services, which mainly includes a network physical facility layer, a data collection and processing module deployed on a cloud server, and a data collection and processing module deployed on the cloud server. The model training module and the model inference module deployed on the cloud server. The data collection and processing module includes a data collection sub-module and a data processing sub-module. The data collection sub-module can collect data from physical layers such as wireless network, transmission network, core network, bearer network, and user data center network. The data can be preprocessed by the data processing submodule. The model training module includes a service quality perception model and a network fault location model set. The service quality perception model is obtained by training a supervised learning model based on video vMOS tags and service-related data. The network fault location model set is based on each domain data for unsupervised learning. Learn to get. The model inference module includes a service quality perception module, a network fault location module and an alarm notification module. The service quality perception module is used for abnormal user identification, the network fault location module is used for fault location, and the alarm notification module is used for alarm notification. It should be pointed out that the data collection and processing module and the model inference module can be set on one device, or can be set on different physical devices respectively.

结合图3和图4所示,本实施例中的业务质量感知模型和网络故障定位模型的训练过程可以包括:With reference to FIG. 3 and FIG. 4 , the training process of the service quality perception model and the network fault location model in this embodiment may include:

S1:数据收集处理模块中的数据收集子模块收集数据,包括:S1.1,收集视频终端收集vMOS值作为标签;S1.2,收集无线网的DPI数据;S1.3,收集核心网的DPI数据;S1.3,收集承载网的DPI数据;S1: The data collection sub-module in the data collection and processing module collects data, including: S1.1, collect the video terminal to collect vMOS value as a label; S1.2, collect the DPI data of the wireless network; S1.3, collect the DPI of the core network Data; S1.3, collect the DPI data of the bearer network;

S2:数据处理子模块对S1中收集到的数据进行清洗、去重、归一化等处理,再利用五元组、开始结束时间戳等关键字段进行关联。S2: The data processing sub-module cleans, deduplicates, and normalizes the data collected in S1, and then uses key fields such as quintuple, start and end timestamps to associate.

S3:模型训练模块利用各域关联数据进行监督学习模型训练,即将关联数据作为模型输入数据,vMOS值作为标签,利用监督学习模型进行训练,得到业务质量感知模型,以对体验不佳的异常用户进行识别。S3: The model training module uses the associated data of each domain to train the supervised learning model, that is, the associated data is used as the model input data, and the vMOS value is used as the label, and the supervised learning model is used for training to obtain a service quality perception model, so as to detect abnormal users with poor experience. to identify.

S4:数据收集处理模块中的数据收集子模块收集数据,包括:S4.1,收集无线网的网管数据;S4.2,收集传输网的网管数据;S4.3,收集核心网的网管数据;S4.4,收集承载网的网管数据;S4.5,收集用户数据中心的网管数据。S4: The data collection sub-module in the data collection and processing module collects data, including: S4.1, collect network management data of wireless network; S4.2, collect network management data of transmission network; S4.3, collect network management data of core network; S4.4, collecting the network management data of the bearer network; S4.5, collecting the network management data of the user data center.

S5:数据处理子模块对S4中收集的数据进行清洗、去重、归一化等处理。S5: The data processing sub-module performs cleaning, deduplication, normalization and other processing on the data collected in S4.

S6:模型训练模块利用处理后的各域数据分别使用无监督学习方法进行模型训练,得到包括无线网、传输网、核心网、承载网及用户数据中心五个故障定位模型组成的端到端故障定位模型集。S6: The model training module uses the processed data of each domain to perform model training using the unsupervised learning method, and obtains an end-to-end fault composed of five fault location models including wireless network, transmission network, core network, bearer network and user data center. Locate the model set.

结合图3和图5所示,本实施例中的业务质量感知和网络故障定位推理过程可以包括:With reference to FIG. 3 and FIG. 5 , the service quality perception and network fault location reasoning process in this embodiment may include:

S1:数据收集处理模块中的数据收集子模块收集数据,包括:S1.1,收集视频终端收集vMOS值作为标签;S1.2,收集无线网的DPI数据;S1.3,收集核心网的DPI数据;S1.3,收集承载网的DPI数据;S1: The data collection sub-module in the data collection and processing module collects data, including: S1.1, collect the video terminal to collect vMOS value as a label; S1.2, collect the DPI data of the wireless network; S1.3, collect the DPI of the core network Data; S1.3, collect the DPI data of the bearer network;

S2:数据处理子模块对S1中收集到的数据进行清洗、去重、归一化等处理,再利用五元组、开始结束时间戳等关键字段进行关联。S2: The data processing sub-module cleans, deduplicates, and normalizes the data collected in S1, and then uses key fields such as quintuple, start and end timestamps to associate.

S3:将关联数据输入业务质量感知模块中进行异常用户体验识别,即输入关联数据到业务质量感知模型进行推理。S3: Input the associated data into the service quality perception module to identify abnormal user experience, that is, input the associated data to the service quality perception model for inference.

S4:若业务质量感知模块判别出有用户体验异常发生,业务质量感知模块将业务质量告警发送给网络故障定位模型;S4: if the service quality perception module determines that there is an abnormal user experience, the service quality perception module sends the service quality alarm to the network fault location model;

S5:网络故障定位模块向数据收集模块发送故障定位相关数据请求;S5: The network fault location module sends a fault location-related data request to the data collection module;

S6:数据收集处理模块中的数据收集子模块收集数据,包括:S6.1,收集无线网的网管数据;S6.2,收集传输网的网管数据;S6.3,收集核心网的网管数据;S6.4,收集承载网的网管数据;S6.5,收集用户数据中心的网管数据。S6: The data collection sub-module in the data collection and processing module collects data, including: S6.1, collects network management data of the wireless network; S6.2, collects the network management data of the transmission network; S6.3, collects the network management data of the core network; S6.4, collecting the network management data of the bearer network; S6.5, collecting the network management data of the user data center.

S7:数据处理子模块对S7中收集的数据进行清洗、去重、归一化等处理。S7: The data processing sub-module performs cleaning, deduplication, normalization and other processing on the data collected in S7.

S8:将处理完的数据分别输入相对应的网络故障定位模型集中的各个故障定位模型中进行故障识别,并输出结果给告警通知模块;S8: Input the processed data into each fault location model in the corresponding network fault location model set to identify the fault, and output the result to the alarm notification module;

S9.1-S9.5:告警通知子模块将故障相关信息分别通过到发生故障的网络域,比如无线网、传输网、核心网、承载网、用户数据中心。S9.1-S9.5: The alarm notification sub-module transmits the fault-related information to the network domain where the fault occurs, such as the wireless network, transmission network, core network, bearer network, and user data center.

综上,本方案可以通过将多域网络指标与用户QoE直接进行关联,建模,构建业务质量感知模型,实现了面向用户体验的网络质量及时感知。进一步的,根据网络质量感知异常,提出将多域网络网管数据采集、汇聚进行整体统一分析,定义基于无监督学习的故障智能定位模型集,自动化的实现面向全域网络端到端的实时精准故障定位。To sum up, this solution can directly correlate multi-domain network indicators with user QoE, model and build a service quality perception model, so as to realize timely perception of network quality for user experience. Further, according to the abnormal network quality perception, it is proposed to collect and aggregate multi-domain network management data for an overall unified analysis, define an intelligent fault location model set based on unsupervised learning, and automatically realize end-to-end real-time accurate fault location for the global network.

本方案中的业务质量感知模型,可以辅助运营商通过网络侧数据评估视频用户QoE,感知提供给用户的网络服务质量,及时发现用户异常,以防止用户大量投诉,并能提取异常用户发生的时间与位置等相关异常信息,辅助进一步故障定位。The service quality perception model in this solution can assist operators to evaluate the QoE of video users through network-side data, perceive the quality of network services provided to users, detect user anomalies in time, prevent a large number of complaints from users, and extract the time when abnormal users occur. Abnormal information related to location, etc., assists further fault location.

本方案中的网络故障定位模型集,可以自动精准实时定位全网络域的故障,并发送告警通知,大量节省了人为运维成本和时间成本。The network fault location model set in this solution can automatically and accurately locate faults in the entire network domain in real time, and send alarm notifications, which greatly saves human operation and maintenance costs and time costs.

请参见图6,图6是本发明实施例提供的一种视频业务的故障定位装置的结构示意图,该装置应用于电子设备,如图6所示,该视频业务的故障定位装置60可以包括:Please refer to FIG. 6. FIG. 6 is a schematic structural diagram of a fault locating apparatus for a video service provided by an embodiment of the present invention. The apparatus is applied to electronic equipment. As shown in FIG. 6, the fault locating apparatus 60 for the video service may include:

第一获取模块61,用于获取视频业务在多域网络中的第一指标参数的数据和第二指标参数的数据;The first obtaining module 61 is used to obtain the data of the first index parameter and the data of the second index parameter of the video service in the multi-domain network;

分析模块62,用于基于预先训练的业务质量感知模型以及所述第一指标参数的数据,分析得到所述视频业务的用户体验质量信息;其中,所述业务质量感知模型用于表征第一指标参数的数据与用户体验质量信息之间的关联关系;An analysis module 62, configured to analyze and obtain the user experience quality information of the video service based on the pre-trained service quality perception model and the data of the first index parameter; wherein the service quality perception model is used to represent the first index The relationship between parameter data and user experience quality information;

评估模块63,用于根据所述视频业务的用户体验质量信息,评估所述视频业务的业务质量An evaluation module 63, configured to evaluate the service quality of the video service according to the user experience quality information of the video service

故障定位模块64,用于在评估得到所述视频业务的业务质量不满足预设要求的情况下,基于预先训练的故障定位模型集以及所述第二指标参数的数据,进行故障定位;A fault location module 64, configured to perform fault location based on the pre-trained fault location model set and the data of the second index parameter under the condition that the service quality of the video service does not meet the preset requirement;

其中,所述故障定位模型集中包括多个故障定位模型,每个故障定位模型对应于一个网络域。Wherein, the fault location model set includes multiple fault location models, and each fault location model corresponds to a network domain.

可选的,该故障定位装置60还包括:Optionally, the fault location device 60 further includes:

可选的,所述故障定位模块64具体用于:Optionally, the fault location module 64 is specifically used for:

将所述第二指标参数的数据中的每个网络域的指标参数数据,分别输入到所述每个网络域对应的故障定位模型中,进行故障推理。The index parameter data of each network domain in the data of the second index parameter is respectively input into the fault location model corresponding to each network domain to perform fault inference.

可选的,所述第一指标参数包括:无线网中的指标参数、核心网中的指标参数和承载网中的指标参数。Optionally, the first index parameters include: index parameters in the wireless network, index parameters in the core network, and index parameters in the bearer network.

可选的,所述第二指标参数包括:无线网中的指标参数、传输网中的指标参数、核心网中的指标参数、承载网中的指标参数、用户数据中心处的指标参数。Optionally, the second index parameters include: index parameters in the wireless network, index parameters in the transmission network, index parameters in the core network, index parameters in the bearer network, and index parameters in the user data center.

可选的,该质量感知装置60还包括:Optionally, the quality perception device 60 further includes:

执行模块,用于针对每个网络域,分别执行以下过程,获得所述故障定位模型集:The execution module is configured to execute the following processes for each network domain to obtain the fault location model set:

获取所述网络域的第一样本数据集;其中,所述第一样本数据集中包括所述网络域的指标参数数据;obtaining a first sample data set of the network domain; wherein, the first sample data set includes index parameter data of the network domain;

利用所述第一样本数据集进行模型训练,得到所述网络域对应的故障定位模型。Model training is performed by using the first sample data set to obtain a fault location model corresponding to the network domain.

可选的,该质量感知装置60还包括:Optionally, the quality perception device 60 further includes:

第二获取模块,用于获取第二样本数据集;其中,所述第二样本数据集中包括视频业务在多域网络中的指标参数数据以及用户体验质量信息;a second obtaining module, configured to obtain a second sample data set; wherein, the second sample data set includes the index parameter data of the video service in the multi-domain network and the user experience quality information;

预处理模块,用于对所述第二样本数据集进行预处理,得到目标数据集;a preprocessing module for preprocessing the second sample data set to obtain a target data set;

训练模块,用于利用所述目标数据集进行模型训练,得到所述业务质量感知模型。A training module, configured to perform model training by using the target data set to obtain the service quality perception model.

可选的,所述预处理模块包括:Optionally, the preprocessing module includes:

计算单元,用于利用最大信息系数法,计算所述指标参数数据中的每一类指标参数的数据与相关联的用户体验质量信息之间的最大信息系数;a calculation unit, configured to use the maximum information coefficient method to calculate the maximum information coefficient between the data of each type of index parameter in the index parameter data and the associated user experience quality information;

选取单元,用于根据计算得到的最大信息系数,从所述第二样本数据集中选取所述目标数据集;其中,所述目标数据集中包括所述指标参数数据中的第一指标参数的数据和与所述第一指标参数的数据相关联的用户体验质量信息,所述第一指标参数的数据和所述用户体验质量信息之间的最大信息系数大于预设阈值。A selection unit, configured to select the target data set from the second sample data set according to the calculated maximum information coefficient; wherein, the target data set includes the data of the first index parameter in the index parameter data and The user experience quality information associated with the data of the first index parameter, the maximum information coefficient between the data of the first index parameter and the user experience quality information is greater than a preset threshold.

可选的,该质量感知装置60还包括:Optionally, the quality perception device 60 further includes:

发送模块,用于将得到的故障信息发送到发生故障的网络域。The sending module is used for sending the obtained fault information to the network domain where the fault occurs.

可理解的,本发明实施例的视频业务的故障定位装置60,可以实现上述图1所示的方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。It is understandable that the device 60 for locating the fault of the video service according to the embodiment of the present invention can implement each process of the method embodiment shown in FIG. 1 above, and can achieve the same technical effect.

此外,本发明实施例还提供了一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述计算机程序被所述处理器执行时可以实现上述图1所示方法实施例的各个过程且能达到相同的技术效果,为避免重复,这里不再赘述。In addition, an embodiment of the present invention also provides an electronic device, including a memory, a processor, and a computer program stored on the memory and executable on the processor, wherein the computer program is executed by the processor During execution, each process of the method embodiment shown in FIG. 1 can be implemented and the same technical effect can be achieved. To avoid repetition, details are not described here.

请参见图7所示,本发明实施例还提供了一种电子设备70,包括总线71、收发机72、天线73、总线接口74、处理器75和存储器76。Referring to FIG. 7 , an embodiment of the present invention further provides an electronic device 70 , including a bus 71 , a transceiver 72 , an antenna 73 , a bus interface 74 , a processor 75 and a memory 76 .

在本发明实施例中,电子设备70还包括:存储在存储器76上并可在处理器75上运行的计算机程序。可理解的,所述计算机程序被处理器75执行时可实现上述图1所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。In the embodiment of the present invention, the electronic device 70 further includes: a computer program stored on the memory 76 and executable on the processor 75 . It is understandable that when the computer program is executed by the processor 75, each process of the method embodiment shown in FIG. 1 can be implemented, and the same technical effect can be achieved. In order to avoid repetition, details are not repeated here.

在图7中,总线架构(用总线71来代表),总线71可以包括任意数量的互联的总线和桥,总线71将包括由处理器75代表的一个或多个处理器和存储器76代表的存储器的各种电路链接在一起。总线71还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口74在总线71和收发机72之间提供接口。收发机72可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器75处理的数据通过天线73在无线介质上进行传输,进一步,天线73还接收数据并将数据传送给处理器75。In FIG. 7, the bus architecture (represented by bus 71), which may include any number of interconnected buses and bridges, will include one or more processors, represented by processors 75, and memory, represented by memory 76. The various circuits are linked together. The bus 71 may also link together various other circuits such as peripherals, voltage regulators, and power management circuits, etc., which are well known in the art and therefore will not be described further herein. Bus interface 74 provides an interface between bus 71 and transceiver 72 . Transceiver 72 may be a single element or multiple elements, such as multiple receivers and transmitters, providing a means for communicating with various other devices over a transmission medium. The data processed by the processor 75 is transmitted on the wireless medium through the antenna 73 , and further, the antenna 73 also receives the data and transmits the data to the processor 75 .

处理器75负责管理总线71和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器76可以被用于存储处理器75在执行操作时所使用的数据。The processor 75 is responsible for managing the bus 71 and general processing, and may also provide various functions including timing, peripheral interface, voltage regulation, power management, and other control functions. Instead, memory 76 may be used to store data used by processor 75 in performing operations.

可选的,处理器75可以是CPU、ASIC、FPGA或CPLD。Optionally, the processor 75 may be a CPU, ASIC, FPGA or CPLD.

本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时可实现上述图1所示方法实施例的各个过程且能达到相同的技术效果,为避免重复,这里不再赘述。Embodiments of the present invention further provide a computer-readable storage medium on which a computer program is stored. When the computer program is executed by a processor, each process of the method embodiment shown in FIG. 1 can be implemented and the same technology can be achieved. The effect, in order to avoid repetition, is not repeated here.

计算机可读介质包括永久性和非永久性、可移动和非可移动媒体,可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。Computer-readable media includes both permanent and non-permanent, removable and non-removable media, and can be implemented by any method or technology for storage of information. Information may be computer readable instructions, data structures, modules of programs, or other data. Examples of computer storage media include, but are not limited to, phase-change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory (ROM), Electrically Erasable Programmable Read Only Memory (EEPROM), Flash Memory or other memory technology, Compact Disc Read Only Memory (CD-ROM), Digital Versatile Disc (DVD) or other optical storage, Magnetic tape cartridges, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission medium that can be used to store information that can be accessed by a computing device. Computer-readable media, as defined herein, excludes transitory computer-readable media, such as modulated data signals and carrier waves.

需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。It should be noted that, herein, the terms "comprising", "comprising" or any other variation thereof are intended to encompass non-exclusive inclusion, such that a process, method, article or device comprising a series of elements includes not only those elements, It also includes other elements not expressly listed or inherent to such a process, method, article or apparatus. Without further limitation, an element qualified by the phrase "comprising a..." does not preclude the presence of additional identical elements in a process, method, article or apparatus that includes the element.

上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。The above-mentioned serial numbers of the embodiments of the present invention are only for description, and do not represent the advantages or disadvantages of the embodiments.

通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台服务分类设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。From the description of the above embodiments, those skilled in the art can clearly understand that the methods of the above embodiments can be implemented by means of software plus a necessary general hardware platform, and of course hardware can also be used, but in many cases the former is better implementation. Based on this understanding, the technical solutions of the present invention can be embodied in the form of software products in essence or the parts that make contributions to the prior art, and the computer software products are stored in a storage medium (such as ROM/RAM, magnetic disk, CD-ROM), including several instructions to make a service classification device (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods described in the various embodiments of the present invention.

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above are only the preferred embodiments of the present invention. It should be pointed out that for those skilled in the art, without departing from the principles of the present invention, several improvements and modifications can be made. It should be regarded as the protection scope of the present invention.

Claims (14)

1. A method for locating a fault of a video service is characterized by comprising the following steps:
acquiring data of a first index parameter and data of a second index parameter of a video service in a multi-domain network;
analyzing to obtain user experience quality information of the video service based on a pre-trained service quality perception model and the data of the first index parameter; the service quality perception model is used for representing the incidence relation between the data of the first index parameter and the user experience quality information;
evaluating the service quality of the video service according to the user experience quality information of the video service;
under the condition that the service quality of the video service does not meet the preset requirement, fault location is carried out based on a pre-trained fault location model set and the data of the second index parameter;
wherein the set of fault location models includes a plurality of fault location models, each corresponding to a network domain.
2. The method of claim 1, wherein the fault locating based on the pre-trained fault location model set and the data of the second index parameter comprises:
and respectively inputting the index parameter data of each network domain in the data of the second index parameters into the fault positioning model corresponding to each network domain to carry out fault reasoning.
3. The method of claim 1, wherein the first metric parameter comprises: index parameters in a wireless network, index parameters in a core network and index parameters in a bearer network.
4. The method of claim 1, wherein the second indexing parameter comprises: index parameters in a wireless network, index parameters in a transmission network, index parameters in a core network, index parameters in a bearer network, and index parameters at a user data center.
5. The method according to claim 1, wherein the obtaining of the data of the first index parameter and the data of the second index parameter of the video service in the multi-domain network is preceded by:
for each network domain, respectively executing the following processes to obtain the fault location model set:
obtaining a first sample dataset of the network domain; wherein the first sample dataset comprises metric parameter data for the network domain;
and performing model training by using the first sample data set to obtain a fault positioning model corresponding to the network domain.
6. The method according to claim 1, wherein the obtaining of the data of the first index parameter and the data of the second index parameter of the video service in the multi-domain network is preceded by:
acquiring a second sample data set; the second sample data set comprises index parameter data of the video service in the multi-domain network and user experience quality information;
preprocessing the second sample data set to obtain a target data set;
and performing model training by using the target data set to obtain the service quality perception model.
7. The method of claim 6, wherein said pre-processing said second set of sample data to obtain a target data set comprises:
calculating a maximum information coefficient between the data of each type of index parameter in the index parameter data and the associated user experience quality information by using a maximum information coefficient method;
selecting the target data set from the second sample data set according to the maximum information coefficient obtained by calculation; wherein the target data set includes data of a first index parameter in the index parameter data and user experience quality information associated with the data of the first index parameter, and a maximum information coefficient between the data of the first index parameter and the user experience quality information is greater than a preset threshold.
8. The method of claim 1, wherein after fault locating, the method further comprises:
and sending the obtained fault information to the network domain with the fault.
9. A video service fault location apparatus, comprising:
the first acquisition module is used for acquiring data of a first index parameter and data of a second index parameter of the video service in the multi-domain network;
the analysis module is used for analyzing and obtaining user experience quality information of the video service based on a pre-trained service quality perception model and the data of the first index parameter; the service quality perception model is used for representing the incidence relation between the data of the first index parameter and the user experience quality information;
an evaluation module for evaluating the quality of the video service according to the user experience quality information of the video service
The fault positioning module is used for positioning faults based on a pre-trained fault positioning model set and the data of the second index parameter under the condition that the service quality of the video service does not meet the preset requirement;
wherein the set of fault location models includes a plurality of fault location models, each corresponding to a network domain.
10. The apparatus of claim 9,
the fault location module is specifically configured to: and under the condition that the service quality of the video service does not meet the preset requirement, respectively inputting the index parameter data of each network domain in the data of the second index parameter into a fault positioning model corresponding to each network domain for fault reasoning.
11. The apparatus of claim 9, wherein the first metric parameter comprises: index parameters in a wireless network, index parameters in a core network and index parameters in a bearer network.
12. The apparatus of claim 9, wherein the second indexing parameter comprises: index parameters in a wireless network, index parameters in a transmission network, index parameters in a core network, index parameters in a bearer network, and index parameters at a user data center.
13. An electronic device comprising a processor, a memory and a program or instructions stored on the memory and executable on the processor, the program or instructions, when executed by the processor, implementing the steps of the method of fault location of a video service according to any one of claims 1 to 8.
14. A computer-readable storage medium, characterized in that a program or instructions are stored on the computer-readable storage medium, which program or instructions, when executed by a processor, implement the steps of the method for fault localization of video services according to any of claims 1 to 8.
CN202010939982.6A 2020-09-09 2020-09-09 Video service fault location method, device and electronic equipment Active CN114244691B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010939982.6A CN114244691B (en) 2020-09-09 2020-09-09 Video service fault location method, device and electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010939982.6A CN114244691B (en) 2020-09-09 2020-09-09 Video service fault location method, device and electronic equipment

Publications (2)

Publication Number Publication Date
CN114244691A true CN114244691A (en) 2022-03-25
CN114244691B CN114244691B (en) 2024-11-22

Family

ID=80742577

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010939982.6A Active CN114244691B (en) 2020-09-09 2020-09-09 Video service fault location method, device and electronic equipment

Country Status (1)

Country Link
CN (1) CN114244691B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115022916A (en) * 2022-05-05 2022-09-06 北京国联视讯信息技术股份有限公司 5G communication abnormity early warning method and system based on state detection
CN115499302A (en) * 2022-08-17 2022-12-20 中国电信股份有限公司 Monitoring method and device of business system, readable storage medium and electronic equipment
CN116016468A (en) * 2022-12-29 2023-04-25 杭州网易智企科技有限公司 Session problem diagnosis method, device, medium and electronic equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101577631A (en) * 2008-05-07 2009-11-11 华为技术有限公司 Method, system and network device for evaluating experience quality of user
CN102143389A (en) * 2011-04-22 2011-08-03 赛特斯网络科技(南京)有限责任公司 Quality assurance (QA) system and method of internet protocol television (IPTV) services
CN103856789A (en) * 2014-03-13 2014-06-11 赛特斯信息科技股份有限公司 System and method for achieving OTT service quality guarantee based on user behavior analysis
CN106022583A (en) * 2016-05-12 2016-10-12 中国电力科学研究院 Electric power communication service risk calculation method and system based on fuzzy decision tree
CN111163361A (en) * 2018-11-07 2020-05-15 中国电信股份有限公司 Service fault positioning method, device and system, network equipment and storage medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101577631A (en) * 2008-05-07 2009-11-11 华为技术有限公司 Method, system and network device for evaluating experience quality of user
CN102143389A (en) * 2011-04-22 2011-08-03 赛特斯网络科技(南京)有限责任公司 Quality assurance (QA) system and method of internet protocol television (IPTV) services
CN103856789A (en) * 2014-03-13 2014-06-11 赛特斯信息科技股份有限公司 System and method for achieving OTT service quality guarantee based on user behavior analysis
CN106022583A (en) * 2016-05-12 2016-10-12 中国电力科学研究院 Electric power communication service risk calculation method and system based on fuzzy decision tree
CN111163361A (en) * 2018-11-07 2020-05-15 中国电信股份有限公司 Service fault positioning method, device and system, network equipment and storage medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115022916A (en) * 2022-05-05 2022-09-06 北京国联视讯信息技术股份有限公司 5G communication abnormity early warning method and system based on state detection
CN115499302A (en) * 2022-08-17 2022-12-20 中国电信股份有限公司 Monitoring method and device of business system, readable storage medium and electronic equipment
CN116016468A (en) * 2022-12-29 2023-04-25 杭州网易智企科技有限公司 Session problem diagnosis method, device, medium and electronic equipment

Also Published As

Publication number Publication date
CN114244691B (en) 2024-11-22

Similar Documents

Publication Publication Date Title
US11018958B2 (en) Communication network quality of experience extrapolation and diagnosis
WO2017215647A1 (en) Root cause analysis in a communication network via probabilistic network structure
CN114244691A (en) Video service fault positioning method and device and electronic equipment
US20200134421A1 (en) Assurance of policy based alerting
CN111327539B (en) Service scheduling method, device and equipment
CN114630352A (en) Fault monitoring method and device of access equipment
CN110912737A (en) A Dynamic Perception Performance Early Warning Method Based on Mixed Model
CN113543188B (en) Wireless network signal quality detection method, terminal equipment and storage medium
WO2024124975A1 (en) Network quality evaluation method, apparatus and device, and storage medium and program product
CN115038088B (en) Intelligent network security detection early warning system and method
CN107395440A (en) Internet topology probe node optimization dispositions method based on complex network
CN114071232B (en) Audio and video quality visualization method and device, equipment, medium and product thereof
CN117093461A (en) Method, system, equipment and storage medium for time delay detection and analysis
CN115051907A (en) Alarm log data processing method and device and nonvolatile storage medium
WO2024138968A1 (en) Base station fault diagnosis method and apparatus
CN117376084A (en) Fault detection method, electronic equipment and medium thereof
Budiyanto et al. Classification of network status in academic information systems using naive Bayes algorithm method
CN113660687B (en) Network difference cell processing method, device, equipment and storage medium
Johnsson et al. Online network performance degradation localization using probabilistic inference and change detection
CN117834472B (en) Internet of things card monitoring management method and system
CN114490303B (en) Fault root cause determination method and device and cloud equipment
CN113411236B (en) Quality difference router detection method, quality difference router detection device, quality difference router detection equipment and storage medium
CN115022916B (en) 5G communication abnormity early warning method and system based on state detection
CN114827951A (en) Vehicle network quality analysis method and system based on vehicle terminal and storage medium
CN110896544A (en) Fault delimiting method and device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant