[go: up one dir, main page]

CN114217595B - X-type rudder AUV fault detection method based on interval observer - Google Patents

X-type rudder AUV fault detection method based on interval observer Download PDF

Info

Publication number
CN114217595B
CN114217595B CN202111506098.4A CN202111506098A CN114217595B CN 114217595 B CN114217595 B CN 114217595B CN 202111506098 A CN202111506098 A CN 202111506098A CN 114217595 B CN114217595 B CN 114217595B
Authority
CN
China
Prior art keywords
rudder
uncertainty
underwater robot
model
neural network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111506098.4A
Other languages
Chinese (zh)
Other versions
CN114217595A (en
Inventor
王玉甲
接宇欣
钱宇
姚峰
刘星
吕图
李嘉文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN202111506098.4A priority Critical patent/CN114217595B/en
Publication of CN114217595A publication Critical patent/CN114217595A/en
Application granted granted Critical
Publication of CN114217595B publication Critical patent/CN114217595B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0243Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/24Pc safety
    • G05B2219/24065Real time diagnostics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)
  • Feedback Control In General (AREA)

Abstract

The invention provides an interval observer-based X-shaped rudder AUV fault detection method, which is used for researching the problem that each parameter in an underwater robot dynamics model has a larger modeling error, and an RBF neural network is used for carrying out online identification on the system modeling error, and whether the system fails or not is judged directly through residual signals output by the interval observer and an actual system.

Description

一种基于区间观测器的X型舵AUV故障检测方法A fault detection method for X-type rudder AUV based on interval observer

技术领域Technical field

本发明专利涉及水下机器人故障诊断技术领域,特别是涉及到由于受到外界环境等因素的影响导致动力学模型中各参数存在较大建模误差的水下机器人故障检测方法。The patent of this invention relates to the field of underwater robot fault diagnosis technology, and in particular to an underwater robot fault detection method that causes large modeling errors in various parameters in the dynamic model due to the influence of external environment and other factors.

背景技术Background technique

水下机器人在复杂海洋环境下有着较为广泛的应用,在X型舵水下机器人的整体结构中,X型舵是实现X型舵水下机器人正常航行的关键执行机构,其故障将可能会严重威胁到水下机器人的航行安全。因此,为了提高X型舵水下机器人航行的可靠性和安全性,研究水下机器人X型舵的故障检测方法具有十分重要的意义。Underwater robots are widely used in complex marine environments. In the overall structure of the X-rudder underwater robot, the X-rudder is the key actuator to achieve normal navigation of the X-rudder underwater robot. Its failure may be serious. Threaten the navigation safety of underwater robots. Therefore, in order to improve the reliability and safety of the X-rudder underwater robot's navigation, it is of great significance to study the fault detection method of the X-rudder of the underwater robot.

目前,在水下机器人的故障诊断领域中,国内外学者主要以水下机器人推进器出力损失以及传感器故障的研究为主,而且现阶段,由于X型舵水下机器人系列产品数量相对较少,这就导致与其故障相关的研究尚无比较成熟的理论。At present, in the field of underwater robot fault diagnosis, domestic and foreign scholars mainly focus on the research on underwater robot propeller output loss and sensor failure. At this stage, due to the relatively small number of X-type rudder underwater robot series products, This leads to the fact that there is no relatively mature theory in the research related to its failure.

当前基于观测器的故障检测方法的应用需要以建立准确的系统解析模型为前提,而且所建立的模型必须能够反映出系统故障发生的机理。但实际上由于外界各种不确定因素的影响,导致难以获得精确的系统解析模型,对于非线性系统精确解析模型的建立方法与实际应用还需深入研究。然而在实际的工程应用中,对系统的故障进行检测与精确的估计往往耗时耗力,此时对故障进行区间估计就显现了其应用价值。而且考虑到由于环境等因素的影响导致通过模型辨识得到的动力学模型中的各参数与实际存在较大的偏差。基于上述问题,在本专利中提出了一种基于神经网络区间观测器的故障检测方法。The application of current observer-based fault detection methods requires the establishment of an accurate system analytical model, and the established model must be able to reflect the mechanism of system failure. However, in fact, due to the influence of various external uncertain factors, it is difficult to obtain an accurate analytical model of the system. In-depth research is needed on the establishment methods and practical applications of accurate analytical models of nonlinear systems. However, in actual engineering applications, detecting and accurately estimating system faults is often time-consuming and labor-intensive. At this time, interval estimation of faults shows its application value. Moreover, it is considered that due to the influence of environmental and other factors, there is a large deviation between the parameters in the dynamic model obtained through model identification and the actual situation. Based on the above problems, a fault detection method based on neural network interval observer is proposed in this patent.

发明内容Contents of the invention

本发明专利的目的是提供一种基于神经网络区间观测器的X型舵水下机器人故障检测方法。本发明专利能够确保即使在水下机器人系统受到外界环境等因素的影响,导致其动力学模型中存在较大的建模误差的情况下,仍然能够准确的检测出X型舵是否处出现故障。The purpose of the patent of this invention is to provide a fault detection method for an X-type rudder underwater robot based on a neural network interval observer. The patented invention can ensure that even when the underwater robot system is affected by factors such as the external environment, resulting in large modeling errors in its dynamic model, it can still accurately detect whether the X-shaped rudder is faulty.

本发明的目的是这样实现的:步骤如下:The purpose of the present invention is achieved in this way: the steps are as follows:

步骤一:结合X型舵水下机器人动力学模型,对状态量进行线性变换,并在模型中引入系统模型建模误差不确定性;Step 1: Combined with the X-rudder underwater robot dynamics model, linearly transform the state quantity, and introduce system model modeling error uncertainty into the model;

步骤二:结合步骤一的结果,对X型舵水下机器人故障检测区间观测器进行设计;Step 2: Combined with the results of Step 1, design the fault detection interval observer for the X-type rudder underwater robot;

步骤三:结合步骤二的结果,根据Lyapunov理论验证所设计的区间观测系统的稳定性。Step 3: Combined with the results of Step 2, verify the stability of the designed interval observation system based on Lyapunov theory.

本发明还包括这样一些结构特征:The present invention also includes the following structural features:

1.步骤一具体包括:将X型舵水下机器人的四个舵叶的偏转数值依次记作:[δ1δ2δ3δ4]T,X型舵和推进器的推力与力矩分配关系为:1. Step 1 specifically includes: recording the deflection values of the four rudder blades of the X-type rudder underwater robot in sequence as: [δ 1 δ 2 δ 3 δ 4 ] T , the thrust and moment distribution relationship between the X-type rudder and the propeller for:

其中,XT为推进器推力;XM为推进器产生的扭矩;u为水下机器人在x方向上的航行速度;δ*为第*个舵转动的舵角;X**为与第*个舵叶相关的水动力学参数;定义:x=[x1,x2]T,x1=η,x2=J(η)vAmong them, X T is the thrust of the propeller; is the hydrodynamic parameter related to the *th rudder blade; definition: x=[x 1 ,x 2 ] T , x 1 =η, x 2 =J(η)v

将X型舵水下机器人动力学模型变换为状态空间方程的形式为:The X-rudder underwater robot dynamic model is transformed into a state space equation in the form:

其中:K是舵叶的损伤程度分配矩阵;其中0≤K≤1;Ea是舵叶的故障分配矩阵;T为推进器推力矩阵;fa(t)是舵叶故障函数;/>其中d(t)为外界干扰;in: K is the damage degree distribution matrix of the rudder blade; where 0≤K≤1; E a is the fault distribution matrix of the rudder blade; T is the propeller thrust matrix; f a (t) is the rudder blade failure function;/> Among them, d(t) is external interference;

将X型舵水下机器人系统中的建模不确定性用如下形式进行表示:The modeling uncertainty in the X-rudder underwater robot system is expressed in the following form:

其中,表示水下机器人系统模型中相应变量的理论值;Mη,Cη,Dη,gη表示水下机器人系统模型中相应变量的实际值;ΔMη,ΔCη,ΔDη,Δgη表示水下机器人系统模型中相应变量的不确定性;in, Represents the theoretical values of the corresponding variables in the underwater robot system model; M η , C η , D η , and g η represent the actual values of the corresponding variables in the underwater robot system model; ΔM η , ΔC η , ΔD η , and Δg η represent water The uncertainty of the corresponding variables in the robot system model;

对于X型舵水下机器人执行器故障,令u′=u+Δu其中u为设计的控制量,u′为实际控制量,Δu为由于故障等原因引起的系统不确定性;将X型舵水下机器人系统模型不确定性表示为:For the X-type rudder underwater robot actuator failure, let u′=u+Δu, where u is the designed control quantity, u′ is the actual control quantity, and Δu is the system uncertainty caused by the fault and other reasons; let the X-type rudder The uncertainty of the underwater robot system model is expressed as:

则有:Then there are:

2.步骤二具体包括:通过步骤一中对系统模型的建模误差进行的分析与研究,设计如下所示的神经网络区间观测器:2. Step 2 specifically includes: through the analysis and research on the modeling error of the system model in step 1, design the neural network interval observer as shown below:

其中:是用于估计系统不确定项Δ的RBF神经网络输出值;采用RBF神经网络对系统模型的不确定项Δ进行在线辨识,给定RBF神经网络的具体表达式为:in: is the output value of the RBF neural network used to estimate the system uncertainty term Δ; the RBF neural network is used to identify the uncertainty term Δ of the system model online. The specific expression of the given RBF neural network is:

其中,为区间观测器上界(下界)的输出与实际系统输出的差值;W∈R6×k为RBF神经网络隐含层和输出层之间的权值矩阵;m和σ分别是RBF神经网络径向基函数中的中心向量与宽度参数;in, is the difference between the output of the upper bound (lower bound) of the interval observer and the actual system output; W∈R 6×k is the weight matrix between the hidden layer and the output layer of the RBF neural network; m and σ are the RBF neural network respectively. The center vector and width parameters in the radial basis function;

模型不确定性Δ存在最优逼近值可以表示为:Model uncertainty Δ has an optimal approximation value It can be expressed as:

其中:W*为通过RBF神经网络取得最优值时W的相应参数,其中最优权值的上界满足:||W||F≤WM,WM为常值,ε为最优值/>与系统不确定项Δ间的逼近误差,且其满足: Among them: W * is the optimal value obtained through RBF neural network is the corresponding parameter of W, where the upper bound of the optimal weight satisfies: ||W|| FW M , W M is a constant value, and ε is the optimal value/> The approximation error between and the system uncertainty term Δ, and it satisfies:

通过RBF神经网络在线逼近模型不确定项Δ后,所得到模型不确定性的估计值为:After online approximation of the model uncertainty term Δ through the RBF neural network, the estimated value of the model uncertainty is:

其不确定性误差方程可由下式表示:Its uncertainty error equation It can be expressed by the following formula:

将隐含层输出误差定义为:Define the hidden layer output error as:

可得:Available:

式中权值评估误差其干扰项w可表示为:The weight evaluation error in the formula Its interference term w can be expressed as:

在X型舵无故障发生的情况下定义状态和输出误差:Define the status and output error when no fault occurs in the X-type rudder:

由此得到误差动态系统:This leads to the error dynamic system:

根据区间观测器的定义能够得到:e+(t)≥0,e-(t)≥0,According to the definition of interval observer, we can get: e + (t) ≥ 0, e - (t) ≥ 0,

设计如下的网络权值自适应律:Design the following network weight adaptive law:

其中:Fi=Fi T>0,ki>0,i=1,2,分别代表上界观测器与下界观测器的网络权值自适应率参数。Among them: Fi = Fi T > 0, k i > 0, i = 1, 2, representing the network weight adaptation rate parameters of the upper bound observer and the lower bound observer respectively.

3.步骤三具体包括:定义Lyapunov函数:3. Step three specifically includes: defining the Lyapunov function:

其中:P=PT>0为满足(A-L)TP+P(A-L)=-Q条件的矩阵;Q为任意的正定矩阵;Among them: P=P T >0 is a matrix that satisfies the condition of (AL) T P+P(AL)=-Q; Q is any positive definite matrix;

对上式求导可得:Derivating the above equation we can get:

将误差动态系统式与网络权值自适应律式带入上式可以得到:By incorporating the error dynamic system formula and network weight adaptive law into the above formula, we can get:

其中:in:

简化后得到:After simplification we get:

其中:γ1=k1F1,α1=WM+c11Among them: γ 1 =k 1 F 1 , α 1 =W M +c 11 ;

能够得到保证V的导数为半负定的条件如下:It is possible to obtain the derivative that guarantees V The conditions for seminegative definiteness are as follows:

下界区间观测器保证V的导数为半负定的条件为:The lower bound interval observer guarantees the derivative of V The conditions for seminegative definiteness are:

在球面半径为r+、r-之外的导数均为负定的,所建立的神经网络区间观测器的状态估计误差/>及/>最终是一致有界的。Derivatives outside the spherical radius r + , r - are all negative definite, the state estimation error of the established neural network interval observer/> and/> Ultimately it is uniformly bounded.

与现有技术相比,本发明的有益效果是:现有的基于观测器的故障检测方法需要根据产生的残差信号来设置合适的阈值,对系统的状态进行分析与评价。然而系统在实际运行过程中往往存在这各种不可控因素,导致在对系统进行故障检测的过程中,阈值的错误选取会导致观测器出现故障信息的漏报以及误报的问题,因此如何选择合适的阈值区间一直是当前研究的困难;而由于区间观测器能够给出系统状态估计的上下界,因此在故障诊断方法的研究中,可以通过判断被观测系统实际的输出是否在构造的上界观测器与下界观测器输出的估计区间内,从而实现对被观测系统的运动状态的故障检测。与传统的故障检测方法相比,区间观测器不需要设计额外的阈值,而且其残差信号能够作为系统故障发生与否的直接判断依据。该方法更加简单直观,而且设计方便,能够直接应用于故障决策,克服了传统观测器在故障检测方法中阈值选取困难的问题。Compared with the existing technology, the beneficial effect of the present invention is that the existing observer-based fault detection method needs to set an appropriate threshold based on the generated residual signal to analyze and evaluate the status of the system. However, there are often various uncontrollable factors in the actual operation of the system. As a result, in the process of fault detection of the system, the wrong selection of the threshold will lead to the omission of fault information and false alarms in the observer. Therefore, how to choose The appropriate threshold interval has always been a difficulty in current research; and since the interval observer can give the upper and lower bounds of the system state estimate, in the study of fault diagnosis methods, it can be judged whether the actual output of the observed system is within the constructed upper bound The observer and the lower bound observer output are within the estimated interval, thereby achieving fault detection of the motion state of the observed system. Compared with traditional fault detection methods, the interval observer does not need to design additional thresholds, and its residual signal can be used as a direct basis for judging whether a system fault occurs or not. This method is simpler and more intuitive, and is convenient to design. It can be directly applied to fault decision-making and overcomes the difficulty of threshold selection in fault detection methods of traditional observers.

附图说明Description of the drawings

图1为本发明专利故障检测方案的流程图。Figure 1 is a flow chart of the patented fault detection solution of the present invention.

图2为本发明专利的无故障情况下的速度曲线结果。Figure 2 shows the speed curve results of the patent of the invention under no fault condition.

图3为本发明专利的舵叶损伤故障情况下的速度曲线结果。Figure 3 is the speed curve result of the rudder blade damage failure of the patent of the present invention.

图4为本发明专利的舵叶卡死故障情况下的速度曲线结果。Figure 4 is the speed curve result when the rudder blade stuck in the patented invention fails.

图5为本发明专利的舵叶失效故障情况下的速度曲线结果。Figure 5 is the speed curve result when the rudder blade of the invention patent fails.

图6为本发明专利的舵叶恒偏差故障情况下的速度曲线结果。Figure 6 shows the speed curve results of the rudder blade patented by the present invention under constant deviation failure.

具体实施方式Detailed ways

下面结合附图与具体实施方式对本发明作进一步详细描述。The present invention will be described in further detail below in conjunction with the accompanying drawings and specific embodiments.

图1为本发明专利的水下机器人区间观测器故障检测过程的流程图。结合图1,一种基于神经网络区间观测器的水下机器人故障检测方法的具体实现步骤如下:Figure 1 is a flow chart of the fault detection process of the underwater robot interval observer patented by the present invention. Combined with Figure 1, the specific implementation steps of an underwater robot fault detection method based on a neural network interval observer are as follows:

步骤(1):结合水下机器人动力学模型,对状态量进行线性变换,并在模型中引入系统模型建模误差不确定性;Step (1): Combined with the underwater robot dynamics model, linearly transform the state quantity, and introduce system model modeling error uncertainty into the model;

常规的水下机器人动力学模型一般可描述为以下形式:A conventional underwater robot dynamics model can generally be described in the following form:

其中,η为水下机器人在固定坐标系下的姿态向量,η∈R6×1;v为水下机器人在艇体坐标系下的线性速度和角速度向量,v∈R6×1;M为质量与惯性矩阵,M∈R6×6;C(v)为科氏力矩阵与向心力矩阵,C(v)∈R6×6;D(v)为流体阻力矩阵,D(v)∈R6×6;g(η)为恢复力与力矩矩阵,g(η)∈R6×1;τ为作用力与力矩,τ∈R6×1Among them, eta is the attitude vector of the underwater robot in the fixed coordinate system, eta∈R 6×1 ; v is the linear velocity and angular velocity vector of the underwater robot in the hull coordinate system, v∈R 6×1 ; M is Mass and inertia matrix, M∈R 6×6 ; C(v) is the Coriolis force matrix and centripetal force matrix, C(v)∈R 6×6 ; D(v) is the fluid resistance matrix, D(v)∈R 6×6 ; g(η) is the restoring force and moment matrix, g(η)∈R 6×1 ; τ is the action force and moment, τ∈R 6×1 .

将X型舵水下机器人的四个舵叶的偏转数值依次记作:[δ1δ2δ3δ4]T,X型舵和推进器的推力与力矩分配关系,如下所示:The deflection values of the four rudder blades of the X-type rudder underwater robot are recorded in sequence as: [δ 1 δ 2 δ 3 δ 4 ] T . The thrust and moment distribution relationship between the X-type rudder and the propeller is as follows:

其中,XT为推进器推力;XM为推进器产生的扭矩;u为水下机器人在x方向上的航行速度;δ*为第*个舵转动的舵角;X**为与第*个舵叶相关的水动力学参数,其数值与艇体的长度、舵的形状与面积有关。Among them, X T is the thrust of the propeller; is the hydrodynamic parameter related to the first rudder blade, and its value is related to the length of the hull, the shape and area of the rudder.

下面进行如下的定义:The following definitions are made below:

x=[x1,x2]T (4)x=[x 1 ,x 2 ] T (4)

其中,x1=η,x2=J(η)v。Among them, x 1 =η, x 2 =J(η)v.

将X型舵水下机器人动力学模型变换为状态空间方程的形式,可以表示为:The X-rudder underwater robot dynamic model is transformed into the form of a state space equation, which can be expressed as:

其中:in:

F(x1,x2,t)=J(x1)M-1(x1)JT(x1)[-J-T(x1)C(x1,x2)J-1(x1)x2-J-T(x1)D(x1,x2)J-1(x1)x2-J-T(x1)g(x1)]F(x 1 ,x 2 ,t)=J(x 1 )M -1 (x 1 )J T (x 1 )[-J -T (x 1 )C(x 1 ,x 2 )J -1 ( x 1 )x 2 -J -T (x 1 )D(x 1 ,x 2 )J -1 (x 1 )x 2 -J -T (x 1 )g(x 1 )]

u(t)=δ(t)u(t)=δ(t)

K是舵叶的损伤程度分配矩阵;其中0≤K≤1;K is the damage degree distribution matrix of the rudder blade; where 0≤K≤1;

Ea是舵叶的故障分配矩阵;E a is the fault distribution matrix of the rudder blade;

T为推进器推力矩阵;T is the propeller thrust matrix;

fa(t)是舵叶故障函数;f a (t) is the rudder blade failure function;

其中d(t)为外界干扰。 Among them, d(t) is external interference.

由于X型舵水下机器人的运动存在强非线性与强耦合性的特点,而这一特性导致建立的水下机器人运动模型中各参数存在很大的不确定性;同时,外界环境中的未知扰动等因素同样会对水下机器人运动系统模型造成一定的影响。本专利将系统模型存在的建模误差作为系统的不确定项,对存在模型不确定性的系统进行描述。Since the motion of the X-rudder underwater robot has strong nonlinearity and strong coupling, this characteristic leads to great uncertainty in the parameters of the established underwater robot motion model; at the same time, unknown factors in the external environment Factors such as disturbances will also have a certain impact on the underwater robot motion system model. This patent uses the modeling error existing in the system model as the uncertainty term of the system to describe the system with model uncertainty.

将X型舵水下机器人系统中的建模不确定性用如下形式进行表示:The modeling uncertainty in the X-rudder underwater robot system is expressed in the following form:

其中,in,

表示水下机器人系统模型中相应变量的理论值; Represents the theoretical value of the corresponding variable in the underwater robot system model;

Mη,Cη,Dη,gη表示水下机器人系统模型中相应变量的实际值;M η , C η , D η , g η represent the actual values of the corresponding variables in the underwater robot system model;

ΔMη,ΔCη,ΔDη,Δgη表示水下机器人系统模型中相应变量的不确定性。ΔM η , ΔC η , ΔD η , Δg η represent the uncertainties of the corresponding variables in the underwater robot system model.

对于X型舵水下机器人执行器故障,令u′=u+Δu其中u为设计的控制量,u′为实际控制量,Δu为由于故障等原因引起的系统不确定性;根据式(6),可以将X型舵水下机器人系统模型不确定性表示为:For the X-type rudder underwater robot actuator failure, let u′=u+Δu, where u is the designed control quantity, u′ is the actual control quantity, and Δu is the system uncertainty caused by faults and other reasons; according to Equation (6 ), the uncertainty of the X-rudder underwater robot system model can be expressed as:

则可以将式(6)改写为:Then equation (6) can be rewritten as:

综上所述,基于模型辨识方法构建的X型舵水下机器人动力学模型在实际工作中具有很大的不确定性,这些因素的存在会对水下机器人系统的运动控制直接造成影响。因此本专利将这些影响因素视为统一的不确定性,研究对其进行在线估计的方法,并将获得的系统不确定性的估计值作为区间观测器中不确定项,从而能够进一步提高所设计的神经网络区间观测器的观测性能。In summary, the X-rudder underwater robot dynamic model constructed based on the model identification method has great uncertainties in actual work. The existence of these factors will directly affect the motion control of the underwater robot system. Therefore, this patent treats these influencing factors as unified uncertainties, studies methods for online estimation, and uses the obtained estimated value of system uncertainty as the uncertainty term in the interval observer, which can further improve the design Observation performance of neural network interval observer.

步骤(2):结合步骤(1)的结果,对X型舵水下机器人的舵故障的神经网络故障检测区间观测器进行设计;Step (2): Combined with the results of step (1), design a neural network fault detection interval observer for the rudder failure of the X-type rudder underwater robot;

通过步骤(1)中对系统模型的建模误差进行的分析与研究,可以得知:倘若不对水下机器人系统的不确定项进行辨识,会导致所建立的观测器模型与实际系统之间存在很大的差异,因此本专利针对这一问题,设计如下所示的神经网络区间观测器:Through the analysis and research on the modeling errors of the system model in step (1), it can be known that if the uncertainty terms of the underwater robot system are not identified, there will be a gap between the established observer model and the actual system. There is a big difference, so this patent aims at this problem and designs a neural network interval observer as shown below:

其中:in:

是用于估计系统不确定项Δ的RBF神经网络输出值。 is the RBF neural network output value used to estimate the system uncertainty term Δ.

本专利中采用RBF神经网络对系统模型的不确定项Δ进行在线辨识,给定RBF神经网络的具体表达式为:In this patent, RBF neural network is used to identify the uncertainty term Δ of the system model online. The specific expression of the given RBF neural network is:

其中,为区间观测器上界(下界)的输出与实际系统输出的差值;W∈R6×k为RBF神经网络隐含层和输出层之间的权值矩阵;m和σ分别是RBF神经网络径向基函数中的中心向量与宽度参数。in, is the difference between the output of the upper bound (lower bound) of the interval observer and the actual system output; W∈R 6×k is the weight matrix between the hidden layer and the output layer of the RBF neural network; m and σ are the RBF neural network respectively. Center vector and width parameters in radial basis functions.

理论上,模型不确定性Δ存在最优逼近值可以表示为:Theoretically, there is an optimal approximation value for model uncertainty Δ It can be expressed as:

W*为通过RBF神经网络取得最优值时W的相应参数,其中最优权值的上界满足:||W||F≤WM,WM为常值,ε为最优值/>与系统不确定项Δ间的逼近误差,且其满足:/> W * is the optimal value obtained through RBF neural network is the corresponding parameter of W, where the upper bound of the optimal weight satisfies: ||W|| FW M , W M is a constant value, and ε is the optimal value/> The approximation error between the system uncertainty term Δ and it satisfies:/>

通过RBF神经网络在线逼近模型不确定项Δ后,所得到模型不确定性的估计值为:After online approximation of the model uncertainty term Δ through the RBF neural network, the estimated value of the model uncertainty is:

其不确定性误差方程可由下式表示:Its uncertainty error equation It can be expressed by the following formula:

将隐含层输出误差定义为:Define the hidden layer output error as:

将式(13)与式(14)联立可得:Combining equation (13) with equation (14) we can get:

式中权值评估误差其干扰项w可表示为:The weight evaluation error in the formula Its interference term w can be expressed as:

在X型舵无故障发生的情况下,根据式(8)、式(9)及式(13),定义状态和输出误差:When no fault occurs in the X-type rudder, the state and output error are defined according to equation (8), equation (9) and equation (13):

由此得到误差动态系统:This leads to the error dynamic system:

根据区间观测器的定义能够得到:e+(t)≥0,e-(t)≥0, According to the definition of interval observer, we can get: e + (t) ≥ 0, e - (t) ≥ 0,

设计如下的网络权值自适应律:Design the following network weight adaptive law:

其中:in:

Fi=Fi T>0,ki>0,i=1,2,分别代表上界观测器与下界观测器的网络权值自适应率参数。 Fi = Fi T > 0, k i > 0, i = 1, 2, respectively represent the network weight adaptation rate parameters of the upper bound observer and the lower bound observer.

步骤(3):结合步骤(2)的结果,根据Lyapunov理论验证所设计的神经网络故障检测区间观测系统的稳定性。Step (3): Combined with the results of step (2), verify the stability of the designed neural network fault detection interval observation system according to Lyapunov theory.

定义如下形式的Lyapunov函数:Define the Lyapunov function of the following form:

其中:in:

P=PT>0为满足(A-L)TP+P(A-L)=-Q条件的矩阵;P=P T >0 is a matrix that satisfies the condition of (AL) T P+P(AL)=-Q;

Q为任意的正定矩阵。Q is any positive definite matrix.

对式(20)进行求导可得:By deriving equation (20), we can get:

将误差动态系统式(18)与网络权值自适应律式(19)带入上式可以得到:Putting the error dynamic system equation (18) and the network weight adaptive law (19) into the above equation, we can get:

其中:in:

将式(22)进行简化可以得到:Simplifying equation (22) we can get:

其中:in:

γ1=k1F1γ 1 = k 1 F 1 ,

α1=WM+c11α 1 =W M +c 11 .

能够得到保证V的导数为半负定的条件如下:It is possible to obtain the derivative that guarantees V The conditions for seminegative definiteness are as follows:

同理,下界区间观测器保证V的导数为半负定的条件为:In the same way, the lower bound interval observer guarantees the derivative of V The conditions for seminegative definiteness are:

由于上述参数均为有界项,这说明在球面半径为r+、r-之外的导数均为负定的,因此能够保证采用上述方法所建立的神经网络区间观测器的状态估计误差/>及/>最终是一致有界的。Since the above parameters are all bounded terms, this means that the derivatives outside the spherical radius r + and r - are all negative definite, so the state estimation error of the neural network interval observer established using the above method can be guaranteed/> and/> Ultimately it is uniformly bounded.

(4)应用案例(4)Application cases

为验证本发明专利所设计的一种基于神经网络区间观测器的X型舵水下机器人故障检测方法的有效性,设计如下仿真实验:In order to verify the effectiveness of the X-type rudder underwater robot fault detection method based on the neural network interval observer designed by the patent of this invention, the following simulation experiment was designed:

1)验证无故障情况下,本专利中的神经网络区间观测器能够有效的估计出X型舵水下机器人的速度曲线;1) Verify that under no fault conditions, the neural network interval observer in this patent can effectively estimate the speed curve of the X-type rudder underwater robot;

2)在t=15s时,为水下机器人的X型舵的舵1分别设计舵叶损伤、舵叶卡死、舵叶失效、舵叶恒偏差故障,验证本专利所设计的神经网络故障检测区间观测器的有效性。2) At t=15s, the rudder blade damage, rudder blade stuck, rudder blade failure, and rudder blade constant deviation faults are respectively designed for the rudder 1 of the X-shaped rudder of the underwater robot to verify the neural network fault detection designed in this patent Validity of interval observers.

在仿真实验验证过程中,X型舵水下机器人的初始状态、外部干扰等均是相同的。During the simulation experiment verification process, the initial state and external interference of the X-rudder underwater robot were the same.

利用Matlab/Simulink仿真平台得到的结果分别如图2-6所示。The results obtained using the Matlab/Simulink simulation platform are shown in Figure 2-6.

根据图2的仿真结果可得,当X型舵水下机器人无故障发生时,系统实际的输出速度时刻处于区间观测器的两个估计值之间,证明了所设计的区间观测器能够对系统进行有效的跟踪与估计。According to the simulation results in Figure 2, when the X-rudder underwater robot is fault-free, the actual output speed of the system is always between the two estimated values of the interval observer, which proves that the designed interval observer can accurately predict the system. Perform effective tracking and estimation.

根据图3至图6的仿真结果可得,当X型舵水下机器人无故障发生时,系统实际的输出速度时刻处于区间观测器的两个估计值之间,但在t=15s时,由于舵1出现了舵叶故障,导致系统部分速度的实际输出超过了区间观测器的区间范围,证明了所设计的神经网络区间观测器能够对系统的故障进行有效的检测。According to the simulation results in Figures 3 to 6, when the X-rudder underwater robot is fault-free, the actual output speed of the system is always between the two estimated values of the interval observer, but at t=15s, due to Rudder 1 had a rudder blade failure, causing the actual output of part of the system's speed to exceed the interval range of the interval observer, which proved that the designed neural network interval observer could effectively detect system faults.

综上,本发明专利针对水下机器人动力学模型中各参数存在较大建模误差的问题进行研究,使用RBF神经网络对系统建模误差进行在线辨识,直接通过区间观测器与实际系统输出的残差信号来判断系统是否出现故障,该方法适用于水下机器人故障诊断领域,不仅解决了传统观测器故障阈值选取困难的问题,而且对故障有较高的敏感度,也因此具有更广泛的研究与应用价值。In summary, the patent of this invention studies the problem of large modeling errors in various parameters in the underwater robot dynamics model. It uses RBF neural network to identify the system modeling errors online, and directly uses the interval observer to compare the results output by the actual system. The residual signal is used to determine whether the system is faulty. This method is suitable for the field of underwater robot fault diagnosis. It not only solves the problem of difficulty in selecting the fault threshold of traditional observers, but also has a higher sensitivity to faults, and therefore has a wider range of applications. Research and application value.

Claims (3)

1.一种基于区间观测器的X型舵AUV故障检测方法,其特征在于,步骤如下:1. An X-type rudder AUV fault detection method based on an interval observer, which is characterized in that the steps are as follows: 步骤一:结合X型舵水下机器人动力学模型,对状态量进行线性变换,并在模型中引入系统模型建模误差不确定性;Step 1: Combined with the X-rudder underwater robot dynamics model, linearly transform the state quantity, and introduce system model modeling error uncertainty into the model; 步骤二:结合步骤一的结果,对X型舵水下机器人故障检测区间观测器进行设计;通过步骤一中对系统模型的建模误差进行的分析与研究,设计如下所示的神经网络区间观测器:Step 2: Combining the results of Step 1, design the fault detection interval observer for the X-type rudder underwater robot; through the analysis and research on the modeling error of the system model in Step 1, design the neural network interval observer as shown below Device: 其中:是用于估计系统不确定项Δ的RBF神经网络输出值;采用RBF神经网络对系统模型的不确定项Δ进行在线辨识,给定RBF神经网络的具体表达式为:in: is the output value of the RBF neural network used to estimate the system uncertainty term Δ; the RBF neural network is used to identify the uncertainty term Δ of the system model online. The specific expression of the given RBF neural network is: 其中,为区间观测器上界或下界的输出与实际系统输出的差值;W∈R6×k为RBF神经网络隐含层和输出层之间的权值矩阵;m和σ分别是RBF神经网络径向基函数中的中心向量与宽度参数;in, is the difference between the output of the upper or lower bound of the interval observer and the actual system output; W∈R 6×k is the weight matrix between the hidden layer and the output layer of the RBF neural network; m and σ are the paths of the RBF neural network respectively. The center vector and width parameters in the basis function; 模型不确定性Δ存在最优逼近值可以表示为:Model uncertainty Δ has an optimal approximation value It can be expressed as: 其中:W*为通过RBF神经网络取得最优值时W的相应参数,其中最优权值的上界满足:||W||F≤WM,WM为常值,ε为最优值/>与系统不确定项Δ间的逼近误差,且其满足: Among them: W * is the optimal value obtained through RBF neural network is the corresponding parameter of W, where the upper bound of the optimal weight satisfies: ||W|| FW M , W M is a constant value, and ε is the optimal value/> The approximation error between and the system uncertainty term Δ, and it satisfies: 通过RBF神经网络在线逼近模型不确定项Δ后,所得到模型不确定性的估计值为:After online approximation of the model uncertainty term Δ through the RBF neural network, the estimated value of the model uncertainty is: 其不确定性误差方程可由下式表示:Its uncertainty error equation It can be expressed by the following formula: 将隐含层输出误差定义为:Define the hidden layer output error as: 可得:Available: 式中权值评估误差其干扰项w可表示为:The weight evaluation error in the formula Its interference term w can be expressed as: 在X型舵无故障发生的情况下定义状态和输出误差:Define the status and output error when no fault occurs in the X-type rudder: e+=x+-x, e + =x + -x, 由此得到误差动态系统:This gives us the error dynamic system: 根据区间观测器的定义能够得到:e+(t)≥0,e-(t)≥0,According to the definition of interval observer, we can get: e + (t) ≥ 0, e - (t) ≥ 0, 设计如下的网络权值自适应律:Design the following network weight adaptive law: 其中:Fi=Fi T>0,ki>0,i=1,2,分别代表上界观测器与下界观测器的网络权值自适应率参数;Among them: F i = F i T > 0, k i > 0, i = 1, 2, representing the network weight adaptation rate parameters of the upper bound observer and the lower bound observer respectively; 步骤三:结合步骤二的结果,根据Lyapunov理论验证所设计的区间观测系统的稳定性。Step 3: Combined with the results of Step 2, verify the stability of the designed interval observation system based on Lyapunov theory. 2.根据权利要求1所述的一种基于区间观测器的X型舵AUV故障检测方法,其特征在于,步骤一具体包括:将X型舵水下机器人的四个舵叶的偏转数值依次记作:[δ1 δ2 δ3 δ4]T,X型舵和推进器的推力与力矩分配关系为:2. An X-type rudder AUV fault detection method based on an interval observer according to claim 1, characterized in that step one specifically includes: recording the deflection values of the four rudder blades of the X-type rudder underwater robot in sequence. As: [δ 1 δ 2 δ 3 δ 4 ] T , the thrust and moment distribution relationship of the X-type rudder and propeller is: 其中,XT为推进器推力;XM为推进器产生的扭矩;u为水下机器人在x方向上的航行速度;δ*为第*个舵转动的舵角;X**为与第*个舵叶相关的水动力学参数;定义:x=[x1,x2]T,x1=η,x2=J(η)vAmong them, X T is the thrust of the propeller; is the hydrodynamic parameter related to the *th rudder blade; definition: x=[x 1 ,x 2 ] T , x 1 =η, x 2 =J(η)v 将X型舵水下机器人动力学模型变换为状态空间方程的形式为:The X-rudder underwater robot dynamic model is transformed into a state space equation in the form: 其中:K是舵叶的损伤程度分配矩阵;其中0≤K≤1;Ea是舵叶的故障分配矩阵;T为推进器推力矩阵;fa(t)是舵叶故障函数;/>其中d(t)为外界干扰;in: K is the damage degree distribution matrix of the rudder blade; where 0≤K≤1; E a is the fault distribution matrix of the rudder blade; T is the propeller thrust matrix; f a (t) is the rudder blade failure function;/> Among them, d(t) is external interference; 将X型舵水下机器人系统中的建模不确定性用如下形式进行表示:The modeling uncertainty in the X-rudder underwater robot system is expressed in the following form: 其中,表示水下机器人系统模型中相应变量的理论值;Mη,Cη,Dη,gη表示水下机器人系统模型中相应变量的实际值;ΔMη,ΔCη,ΔDη,Δgη表示水下机器人系统模型中相应变量的不确定性;in, Represents the theoretical values of the corresponding variables in the underwater robot system model; M η , C η , D η , and g η represent the actual values of the corresponding variables in the underwater robot system model; ΔM η , ΔC η , ΔD η , and Δg η represent water The uncertainty of the corresponding variables in the robot system model; 对于X型舵水下机器人执行器故障,令u′=u+Δu其中u为设计的控制量,u′为实际控制量,Δu为由于故障原因引起的系统不确定性;将X型舵水下机器人系统模型不确定性表示为:For the X-type rudder underwater robot actuator failure, let u′=u+Δu, where u is the designed control quantity, u′ is the actual control quantity, and Δu is the system uncertainty caused by the fault; The uncertainty of the lower robot system model is expressed as: 则有:Then there are: 3.根据权利要求1所述的一种基于区间观测器的X型舵AUV故障检测方法,其特征在于,步骤三具体包括:定义Lyapunov函数:3. An X-type rudder AUV fault detection method based on an interval observer according to claim 1, characterized in that step three specifically includes: defining the Lyapunov function: 其中:P=PT>0为满足(A-L)TP+P(A-L)=-Q条件的矩阵;Q为任意的正定矩阵;Among them: P=P T >0 is a matrix that satisfies the condition of (AL) T P+P(AL)=-Q; Q is any positive definite matrix; 对上式求导可得:Derivating the above equation we can get: 将误差动态系统式与网络权值自适应律式带入上式可以得到:By incorporating the error dynamic system formula and network weight adaptive law into the above formula, we can get: 其中:in: 简化后得到:After simplification we get: 其中:γ1=k1F1,α1=WM+c11Among them: γ 1 =k 1 F 1 , α 1 =W M +c 11 ; 能够得到保证V的导数为半负定的条件如下:It is possible to obtain the derivative that guarantees V The conditions for seminegative definiteness are as follows: 下界区间观测器保证V的导数为半负定的条件为:The lower bound interval observer guarantees the derivative of V The conditions for seminegative definiteness are: 在球面半径为r+、r-之外的导数均为负定的,所建立的神经网络区间观测器的状态估计误差/>及/>最终是一致有界的。Derivatives outside the spherical radius r + , r - are all negative definite, the state estimation error of the established neural network interval observer/> and/> It is ultimately uniformly bounded.
CN202111506098.4A 2021-12-10 2021-12-10 X-type rudder AUV fault detection method based on interval observer Active CN114217595B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111506098.4A CN114217595B (en) 2021-12-10 2021-12-10 X-type rudder AUV fault detection method based on interval observer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111506098.4A CN114217595B (en) 2021-12-10 2021-12-10 X-type rudder AUV fault detection method based on interval observer

Publications (2)

Publication Number Publication Date
CN114217595A CN114217595A (en) 2022-03-22
CN114217595B true CN114217595B (en) 2023-11-17

Family

ID=80700876

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111506098.4A Active CN114217595B (en) 2021-12-10 2021-12-10 X-type rudder AUV fault detection method based on interval observer

Country Status (1)

Country Link
CN (1) CN114217595B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110096048A (en) * 2019-05-17 2019-08-06 山东科技大学 A kind of autonomous underwater robot AUV actuator failures detection method based on section observer
CN110597069A (en) * 2019-10-17 2019-12-20 哈尔滨工程大学 A Control Method for Adaptive Regional Dynamic Positioning of Underwater Robot Based on RBF Neural Network
CN110687918A (en) * 2019-10-17 2020-01-14 哈尔滨工程大学 A Trajectory Tracking Control Method for Underwater Robots Based on Regressive Neural Network Online Approximation
CN110908364A (en) * 2019-12-06 2020-03-24 南京航空航天大学 A Fault Detection Method Based on Robust Interval Estimation
CN110955231A (en) * 2019-12-18 2020-04-03 中国科学院长春光学精密机械与物理研究所 Satellite attitude control system tiny fault detection method based on robust observer
JP2021077015A (en) * 2019-11-07 2021-05-20 三菱重工業株式会社 Failure diagnosis system and structure, failure diagnosis method, and failure diagnosis program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110096048A (en) * 2019-05-17 2019-08-06 山东科技大学 A kind of autonomous underwater robot AUV actuator failures detection method based on section observer
CN110597069A (en) * 2019-10-17 2019-12-20 哈尔滨工程大学 A Control Method for Adaptive Regional Dynamic Positioning of Underwater Robot Based on RBF Neural Network
CN110687918A (en) * 2019-10-17 2020-01-14 哈尔滨工程大学 A Trajectory Tracking Control Method for Underwater Robots Based on Regressive Neural Network Online Approximation
JP2021077015A (en) * 2019-11-07 2021-05-20 三菱重工業株式会社 Failure diagnosis system and structure, failure diagnosis method, and failure diagnosis program
CN110908364A (en) * 2019-12-06 2020-03-24 南京航空航天大学 A Fault Detection Method Based on Robust Interval Estimation
CN110955231A (en) * 2019-12-18 2020-04-03 中国科学院长春光学精密机械与物理研究所 Satellite attitude control system tiny fault detection method based on robust observer

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Active Fault Tolerant Control for Unmanned Underwater Vehicle With Actuator Fault and Guaranteed Transient Performance;Xianghua Wang;《IEEE TRANSACTIONS ON INTELLIGENT VEHICLES》;第6卷(第3期);第470-479页 *
Actuator Fault Detection for Autonomous Underwater Vehicle Using Interval Observer;Chunming Zhang 等;《2019 CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes》;第449-453页 *
Xianghua Wang.Active Fault Tolerant Control for Unmanned Underwater Vehicle With Sensor Faults.《IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT,》.2020,第69卷(第12期),第9485-9495页. *
水下机器人推进器故障特征分离与故障程度辨识方法研究;宝吉;《中国博士学位论文全文数据库 信息科技辑》(第6期);I140-55 *

Also Published As

Publication number Publication date
CN114217595A (en) 2022-03-22

Similar Documents

Publication Publication Date Title
KR101021801B1 (en) Control Plane Driver Failure Diagnosis of Unmanned Aerial Vehicle Using Adaptive Unknown Input Observer
Han et al. Quadratic-Kalman-filter-based sensor fault detection approach for unmanned aerial vehicles
CN111897221B (en) A Spacecraft Fault Diagnosis Method Based on Combined Observer
CN114035550B (en) An ESO-based fault diagnosis method for autonomous underwater robot actuators
CN110554606B (en) Self-adaptive fault-tolerant control method for hypersonic aircraft
CN106569487A (en) Fault detection method for servo system based on observer
Qin et al. Sensor fault diagnosis of autonomous underwater vehicle based on LSTM
Bai et al. Multi-innovation gradient iterative locally weighted learning identification for a nonlinear ship maneuvering system
CN110045726A (en) Underactuated surface vessel finite time power-positioning control system with time lag and saturation
Azam et al. In-flight fault detection and isolation in aircraft flight control systems
Hu et al. Actuator fault detection for automation underwater vehicle via extended state observer and adaptive threshold
CN114217595B (en) X-type rudder AUV fault detection method based on interval observer
CN115118197A (en) AUV propeller system fault diagnosis method
Akhenak et al. Design of observers for Takagi-Sugeno fuzzy models for Fault Detection and Isolation
CN102253663B (en) Leakage fault diagnose method and system thereof for networked three-container water tank system
Fabiani et al. A NLPCA hybrid approach for AUV thrusters fault detection and isolation
CN116203932A (en) Unmanned ship actuator fault detection method based on model, storage medium and equipment
Wang et al. Fault diagnosis of linear time-varying system based on high gain/adaptive compensation sliding mode observer
Wang et al. Recurrent neural network applied to fault diagnosis of underwater robots
Davoodi et al. Integrated fault detection, isolation and control design for continuous-time Markovian jump systems with uncertain transition probabilities
Wei et al. Sensor fault-tolerant observer applied in satellite attitude control
CN114254555A (en) Deep learning-based counteraction wheel fault detection and health assessment system and method
Davoodi et al. Simultaneous fault detection and control design for an autonomous unmanned underwater vehicle
CN115903472B (en) AUV (autonomous Underwater vehicle) actuating mechanism fault diagnosis method based on fault factors and multiple observers
Pabst et al. Modular fault diagnosis for rovs based on a multi-model approach

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant