CN114241364A - A rapid calibration method for foreign object targets in overhead transmission lines - Google Patents
A rapid calibration method for foreign object targets in overhead transmission lines Download PDFInfo
- Publication number
- CN114241364A CN114241364A CN202111441444.5A CN202111441444A CN114241364A CN 114241364 A CN114241364 A CN 114241364A CN 202111441444 A CN202111441444 A CN 202111441444A CN 114241364 A CN114241364 A CN 114241364A
- Authority
- CN
- China
- Prior art keywords
- image
- target
- foreign object
- gray
- foreign
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 46
- 230000005540 biological transmission Effects 0.000 title claims abstract description 45
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 16
- 239000011159 matrix material Substances 0.000 claims description 16
- 238000012545 processing Methods 0.000 claims description 16
- 230000006870 function Effects 0.000 claims description 14
- 238000004804 winding Methods 0.000 claims description 13
- 238000003708 edge detection Methods 0.000 claims description 12
- 230000011218 segmentation Effects 0.000 claims description 9
- 238000004590 computer program Methods 0.000 claims description 8
- 238000001514 detection method Methods 0.000 claims description 8
- 238000001914 filtration Methods 0.000 claims description 7
- 238000013178 mathematical model Methods 0.000 claims description 6
- 238000010606 normalization Methods 0.000 claims description 6
- 238000013507 mapping Methods 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 claims description 3
- 210000000746 body region Anatomy 0.000 claims 3
- 230000008030 elimination Effects 0.000 claims 1
- 238000003379 elimination reaction Methods 0.000 claims 1
- 230000002401 inhibitory effect Effects 0.000 claims 1
- 238000012216 screening Methods 0.000 claims 1
- 230000009466 transformation Effects 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 2
- 230000004927 fusion Effects 0.000 abstract 1
- 238000011161 development Methods 0.000 description 6
- 230000018109 developmental process Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 3
- 238000007689 inspection Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/60—Analysis of geometric attributes
- G06T7/66—Analysis of geometric attributes of image moments or centre of gravity
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02G—INSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
- H02G1/00—Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
- H02G1/02—Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for overhead lines or cables
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Geometry (AREA)
- Image Analysis (AREA)
Abstract
本发明公开了一种架空输电线路异物目标快速标定方法,针对传统工具和方法难以高效、安全地清除架空输电线路异物,提出一种高空目标快速标定方法。首先实时获取异物视频图像,对视频图像进行处理识别并选定目标区域,利用图像特征点—ORB特征点匹配融合算法,以实现异物目标快速识别标定,极大的增加了异物目标定位的准确率,减少作业人员的操作难度和人为误差,并能够实现接近100%的异物目标识别和跟踪效果。
The invention discloses a method for quickly calibrating foreign objects in overhead transmission lines. Aiming at the difficulty of traditional tools and methods to efficiently and safely remove foreign objects in overhead transmission lines, a rapid calibration method for high-altitude objects is proposed. First, acquire the foreign object video image in real time, process and identify the video image and select the target area, and use the image feature point-ORB feature point matching fusion algorithm to realize the rapid identification and calibration of the foreign object target, which greatly increases the accuracy of the foreign object target location. , reduce the operator's difficulty and human error, and can achieve close to 100% foreign object recognition and tracking effect.
Description
技术领域technical field
本发明属于输电安全领域,具体涉及一种架空输电线路异物目标快速标定方法。The invention belongs to the field of power transmission safety, in particular to a method for quickly calibrating a foreign object target in an overhead power transmission line.
背景技术Background technique
电力是国民经济与社会发展的基础,电力系统作为支撑国民经济发展的能源支柱,在当今社会发展中发挥着不可替代的作用,关系着整个社会的稳定发展,电网的安全稳定运行,不仅与国民经济发展息息相关,同时也是人民安居乐业、社会稳定的基础。随着我国电网高速发展,输电线路规模越来越大,输电线路设备数量日益增多,位于复杂地形条件、恶劣环境下的输电线路长度日益增长,需要特别巡视和维护的输电线路数量与日俱增,且输电线路巡视检查维护困难,技术含量高。Electricity is the foundation of the national economy and social development. As the energy pillar supporting the development of the national economy, the power system plays an irreplaceable role in today's social development and is related to the stable development of the entire society. The safe and stable operation of the power grid is not only related to the Economic development is closely related, and it is also the foundation for people to live and work in peace and contentment and social stability. With the rapid development of my country's power grid, the scale of transmission lines is getting larger and larger, and the number of transmission line equipment is increasing. Line inspection and maintenance are difficult, and the technical content is high.
在如此规模的输电电网中,不免由于各式各样的原因造成电力系统故障,在引发电网的各种事故中,风筝、长布条、塑料袋等非绝缘物体悬挂在输电线路之间会造成线与线之间短路,使变电站的开关跳闸。带电清除异物是带电作业中安全风险最高的项目,传统的清除高压电线勾挂异物的主要方法有两种:一是停电后电工上线摘除;二是等电位带电作业摘除。这两种方法都需要投入较多的人力物力,且作业程序复杂、时间长,人劳动强度大,安全可靠性低。同时由于异物种类、缠绕方式多种多样,基本依靠带电作业过程中作业工人“随机应变”来处理异物;有些与输电线路构件缠绕紧密的异物,危险性高,只能采用停电处理,然而停电处理直接降低了供电的可靠性,造成社会经济损失,影响人民生活。In such a large-scale power transmission grid, power system failures are inevitably caused by various reasons. In various accidents caused by the power grid, non-insulated objects such as kites, long cloth strips, and plastic bags are suspended between the transmission lines. Short circuit between lines, tripping the switch of the substation. Live removal of foreign objects is the item with the highest safety risk in live work. There are two traditional main methods for removing foreign objects hooked on high-voltage wires: one is to remove them after a power outage; the other is to remove them during equipotential live work. Both of these two methods require a lot of human and material resources, and the operation procedures are complex, time-consuming, labor-intensive, and safety and reliability are low. At the same time, due to the variety of types and winding methods of foreign objects, the workers basically rely on the “follow-up” to deal with foreign objects during live work; some foreign objects that are tightly entangled with the transmission line components are highly dangerous and can only be treated by power outages, but the power outage treatment directly It reduces the reliability of power supply, causes social and economic losses, and affects people's lives.
因此必须通过创新与融合新科技来提高输电线路巡查的效率和质量,采用与时俱进的高效方法及时清除架空输电线路上的异物,提早解决输电线路安全隐患。Therefore, it is necessary to innovate and integrate new technologies to improve the efficiency and quality of transmission line inspections, adopt efficient methods that keep pace with the times and remove foreign objects on overhead transmission lines in a timely manner, and solve hidden safety hazards of transmission lines in advance.
激光作为一种新型的异物清除手段,在各行各业都得到了广泛地应用。区别于普通物理剪断、钩拽等方式,激光通过增加异物表面的温度进行灼烧的手段进行清除。缠绕在输电线路上的多为塑料薄膜、风筝等漂浮性异物,这些材质通常为塑料、尼龙、涤纶等燃点较低的可燃物质,其燃点一般都在300℃以下,即使用激光清除异物时,通过对输电线路异物进行加热熔断处理的方式并不会对输电线路造成实质性伤害。As a new type of foreign matter removal method, laser has been widely used in all walks of life. Different from ordinary physical shearing, hooking and other methods, the laser removes the foreign object by increasing the temperature of the surface of the foreign object for burning. Most of the floating foreign objects such as plastic films and kites are wrapped around the transmission line. These materials are usually plastic, nylon, polyester and other flammable substances with low ignition points, and their ignition points are generally below 300 °C. The method of heating and fusing foreign objects in the transmission line will not cause substantial damage to the transmission line.
发明内容SUMMARY OF THE INVENTION
本发明目的在于提供一种架空输电线路异物目标快速标定方法,解决了架空输电线路上缠绕异物的目标识别问题,增加了清除架空输电线路异物过程中的灵活度、机动性以及效率,从而达到更好的控制需求。The purpose of the present invention is to provide a method for quickly calibrating foreign objects in overhead transmission lines, which solves the problem of target identification of entangled foreign objects on overhead transmission lines, and increases the flexibility, mobility and efficiency in the process of removing foreign objects in overhead transmission lines, so as to achieve better Good control needs.
实现本发明的技术解决方案为:一种架空输电线路异物目标快速标定方法,包括以下步骤:The technical solution for realizing the present invention is: a method for quickly calibrating foreign objects in overhead transmission lines, comprising the following steps:
步骤1、实时获取目标区域视频图像,并对图像进行处理,逐帧识别当前视频图像信息,当识别到目标物时,将该帧画面置为初始帧,并放大目标所在区域视频图像;
步骤2、对放大后的视频图像进一步精确识别,解算图像信息,获取异物目标的坐标信息,以及异物目标在架空输电线缠绕位置的坐标信息;
步骤3、检测初始帧的画面图像信息,进行异物目标自动跟踪处理,识别异物目标在视频图像中的位置状态信息,包括图像特征点、质心位置及移动轨迹;Step 3: Detecting the picture image information of the initial frame, performing automatic tracking processing of the foreign object target, and identifying the position state information of the foreign object target in the video image, including image feature points, centroid position and movement trajectory;
步骤4、跟踪异物,并通过激光进行切割;
步骤5、判断是否仍然存在异物目标,若是则返回步骤1,否则结束。Step 5: Determine whether there is still a foreign object target, if so, return to
一种架空输电线路异物目标快速标定系统,包括以下模块:A rapid calibration system for foreign object targets in overhead transmission lines, comprising the following modules:
图像处理模块:用于实时获取目标区域视频图像,并对图像进行处理,当识别到目标物时,将该帧画面置为初始帧,并放大目标所在区域视频图像;Image processing module: used to obtain the video image of the target area in real time, and process the image. When the target object is recognized, the frame will be set as the initial frame, and the video image of the target area will be enlarged;
异物坐标获取模块:用于对放大后的视频图像进一步精确识别,解算图像信息,获取异物目标的坐标信息,以及异物目标在架空输电线缠绕位置的坐标信息;Foreign object coordinate acquisition module: used to further accurately identify the enlarged video image, solve the image information, obtain the coordinate information of the foreign object target, and the coordinate information of the foreign object target in the winding position of the overhead transmission line;
异物跟踪模块:用于度异物目标进行跟踪,识别异物目标在视频图像中的位置状态信息,包括图像特征点、质心位置及移动轨迹;Foreign body tracking module: used to track foreign body targets, identify the position status information of foreign body targets in the video image, including image feature points, centroid position and movement trajectory;
异物处理模块:利用激光进行切割异物,并判断是否仍然存在异物目标。Foreign body processing module: Use laser to cut foreign body and judge whether there is still foreign body target.
与现有技术相比,本发明的显著优点为:Compared with the prior art, the significant advantages of the present invention are:
(1)本发明的技术方案采用改进的图像识别和跟踪算法,提升异物目标识别的准确率和精度;(1) The technical scheme of the present invention adopts an improved image recognition and tracking algorithm to improve the accuracy and precision of foreign object target recognition;
(2)本发明的技术方案使用了训练好的异物目标数据训练集,结合ORB特征点和Mean-Shift算子预测,可以快速检测识别待测异物目标。(2) The technical solution of the present invention uses the trained foreign object target data training set, combined with ORB feature points and Mean-Shift operator prediction, can quickly detect and identify the foreign object target to be detected.
下面结合附图和具体实施方式对本发明做进一步的描述。The present invention will be further described below with reference to the accompanying drawings and specific embodiments.
附图说明Description of drawings
图1为本发明的架空输电线异物目标识别方法实现流程图。FIG. 1 is a flow chart showing the realization of the method for identifying foreign objects in overhead transmission lines of the present invention.
图2为本发明中灰度直方图均衡化算法映射图。FIG. 2 is a mapping diagram of the grayscale histogram equalization algorithm in the present invention.
图3为本发明的实施例中ORB特征点识别对比示意图。FIG. 3 is a schematic diagram for comparison and comparison of ORB feature point identification in an embodiment of the present invention.
具体实施方式Detailed ways
一种架空输电线路异物目标快速标定方法,包括以下步骤:A method for quickly calibrating a foreign object target in an overhead transmission line, comprising the following steps:
步骤1、实时获取目标区域视频图像,并对图像进行处理,逐帧识别当前视频图像信息,当识别到目标物时,将该帧画面置为初始帧,并放大目标所在区域视频图像,具体为:
步骤1-1、获取视频图像,对获取的每帧图像进行灰度转换,建立数字灰度图像随机数学模型,对原始图像上的每个像素作映射,获得灰度增强后的图像,具体为:Step 1-1. Obtain a video image, perform grayscale conversion on each frame of the obtained image, establish a random mathematical model of a digital grayscale image, map each pixel on the original image, and obtain a grayscale-enhanced image, specifically: :
步骤1-1-1、对获取的图像构建数字灰度图像随机数学模型,统计所有像素的灰度值,得到灰度分布直方图,即得到原始图像的灰度级;Step 1-1-1, construct a random mathematical model of digital grayscale image for the acquired image, count the grayscale values of all pixels, and obtain a grayscale distribution histogram, that is, obtain the grayscale level of the original image;
步骤1-1-2、在原始灰度图像X中根据分割阈值rc,将图像分割为两个无交集的子图,然后分别对这两个子图应用直方图均衡化算法,进行灰度分布归一化概率计算:Step 1-1-2. In the original grayscale image X, according to the segmentation threshold rc , the image is divided into two sub-images without intersection, and then the histogram equalization algorithm is applied to the two sub-images respectively, and the gray distribution is carried out. Normalized probability calculation:
其中,pLd(dj)和PUd(dj)分别表示低灰度子图和高灰度子图的灰度归一化概率;其中dk=0,1,2,...,L-1,L为灰度级最大值,Pd(dj)为原图像中灰度级dj的灰度分布概率,Pd(dk)为原始图像中灰度级dk的灰度分布概率;Among them, p Ld (d j ) and P Ud (d j ) represent the gray-scale normalization probability of the low-gray sub-image and the high-gray sub-image, respectively; where d k =0,1,2,..., L-1, L is the maximum value of the gray level, P d (d j ) is the gray distribution probability of the gray level d j in the original image, and P d (d k ) is the gray level of the gray level d k in the original image. degree distribution probability;
步骤1-1-3、构建原始图像灰度级到目标图像灰度级的映射关系,构建连续变量的灰度分布概率密度函数,根据灰度分布概率密度函数对图像进行低灰度区和高灰度区划分,分别得到图像的低灰度区和高灰度区,得到高灰度区的灰度图像,即灰度增强后的图像。Step 1-1-3, construct the mapping relationship between the gray level of the original image and the gray level of the target image, construct the gray distribution probability density function of the continuous variable, and perform the low gray area and high gray area of the image according to the gray distribution probability density function. By dividing the gray area, the low gray area and the high gray area of the image are obtained respectively, and the gray image of the high gray area is obtained, that is, the image after gray enhancement.
步骤1-2、用高斯模糊方法对灰度增强后的图像通过滤波进行降噪,获取降噪后的图像;Step 1-2, use the Gaussian blur method to denoise the grayscale-enhanced image through filtering to obtain a denoised image;
步骤1-3、对降噪后的图像进行高斯滤波,获得平滑图像,具体为:Step 1-3: Perform Gaussian filtering on the denoised image to obtain a smooth image, specifically:
以离散点的高斯函数值作为权值,在降噪后的图片进行窗口模板采集,对采集到的窗口模板中的的灰度矩阵内每个像素值进行加权平均,以消除高斯噪声:Using the Gaussian function value of the discrete point as the weight, the window template is collected in the denoised image, and the weighted average of each pixel value in the grayscale matrix in the collected window template is performed to eliminate the Gaussian noise:
设置窗口模板的大小为(2k+1)×(2k+1),则该模板中每个元素的权重系数为:Set the size of the window template to (2k+1)×(2k+1), then the weight coefficient of each element in the template is:
其中(i,j)(i,j=1,2,...,2k+1)表示窗口模板内每个像素点的相对坐标。where (i,j)(i,j=1,2,...,2k+1) represents the relative coordinates of each pixel in the window template.
步骤1-4、利用Canny边缘检测算法在获得的平滑图像上对异物目标进行检测,当检测到异物目标处于图像画面中心时,将该帧图像更新为初始帧,并放大目标所在区域视频图像。Steps 1-4, use the Canny edge detection algorithm to detect the foreign object on the obtained smooth image, when it is detected that the foreign object is in the center of the image, update the frame image to the initial frame, and zoom in on the video image of the area where the object is located.
步骤2、对放大后的视频图像进一步精确识别,解算图像信息,获取异物目标的坐标信息,以及异物目标在架空输电线缠绕位置的坐标信息,具体为:
步骤2-1、利用Canny边缘检测算法,对放大后的目标区域进行目标边缘检测,检测目标区域的水平、垂直和两个对角线共计四个方向的边缘,计算其梯度强度和方向,并对其进行噪声消除,使用高斯模糊的方法,将图像信息转换为高斯单元格,消除噪声对识别的影响,具体为:Step 2-1. Use the Canny edge detection algorithm to detect the target edge of the enlarged target area, detect the horizontal, vertical and two diagonal edges of the target area in four directions, calculate its gradient strength and direction, and Noise removal is performed on it, and the Gaussian blur method is used to convert the image information into Gaussian cells to eliminate the influence of noise on recognition, specifically:
步骤2-1-1、将图像梯度方向按照角度分成四个方向,分别为0°、45°、90°、135°边缘,每个3×3邻域内都比较中心值在其对应梯度方向上其他两个值的大小,如果中心值为最大值则保留,否则中心值抑制,用于去除伪边缘点;Step 2-1-1. Divide the image gradient direction into four directions according to the angle, namely 0°, 45°, 90°, and 135° edges, and compare the center value in its corresponding gradient direction in each 3×3 neighborhood. The size of the other two values, if the central value is the maximum value, it is retained, otherwise the central value is suppressed to remove false edge points;
步骤2-1-2、设定两个梯度大小阈值:高阈为mthh,低阈值mthl,将图像分割为如下两个边缘图:Step 2-1-2. Set two gradient size thresholds: the high threshold is m thh and the low threshold m thl , and the image is divided into the following two edge maps:
EH={e(x,y)|如果M(x,y)≥mthh,则e(x,y)=1;否则e(x,y)=0}E H ={e(x,y)|if M(x,y) ≥m thh , then e(x,y)=1; else e(x,y)=0}
EL={e(x,y)|如果M(x,y)≥mthl,则e(x,y)=1;否则e(x,y)=0}E L ={e(x,y)|if M(x,y) ≥m thl , then e(x,y)=1; otherwise e(x,y)=0}
其中,M(x,y)表示分割前图像中(x,y)坐标处的边缘梯度值,e(x,y)表示分割后当前(x,y)坐标处的边缘梯度值;Among them, M(x, y) represents the edge gradient value at the (x, y) coordinate in the image before segmentation, and e(x, y) represents the edge gradient value at the current (x, y) coordinate after segmentation;
步骤2-1-3、将高阈值图EH中所有的像素对应位置都标记为边缘点,再遍历EH中的所有点,利用8连通关系在低阈值图EL中确定最终的边缘点,使得边缘连续性增强,完成目标边缘检测。Step 2-1-3, mark the corresponding positions of all pixels in the high threshold map E H as edge points, then traverse all the points in E H , and use the 8-connection relationship to determine the final edge point in the low threshold map E L , which enhances the edge continuity and completes the target edge detection.
步骤2-2、将放大后目标区域的图像信息转换为图像识别矩阵,利用Hough变换检测对图像识别矩阵进行处理,获取图像中异物目标与架空输电线路缠绕点位置坐标。Step 2-2: Convert the image information of the enlarged target area into an image recognition matrix, process the image recognition matrix by Hough transform detection, and obtain the position coordinates of the foreign object target and the winding point of the overhead transmission line in the image.
步骤3、检测初始帧的画面图像信息,进行异物目标自动跟踪处理,识别异物目标在视频图像中的位置状态信息,包括图像特征点、质心位置及移动轨迹,具体为:Step 3: Detect the picture image information of the initial frame, perform automatic tracking processing of the foreign object target, and identify the position state information of the foreign object target in the video image, including the image feature point, the position of the centroid and the movement trajectory, specifically:
步骤3-1、将视频图像更新后的初始帧中的异物区域作为参考帧,利用Mean-Shift算子预测当前帧中的异物目标区域,通过Mean-Shift算法解算出当前帧中异物目标特征点的偏移均值:Step 3-1. Use the foreign object area in the updated initial frame of the video image as the reference frame, use the Mean-Shift operator to predict the foreign object target area in the current frame, and use the Mean-Shift algorithm to solve the foreign object target feature points in the current frame. Offset mean of :
其中,为当前基准点下的特征点偏移均值,Ck,d表示归一化常量,k(x)为轮廓函数,h为核函数带宽参数,d为矩阵维度,H是一个d*d维的带宽矩阵,x为基准点,xi为d维欧式空间Rd的n个样本点,n为d维空间中的样本点数量;in, is the mean value of feature point offset under the current reference point, C k,d represents the normalization constant, k(x) is the contour function, h is the kernel function bandwidth parameter, d is the matrix dimension, and H is a d*d dimension Bandwidth matrix, x is the reference point, x i is the n sample points in the d-dimensional Euclidean space R d , and n is the number of sample points in the d-dimensional space;
步骤3-2、更新当前图像,将其异物特征点偏移均值作为新的基准点,反复循环更新,直到满足特征点偏移距离阈值;Step 3-2, update the current image, take the mean value of the foreign object feature point offset as the new reference point, and repeat the cycle update until the feature point offset distance threshold is met;
步骤3-3、利用特征点偏移距离阈值作为匹配依据,使用Mean-Shift算子预测当前帧的异物区域,提取当前帧和参考帧中异物区域的ORB特征点,通过特征点匹配构建异物区域特征集合;Step 3-3. Use the feature point offset distance threshold as the matching basis, use the Mean-Shift operator to predict the foreign body area of the current frame, extract the ORB feature points of the foreign body area in the current frame and the reference frame, and construct the foreign body area through feature point matching. feature set;
步骤3-4、在当前帧异物区域特征集合中提取并筛选新的特征点,更新异物区域特征集合,剔除不匹配的特征点,通过不断更新异物区域特征集合中的特征点,提高异物检测准确率;Step 3-4, extract and screen new feature points in the feature set of the foreign body area in the current frame, update the feature set of the foreign body area, remove the feature points that do not match, and improve the accuracy of foreign body detection by continuously updating the feature points in the feature set of the foreign body area Rate;
步骤3-5、对图像中的异物目标空间坐标实时转换为角度坐标,并跟踪异物目标。Steps 3-5, convert the space coordinates of the foreign object target in the image into angular coordinates in real time, and track the foreign object target.
步骤4、跟踪异物,并通过激光进行切割;
步骤5、判断是否仍然存在异物目标,若是则返回步骤1,否则结束。Step 5: Determine whether there is still a foreign object target, if so, return to
一种架空输电线路异物目标快速标定系统,包括以下模块:A rapid calibration system for foreign object targets in overhead transmission lines, comprising the following modules:
图像处理模块:用于实时获取目标区域视频图像,并对图像进行处理,当识别到目标物时,将该帧画面置为初始帧,并放大目标所在区域视频图像;Image processing module: used to obtain the video image of the target area in real time, and process the image. When the target object is recognized, the frame will be set as the initial frame, and the video image of the target area will be enlarged;
异物坐标获取模块:用于对放大后的视频图像进一步精确识别,解算图像信息,获取异物目标的坐标信息,以及异物目标在架空输电线缠绕位置的坐标信息;Foreign object coordinate acquisition module: used to further accurately identify the enlarged video image, solve the image information, obtain the coordinate information of the foreign object target, and the coordinate information of the foreign object target in the winding position of the overhead transmission line;
异物跟踪模块:用于度异物目标进行跟踪,识别异物目标在视频图像中的位置状态信息,包括图像特征点、质心位置及移动轨迹;Foreign body tracking module: used to track foreign body targets, identify the position status information of foreign body targets in the video image, including image feature points, centroid position and movement trajectory;
异物处理模块:利用激光进行切割异物,并判断是否仍然存在异物目标。Foreign body processing module: Use laser to cut foreign body and judge whether there is still foreign body target.
一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现以下步骤:A computer device, comprising a memory, a processor and a computer program stored in the memory and running on the processor, the processor implements the following steps when executing the computer program:
步骤1、实时获取目标区域视频图像,并对图像进行处理,逐帧识别当前视频图像信息,当识别到目标物时,将该帧画面置为初始帧,并放大目标所在区域视频图像;
步骤2、对放大后的视频图像进一步精确识别,解算图像信息,获取异物目标的坐标信息,以及异物目标在架空输电线缠绕位置的坐标信息;
步骤3、检测初始帧的画面图像信息,进行异物目标自动跟踪处理,识别异物目标在视频图像中的位置状态信息,包括图像特征点、质心位置及移动轨迹;Step 3: Detecting the picture image information of the initial frame, performing automatic tracking processing of the foreign object target, and identifying the position state information of the foreign object target in the video image, including image feature points, centroid position and movement trajectory;
步骤4、跟踪异物,并通过激光进行切割;
步骤5、判断是否仍然存在异物目标,若是则返回步骤1,否则结束。Step 5: Determine whether there is still a foreign object target, if so, return to
一种计算机可存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现以下步骤:A computer-storable medium having a computer program stored thereon, the computer program implementing the following steps when executed by a processor:
步骤1、实时获取目标区域视频图像,并对图像进行处理,逐帧识别当前视频图像信息,当识别到目标物时,将该帧画面置为初始帧,并放大目标所在区域视频图像;
步骤2、对放大后的视频图像进一步精确识别,解算图像信息,获取异物目标的坐标信息,以及异物目标在架空输电线缠绕位置的坐标信息;
步骤3、检测初始帧的画面图像信息,进行异物目标自动跟踪处理,识别异物目标在视频图像中的位置状态信息,包括图像特征点、质心位置及移动轨迹;Step 3: Detecting the picture image information of the initial frame, performing automatic tracking processing of the foreign object target, and identifying the position state information of the foreign object target in the video image, including image feature points, centroid position and movement trajectory;
步骤4、跟踪异物,并通过激光进行切割;
步骤5、判断是否仍然存在异物目标,若是则返回步骤1,否则结束。Step 5: Determine whether there is still a foreign object target, if so, return to
实施例Example
结合图1,一种架空输电线路异物目标快速标定方法,包括以下步骤:With reference to Figure 1, a method for quickly calibrating foreign object targets in overhead transmission lines includes the following steps:
步骤1、实时获取目标区域视频图像,并对图像进行处理,逐帧识别当前视频图像信息,当识别到目标物时,将该帧画面置为初始帧,并放大目标所在区域视频图像,具体为:
步骤1-1、获取视频图像,对获取的每帧图像进行灰度转换,建立数字灰度图像随机数学模型,对原始图像上的每个像素作映射,获得灰度增强后的图像,具体为:Step 1-1. Obtain a video image, perform grayscale conversion on each frame of the obtained image, establish a random mathematical model of a digital grayscale image, map each pixel on the original image, and obtain a grayscale-enhanced image, specifically: :
步骤1-1-1、对获取的图像构建数字灰度图像随机数学模型,统计所有像素的灰度值,得到灰度分布直方图,即得到原始图像的灰度级;Step 1-1-1, construct a random mathematical model of digital grayscale image for the acquired image, count the grayscale values of all pixels, and obtain a grayscale distribution histogram, that is, obtain the grayscale level of the original image;
步骤1-1-2、在原始灰度图像X中根据分割阈值rc,将图像分割为两个无交集的子图,然后分别对这两个子图应用直方图均衡化算法,进行灰度分布归一化概率计算:Step 1-1-2. In the original grayscale image X, according to the segmentation threshold rc , the image is divided into two sub-images without intersection, and then the histogram equalization algorithm is applied to the two sub-images respectively, and the gray distribution is carried out. Normalized probability calculation:
其中,pLd(dj)和PUd(dj)分别表示低灰度子图和高灰度子图的灰度归一化概率;其中dk=0,1,2,...,L-1,L为灰度级最大值,Pd(dj)为原图像中灰度级dj的灰度分布概率,Pd(dk)为原始图像中灰度级dk的灰度分布概率;Among them, p Ld (d j ) and P Ud (d j ) represent the gray-scale normalization probability of the low-gray sub-image and the high-gray sub-image, respectively; where d k =0,1,2,..., L-1, L is the maximum value of the gray level, P d (d j ) is the gray distribution probability of the gray level d j in the original image, and P d (d k ) is the gray level of the gray level d k in the original image. degree distribution probability;
步骤1-1-3、构建原始图像灰度级到目标图像灰度级的映射关系,构建连续变量的灰度分布概率密度函数,根据灰度分布概率密度函数对图像进行低灰度区和高灰度区划分,分别得到图像的低灰度区和高灰度区,得到高灰度区的灰度图像,即灰度增强后的图像。Step 1-1-3, construct the mapping relationship between the gray level of the original image and the gray level of the target image, construct the gray distribution probability density function of the continuous variable, and perform the low gray area and high gray area of the image according to the gray distribution probability density function. By dividing the gray area, the low gray area and the high gray area of the image are obtained respectively, and the gray image of the high gray area is obtained, that is, the image after gray enhancement.
步骤1-2、用高斯模糊方法对灰度增强后的图像通过滤波进行降噪,获取降噪后的图像;Step 1-2, use the Gaussian blur method to denoise the grayscale-enhanced image through filtering, and obtain a denoised image;
步骤1-3、对降噪后的图像进行高斯滤波,获得平滑图像,具体为:Step 1-3: Perform Gaussian filtering on the denoised image to obtain a smooth image, specifically:
以离散点的高斯函数值作为权值,在降噪后的图片进行窗口模板采集,对采集到的窗口模板中的的灰度矩阵内每个像素值进行加权平均,以消除高斯噪声:Using the Gaussian function value of the discrete point as the weight, the window template is collected in the denoised image, and the weighted average of each pixel value in the grayscale matrix in the collected window template is performed to eliminate the Gaussian noise:
设置窗口模板的大小为(2k+1)×(2k+1),则该模板中每个元素的权重系数为:Set the size of the window template to (2k+1)×(2k+1), then the weight coefficient of each element in the template is:
其中(i,j)(i,j=1,2,...,2k+1)表示窗口模板内每个像素点的相对坐标。where (i,j)(i,j=1,2,...,2k+1) represents the relative coordinates of each pixel in the window template.
假设窗口模板为3×3,σ的取值为1.5,对实施例的图像进行高斯滤波,计算得到的权重矩阵如图3所示,将每个点乘以对应的权重值后得到的结果就是中心点的高斯滤波输出值,对图像中的所有像素点重复以上过程,就得到了高斯滤波后的图像Assuming that the window template is 3×3, and the value of σ is 1.5, Gaussian filtering is performed on the image of the embodiment, and the calculated weight matrix is shown in Figure 3. The result obtained by multiplying each point by the corresponding weight value is The Gaussian filter output value of the center point, repeat the above process for all pixels in the image, and get the Gaussian filtered image
步骤1-4、利用Canny边缘检测算法在获得的平滑图像上对异物目标进行检测,当检测到异物目标处于图像画面中心时,将该帧图像更新为初始帧,并放大目标所在区域视频图像。Steps 1-4, use the Canny edge detection algorithm to detect the foreign object on the obtained smooth image, when it is detected that the foreign object is in the center of the image, update the frame image to the initial frame, and zoom in on the video image of the area where the object is located.
步骤2、对放大后的视频图像进一步精确识别,解算图像信息,获取异物目标的坐标信息,以及异物目标在架空输电线缠绕位置的坐标信息,具体为:
步骤2-1、利用Canny边缘检测算法,对放大后的目标区域进行目标边缘检测,检测目标区域的水平、垂直和两个对角线共计四个方向的边缘,计算其梯度强度和方向,并对其进行噪声消除,使用高斯模糊的方法,将图像信息转换为高斯单元格,消除噪声对识别的影响,具体为:Step 2-1. Use the Canny edge detection algorithm to detect the target edge of the enlarged target area, detect the horizontal, vertical and two diagonal edges of the target area in four directions, calculate its gradient strength and direction, and Noise removal is performed on it, and the Gaussian blur method is used to convert the image information into Gaussian cells to eliminate the influence of noise on recognition, specifically:
步骤2-1-1、将图像梯度方向按照角度分成四个方向,分别为0°、45°、90°、135°边缘,每个3×3邻域内都比较中心值在其对应梯度方向上其他两个值的大小,如果中心值为最大值则保留,否则中心值抑制,用于去除伪边缘点;Step 2-1-1. Divide the image gradient direction into four directions according to the angle, namely 0°, 45°, 90°, and 135° edges, and compare the center value in its corresponding gradient direction in each 3×3 neighborhood. The size of the other two values, if the center value is the maximum value, it is retained, otherwise the center value is suppressed to remove false edge points;
步骤2-1-2、设定两个梯度大小阈值:高阈为mthh,低阈值mthl,将图像分割为如下两个边缘图:Step 2-1-2. Set two gradient size thresholds: the high threshold is m thh and the low threshold m thl , and the image is divided into the following two edge maps:
EH={e(x,y)|如果M(x,y)≥mthh,则e(x,y)=1;否则e(x,y)=0}E H ={e(x,y)|if M(x,y) ≥m thh , then e(x,y)=1; else e(x,y)=0}
EL={e(x,y)|如果M(x,y)≥mthl,则e(x,y)=1;否则e(x,y)=0}E L ={e(x,y)|if M(x,y) ≥m thl , then e(x,y)=1; otherwise e(x,y)=0}
其中,M(x,y)表示分割前图像中(x,y)坐标处的边缘梯度值,e(x,y)表示分割后当前(x,y)坐标处的边缘梯度值;Among them, M(x, y) represents the edge gradient value at the (x, y) coordinate in the image before segmentation, and e(x, y) represents the edge gradient value at the current (x, y) coordinate after segmentation;
步骤2-1-3、将高阈值图EH中所有的像素对应位置都标记为边缘点,再遍历EH中的所有点,利用8连通关系在低阈值图EL中确定最终的边缘点,使得边缘连续性增强,完成目标边缘检测。Step 2-1-3, mark the corresponding positions of all pixels in the high threshold map E H as edge points, then traverse all the points in E H , and use the 8-connection relationship to determine the final edge point in the low threshold map E L , which enhances the edge continuity and completes the target edge detection.
步骤2-2、将放大后目标区域的图像信息转换为图像识别矩阵,利用Hough变换检测对图像识别矩阵进行处理,获取图像中异物目标与架空输电线路缠绕点位置坐标。Step 2-2: Convert the image information of the enlarged target area into an image recognition matrix, process the image recognition matrix by Hough transform detection, and obtain the position coordinates of the foreign object target and the winding point of the overhead transmission line in the image.
步骤3、检测初始帧的画面图像信息,进行异物目标自动跟踪处理,识别异物目标在视频图像中的位置状态信息,包括图像特征点、质心位置及移动轨迹,具体为:Step 3: Detect the picture image information of the initial frame, perform automatic tracking processing of the foreign object target, and identify the position state information of the foreign object target in the video image, including the image feature point, the position of the centroid and the movement trajectory, specifically:
步骤3-1、将视频图像更新后的初始帧中的异物区域作为参考帧,利用Mean-Shift算子预测当前帧中的异物目标区域,通过Mean-Shift算法解算出当前帧中异物目标特征点的偏移均值:Step 3-1. Use the foreign object area in the updated initial frame of the video image as the reference frame, use the Mean-Shift operator to predict the foreign object target area in the current frame, and use the Mean-Shift algorithm to solve the foreign object target feature points in the current frame. Offset mean of :
其中,为当前基准点下的特征点偏移均值,Ck,d表示归一化常量,k(x)为轮廓函数,h为核函数带宽参数,d为矩阵维度,H是一个d*d维的带宽矩阵,x为基准点,xi为d维欧式空间Rd的n个样本点,n为d维空间中的样本点数量;in, is the mean value of feature point offset under the current reference point, C k,d represents the normalization constant, k(x) is the contour function, h is the kernel function bandwidth parameter, d is the matrix dimension, and H is a d*d dimension Bandwidth matrix, x is the reference point, x i is the n sample points in the d-dimensional Euclidean space R d , and n is the number of sample points in the d-dimensional space;
步骤3-2、更新当前图像,将其异物特征点偏移均值作为新的基准点,反复循环更新,直到满足特征点偏移距离阈值;Step 3-2, update the current image, take the mean value of the foreign object feature point offset as the new reference point, and repeat the cycle update until the feature point offset distance threshold is met;
步骤3-3、利用特征点偏移距离阈值作为匹配依据,使用Mean-Shift算子预测当前帧的异物区域,提取当前帧和参考帧中异物区域的ORB特征点,通过特征点匹配构建异物区域特征集合;Step 3-3. Use the feature point offset distance threshold as the matching basis, use the Mean-Shift operator to predict the foreign body area of the current frame, extract the ORB feature points of the foreign body area in the current frame and the reference frame, and construct the foreign body area through feature point matching. feature set;
步骤3-4、在当前帧异物区域特征集合中提取并筛选新的特征点,更新异物区域特征集合,剔除不匹配的特征点,通过不断更新异物区域特征集合中的特征点,提高异物检测准确率;Step 3-4, extract and screen new feature points in the feature set of the foreign body area in the current frame, update the feature set of the foreign body area, remove the feature points that do not match, and improve the accuracy of foreign body detection by continuously updating the feature points in the feature set of the foreign body area Rate;
步骤3-5、对图像中的异物目标空间坐标实时转换为角度坐标,并跟踪异物目标。Step 3-5: Convert the space coordinates of the foreign object target in the image into angular coordinates in real time, and track the foreign object target.
步骤4、跟踪异物,并通过激光进行切割;
步骤5、判断是否仍然存在异物目标,若是则返回步骤1,否则结束。Step 5: Determine whether there is still a foreign object target, if so, return to
表1 ORB特征点匹配数目比较Table 1 Comparison of the matching number of ORB feature points
通过表1的测试数据计算匹配正确率,表明对获取视频序列进行图像识别处理正确率,利用Mean-Shift算子和ORB特征点匹配原理实现异物目标跟踪,其匹配率超出现有技术的跟踪匹配率。The correct rate of matching is calculated by the test data in Table 1, which shows that the correct rate of image recognition processing for the acquired video sequence, the use of Mean-Shift operator and ORB feature point matching principle to achieve foreign object tracking, the matching rate exceeds the tracking matching of the prior art Rate.
如图4所示为ORB特征点识别与普通识别对比示意图,ORB特征点识别与普通识别相比,大幅度消除了背景噪声所带来的识别误差。普通识别通过对目标的位置和边缘检测从而识别目标,容易受到不同背景带来的不同影响,容易造成误识别。ORB特征点检测,首先消除背景的噪声影响,提升识别目标的灰度值,再通过边缘检测框定物体边缘,在高灰度值目标范围内进行ORB特征点匹配,不断提取筛选异物目标区域特征集合中的新的特征点,更新异物区域特征集合,提高异物检测准确率。Figure 4 shows a schematic diagram of the comparison between ORB feature point recognition and ordinary recognition. Compared with ordinary recognition, ORB feature point recognition greatly eliminates the recognition error caused by background noise. Ordinary recognition recognizes the target by detecting the position and edge of the target, which is easily affected by different backgrounds, which is easy to cause misrecognition. ORB feature point detection, first eliminate the influence of background noise, improve the gray value of the recognition target, then frame the edge of the object through edge detection, perform ORB feature point matching within the target range of high gray value, and continuously extract and filter the feature set of the target area of foreign objects The new feature points in the foreign body area are updated, and the foreign body detection accuracy is improved.
通过ORB特征点匹配实时确定异物目标点位置,少数匹配点错误并不影响总匹配点数的正确率,对异物目标位置的实时确认影响微乎其微,在迭代判断异物目标区域位置时,正确点数的数目能优化异物目标识别算法实现接近100%的目标识别效果。The position of the foreign object target point is determined in real time through ORB feature point matching. The error of a few matching points does not affect the correct rate of the total number of matching points. The foreign object recognition algorithm is optimized to achieve a target recognition effect close to 100%.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111441444.5A CN114241364A (en) | 2021-11-30 | 2021-11-30 | A rapid calibration method for foreign object targets in overhead transmission lines |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111441444.5A CN114241364A (en) | 2021-11-30 | 2021-11-30 | A rapid calibration method for foreign object targets in overhead transmission lines |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114241364A true CN114241364A (en) | 2022-03-25 |
Family
ID=80752086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111441444.5A Pending CN114241364A (en) | 2021-11-30 | 2021-11-30 | A rapid calibration method for foreign object targets in overhead transmission lines |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114241364A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114862888A (en) * | 2022-04-24 | 2022-08-05 | 国网湖北省电力有限公司荆州供电公司 | Target identification method and remote laser cleaning method and system |
CN114997615A (en) * | 2022-05-20 | 2022-09-02 | 广西电网有限责任公司电力科学研究院 | A security risk identification method and system based on behavioral characteristics |
CN115102089A (en) * | 2022-06-24 | 2022-09-23 | 国网江苏省电力有限公司南京供电分公司 | Calibration method of air movement area for uninterrupted operators |
CN115294486A (en) * | 2022-10-08 | 2022-11-04 | 彼图科技(青岛)有限公司 | Method for identifying violation building data based on unmanned aerial vehicle and artificial intelligence |
CN115311355A (en) * | 2022-09-20 | 2022-11-08 | 中国铁建电气化局集团有限公司 | Contact network foreign matter risk early warning method, device, equipment and storage medium |
CN116188488A (en) * | 2023-01-10 | 2023-05-30 | 广东省第二人民医院 | Gray gradient-based B-ultrasonic image focus region segmentation method and device |
CN116740653A (en) * | 2023-08-14 | 2023-09-12 | 山东创亿智慧信息科技发展有限责任公司 | Distribution box running state monitoring method and system |
CN117514356A (en) * | 2023-12-05 | 2024-02-06 | 中国煤炭科工集团太原研究院有限公司 | An excavation equipment safety management and control system based on AR technology |
CN118712958A (en) * | 2024-08-28 | 2024-09-27 | 武汉华源电力设计院有限公司 | A cable intelligent traction method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108827181A (en) * | 2018-03-14 | 2018-11-16 | 浙江大学山东工业技术研究院 | A kind of plate surface detection method of view-based access control model |
WO2020248439A1 (en) * | 2019-06-11 | 2020-12-17 | 江苏农林职业技术学院 | Crown cap surface defect online inspection method employing image processing |
CN112232154A (en) * | 2020-09-29 | 2021-01-15 | 南京理工大学 | A kind of automatic removal method of foreign matter in transmission line |
CN113436216A (en) * | 2021-07-06 | 2021-09-24 | 国网信息通信产业集团有限公司 | Electrical equipment infrared image edge detection method based on Canny operator |
-
2021
- 2021-11-30 CN CN202111441444.5A patent/CN114241364A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108827181A (en) * | 2018-03-14 | 2018-11-16 | 浙江大学山东工业技术研究院 | A kind of plate surface detection method of view-based access control model |
WO2020248439A1 (en) * | 2019-06-11 | 2020-12-17 | 江苏农林职业技术学院 | Crown cap surface defect online inspection method employing image processing |
CN112232154A (en) * | 2020-09-29 | 2021-01-15 | 南京理工大学 | A kind of automatic removal method of foreign matter in transmission line |
CN113436216A (en) * | 2021-07-06 | 2021-09-24 | 国网信息通信产业集团有限公司 | Electrical equipment infrared image edge detection method based on Canny operator |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114862888A (en) * | 2022-04-24 | 2022-08-05 | 国网湖北省电力有限公司荆州供电公司 | Target identification method and remote laser cleaning method and system |
CN114997615A (en) * | 2022-05-20 | 2022-09-02 | 广西电网有限责任公司电力科学研究院 | A security risk identification method and system based on behavioral characteristics |
CN115102089A (en) * | 2022-06-24 | 2022-09-23 | 国网江苏省电力有限公司南京供电分公司 | Calibration method of air movement area for uninterrupted operators |
CN115102089B (en) * | 2022-06-24 | 2023-09-15 | 国网江苏省电力有限公司南京供电分公司 | Method for calibrating air movement area of uninterrupted power worker |
CN115311355A (en) * | 2022-09-20 | 2022-11-08 | 中国铁建电气化局集团有限公司 | Contact network foreign matter risk early warning method, device, equipment and storage medium |
CN115294486A (en) * | 2022-10-08 | 2022-11-04 | 彼图科技(青岛)有限公司 | Method for identifying violation building data based on unmanned aerial vehicle and artificial intelligence |
CN116188488A (en) * | 2023-01-10 | 2023-05-30 | 广东省第二人民医院 | Gray gradient-based B-ultrasonic image focus region segmentation method and device |
CN116188488B (en) * | 2023-01-10 | 2024-01-16 | 广东省第二人民医院(广东省卫生应急医院) | Gray gradient-based B-ultrasonic image focus region segmentation method and device |
CN116740653A (en) * | 2023-08-14 | 2023-09-12 | 山东创亿智慧信息科技发展有限责任公司 | Distribution box running state monitoring method and system |
CN117514356A (en) * | 2023-12-05 | 2024-02-06 | 中国煤炭科工集团太原研究院有限公司 | An excavation equipment safety management and control system based on AR technology |
CN118712958A (en) * | 2024-08-28 | 2024-09-27 | 武汉华源电力设计院有限公司 | A cable intelligent traction method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114241364A (en) | A rapid calibration method for foreign object targets in overhead transmission lines | |
CN110264448B (en) | A method of insulator fault detection based on machine vision | |
CN102252623B (en) | Measurement method for lead/ground wire icing thickness of transmission line based on video variation analysis | |
CN111797890A (en) | A method and system for detecting defects in transmission line equipment | |
CN107038416B (en) | A Pedestrian Detection Method Based on Improved HOG Feature of Binary Image | |
CN109376740A (en) | A kind of water gauge reading detection method based on video | |
CN101634706B (en) | Method for automatically detecting bridge target in high-resolution SAR images | |
CN103955949B (en) | Moving target detecting method based on Mean-shift algorithm | |
CN104809433B (en) | A kind of zebra line detecting method based on maximum stable region and stochastical sampling | |
CN103543394A (en) | A method for extracting quantitative parameters of high-voltage electrical equipment discharge ultraviolet imaging | |
CN102298698A (en) | Remote sensing image airplane detection method based on fusion of angle points and edge information | |
CN101246544A (en) | Iris positioning method based on boundary point search and SUSAN edge detection | |
CN104318266B (en) | A kind of image intelligent analyzes and processes method for early warning | |
CN110334660A (en) | A forest fire monitoring method based on machine vision under foggy conditions | |
CN106709927A (en) | Method for extracting target from acoustic image under complex background | |
CN108537170A (en) | A kind of power equipment firmware unmanned plane inspection pin missing detection method | |
CN109977831A (en) | A kind of knob recognition methods based on Digital Image Processing | |
CN104281857A (en) | Insulator detecting method based on orthogonal direction projection | |
CN109410512B (en) | A method for detecting smoke root nodes based on the least squares method | |
CN117522778A (en) | Hollow brick flaw detection system | |
CN111739011A (en) | A method and device for detecting the tilt of a utility pole | |
CN107767366B (en) | A transmission line fitting method and device | |
CN112614094A (en) | Insulator string abnormity positioning and identifying method based on sequence state coding | |
CN115937492B (en) | Feature recognition-based infrared image recognition method for power transformation equipment | |
CN111795982A (en) | Detection method for internal defects of high-voltage cable joints based on X-ray imaging technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |