[go: up one dir, main page]

CN114225035B - Application of circular RNA Cwc27 down-regulator in the preparation of drugs for preventing and/or treating Alzheimer's disease - Google Patents

Application of circular RNA Cwc27 down-regulator in the preparation of drugs for preventing and/or treating Alzheimer's disease Download PDF

Info

Publication number
CN114225035B
CN114225035B CN202010941548.1A CN202010941548A CN114225035B CN 114225035 B CN114225035 B CN 114225035B CN 202010941548 A CN202010941548 A CN 202010941548A CN 114225035 B CN114225035 B CN 114225035B
Authority
CN
China
Prior art keywords
circcwc27
circular
regulator
rnacwc27
disease
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010941548.1A
Other languages
Chinese (zh)
Other versions
CN114225035A (en
Inventor
王昊
陈红专
宋成寰
张永芳
黄婉莹
徐见容
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiao Tong University
Original Assignee
Shanghai Jiao Tong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiao Tong University filed Critical Shanghai Jiao Tong University
Priority to CN202010941548.1A priority Critical patent/CN114225035B/en
Priority to PCT/CN2021/112434 priority patent/WO2022052738A1/en
Publication of CN114225035A publication Critical patent/CN114225035A/en
Application granted granted Critical
Publication of CN114225035B publication Critical patent/CN114225035B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/136Screening for pharmacological compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/178Oligonucleotides characterized by their use miRNA, siRNA or ncRNA

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Analytical Chemistry (AREA)
  • Neurology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Neurosurgery (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Psychiatry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Hospice & Palliative Care (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The invention discloses application of a cyclic RNA Cwc27 down regulator in preparing a medicament for preventing and/or treating Alzheimer disease. The cyclic RNACwc27 down-regulator is a cyclic RNACwc27 inhibitor and/or a cyclic RNACwc27 modifier. The annular RNAcwc27 down-regulator can enter the nucleus by inhibiting Pur-alpha, thereby reducing the transcription level of the A beta precursor protein APP, reducing the expression level of the APP protein, improving the learning and memory ability and having clinical application prospect for treating AD.

Description

环状RNA Cwc27下调剂在制备预防和/或治疗阿尔茨海默病的 药物中的应用Circular RNA Cwc27 down-regulator in the preparation of prevention and/or treatment of Alzheimer's disease application in medicine

技术领域technical field

本发明属于生物技术和医学领域,具体涉及环状RNACwc27(circular RNA Cwc27,简称circCwc27)及其类似物作为阿尔茨海默病治疗和/或预防的核苷酸药物的应用。The invention belongs to the fields of biotechnology and medicine, and specifically relates to the application of circular RNA Cwc27 (circular RNA Cwc27, circCwc27 for short) and its analogues as nucleotide drugs for the treatment and/or prevention of Alzheimer's disease.

背景技术Background technique

阿尔茨海默病(Alzheimer’s disease,AD)是一种最常见的神经变性疾病,因其高患病率、高致残率及高死亡率而成为当今社会中一种严重影响人类健康的重大疾病。现有的研究发现AD的主要病理学改变表现为β-淀粉样蛋白(Aβ)聚集形成的老年斑(SP)、Tau蛋白异常聚集形成的神经原纤维缠结(NFT)及脑内神经元的大量丢失。针对AD,临床上至今还缺乏有效的早期诊断手段和治疗措施。在发达国家和我国,AD已成为继心脏病、癌症和卒中之后人类的第4位死因。目前,AD的发病机制依然不清楚,但是普遍认为淀粉样前体蛋白降解通路的激活,导致Aβ产生异常增加和聚集,是导致AD发生的关键因素。因此阐明AD发病机制和寻找新型的治疗策略及靶点成为目前急需解决的关键所在。Alzheimer's disease (AD) is the most common neurodegenerative disease, and it has become a major disease that seriously affects human health in today's society due to its high prevalence, high disability rate and high mortality rate. . Existing studies have found that the main pathological changes of AD are senile plaques (SP) formed by the aggregation of β-amyloid protein (Aβ), neurofibrillary tangles (NFT) formed by abnormal aggregation of Tau protein, and a large number of neurons in the brain. lost. For AD, there is still a lack of effective early diagnosis and treatment measures clinically. In developed countries and my country, AD has become the fourth cause of death after heart disease, cancer and stroke. At present, the pathogenesis of AD is still unclear, but it is generally believed that the activation of the amyloid precursor protein degradation pathway, leading to the abnormal increase and aggregation of Aβ, is the key factor leading to the occurrence of AD. Therefore, elucidating the pathogenesis of AD and finding new therapeutic strategies and targets have become the key points that need to be solved urgently.

环状RNA(circRNA)是一类不具有5’端帽子结构和3’端poly A尾结构,以共价键形成环状结构的内源性非编码RNA分子。其可以来源于编码基因的外显子或内显子。20世纪70年代,科学家们在针对RNA病毒的研究中首次发现了circRNA的存在,之后通过RNA测序技术和生物信息学的帮助,大量circRNA分子陆续被发现。最开始的研究认为circRNA是RNA剪切形成的副产物,但近年来科学家们逐渐发现由于circRNA存在保守性、稳定性、以及表达特异性等特征,使得其具有重要的研究价值。最近的研究表明,分布于核内的circRNA能调节其亲本基因的转录,胞质内的circRNA能够充当miRNA的海绵,RNA结合蛋白的隔绝子等,甚至发现小部分circRNA也能翻译蛋白质。近年来,国际上对于circRNA在AD发病作用的研究日渐增多,目前国内外研究主要集中在circRNA表达谱的建立以寻找在AD中异常表达的circRNA,而对于这些异常表达的circRNA在AD中的功能角色方面的研究还少见报道。在中枢神经系统中,circCwc27的作用依然并不清楚。同时经对现有技术的国内外文献检索,至今未见有关circRNA(包括circCwc27)与AD治疗的研究报道。Circular RNA (circRNA) is a type of endogenous non-coding RNA molecule that does not have a 5' end cap structure and a 3' end poly A tail structure, and forms a circular structure with covalent bonds. It can be derived from exons or introns of the coding gene. In the 1970s, scientists discovered the existence of circRNA for the first time in the research on RNA viruses, and then with the help of RNA sequencing technology and bioinformatics, a large number of circRNA molecules were discovered one after another. Initial studies believed that circRNA was a by-product of RNA shearing, but in recent years scientists have gradually discovered that circRNA has important research value due to its conservation, stability, and expression specificity. Recent studies have shown that circRNAs distributed in the nucleus can regulate the transcription of their parental genes, circRNAs in the cytoplasm can act as miRNA sponges, insulators of RNA-binding proteins, etc., and even a small part of circRNAs can also translate proteins. In recent years, international studies on the role of circRNAs in the pathogenesis of AD have been increasing. At present, research at home and abroad is mainly focused on the establishment of circRNA expression profiles to find abnormally expressed circRNAs in AD, and the functions of these abnormally expressed circRNAs in AD There are few reports on role research. In the central nervous system, the role of circCwc27 remains unclear. At the same time, no research report on circRNA (including circCwc27) and AD treatment has been found so far through domestic and foreign literature searches of the prior art.

发明内容Contents of the invention

针对上述问题,本发明的目的在于提供环状RNACwc27靶点或基于环状RNACwc27靶点的药物在治疗和/或预防阿尔茨海默病中的应用。In view of the above problems, the object of the present invention is to provide a circular RNACwc27 target or a drug based on the circular RNACwc27 target in the treatment and/or prevention of Alzheimer's disease.

第一方面,本发明提供环状RNACwc27下调剂在制备预防和/或治疗阿尔茨海默病的药物中的应用,其中所述环状RNACwc27下调剂为环状RNACwc27抑制剂和/或环状RNACwc27修饰物。In the first aspect, the present invention provides the use of a circular RNACwc27 down-regulator in the preparation of a drug for preventing and/or treating Alzheimer's disease, wherein the circular RNACwc27 down-regulator is a circular RNACwc27 inhibitor and/or a circular RNACwc27 Modifiers.

所述环状RNACwc27下调剂能够通过抑制Pur-α入核,从而降低Aβ前体蛋白APP的转录水平,减少APP蛋白的表达水平,改善学习和记忆能力,具有治疗AD的临床应用前景。The circular RNA Cwc27 down-regulator can reduce the transcription level of Aβ precursor protein APP by inhibiting Pur-α into the nucleus, reduce the expression level of APP protein, improve learning and memory ability, and has a clinical application prospect for treating AD.

所述环状RNACwc27下调剂为:包括如SEQ ID NO.1所示的碱基序列的RNA片段;包括与如SEQ ID NO.2所示的碱基序列互补的碱基序列的RNA片段;基于SEQ ID NO.3经过取代、缺失或者添加一个或多个核苷酸的环状RNACwc27修饰物;或者能够抑制环状RNACwc27表达的多肽、蛋白质或者化合物。其中,SEQ ID NO.1是环状RNACwc27的下调剂的核苷酸序列,SEQ ID NO.2是环状RNACwc27接头处的核苷酸序列,SEQ ID NO.3是环状RNACwc27自身的核苷酸序列。The circular RNA Cwc27 down-regulator is: an RNA fragment including the base sequence shown in SEQ ID NO.1; an RNA fragment including a base sequence complementary to the base sequence shown in SEQ ID NO.2; based on Circular RNACwc27 modified by substitution, deletion or addition of one or more nucleotides in SEQ ID NO.3; or a polypeptide, protein or compound capable of inhibiting the expression of circular RNACwc27. Wherein, SEQ ID NO.1 is the nucleotide sequence of the down-regulator of circular RNACwc27, SEQ ID NO.2 is the nucleotide sequence at the junction of circular RNACwc27, and SEQ ID NO.3 is the nucleoside of circular RNACwc27 itself acid sequence.

circCwc27在小鼠、大鼠和人脑内的序列高度保守,基本均包含如SEQ ID NO.3所示的碱基序列,针对circCwc27在小鼠上取得的研究成果更具有临床转化意义,因此circCwc27可作为阿尔茨海默病的治疗和/或预防的可靠靶点。The sequences of circCwc27 in mouse, rat and human brain are highly conserved, and basically contain the base sequence shown in SEQ ID NO.3. The research results of circCwc27 in mice have more clinical significance, so circCwc27 Can be used as a reliable target for the treatment and/or prevention of Alzheimer's disease.

较佳地,所述环状RNACwc27修饰物是通过对环状RNACwc27进行如下修饰中的至少一种而得:任意核苷酸的核糖修饰、碱基修饰、磷酸骨架修饰、任意核苷酸的增减、替换。Preferably, the modified circular RNACwc27 is obtained by performing at least one of the following modifications on the circular RNACwc27: ribose modification of any nucleotide, base modification, phosphate backbone modification, augmentation of any nucleotide Subtract, replace.

较佳地,所述药物包括环状RNACwc27下调剂、以及药学上可接受的载体或辅料。Preferably, the drug includes a circular RNA Cwc27 down-regulator, and a pharmaceutically acceptable carrier or adjuvant.

第二方面,本发明提供环状RNACwc27作为靶点在开发、筛选或制备用于预防和/或治疗阿尔茨海默病的药物中的应用。In a second aspect, the present invention provides the use of circular RNA Cwc27 as a target in the development, screening or preparation of drugs for the prevention and/or treatment of Alzheimer's disease.

第三方面,本发明提供环状RNACwc27作为靶点在制备用于预防和/或治疗阿尔茨海默病的筛药模型中的应用。In a third aspect, the present invention provides the use of circular RNA Cwc27 as a target in preparing a drug screening model for preventing and/or treating Alzheimer's disease.

第四方面,本发明提供一种筛选预防和/或治疗阿尔茨海默病的药物的方法,所述方法包括:In a fourth aspect, the present invention provides a method for screening drugs for the prevention and/or treatment of Alzheimer's disease, the method comprising:

用候选物质处理表达环状RNACwc27表达的体系;和Treating a system expressing circular RNA Cwc27 with a candidate substance; and

检测所述体系中环状RNACwc27的表达;Detecting the expression of circular RNA Cwc27 in the system;

若环状RNACwc27的表达降低,则表明该候选物质是预防和/或治疗阿尔茨海默病的潜在物质。If the expression of the circular RNA Cwc27 is reduced, it indicates that the candidate substance is a potential substance for preventing and/or treating Alzheimer's disease.

附图说明Description of drawings

图1示出在APP/PS1小鼠皮层、海马及AD患者血浆内circCwc27水平,其中A为APP/PS1及对照野生型小鼠皮层内各circRNA的表达水平,B为APP/PS1及对照野生型小鼠海马内各circRNA的表达水平;C为AD患者及健康对照者血浆内circCwc27水平;从图1可以看出在AD患者血浆和APP/PS1小鼠脑组织内的circCwc27水平显著升高。Figure 1 shows the level of circCwc27 in APP/PS1 mouse cortex, hippocampus and plasma of AD patients, where A is the expression level of each circRNA in APP/PS1 and control wild-type mouse cortex, B is APP/PS1 and control wild-type The expression levels of each circRNA in the mouse hippocampus; C is the level of circCwc27 in the plasma of AD patients and healthy controls; it can be seen from Figure 1 that the level of circCwc27 in the plasma of AD patients and the brain tissue of APP/PS1 mice was significantly increased.

图2示出circCwc27干扰病毒对APP/PS1小鼠脑内APP蛋白表达的影响;其中A为APP/PS1小鼠注射circCwc27干扰病毒或对照病毒后海马内APP蛋白的电泳图,B为A中APP蛋白表达量的统计图;从图2可以看出circCwc27干扰病毒能够显著降低APP/PS1小鼠脑内APP蛋白的表达。Figure 2 shows the effect of circCwc27 interference virus on the expression of APP protein in the brain of APP/PS1 mice; where A is the electrophoresis of APP protein in the hippocampus of APP/PS1 mice injected with circCwc27 interference virus or control virus, and B is the APP protein in A Statistical graph of protein expression; from Figure 2, it can be seen that the circCwc27 interference virus can significantly reduce the expression of APP protein in the brain of APP/PS1 mice.

图3示出AD模型小鼠APP/PS1经脑立体定位注射补充circCwc27干扰病毒LV-sh-circCwc27两月后的学习和记忆能力,其中A是治疗组与对照组小鼠寻找目标象限潜伏时间,B是治疗组与对照组小鼠寻找目标象限时间的曲线下面积,C是治疗组与对照组小鼠的游泳速度,D是治疗组与对照组小鼠在目标象限的停留时间,E是治疗组与对照组小鼠的运动轨迹图;从图3可以看出,与对照组相比,处理组学习和记忆能力显著提高。Figure 3 shows the learning and memory ability of AD model mice APP/PS1 supplemented with circCwc27 interference virus LV-sh-circCwc27 for two months after brain stereotaxic injection, where A is the latency time for the mice in the treatment group and the control group to find the target quadrant, B is the area under the curve of the time for the mice in the treatment group and the control group to find the target quadrant, C is the swimming speed of the mice in the treatment group and the control group, D is the residence time of the mice in the treatment group and the control group in the target quadrant, E is the treatment The trajectory diagram of the mice in the group and the control group; as can be seen from Figure 3, compared with the control group, the learning and memory abilities of the treatment group were significantly improved.

图4示出AD模型小鼠APP/PS1经脑立体定位注射补充circCwc27干扰病毒LV-sh-circCwc27两月后淀粉样蛋白病理情况,其中A为APP/PS1小鼠注射circCwc27干扰病毒或对照病毒后海马及皮层内淀粉样斑块的萤光图,B为A图中淀粉样斑块沉积的统计图;从图4可以看出,与对照组相比,定位注射补充circCwc27干扰病毒后AD模型小鼠的淀粉样蛋白病理出现显著缓解。Figure 4 shows the amyloid pathology of AD model mice APP/PS1 via brain stereotaxic injection supplemented with circCwc27 interfering virus LV-sh-circCwc27 for two months, where A is after APP/PS1 mice were injected with circCwc27 interfering virus or control virus Fluorescent images of amyloid plaques in the hippocampus and cortex, B is the statistical map of amyloid plaque deposition in image A; it can be seen from Figure 4 that compared with the control group, the AD model was smaller after localized injection of circCwc27 interference virus Amyloid pathology in mice was significantly alleviated.

具体实施方式detailed description

以下结合附图和下述实施方式进一步说明本发明,应理解,附图和下述实施方式仅用于说明本发明,而非限制本发明。The present invention will be further described below in conjunction with the drawings and the following embodiments. It should be understood that the drawings and the following embodiments are only used to illustrate the present invention rather than limit the present invention.

本发明人经研究发现,非编码RNA环状RNA Cwc27(简称circCwc27,其碱基序列如SEQ ID NO.3所示。在阿尔茨海默病患者和模型小鼠脑组织中表达显著升高,并参与脑内淀粉样蛋白病理的产生。针对AD模型小鼠脑内给予circCwc27干扰病毒可以显著缓解脑内淀粉样蛋白病理的发生,改善小鼠学习和记忆能力,表明circCwc27具有治疗AD的临床应用前景,由此完成本发明。The inventors have found through research that the non-coding RNA circular RNA Cwc27 (circCwc27 for short, its base sequence is shown in SEQ ID NO.3. Its expression is significantly increased in the brain tissue of Alzheimer's disease patients and model mice, And participate in the generation of amyloid pathology in the brain. Giving circCwc27 interference virus to the brain of AD model mice can significantly alleviate the occurrence of amyloid pathology in the brain and improve the learning and memory ability of mice, indicating that circCwc27 has clinical application in the treatment of AD Prospect, complete the present invention thus.

在此公开了circCwc27下调剂在制备预防和/或治疗阿尔茨海默病的药物中的应用。Disclosed herein is the application of the circCwc27 down-regulator in the preparation of drugs for the prevention and/or treatment of Alzheimer's disease.

术语“预防疾病”例如是指在可能暴露或预先处置于疾病但尚未经历或显示疾病症状的哺乳动物中使疾病临床症状不发展。The term "prevention of a disease" refers, for example, to the non-development of clinical symptoms of a disease in mammals that may have been exposed or pre-treated to the disease but have not yet experienced or shown symptoms of the disease.

术语“治疗疾病”可指抑制疾病,例如阻止或降低疾病或其临床症状的发展,或者缓解疾病,例如使疾病或其临床症状退化。The term "treating a disease" can refer to inhibiting a disease, such as arresting or reducing the development of a disease or its clinical symptoms, or ameliorating a disease, such as regressing a disease or its clinical symptoms.

circCwc27下调剂包括能够降低circCwc27水平的物质。所述环状RNACwc27下调剂为环状RNACwc27抑制剂和/或环状RNACwc27修饰物。例如circCwc27的干扰RNA(包括如SEQID NO.1所示的碱基序列的RNA片段。circCwc27 down-regulators include substances capable of reducing circCwc27 levels. The circular RNACwc27 down-regulator is a circular RNACwc27 inhibitor and/or a circular RNACwc27 modifier. For example, the interference RNA of circCwc27 (including the RNA fragment of the base sequence shown in SEQID NO.1.

circCwc27抑制剂的一个示例包括其核苷酸序列上具有与circCwc27接头互补的核苷酸序列,即、包括与如SEQ ID NO.2所示的碱基序列互补的碱基序列的RNA片段。An example of the circCwc27 inhibitor includes an RNA fragment having a nucleotide sequence complementary to the circCwc27 linker in its nucleotide sequence, that is, including a nucleotide sequence complementary to the nucleotide sequence shown in SEQ ID NO.2.

circCwc27修饰物是指基于circCwc27的核苷酸序列设计核酸序列及其修饰物,例如基于SEQ ID NO.3经过取代、缺失或者添加一个或多个核苷酸的环状RNACwc27修饰物。所述修饰包括任意核苷酸的核糖修饰、碱基修饰和磷酸骨架修饰中的一种或几种的组合或任意核苷酸的增减、替换。只要修饰后的核苷酸序列能满足降低circCwc27类似的功能活性。CircCwc27 modifications refer to the design of nucleic acid sequences and modifications based on the nucleotide sequence of circCwc27, such as circular RNACwc27 modifications based on SEQ ID NO.3 with substitution, deletion or addition of one or more nucleotides. The modification includes ribose modification, base modification and phosphate backbone modification of any nucleotide or a combination of several or addition, deletion or replacement of any nucleotide. As long as the modified nucleotide sequence can satisfy the similar functional activity of reducing circCwc27.

另外,应理解,circCwc27下调剂也包括能够降低circCwc27活性和稳定性的物质、能够降低circCwc27有效作用时间的物质。例如,circCwc27下调剂还包括其他能够抑制环状RNACwc27表达的多肽、蛋白质或者化合物。In addition, it should be understood that circCwc27 down-regulators also include substances that can reduce the activity and stability of circCwc27, and substances that can reduce the effective action time of circCwc27. For example, circCwc27 down-regulators also include other polypeptides, proteins or compounds that can inhibit the expression of circular RNA Cwc27.

在此公开了circCwc27下调剂在抑制AD脑内淀粉样蛋白病理的效应,应用circCwc27下调剂能够有效抑制AD模型小鼠病理表型的进展,提高学习和记忆能力。研究发现,circCwc27在AD患者外周血浆及APP/PS1小鼠脑组织显著升高。针对AD模型小鼠,通过脑内抑制circCwc27,能够显著减少Aβ前体蛋白APP和关键裂解酶BACE1的表达水平,从而抑制Aβ的产生和淀粉样蛋白病理的产生。本发明所述的应用中可为制备治疗阿尔茨海默病的一种核苷酸类似物的药物。The effect of the circCwc27 down-regulator on inhibiting the pathology of amyloid in the AD brain is disclosed here, and the application of the circCwc27 down-regulator can effectively inhibit the progression of pathological phenotypes in AD model mice and improve learning and memory abilities. The study found that circCwc27 was significantly elevated in peripheral plasma of AD patients and brain tissue of APP/PS1 mice. For AD model mice, inhibiting circCwc27 in the brain can significantly reduce the expression levels of Aβ precursor protein APP and key cleavage enzyme BACE1, thereby inhibiting the production of Aβ and the generation of amyloid pathology. The application of the present invention can be used to prepare a nucleotide analog drug for treating Alzheimer's disease.

circCwc27下调剂能够降低APP和BACE1转录水平,抑制淀粉样前体蛋白途径,作为新型的核苷酸药物。The circCwc27 downregulator can reduce APP and BACE1 transcription levels, inhibit the amyloid precursor protein pathway, and serve as a new type of nucleotide drug.

针对AD动物模型APP/PS1小鼠,通过脑内注射circCwc27干扰慢病毒作为治疗药物,结果证明,抑制circCwc27能够显著减少Aβ的产生和淀粉样蛋白病理的形成,促进学习和记忆能力的缓解。For AD animal model APP/PS1 mice, intracerebral injection of circCwc27 interfering lentivirus was used as a therapeutic drug. The results proved that inhibiting circCwc27 can significantly reduce the production of Aβ and the formation of amyloid pathology, and promote the alleviation of learning and memory ability.

circCwc27可以作为靶点,用于开发、筛选或制备用于预防和/或治疗阿尔茨海默病的药物。可以将circCwc27作为作用对象,对候选物质进行筛选。筛选出的能够降低circCwc27表达、抑制circCwc27活性和稳定性、和/或减少circCwc27有效作用时间的物质可以作为备选的预防和/或治疗阿尔茨海默病的药物。circCwc27 can be used as a target for developing, screening or preparing drugs for preventing and/or treating Alzheimer's disease. CircCwc27 can be used as the target to screen candidate substances. The screened substances that can reduce the expression of circCwc27, inhibit the activity and stability of circCwc27, and/or reduce the effective action time of circCwc27 can be used as alternative drugs for preventing and/or treating Alzheimer's disease.

可以建立一种以circCwc27为靶点的筛药模型来筛选以circCwc27为作用对象的药物。A drug screening model targeting circCwc27 can be established to screen drugs targeting circCwc27.

一实施方式中,用候选物质处理表达circCwc27的体系,检测所述体系中circCwc27的表达,若circCwc27的表达降低,则表明该候选物质是预防和/或治疗阿尔茨海默病的潜在物质。In one embodiment, the system expressing circCwc27 is treated with a candidate substance, and the expression of circCwc27 in the system is detected. If the expression of circCwc27 decreases, it indicates that the candidate substance is a potential substance for preventing and/or treating Alzheimer's disease.

在此公开一种药物组合物,其包括有效量circCwc27下调剂、以及药学上可接受的载体或辅料。Disclosed herein is a pharmaceutical composition, which includes an effective amount of a circCwc27 down-regulator, and a pharmaceutically acceptable carrier or adjuvant.

“有效量”意指circCwc27下调剂(i)治疗特定疾病、病症或障碍,(ii)减弱、改善或消除特定疾病、病症或障碍的一种或多种症状,或(iii)预防或延迟本文所述特定疾病、病症或障碍的一种或多种症状发作的量。"Effective amount" means that a circCwc27 down-regulator (i) treats a particular disease, condition or disorder, (ii) attenuates, improves or eliminates one or more symptoms of a particular disease, disorder or disorder, or (iii) prevents or delays the present invention The amount of onset of one or more symptoms of the particular disease, condition or disorder.

“药学上可以接受的载体”指的是一种或多种相容性固体或液体填料或凝胶物质,它们适合于人使用,而且必须有足够的纯度和足够低的毒性。“相容性”在此指的是组合物中各组分能和有效成分相互掺杂,而不明显降低有效成分的药效。药学上可接受的载体或辅料包括但不限于纤维素及其衍生物(如羧甲基纤维素钠、乙基纤维素钠、纤维素乙酸酯等)、明胶、滑石、固体润滑剂(如硬脂酸、硬脂酸镁)、硫酸钙、植物油(如豆油、芝麻油、花生油、橄榄油等)、多元醇(如丙二醇、甘油、甘露醇、山梨醇等)、乳化剂(如

Figure BDA0002673817420000051
Figure BDA0002673817420000052
)、润湿剂(如十二烷基硫酸钠)、着色剂、调味剂、稳定剂、抗氧化剂、防腐剂、无热原水等。"Pharmaceutically acceptable carrier" refers to one or more compatible solid or liquid filler or gel substances, which are suitable for human use and must have sufficient purity and low toxicity. "Compatibility" here means that each component in the composition can mix with the active ingredient without significantly reducing the efficacy of the active ingredient. Pharmaceutically acceptable carriers or excipients include but are not limited to cellulose and its derivatives (such as sodium carboxymethylcellulose, sodium ethylcellulose, cellulose acetate, etc.), gelatin, talc, solid lubricants (such as Stearic acid, magnesium stearate), calcium sulfate, vegetable oil (such as soybean oil, sesame oil, peanut oil, olive oil, etc.), polyalcohol (such as propylene glycol, glycerin, mannitol, sorbitol, etc.), emulsifier (such as
Figure BDA0002673817420000051
Figure BDA0002673817420000052
), wetting agent (such as sodium lauryl sulfate), coloring agent, flavoring agent, stabilizer, antioxidant, preservative, pyrogen-free water, etc.

本公开中的药物或药物组合物可按照药物制备的常用方法制成注射制剂、口服制剂、滴鼻剂、喷雾制剂、软膏制剂或贴剂等。The medicines or pharmaceutical compositions in the present disclosure can be made into injection preparations, oral preparations, nasal drops, spray preparations, ointment preparations or patches, etc. according to common methods for preparation of medicines.

circCwc27下调剂也可以与其它预防和/或治疗阿尔茨海默病的药物进行联合用药。The circCwc27 down-regulator can also be combined with other drugs for the prevention and/or treatment of Alzheimer's disease.

下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。Examples are given below to describe the present invention in detail. It should also be understood that the following examples are only used to further illustrate the present invention, and should not be construed as limiting the protection scope of the present invention. Some non-essential improvements and adjustments made by those skilled in the art according to the above contents of the present invention all belong to the present invention scope of protection. The specific process parameters and the like in the following examples are only examples of suitable ranges, that is, those skilled in the art can make a selection within a suitable range through the description herein, and are not limited to the specific values exemplified below.

实施例1:在AD患者外周血浆和模型小鼠脑组织中,circCwc27水平显著升高。Example 1: In the peripheral plasma of AD patients and the brain tissue of model mice, the level of circCwc27 was significantly increased.

选择6月龄APP/PS1转基因小鼠及相同年龄和背景的野生对照鼠各3只,麻醉后灌注取脑,脑组织分成两半,一半用于RNA抽提进行circRNA测序分析,另一半多聚甲醛固定后制作石蜡切片进行原位杂交实验。相关操作符合伦理学操作标准和流程。Select 6-month-old APP/PS1 transgenic mice and 3 wild control mice of the same age and background. After anesthesia, the brain was perfused and taken out. The brain tissue was divided into two halves, one half was used for RNA extraction for circRNA sequencing analysis, and the other half was polymerized. Paraffin sections were made after formaldehyde fixation for in situ hybridization experiments. Relevant operations conform to ethical operating standards and procedures.

circRNA测序分析:通过NanoDrop ND-100浓度测定,选取1-2μg RNA进行文库构建,构建好的文库通过Agilent2100鉴定文库质量,并用qPCR进行文库定量,混合好的不同样品文库使用Illumina 4000测序仪进行测序,包括NaOH碱变性单链生成,Illumina flowcell原位扩增,150双端循环测序等步骤。利用Solexa pipeline version 1.8软件进行图像处理和碱基识别,FastQC软件对去接头后的reads质量进行评估,通过STAR软件比对到参考基因组,使用CIRCexplorer2进行Backsplice junction reads检测,利用R软件edgeR进行表达差异计算。circRNA sequencing analysis: 1-2 μg RNA was selected for library construction through NanoDrop ND-100 concentration measurement, the quality of the constructed library was identified by Agilent2100, and library quantification was performed by qPCR. The mixed sample libraries were sequenced using Illumina 4000 sequencer , including NaOH alkali denaturation single-strand generation, Illumina flowcell in situ amplification, 150 paired-end cycle sequencing and other steps. Solexa pipeline version 1.8 software was used for image processing and base recognition, FastQC software was used to evaluate the quality of reads after splice removal, STAR software was used to compare to the reference genome, CIRCexplorer2 was used to detect Backsplice junction reads, and R software edgeR was used to detect expression differences calculate.

RT-PCR:实验使用碧云天公司RNAeasyTM Plus试剂盒说明书提取总RNA,实时荧光定量PCR,根据TAKARA公司提供PrimeScriptTMRT Master Mix试剂盒说明书将RNA反转录成cDNA,按照TB GreenTMPremix Ex TaqTM试剂盒说明书提供的方法在RT-PCR ABI7300仪上进行实时荧光定量PCR反应,以GAPDH为内参照。反应结束后由配套的计算机软件计算各反应管内的CT值。采用相对定量方法2ΔΔCt来计算circRNA的相对表达水平。RT-PCR: In the experiment, total RNA was extracted using the instructions of the RNAeasy TM Plus kit from Biyuntian Company, and real-time fluorescent quantitative PCR was used. The RNA was reverse-transcribed into cDNA according to the instructions of the PrimeScript TM RT Master Mix kit provided by TAKARA, and the RNA was reverse-transcribed into cDNA according to the instructions of TB Green TM Premix Ex The method provided in the Taq TM kit manual was carried out on the RT-PCR ABI7300 instrument for real-time fluorescent quantitative PCR reaction, with GAPDH as the internal reference. After the reaction is completed, the CT value in each reaction tube is calculated by the supporting computer software. Relative quantification method 2 ΔΔCt was used to calculate the relative expression levels of circRNAs.

蛋白免疫印迹实验:PC12细胞(购自江苏凯基生物技术股份有限公司)转染si-circCwc27(购自吉满生物科技(上海)有限公司)及对照后72小时,用RIPA裂解液裂解细胞,20min后将裂解液转移至1.5mL离心管中并标记,用BCA试剂盒蛋白定量。蛋白变性后,经SDS-PAGE系统电泳分离后转PVDF膜,5%脱脂奶粉(0.1%TBST稀释)室温封闭1h,TBST洗3次,每次5min,4℃分别孵育APP及内参蛋白GAPDH抗体(购自Abcam,APP抗体货号ab32136,GAPDH抗体货号ab8245)(1∶1000)过夜,TBST洗涤3次,每次5min,孵育二抗HRP标记抗体(购自碧云天)(1∶5 000)2h,TBST洗涤3次,最后加ECL发光液、曝光、显影,用Image J软件进行灰度分析。Western blot experiment: 72 hours after PC12 cells (purchased from Jiangsu KGI Biotechnology Co., Ltd.) were transfected with si-circCwc27 (purchased from Jiman Biotechnology (Shanghai) Co., Ltd.) and the control, the cells were lysed with RIPA lysate, After 20 min, the lysate was transferred to a 1.5 mL centrifuge tube and labeled, and the protein was quantified with a BCA kit. After protein denaturation, separated by SDS-PAGE electrophoresis, transfer to PVDF membrane, 5% skimmed milk powder (0.1% TBST diluted) blocked at room temperature for 1 hour, washed 3 times with TBST, each time for 5 minutes, and incubated APP and internal reference protein GAPDH antibody at 4°C respectively ( Purchased from Abcam, APP antibody product number ab32136, GAPDH antibody product number ab8245) (1:1000) overnight, washed 3 times with TBST, 5 min each time, incubated secondary antibody HRP-labeled antibody (purchased from Biyuntian) (1:5 000) for 2 hours, Wash 3 times with TBST, add ECL luminescent solution, expose, develop, and use Image J software for grayscale analysis.

实施例1中通过circRNA测序分析及RT-PCR实验表明,如图1所示,在AD患者外周血浆和APP/PS1模型小鼠脑组织(海马和皮层)中,circCwc27水平显著升高(*p<0.05,**p<0.01与WT组;n=6,***p<0.001与对照组;n(对照组)=18,n(AD)=20,数据以平均值±SEM表示)。In Example 1, circRNA sequencing analysis and RT-PCR experiments showed that, as shown in Figure 1, in the peripheral plasma of AD patients and in the brain tissue (hippocampus and cortex) of APP/PS1 model mice, the level of circCwc27 was significantly increased ( * p <0.05, ** p<0.01 vs. WT group; n=6, *** p<0.001 vs. control group; n(control group)=18, n(AD)=20, data are expressed as mean ± SEM).

实施例2:干扰circCwc27的表达降低APP蛋白水平Example 2: Interfering with the expression of circCwc27 reduces APP protein levels

AD模型小鼠APP/PS1经脑立体定位注射补充circCwc27干扰病毒LV-sh-circCwc27(购自上海吉荧生物技术有限公司)。以慢病毒为载体包被circCwc27干扰RNA,用于长期稳定降低小鼠脑内的circCwc27表达,circCwc27干扰RNA序列如SEQ ID NO.1所示,病毒浓度为1×109病毒/微升,注射量为5μL。对照组为APP/PS1小鼠经脑立体定位注射补充对照病毒LV-sh-circCon(购自上海吉荧生物技术有限公司)组,注射病毒浓度为1×109病毒/微升,注射量为5μL。而后经蛋白质免疫印迹实验发现,circCwc27干扰病毒能够显著降低APP/PS1小鼠脑内APP蛋白的表达,这表明circCwc27在调节Aβ生成中具有重要作用。AD model mouse APP/PS1 was injected with circCwc27 interfering virus LV-sh-circCwc27 (purchased from Shanghai Jiying Biotechnology Co., Ltd.) via brain stereotaxic injection. The circCwc27 interfering RNA is coated with lentivirus for long-term and stable reduction of circCwc27 expression in the mouse brain. The circCwc27 interfering RNA sequence is shown in SEQ ID NO.1, and the virus concentration is 1×10 9 virus/microliter, injected The volume is 5 μL. The control group was the group of APP/PS1 mice stereotaxically injected with the control virus LV-sh- circCon (purchased from Shanghai Jiying Biotechnology Co., Ltd.). 5 μL. Then, Western blot experiments found that the circCwc27 interference virus could significantly reduce the expression of APP protein in the brains of APP/PS1 mice, which indicated that circCwc27 played an important role in regulating Aβ production.

图2显示出circCwc27干扰病毒能够显著降低APP/PS1小鼠脑内APP蛋白的表达(***p<0.001APP/PS1-LV-sh-circ与对照组相比;n=4,数据以平均值±SEM表示)。Figure 2 shows that the circCwc27 interference virus can significantly reduce the expression of APP protein in the brain of APP/PS1 mice (***p<0.001APP/PS1-LV-sh-circ compared with the control group; n=4, the data are averaged Values ± SEM represent).

实施例3:circCwc27抑制剂缓解AD模型小鼠脑内淀粉样蛋白病理和行为表征Example 3: circCwc27 inhibitor alleviates pathological and behavioral characterization of amyloid in the brain of AD model mice

该实验经过上海交通大学医学院动物实验伦理委员会批准,按照动物实验操作指南实施。6月龄APP/PS1雄性小鼠购于南京大学模式动物中心。将小鼠随机分为WT-LV-sh-circCon组(野生型小鼠注射对照病毒组),WT-LV-sh-circCwc27组(野生型小鼠注射circCwc27干扰病毒组),APP/PS1-LV-sh-circCon(APP/PS1小鼠小鼠注射对照病毒组)组和APP/PS1-LV-sh-circCwc27组(APP/PS1小鼠注射circCwc27干扰病毒组)。3%戊巴比妥钠腹腔注射麻醉小鼠,俯卧位将其头部固定于立体定位注射仪上,用微量注射器吸取5μl LV-sh-circCwc27(购自上海吉荧生物技术有限公司)溶液,溶液的浓度是1×109病毒/微升,在颅骨孔处竖直插入脑组织。用微量注射泵以0.5μl/min速度入小鼠第三脑室(前卤后:-0.3mm,矢状缝左/右:1.0mm,深度:2.2mm),待注射完毕后将注射器缓慢抽出。小鼠立体定位注射术后将颅骨注射点周围消毒,缝合皮肤后放回鼠笼中继续饲养。两个月后通过Morris水迷宫检测小鼠学习和记忆能力。行为学后处死取脑,固定切片后检测脑内淀粉样蛋白病理(淀粉样蛋白Aβ抗体购自Cell Signaling Technology,货号2450T)。The experiment was approved by the Animal Experiment Ethics Committee of Shanghai Jiao Tong University School of Medicine and carried out in accordance with the animal experiment guidelines. Six-month-old APP/PS1 male mice were purchased from the Model Animal Center of Nanjing University. The mice were randomly divided into WT-LV-sh-circCon group (wild-type mice injected with control virus group), WT-LV-sh-circCwc27 group (wild-type mice injected with circCwc27 interfering virus group), APP/PS1-LV -sh-circCon (APP/PS1 mouse injection control virus group) group and APP/PS1-LV-sh-circCwc27 group (APP/PS1 mouse injection circCwc27 interference virus group). The mice were anesthetized by intraperitoneal injection of 3% pentobarbital sodium, and their heads were fixed on a stereotaxic injection apparatus in a prone position, and 5 μl of LV-sh-circCwc27 (purchased from Shanghai Jiying Biotechnology Co., Ltd.) solution was drawn with a micro-syringe. The concentration of the solution is 1×10 9 virus/microliter, and the brain tissue is vertically inserted into the skull hole. Use a micro-injection pump to inject into the third ventricle of the mouse at a speed of 0.5 μl/min (posterior bregma: -0.3 mm, left/right sagittal suture: 1.0 mm, depth: 2.2 mm), and slowly withdraw the syringe after the injection is completed. After the stereotaxic injection, the mice were disinfected around the skull injection site, the skin was sutured, and then put back into the mouse cage for further feeding. Two months later, the learning and memory abilities of the mice were tested by Morris water maze. After behavioral studies, the brains were sacrificed and the brains were fixed and sliced to detect the pathology of amyloid protein in the brain (the amyloid protein Aβ antibody was purchased from Cell Signaling Technology, product number 2450T).

如图3所示,行为学实验结果表明,circCwc27抑制剂可以显著缩短APP/PS1小鼠的到达平台的潜伏期,并提高目标象限的停留时间。从对照组小鼠的运动轨迹图可以看出,与对照组相比,处理组学习和记忆能力显著提高(*p<0.05,**p<0.01,***p<0.001WT-LV-sh-circ与对照组相比;#p<0.05APP/PS1-LV-sh-cir与对照组相比,n=7-10,数据以平均值±SEM表示)。As shown in Figure 3, the results of behavioral experiments showed that circCwc27 inhibitors could significantly shorten the latency to reach the platform and increase the residence time in the target quadrant of APP/PS1 mice. It can be seen from the trajectory diagram of the mice in the control group that compared with the control group, the learning and memory abilities of the treatment group were significantly improved ( * p<0.05, ** p<0.01, *** p<0.001WT-LV-sh -circ vs. control group; # p<0.05APP/PS1-LV-sh-cir vs. control group, n=7-10, data are expressed as mean ± SEM).

如图4所示,脑组织病理检测结果表明,circCwc27抑制剂治疗可以降低脑内淀粉样斑块的沉积,缓解脑内淀粉样蛋白病理的严重程度(***p<0.001APP/PS1-LV-sh-circ与对照组相比,n=4,数据以平均值±SEM表示)。As shown in Figure 4, the results of brain histopathological examination showed that treatment with circCwc27 inhibitors could reduce the deposition of amyloid plaques in the brain and alleviate the severity of amyloid pathology in the brain ( *** p<0.001APP/PS1-LV -sh-circ compared with the control group, n = 4, data are expressed as mean ± SEM).

SEQ ID NO. 1SEQ ID NO. 1

GGCUUCUCGUACUUCCCCUGGCUUCUCGUACUUCCCCU

SEQ ID NO. 2SEQ ID NO. 2

GAAGCCGGCAAGCCGAAG AGCAUGAAGGGGAGAAGUGAAGCCGGCAAGCCGAAGAGCAUGAAGGGGAGAAGU

SEQ ID NO. 3SEQ ID NO. 3

AGCATGAAGGGGAGAAGTAAGAGCAGCCATGACCTGCTCAAGGACGACCCGCATCTAAGCTCTGTCCCAGCAGTGGAAAGTGAAAAAGATGATGCAACAGGAGATTTAGAAGATGATGGTGAGGATGACAGTGCAGAGCGTGACGAATACATGGAAGATGATGAGAAGAACTTGATGAGAGAAAGAATTGCAAAACGGTTAAAGAAAGATGCAAGTGCCAGTGTGAAGTCAGCCGGAGACGGGGAGAAGAAGCCGGCAAGCCGAAGAGCATGAAGGGGAGAAGTAAGAGCAGCCATGACCTGCTCAAGGACGACCCGCATCTAAGCTCTGTCCCAGCAGTGGAAAGTGAAAAAGATGATGCAACAGGAGATTTAGAAGATGATGGTGAGGATGACAGTGCAGAGCGTGACGAATACATGGAAGATGATGAGAAGAACTTGATGAGAGAAAGAATTGCAAAACGGTTAAAGAAAGATGCAAGTGCCAGTGTGAAGTCAGCCGGAGACGGGGAGAAGAAGCCGGCAAGCCGAAG

Claims (4)

1.环状RNACwc27下调剂在制备预防和/或治疗阿尔茨海默病的药物中的应用,其特征在于,所述环状RNACwc27下调剂为环状RNACwc27抑制剂,所述环状RNACwc27的核苷酸序列如SEQ ID NO. 3所示。1. The application of the circular RNACwc27 down-regulator in the preparation of the medicine for preventing and/or treating Alzheimer's disease, characterized in that, the circular RNACwc27 down-regulator is a circular RNACwc27 inhibitor, and the nucleus of the circular RNACwc27 The nucleotide sequence is shown in SEQ ID NO.3. 2.根据权利要求1所述的应用,其特征在于,所述环状RNACwc27下调剂为:2. application according to claim 1, is characterized in that, described circular RNACwc27 down-regulator is: 包括如SEQ ID NO. 1所示的碱基序列的RNA片段;或者An RNA fragment comprising the base sequence shown in SEQ ID NO.1; or 能够抑制环状RNACwc27表达的多肽、蛋白质或者化合物。A polypeptide, protein or compound capable of inhibiting the expression of circular RNA Cwc27. 3.根据权利要求1或2所述的应用,其特征在于,所述药物包括环状RNACwc27下调剂、以及药学上可接受的载体或辅料。3. The application according to claim 1 or 2, characterized in that the drug comprises a circular RNA Cwc27 down-regulator, and a pharmaceutically acceptable carrier or adjuvant. 4.一种筛选预防和/或治疗阿尔茨海默病的药物的方法,所述方法包括:4. A method of screening a drug for preventing and/or treating Alzheimer's disease, said method comprising: 用候选物质处理表达环状RNACwc27的体系;和Treating a system expressing circular RNA Cwc27 with a candidate substance; and 检测所述体系中环状RNACwc27的表达;Detecting the expression of circular RNA Cwc27 in the system; 若环状RNACwc27的表达降低,则表明该候选物质是预防和/或治疗阿尔茨海默病的潜在物质;If the expression of circular RNA Cwc27 is reduced, it indicates that the candidate substance is a potential substance for preventing and/or treating Alzheimer's disease; 所述环状RNACwc27的核苷酸序列如SEQ ID NO. 3所示。The nucleotide sequence of the circular RNA Cwc27 is shown in SEQ ID NO. 3.
CN202010941548.1A 2020-09-09 2020-09-09 Application of circular RNA Cwc27 down-regulator in the preparation of drugs for preventing and/or treating Alzheimer's disease Active CN114225035B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010941548.1A CN114225035B (en) 2020-09-09 2020-09-09 Application of circular RNA Cwc27 down-regulator in the preparation of drugs for preventing and/or treating Alzheimer's disease
PCT/CN2021/112434 WO2022052738A1 (en) 2020-09-09 2021-08-13 Application of circular rna cwc27 down-regulator in preparation of drug for preventing and/or treating alzheimer's disease

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010941548.1A CN114225035B (en) 2020-09-09 2020-09-09 Application of circular RNA Cwc27 down-regulator in the preparation of drugs for preventing and/or treating Alzheimer's disease

Publications (2)

Publication Number Publication Date
CN114225035A CN114225035A (en) 2022-03-25
CN114225035B true CN114225035B (en) 2022-12-16

Family

ID=80632057

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010941548.1A Active CN114225035B (en) 2020-09-09 2020-09-09 Application of circular RNA Cwc27 down-regulator in the preparation of drugs for preventing and/or treating Alzheimer's disease

Country Status (2)

Country Link
CN (1) CN114225035B (en)
WO (1) WO2022052738A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018139819A1 (en) * 2017-01-26 2018-08-02 주식회사 바이오오케스트라 Uses for prevention or treatment of brain diseases using microrna
CN111328287A (en) * 2017-07-04 2020-06-23 库瑞瓦格股份公司 Novel nucleic acid molecules
CN111603561A (en) * 2019-02-25 2020-09-01 上海交通大学医学院 Application of microRNA-425 and its analogs as nucleotide drugs for Alzheimer's disease treatment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150344888A1 (en) * 2012-09-17 2015-12-03 Genentech, Inc. Usp30 inhibitors and methods of use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018139819A1 (en) * 2017-01-26 2018-08-02 주식회사 바이오오케스트라 Uses for prevention or treatment of brain diseases using microrna
CN111328287A (en) * 2017-07-04 2020-06-23 库瑞瓦格股份公司 Novel nucleic acid molecules
CN111603561A (en) * 2019-02-25 2020-09-01 上海交通大学医学院 Application of microRNA-425 and its analogs as nucleotide drugs for Alzheimer's disease treatment

Also Published As

Publication number Publication date
CN114225035A (en) 2022-03-25
WO2022052738A1 (en) 2022-03-17

Similar Documents

Publication Publication Date Title
Jäntti et al. Microglial amyloid beta clearance is driven by PIEZO1 channels
Chavali et al. Small organelle, big responsibility: the role of centrosomes in development and disease
US20250051778A1 (en) Oligonucleotide compositions and methods of use thereof
US12157889B2 (en) Methods to detect motor neuron disease comprising micro-RNAs
US10676747B2 (en) Methods for improving cognitive function via modulation of quinone reductase 2
JP7570100B2 (en) Method for removing senescent cells and method for preparing senescent cells
Yildiz et al. Role of DNMTs in the Brain
US20220133910A1 (en) Neuroprotection of neuronal soma and axon by modulating er stress/upr molecules
CN111956658A (en) Application of miRNA148 cluster as marker for diagnosing and/or treating cognitive disorder-related diseases
WO2017201425A1 (en) Anabolic enhancers for ameliorating neurodegeneration
EP3870699A2 (en) Treatments for charcot-marie-tooth disease
CN114225035B (en) Application of circular RNA Cwc27 down-regulator in the preparation of drugs for preventing and/or treating Alzheimer&#39;s disease
CN111603561A (en) Application of microRNA-425 and its analogs as nucleotide drugs for Alzheimer&#39;s disease treatment
CN112353940B (en) A kind of medicine for preventing or treating depression and its application
CN104622874B (en) Application of the CCR4 antagonists in cancer growth and transfer is suppressed
CN110049770A (en) Muscle differentiation inducer
Yang et al. The m6A reader YTHDC2 maintains visual function and retinal photoreceptor survival through modulating translation of PPEF2 and PDE6B
US20220025398A1 (en) A scalable platform for the development of cell-type-specific viruses
Nie et al. miR‑30c reduces myocardial ischemia/reperfusion injury by targeting SOX9 and suppressing pyroptosis
JP6912072B2 (en) Pharmaceuticals for the prevention or treatment of frontotemporal dementia
CN114984220B (en) Application of Mas receptor inhibitor in preparing medicine for preventing and treating acute liver failure
KR102645546B1 (en) Maker for diagnosis of neurological or psychological disorder related diseases caused by hepatic encephalopathy and method for providing information to need to diagnosis of neurological or psychological disorder related diseases caused by hepatic encephalopathy using of
Buglo Establishing CRISPR Models of Rare Hereditary Neurodegenerative Diseases
US9562231B2 (en) Therapeutic agent for corneal epithelial disorder
Nobilleau et al. RFC1 regulates the expansion of neural progenitors in the developing zebrafish cerebellum

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant