[go: up one dir, main page]

CN114232085A - 一种在InP衬底上外延生长InGaAs的方法 - Google Patents

一种在InP衬底上外延生长InGaAs的方法 Download PDF

Info

Publication number
CN114232085A
CN114232085A CN202111476307.5A CN202111476307A CN114232085A CN 114232085 A CN114232085 A CN 114232085A CN 202111476307 A CN202111476307 A CN 202111476307A CN 114232085 A CN114232085 A CN 114232085A
Authority
CN
China
Prior art keywords
ingaas
inp substrate
oxide film
substrate
inp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111476307.5A
Other languages
English (en)
Other versions
CN114232085B (zh
Inventor
于海龙
高汉超
王伟
马奔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 55 Research Institute
Original Assignee
CETC 55 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 55 Research Institute filed Critical CETC 55 Research Institute
Priority to CN202111476307.5A priority Critical patent/CN114232085B/zh
Publication of CN114232085A publication Critical patent/CN114232085A/zh
Application granted granted Critical
Publication of CN114232085B publication Critical patent/CN114232085B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02392Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02461Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Recrystallisation Techniques (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

本发明提供一种在InP衬底上外延生长InGaAs的方法,包括以下步骤:步骤1,测定InP衬底的氧化膜厚度;步骤2,测定Ga和In的生长速率;步骤3,对InP衬底进行预处理除气;步骤4,在步骤3的预处理完成后,对InP衬底进行氧化膜的脱附;步骤5,在步骤4中氧化膜的脱附完成之后,进行InP缓冲层外延;步骤6,在步骤5中InP缓冲层外延完成之后,P阀门关闭,As阀门开至所需束流位置;步骤7,在步骤6中P/As束流切换完成之后,进行InGaAs外延。通过本发明提供的方法可以避免通过高能电子衍射仪观察衬底表面再构带来的时长偏差,可以有效地减少InP缓冲层与InGaAs材料之间四元合金界面的形成,减少杂质缺陷,降低InGaAs载流子浓度,提高材料迁移率。

Description

一种在InP衬底上外延生长InGaAs的方法
技术领域
本发明属于半导体材料生长技术领域,特别涉及一种在InP衬底上外延生长InGaAs的方法。
背景技术
InGaAs材料是由二元材料InAs和GaAs组成的,InAs与GaAs都是直接带隙半导体,且均为闪锌矿结构,组成的InGaAs材料也是直接带隙半导体,当In组分不同时,InGaAs材料的禁带宽度在0.35-1.43eV内变化。当InGaAs材料中的In组分为0.53时,InGaAs材料和InP衬底晶格匹配,禁带宽度为0.74eV。
InGaAs和其他材料相比有很多优点,以它作为吸收材料可以得到响应速度和运行速度非常快的探测器。由InGaAs材料制成的PIN探测器在光纤传输中发挥重要的作用,其较高的内量子效率和较低的暗电流,摒弃了以往需要制冷设备才能够在室温下连续工作的探测器,使得这类探测器有良好的发展前景。所以应用InGaAs材料作为吸收层的高速光电探测器得到了极大的发展,出现了一系列不同工作方式的光电探测器,包括InGaAs雪崩光电探测器(APD),InGaAs PIN光电探测器,InGaAs 金属-半导体-金属光电探测器(MSM-PD)。
因此,利用固态源分子束外延系统,如何外延得到高迁移率InGaAs材料,成为InGaAs器件材料外延的重点研究方向,对InGaAs光电器件和微电器件材料外延生产有重要的意义。
发明内容
基于以上问题,本发明的主要目的在于提出一种在InP衬底上外延生长InGaAs的方法。
本发明采用如下技术方案:
一种在InP衬底上外延生长InGaAs的方法,包括以下步骤:
步骤1,测定InP衬底的氧化膜厚度;
步骤2,测定Ga和In的生长速率;
步骤3,对InP衬底进行预处理除气;
步骤4,在步骤3的预处理完成后,对InP衬底进行氧化膜的脱附,氧化膜的脱附时间根据t=-2.3h2+8.4h+2.2确定,其中t为氧化膜脱附时长,单位是min,h为步骤1得到的InP衬底氧化膜厚度,单位是nm;
步骤5,在步骤4中氧化膜的脱附完成之后,进行InP缓冲层外延;
步骤6,在步骤5中InP缓冲层外延完成之后,P阀门关闭,As阀门开至所需束流位置;
步骤7,在步骤6中P/As束流切换完成之后,进行InGaAs外延。
优选的,步骤1中使用椭圆偏振装置测定InP衬底氧化膜厚度。
优选的,步骤2中Ga和In的生长速率测定使用高能电子衍射仪装置。
优选的,步骤3中对InP衬底进行预处理的温度为350~400℃,预处理时间为1~2h,其中升温和降温速率均为15 ~25℃/min。
优选的,步骤4中使用P束流作为衬底保护气,将衬底加热器升温至衬底的RHEED图案出现×4再构条纹,此时温度为Tc,将Tc设置为基准温度。
优选的,步骤5中,氧化膜脱附完成之后,将衬底温度降为Tc以下30℃~50℃进行InP缓冲层外延。
优选的,步骤5中使用固态磷源裂解炉进行InP缓冲层的外延,其中P与In束流的V/III比为5~20。
优选的,步骤6中 P阀门关闭的时长不超过2分钟;As阀门开至所需束流位置的时长不超过2分钟。
优选的,步骤7中,InGaAs的外延温度为Tc以下50℃~100℃。
优选的,步骤7中,InGaAs的外延V/III比为10~25。
本发明的有益效果:
本文提出的一种InGaAs高迁移率材料的外延方法,具有以下有益效果:
(1)通过椭圆偏振测试得到InP衬底氧化膜厚度,通过厚度值并根据经验公式设定衬底氧化膜脱附时长,可以有效的量化氧化膜厚度与脱附时长的关系,避免通过高能电子衍射仪观察衬底表面再构带来的时长偏差。
(2)P/As束流的切换工艺可以有效地减少InP缓冲层与InGaAs材料之间四元合金界面的形成,减少杂质缺陷,降低InGaAs载流子浓度,提高材料迁移率。
(3)本发明还可以推广到其他的III-V族砷化物和磷化物材料的生长,可以用于多种体系材料的半导体器件的制备,具有很好的通用性。
附图说明
图1是本发明在InP衬底上外延生长InGaAs的方法外延结构的示意图。
附图标记说明:101、InP衬底;102、InP缓冲层;103、InGaAs外延层。
具体实施方式
以下结合实施例对本发明作进一步的描述,实施例仅用于对本发明进行说明,并不构成对权利要求范围的限制,本领域技术人员可以想到的其他替代手段,均在本发明权利要求范围内。
本发明提供一种在InP衬底上外延生长InGaAs的方法,包括以下步骤:
步骤1,测定InP衬底101的氧化膜厚度,可以使用椭圆偏振装置测定InP衬底101氧化膜厚度。
步骤2,测定Ga和In的生长速率,可以使用高能电子衍射仪装置进行测定。
步骤3,对InP衬底101进行预处理除气,预处理的温度为350~400℃,预处理时间为1~2h,其中升温和降温速率均为15 ~25℃/min。
步骤4,在步骤3的预处理完成后,对InP衬底101进行氧化膜的脱附,氧化膜的脱附时间根据t=-2.3h2+8.4h+2.2确定,其中t为氧化膜脱附时长,单位是min,h为步骤1得到的InP衬底氧化膜厚度,单位是nm;使用P束流作为衬底保护气,将衬底加热器升温至RHEED图案出现×4再构条纹,此时温度为Tc,将Tc设置为基准温度。
步骤5,在步骤4中氧化膜的脱附完成之后,将衬底温度降为Tc以下30℃~50℃进行InP缓冲层102外延,可以使用固态磷源裂解炉进行InP缓冲层102的外延,其中P与In束流的V/III比为5~20。
步骤6,在步骤5中InP缓冲层102外延完成之后,P阀门关闭,As阀门开至所需束流位置,并控制P阀门关闭的时长不超过2分钟,As阀门开至所需束流位置的时长不超过2分钟。
步骤7,在步骤6中P/As束流切换完成之后,进行InGaAs外延层103的生长,InGaAs的外延温度为Tc以下50℃~100℃,InGaAs的外延V/III比为10~25。
根据厚度测试值设定氧化膜脱附时长,避免传统方法中通过观察衬底表面再构带来的时长偏差,InP缓冲层生长完成后采用的P/As切换工艺,避免了InP缓冲层与InGaAs材料之间出现四元合金界面。工艺简单可重复,适合大批量生产。
实施例1
步骤1,测定InP衬底的氧化膜厚度,使用椭圆偏振装置测定InP衬底氧化膜厚度为0.8nm。
步骤2,测定Ga和In的生长速率,使用高能电子衍射仪装置进行测定,其中Ga生长速率与In生长速率比例为47/53。
步骤3,对InP衬底进行预处理除气,预处理的温度为350℃,预处理时间为1h,其中升温和降温速率均为25℃/min。
步骤4,在步骤3的预处理完成后,对InP衬底进行氧化膜的脱附,氧化膜的脱附时间根据t=-2.3h2+8.4h+2.2确定,其中t为氧化膜脱附时长,单位是min,h为步骤1得到的InP衬底氧化膜厚度,单位是nm,得到氧化膜脱附时长为7.26min,使用P束流作为衬底保护气,将衬底加热器升温至RHEED图案出现×4再构条纹,此时温度为Tc,为580℃,将Tc设置为基准温度。
步骤5,在步骤4中氧化膜的脱附完成之后,将衬底温度降为Tc以下30℃,即550℃进行InP缓冲层外延,可以使用固态磷源裂解炉进行InP缓冲层的外延,其中P与In束流的V/III比为12。
步骤6,在步骤5中InP缓冲层外延完成之后,P阀门以step的方式降低至0%,并维持30s,As阀门以2%/s的速度开至所需束流位置,并维持2min。
步骤7,在步骤6中P/As束流切换完成之后,进行InGaAs外延,InGaAs的外延温度为Tc以下50℃,即530℃,InGaAs的外延V/III比为17。
应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (10)

1.一种在InP衬底上外延生长InGaAs的方法,其特征在于,包括以下步骤:
步骤1,测定InP衬底的氧化膜厚度;
步骤2,测定Ga和In的生长速率;
步骤3,对InP衬底进行预处理除气;
步骤4,在步骤3的预处理完成后,对InP衬底进行氧化膜的脱附,氧化膜的脱附时间根据t=-2.3h2+8.4h+2.2确定,其中t为氧化膜脱附时长,单位是min,h为步骤1得到的InP衬底氧化膜厚度,单位是nm;
步骤5,在步骤4中氧化膜的脱附完成之后,进行InP缓冲层外延;
步骤6,在步骤5中InP缓冲层外延完成之后,P阀门关闭,As阀门开至所需束流位置;
步骤7,在步骤6中P/As束流切换完成之后,进行InGaAs外延。
2.根据权利要求1所述的在InP衬底上外延生长InGaAs的方法,其特征在于,步骤1中使用椭圆偏振装置测定InP衬底氧化膜厚度。
3.根据权利要求1所述的在InP衬底上外延生长InGaAs的方法,其特征在于,步骤2中Ga和In的生长速率测定使用高能电子衍射仪装置。
4.根据权利要求1所述的在InP衬底上外延生长InGaAs的方法,其特征在于,步骤3中对InP衬底进行预处理的温度为350~400℃,预处理时间为1~2h,其中升温和降温速率均为15~25℃/min。
5.根据权利要求1所述的在InP衬底上外延生长InGaAs的方法,其特征在于,步骤4中使用P束流作为衬底保护气,将衬底加热器升温至衬底的RHEED图案出现×4再构条纹,此时温度为Tc,将Tc设置为基准温度。
6.根据权利要求5所述的在InP衬底上外延生长InGaAs的方法,其特征在于,步骤5中,氧化膜脱附完成之后,将衬底温度降为Tc以下30℃~50℃进行InP缓冲层外延。
7.根据权利要求1所述的在InP衬底上外延生长InGaAs的方法,其特征在于,步骤5中使用固态磷源裂解炉进行InP缓冲层的外延,其中P与In束流的V/III比为5~20。
8.根据权利要求1所述的在InP衬底上外延生长InGaAs的方法,其特征在于,步骤6中 P阀门关闭的时长不超过2分钟;As阀门开至所需束流位置的时长不超过2分钟。
9.根据权利要求5所述的在InP衬底上外延生长InGaAs的方法,其特征在于,步骤7中,InGaAs的外延温度为Tc以下50℃~100℃。
10.根据权利要求1所述的在InP衬底上外延生长InGaAs的方法,其特征在于,步骤7中,InGaAs的外延V/III比为10~25。
CN202111476307.5A 2021-12-06 2021-12-06 一种在InP衬底上外延生长InGaAs的方法 Active CN114232085B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111476307.5A CN114232085B (zh) 2021-12-06 2021-12-06 一种在InP衬底上外延生长InGaAs的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111476307.5A CN114232085B (zh) 2021-12-06 2021-12-06 一种在InP衬底上外延生长InGaAs的方法

Publications (2)

Publication Number Publication Date
CN114232085A true CN114232085A (zh) 2022-03-25
CN114232085B CN114232085B (zh) 2024-02-06

Family

ID=80753350

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111476307.5A Active CN114232085B (zh) 2021-12-06 2021-12-06 一种在InP衬底上外延生长InGaAs的方法

Country Status (1)

Country Link
CN (1) CN114232085B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119913614A (zh) * 2025-03-31 2025-05-02 新磊半导体科技(苏州)股份有限公司 一种分子束外延工艺中的脱膜方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09118588A (ja) * 1995-10-25 1997-05-06 Hitachi Cable Ltd 分子線エピタキシャル成長方法及びその装置
CN1277735A (zh) * 1998-09-14 2000-12-20 松下电器产业株式会社 半导体器件的制造装置及制造方法
US20030024471A1 (en) * 2001-08-06 2003-02-06 Motorola, Inc. Fabrication of semiconductor structures and devices forms by utilizing laser assisted deposition
US20050112281A1 (en) * 2003-11-21 2005-05-26 Rajaram Bhat Growth of dilute nitride compounds
CN1731637A (zh) * 2005-08-31 2006-02-08 中国科学院上海微系统与信息技术研究所 磷化铟基量子级联激光器原子层尺度外延材料质量控制方法
CN1888127A (zh) * 2006-07-21 2007-01-03 哈尔滨工业大学 GaAs基InSb薄膜的分子束外延生长方法
US20110083601A1 (en) * 2009-10-14 2011-04-14 Alta Devices, Inc. High growth rate deposition for group iii/v materials
CN102646703A (zh) * 2012-05-07 2012-08-22 中国电子科技集团公司第五十五研究所 单晶InP基化合物半导体材料薄膜的外延结构
CN103225109A (zh) * 2013-05-02 2013-07-31 中国科学院半导体研究所 一种ii型iii-v族量子点材料的生长方法
CN103779405A (zh) * 2014-01-02 2014-05-07 中国电子科技集团公司第五十五研究所 GaAs衬底上生长赝配高电子迁移晶体管材料及方法
CN112233966A (zh) * 2020-10-14 2021-01-15 中国电子科技集团公司第四十四研究所 InGaAs到InP界面生长的气流切换方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09118588A (ja) * 1995-10-25 1997-05-06 Hitachi Cable Ltd 分子線エピタキシャル成長方法及びその装置
CN1277735A (zh) * 1998-09-14 2000-12-20 松下电器产业株式会社 半导体器件的制造装置及制造方法
US20030024471A1 (en) * 2001-08-06 2003-02-06 Motorola, Inc. Fabrication of semiconductor structures and devices forms by utilizing laser assisted deposition
US20050112281A1 (en) * 2003-11-21 2005-05-26 Rajaram Bhat Growth of dilute nitride compounds
CN1731637A (zh) * 2005-08-31 2006-02-08 中国科学院上海微系统与信息技术研究所 磷化铟基量子级联激光器原子层尺度外延材料质量控制方法
CN1888127A (zh) * 2006-07-21 2007-01-03 哈尔滨工业大学 GaAs基InSb薄膜的分子束外延生长方法
US20110083601A1 (en) * 2009-10-14 2011-04-14 Alta Devices, Inc. High growth rate deposition for group iii/v materials
CN102646703A (zh) * 2012-05-07 2012-08-22 中国电子科技集团公司第五十五研究所 单晶InP基化合物半导体材料薄膜的外延结构
CN103225109A (zh) * 2013-05-02 2013-07-31 中国科学院半导体研究所 一种ii型iii-v族量子点材料的生长方法
CN103779405A (zh) * 2014-01-02 2014-05-07 中国电子科技集团公司第五十五研究所 GaAs衬底上生长赝配高电子迁移晶体管材料及方法
CN112233966A (zh) * 2020-10-14 2021-01-15 中国电子科技集团公司第四十四研究所 InGaAs到InP界面生长的气流切换方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIANG, C, ET AL: "Realization of submicron-pitch linear arrays of nanometer-sized InGaAs ridge quantum wires by selective MBE growth on patterned InP substrates", 《 INTERNATIONAL CONFERENCE ON INDIUM PHOSPHIDE AND RELATED MATERIALS》, pages 374 - 377 *
李林;王勇;刘国军;李梅;王晓华;: "GaSb薄膜生长的RHEED研究", 人工晶体学报, no. 01, pages 139 - 142 *
王伟等: "As/P气氛转换对InGaAs/InP异质结界面的影响研究", 《固体电子学研究与进展》, vol. 40, no. 02, pages 45 - 148 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119913614A (zh) * 2025-03-31 2025-05-02 新磊半导体科技(苏州)股份有限公司 一种分子束外延工艺中的脱膜方法

Also Published As

Publication number Publication date
CN114232085B (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
US4116733A (en) Vapor phase growth technique of III-V compounds utilizing a preheating step
Arias et al. Molecular‐beam epitaxy growth and in situ arsenic doping of p‐on‐n HgCdTe heterojunctions
Geisz et al. Lattice-matched GaNPAs-on-silicon tandem solar cells
Niki et al. High quality CuInSe2 films grown on pseudo‐lattice‐matched substrates by molecular beam epitaxy
US8202788B2 (en) Method for fabricating GaNAsSb semiconductor
Oshima et al. Improvement of heterointerface properties of GaAs solar cells grown with InGaP layers by hydride vapor-phase epitaxy
CN114232085A (zh) 一种在InP衬底上外延生长InGaAs的方法
CN109616403A (zh) 分子束外延生长AlInAsSb超晶格材料的优化方法
Guo et al. Material defects and dark currents in InGaAs/InP avalanche photodiode devices
CN103794644A (zh) 一种磷化铟基双异质结双极晶体管结构及制备方法
CN118866657A (zh) 硅基iii-v族外延材料的制备方法
CN101764054B (zh) 化合物半导体外延芯片及其制造方法
Takahashi et al. Preparation and Properties of Inx, Ga1− xAs Single Crystals by Solution Growth Technique
CN115627528A (zh) 一种GaSb衬底低温脱氧方法以及HgCdSe外延材料的制备方法
RU2366035C1 (ru) Способ получения структуры многослойного фотоэлектрического преобразователя
He et al. Recent progress in molecular beam epitaxy of HgCdTe
Rowe et al. Liquid phase epitaxial growth and luminescence of InAs1-x-ySbxPy pn junctions
Miyashita et al. Fabrication of GaInNAs-based solar cells for application to multi-junction tandem solar cells
CN117747714B (zh) InAs-InGaAsSbⅡ类超晶格及其制备方法和红外探测器
Ishizuka et al. Active area limitation of Ge/GaAs heterojunctions by means of B ion implantation
CN108183391B (zh) 一种提高n型GaSb基半导体激光器材料掺杂浓度的方法
Saidov et al. Obtaining Si--Si 1-x Gex--(Si 1-x Ge x) 1-z (Al 1-y Ga y As) z--Si 1-x Gex--(Si 1-x Ge x) 1-z (Al 1-y Ga y As) z Structures from a Tin Solution-Melt in a Single Technological Cycle.
Wang et al. A study of deep‐level defects in metalorganic vapor‐phase‐epitaxy‐grown ZnSe on GaAs by deep‐level transient spectroscopy
Noorzad et al. Improved high-energy response of AlGaAs/GaAs solar cells using a low-cost technology
Onno et al. MBE growth of 1.7 eV Al 0.2 Ga 0.8 As and 1.42 eV GaAs solar cells on Si using dislocations filters: an alternative pathway toward III-V/Si solar cells architectures

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant