[go: up one dir, main page]

CN114188431B - Solar cell and preparation method thereof - Google Patents

Solar cell and preparation method thereof Download PDF

Info

Publication number
CN114188431B
CN114188431B CN202111234260.1A CN202111234260A CN114188431B CN 114188431 B CN114188431 B CN 114188431B CN 202111234260 A CN202111234260 A CN 202111234260A CN 114188431 B CN114188431 B CN 114188431B
Authority
CN
China
Prior art keywords
layer
gate electrode
doped polysilicon
electrode
main gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111234260.1A
Other languages
Chinese (zh)
Other versions
CN114188431A (en
Inventor
李华
童洪波
张洪超
刘继宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taizhou Longi Solar Technology Co Ltd
Original Assignee
Taizhou Longi Solar Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taizhou Longi Solar Technology Co Ltd filed Critical Taizhou Longi Solar Technology Co Ltd
Priority to CN202111234260.1A priority Critical patent/CN114188431B/en
Publication of CN114188431A publication Critical patent/CN114188431A/en
Application granted granted Critical
Publication of CN114188431B publication Critical patent/CN114188431B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F10/00Individual photovoltaic cells, e.g. solar cells
    • H10F10/10Individual photovoltaic cells, e.g. solar cells having potential barriers
    • H10F10/14Photovoltaic cells having only PN homojunction potential barriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • H10F71/121The active layers comprising only Group IV materials
    • H10F71/1221The active layers comprising only Group IV materials comprising polycrystalline silicon
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/10Semiconductor bodies
    • H10F77/12Active materials
    • H10F77/122Active materials comprising only Group IV materials
    • H10F77/1223Active materials comprising only Group IV materials characterised by the dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/20Electrodes
    • H10F77/206Electrodes for devices having potential barriers
    • H10F77/211Electrodes for devices having potential barriers for photovoltaic cells
    • H10F77/215Geometries of grid contacts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/70Surface textures, e.g. pyramid structures
    • H10F77/703Surface textures, e.g. pyramid structures of the semiconductor bodies, e.g. textured active layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The application discloses a solar cell, which comprises a silicon substrate, a tunneling layer, a first doped polysilicon layer, a first dielectric layer and a first electrode; a tunneling layer, a first doped polysilicon layer and a first dielectric layer are sequentially laminated on one side surface of the silicon substrate; the first electrode comprises a first main gate electrode and a first thin gate electrode, and the first thin gate electrode is intersected with and electrically connected with the first main gate electrode; the first main gate electrode burns through the first dielectric layer and extends into the first doped polysilicon layer; a first metal nano particle with a crystalline state at the junction of the first doped polysilicon layer and the first main gate electrode; a plurality of first openings penetrating through the first dielectric layer are formed in the first dielectric layer; the first thin gate electrode is electroplated on the first doped polysilicon layer exposed by the first opening. The application also provides a preparation method of the solar cell. The solar cell reduces the usage amount of the first main gate electrode slurry, and also enhances the bonding strength of the first main gate electrode and the first thin gate electrode.

Description

一种太阳能电池及其制备方法A solar cell and its preparation method

技术领域Technical field

本申请涉及太阳能电池技术领域,具体涉及一种太阳能电池及其制备方法。The present application relates to the technical field of solar cells, and specifically to a solar cell and a preparation method thereof.

背景技术Background technique

晶体硅太阳电池由于其能量转换效率高是目前市场占有率最高的太阳能电池。如何提高晶体硅太阳电池和组件的转换效率的同时降低其生产成本是业界面临的最大难题。目前大规模的硅太阳电池制造中,通常采用丝网印刷方式来实现硅太阳电池的金属化制程,但丝网印刷的精度有限,印刷的电极形貌高低起伏,印刷烧结后电极展宽较大,造成所形成的栅极高宽比较低,从而造成硅太阳电池受光面的有效受光面积减小,另外丝网印刷制成的硅太阳电池的串联电阻较大。随着光伏行业市场和产能的扩大,银浆的持续稳定供应将成为一个严峻的考验,而且由于上升的银价格也具有成本竞争力的问题。因此,近年来一直积极地进行对使用镀覆方法的研究。Crystalline silicon solar cells currently have the highest market share due to their high energy conversion efficiency. How to improve the conversion efficiency of crystalline silicon solar cells and modules while reducing their production costs is the biggest problem facing the industry. In current large-scale silicon solar cell manufacturing, screen printing is usually used to realize the metallization process of silicon solar cells. However, the accuracy of screen printing is limited. The shape of the printed electrode is undulating, and the electrode broadens greatly after printing and sintering. As a result, the height-to-width ratio of the formed gate is low, thereby reducing the effective light-receiving area of the light-receiving surface of the silicon solar cell. In addition, the series resistance of the silicon solar cell made by screen printing is large. As the market and production capacity of the photovoltaic industry expands, the continued and stable supply of silver paste will become a severe test, and cost competitiveness is also an issue due to rising silver prices. Therefore, research on the use of plating methods has been actively conducted in recent years.

因为当种子层未形成在硅片上时电镀是困难的,所以要求提前在硅片上形成导电层以进行后续的电镀工序。种子层形成工序在单独的装置中分别被独立地执行,例如通过溅射或光诱导镀覆的方式形成,但是溅射种子层需要在现有产线中额外溅射设备,溅射所需图案还要使用掩膜步骤,操作复杂,难以降低生产成本,而且溅射种子层通常导电性不足以承载基于硅的太阳能电池产生的较大电流密度,需要涂镀有其他金属如镍和铜以增强导电性。Because electroplating is difficult when the seed layer is not formed on the silicon wafer, it is required to form a conductive layer on the silicon wafer in advance for subsequent electroplating processes. The seed layer formation process is performed independently in a separate device, such as by sputtering or light-induced plating. However, sputtering the seed layer requires additional sputtering equipment in the existing production line to sputter the required pattern. A masking step is also required, which is complex and difficult to reduce production costs. Moreover, the sputtered seed layer is usually not conductive enough to carry the large current density generated by silicon-based solar cells and needs to be coated with other metals such as nickel and copper to enhance Conductivity.

发明内容Contents of the invention

针对上述问题,本申请提出了一种太阳能电池及其制备方法,所述太阳能电池不仅降低了了第一主栅电极的浆料的使用量,而且增强了第一主栅电极与第一细栅电极的结合强度,增加电流收集效率。In response to the above problems, this application proposes a solar cell and a preparation method thereof. The solar cell not only reduces the usage of slurry of the first main grid electrode, but also enhances the connection between the first main grid electrode and the first fine grid. The bonding strength of the electrodes increases the current collection efficiency.

本申请提供一种太阳能电池,包括硅基底、隧穿层、第一掺杂多晶硅层、第一介质层、以及第一电极;This application provides a solar cell, including a silicon substrate, a tunneling layer, a first doped polysilicon layer, a first dielectric layer, and a first electrode;

在所述硅基底一侧表面依次层叠设置有所述隧穿层、所述第一掺杂多晶硅层、以及所述第一介质层;The tunneling layer, the first doped polysilicon layer, and the first dielectric layer are sequentially stacked on one side of the silicon substrate;

所述第一电极包括第一主栅电极和第一细栅电极,所述第一细栅电极与所述第一主栅电极相交且电连接;The first electrode includes a first main gate electrode and a first fine gate electrode, the first fine gate electrode intersects and is electrically connected to the first main gate electrode;

所述第一主栅电极烧穿所述第一介质层伸入所述第一掺杂多晶硅层内;在所述第一掺杂多晶硅层与所述第一主栅电极的交界处具有晶态的第一金属纳米颗粒;The first main gate electrode burns through the first dielectric layer and extends into the first doped polysilicon layer; there is a crystalline state at the interface between the first doped polysilicon layer and the first main gate electrode. The first metal nanoparticles;

在所述第一介质层上开设有多个贯穿所述第一介质层的第一开口;所述第一细栅电极电镀于所述第一开口露出的所述第一掺杂多晶硅层上。A plurality of first openings penetrating the first dielectric layer are opened on the first dielectric layer; the first fine gate electrode is electroplated on the first doped polysilicon layer exposed by the first openings.

进一步地,所述晶态的第一金属纳米颗粒包括与所述第一主栅电极中的金属材料相同的金属;Further, the crystalline first metal nanoparticles include the same metal as the metal material in the first main gate electrode;

所述晶态的第一金属纳米颗粒呈岛状离散地分布在所述第一掺杂多晶硅层与所述第一主栅电极的交界处。The crystalline first metal nanoparticles are discretely distributed in an island shape at the interface between the first doped polysilicon layer and the first main gate electrode.

进一步地,所述晶态的第一金属纳米颗粒包括金属银。Further, the crystalline first metal nanoparticles include metallic silver.

进一步地,所述第一主栅电极包括层叠设置的第一印刷烧结层和第一金属层,Further, the first main gate electrode includes a stacked first printed sintering layer and a first metal layer,

所述第一印刷烧结层贯穿所述第一介质层伸入所述第一掺杂多晶硅层,且在所述第一掺杂多晶硅层与所述第一印刷烧结层的交界处具有所述晶态的第一金属纳米颗粒;The first printed and sintered layer extends through the first dielectric layer into the first doped polysilicon layer, and has the crystalline layer at the interface between the first doped polysilicon layer and the first printed and sintered layer. The first metal nanoparticles in the state;

所述第一金属层设置于所述第一印刷烧结层背离所述第一掺杂多晶硅层的一侧表面上。The first metal layer is disposed on a side surface of the first printed sintering layer facing away from the first doped polysilicon layer.

进一步地,所述第一主栅电极还包括第一辅助电极,所述第一辅助电极位于所述第一主栅电极与所述第一细栅电极的相交处;所述第一辅助电极在沿垂直于硅基底方向的横截面面积在沿远离所述第一主栅电极靠近所述第一细栅电极的方向上逐渐减小。Further, the first main gate electrode further includes a first auxiliary electrode, the first auxiliary electrode is located at the intersection of the first main gate electrode and the first fine gate electrode; the first auxiliary electrode is at A cross-sectional area along a direction perpendicular to the silicon substrate gradually decreases in a direction away from the first main gate electrode and closer to the first thin gate electrode.

进一步地,还包括与所述第一电极极性相反的第二电极,所述第二电极包括第二主栅电极和第二细栅电极,所述第二细栅电极与所述第二主栅电极相交且电连接;Further, a second electrode with an opposite polarity to the first electrode is included. The second electrode includes a second main gate electrode and a second fine gate electrode. The second fine gate electrode is connected to the second main gate electrode. The gate electrodes intersect and are electrically connected;

所述第二主栅电极还包括第二辅助电极,所述第二辅助电极位于所述第二主栅电极与所述第二细栅电极的相交处;所述第二辅助电极在沿垂直于硅基底方向的横截面面积在沿远离所述第二主栅电极靠近所述第二细栅电极的方向上逐渐减小。The second main gate electrode also includes a second auxiliary electrode located at the intersection of the second main gate electrode and the second fine gate electrode; the second auxiliary electrode is located along an edge perpendicular to The cross-sectional area in the direction of the silicon substrate gradually decreases in a direction away from the second main gate electrode and closer to the second thin gate electrode.

进一步地,在所述硅基底背离所述隧穿层的一侧表面形成有掺杂层,在所述掺杂层的表面上设置有第二介质层;Further, a doped layer is formed on a side surface of the silicon substrate facing away from the tunnel layer, and a second dielectric layer is provided on the surface of the doped layer;

所述第二主栅电极烧穿第二介质层伸入所述掺杂层;The second main gate electrode burns through the second dielectric layer and extends into the doped layer;

在所述掺杂层与所述第二主栅电极的交界处具有晶态的第二金属纳米颗粒;或在所述掺杂层与所述第二主栅电极的交界处具有共晶层和局部背场。There are crystalline second metal nanoparticles at the interface between the doping layer and the second main gate electrode; or there is a eutectic layer at the interface between the doping layer and the second main gate electrode. Local back field.

进一步地,所述第二主栅电极中包括金属铝或金属银;Further, the second main gate electrode includes metal aluminum or metal silver;

当所述第二主栅电极中包括金属铝时,在所述掺杂层内,与所述第二主栅电极的交界处具有共晶层和局部背场;When the second main gate electrode includes metallic aluminum, there is a eutectic layer and a local back field at the interface with the second main gate electrode in the doped layer;

当所述第二主栅电极中包括金属银时,在所述掺杂层内,与所述第二主栅电极的交界处具有晶态的第二金属纳米颗粒;所述晶态的第二金属纳米颗粒呈岛状离散地分布在所述掺杂层与所述第二主栅电极的交界处。When the second main gate electrode includes metallic silver, there are crystalline second metal nanoparticles at the interface with the second main gate electrode in the doped layer; the crystalline second metal nanoparticles are Metal nanoparticles are discretely distributed in an island shape at the interface between the doping layer and the second main gate electrode.

进一步地,所述第二主栅电极包括层叠设置的第二印刷烧结层和第二金属层,Further, the second main gate electrode includes a stacked second printed sintering layer and a second metal layer,

所述第二印刷烧结层贯穿所述第二介质层伸入所述掺杂层,且在所述掺杂层内,与所述第二印刷烧结层的交界处具有所述晶态的第二金属纳米颗粒;The second printed and sintered layer extends through the second dielectric layer into the doped layer, and in the doped layer, there is the second crystalline layer at the interface with the second printed and sintered layer. metal nanoparticles;

所述第二金属层设置于所述第二印刷烧结层背离所述掺杂层的一侧表面上。The second metal layer is disposed on a side surface of the second printed sintering layer facing away from the doped layer.

进一步地,所述第一电极与所述第二电极位于所述硅基底的同一侧。Further, the first electrode and the second electrode are located on the same side of the silicon substrate.

进一步地,所述第二细栅电极与所述第一细栅电极彼此交替平行;Further, the second fine gate electrode and the first fine gate electrode are alternately parallel to each other;

所述第二主栅电极与所述第一主栅电极彼此交替平行。The second main gate electrodes and the first main gate electrodes are alternately parallel to each other.

进一步地,在所述硅基底的表面上,所述隧穿层包括多个间隔设置的隧穿单元,Further, on the surface of the silicon substrate, the tunneling layer includes a plurality of tunneling units arranged at intervals,

相邻所述隧穿单元之间的区域为第一区域,The area between adjacent tunnel units is the first area,

所述第一介质层覆盖所述第一掺杂多晶硅层的表面以及第一区域中第一掺杂多晶硅层的侧面、隧穿单元的侧面以及硅基底的表面。The first dielectric layer covers the surface of the first doped polysilicon layer, the side surfaces of the first doped polysilicon layer, the side surfaces of the tunneling unit and the surface of the silicon substrate in the first region.

进一步地,所述第二主栅电极贯穿所述第一区域中的第一介质层与所述硅基底连接。Further, the second main gate electrode is connected to the silicon substrate through the first dielectric layer in the first region.

进一步地,在所述隧穿层的表面上,所述第一掺杂多晶硅层包括多个间隔设置的第一掺杂多晶硅单元;Further, on the surface of the tunneling layer, the first doped polysilicon layer includes a plurality of first doped polysilicon units spaced apart;

相邻所述第一掺杂多晶硅单元之间的区域为第二区域;The area between adjacent first doped polysilicon units is the second area;

在所述第二区域内设置有第二掺杂多晶硅单元,多个所述第二掺杂多晶硅单元构成第二掺杂多晶硅层;A second doped polysilicon unit is provided in the second region, and a plurality of the second doped polysilicon units constitute a second doped polysilicon layer;

所述第一介质层覆盖所述第一掺杂多晶硅单元以及第二掺杂多晶硅单元的表面;The first dielectric layer covers the surfaces of the first doped polysilicon unit and the second doped polysilicon unit;

所述第二主栅电极贯穿所述第一介质层与所述第二掺杂多晶硅层连接。The second main gate electrode penetrates the first dielectric layer and is connected to the second doped polysilicon layer.

本申请提供一种太阳能电池的制备方法,包括如下步骤:This application provides a method for preparing a solar cell, which includes the following steps:

提供硅基底;Provide silicon substrate;

在所述硅基底的一侧表面上设置隧穿层;disposing a tunneling layer on one side surface of the silicon substrate;

在所述隧穿层背离所述硅基底的一侧沉积第一掺杂多晶硅层;Deposit a first doped polysilicon layer on the side of the tunnel layer facing away from the silicon substrate;

在所述第一掺杂多晶硅层背离所述隧穿层的一侧沉积第一介质层;Deposit a first dielectric layer on the side of the first doped polysilicon layer facing away from the tunnel layer;

在所述第一介质层背离所述第一掺杂多晶硅层的一侧印刷第一印刷电极浆料并烧结使所述第一印刷电极浆料烧穿所述第一介质层,形成与所述第一掺杂多晶硅层连接的第一印刷烧结层,并在所述第一掺杂多晶硅层与所述第一印刷烧结层的交界处形成晶态的第一金属纳米颗粒;A first printed electrode paste is printed on the side of the first dielectric layer facing away from the first doped polysilicon layer and sintered so that the first printed electrode paste burns through the first dielectric layer to form a connection with the first dielectric layer. A first printed and sintered layer connected to the first doped polysilicon layer, and crystalline first metal nanoparticles are formed at the interface between the first doped polysilicon layer and the first printed and sintered layer;

在所述第一介质层上设置多个贯穿所述第一介质层的第一开口;Provide a plurality of first openings penetrating the first dielectric layer on the first dielectric layer;

在所述第一印刷烧结层的表面电镀沉积金属形成第一金属层,所述第一印刷烧结层与所述第一金属层构成所述第一主栅电极;Electroplating and depositing metal on the surface of the first printed and sintered layer forms a first metal layer, and the first printed and sintered layer and the first metal layer constitute the first main gate electrode;

在具有第一开口的硅基底上电镀沉积金属。Metal is electroplated and deposited on the silicon substrate having the first opening.

进一步地,还包括对沉积的金属进行热处理;所述烧结的温度为750℃-900℃,所述热处理的温度为250℃-500℃。Further, it also includes heat treatment of the deposited metal; the sintering temperature is 750°C-900°C, and the heat treatment temperature is 250°C-500°C.

进一步地,在所述硅基底背离所述隧穿层的一侧表面上沉积有第二介质层;Further, a second dielectric layer is deposited on a side surface of the silicon substrate facing away from the tunnel layer;

在所述第一掺杂多晶硅层表面间隔地烧蚀掉所述第一掺杂多晶硅层和隧穿层,以露出所述硅基底,从而形成第一区域;The first doped polysilicon layer and the tunneling layer are ablated at intervals on the surface of the first doped polysilicon layer to expose the silicon substrate, thereby forming a first region;

所述第一介质层沉积在所述第一掺杂多晶硅层的表面以及第一区域中第一掺杂多晶硅层的侧面、隧穿单元的侧面以及硅基底的表面。The first dielectric layer is deposited on the surface of the first doped polysilicon layer and the side surfaces of the first doped polysilicon layer, the side surfaces of the tunneling unit and the surface of the silicon substrate in the first region.

进一步地,在所述第一区域中的第一介质层的表面上印刷第二印刷电极浆料,通过所述烧结形成第二印刷烧结层,所述第二印刷电极浆料烧穿所述第二介质层与掺杂层连接,并在所述掺杂层靠近所述第二印刷烧结层的交界处形成晶态的第二金属纳米颗粒或共晶层和局部背场;Further, a second printed electrode slurry is printed on the surface of the first dielectric layer in the first area, a second printed sintered layer is formed through the sintering, and the second printed electrode slurry burns through the first printed electrode slurry. The two dielectric layers are connected to the doped layer, and a crystalline second metal nanoparticle or eutectic layer and a local back field are formed at a junction of the doped layer close to the second printed and sintered layer;

在所述第二印刷烧结层的表面电镀沉积金属形成第二金属层;Electroplating and depositing metal on the surface of the second printing and sintering layer to form a second metal layer;

所述第二印刷烧结层与所述第二金属层构成第二主栅电极。The second printed sintering layer and the second metal layer constitute a second main gate electrode.

进一步地,在所述第一介质层上设置有多个贯穿所述第一介质层的第二开口,在所述第二开口内电镀沉积金属,通过所述热处理形成第二细栅电极,且所述第二细栅电极与所述硅基底连接;Further, a plurality of second openings penetrating the first dielectric layer are provided on the first dielectric layer, metal is electroplated and deposited in the second openings, and a second fine gate electrode is formed through the heat treatment, and The second fine gate electrode is connected to the silicon substrate;

所述第二细栅电极与所述第二主栅电极相交且电连接,形成第二电极。The second fine gate electrode intersects and is electrically connected to the second main gate electrode to form a second electrode.

进一步地,在所述隧穿层的表面上,依次间隔地沉积第一掺杂多晶硅单元和第二掺杂多晶硅单元,Further, on the surface of the tunnel layer, first doped polysilicon units and second doped polysilicon units are deposited at intervals in sequence,

多个所述第一掺杂多晶硅单元构成所述第一掺杂多晶硅层;A plurality of the first doped polysilicon units constitute the first doped polysilicon layer;

多个所述第二掺杂多晶硅单元构成所述第二掺杂多晶硅层;A plurality of the second doped polysilicon units constitute the second doped polysilicon layer;

所述第一介质层沉积在所述第一掺杂多晶硅单元的表面和第二掺杂多晶硅单元的表面。The first dielectric layer is deposited on the surface of the first doped polysilicon unit and the surface of the second doped polysilicon unit.

进一步地,在所述第二掺杂多晶硅层对应的第一介质层的表面上印刷第二印刷电极浆料,通过所述烧结形成第二印刷烧结层,所述第二印刷电极浆料烧穿所述第一介质层与第二掺杂多晶硅层连接;Further, a second printed electrode slurry is printed on the surface of the first dielectric layer corresponding to the second doped polysilicon layer, and a second printed sintered layer is formed through the sintering, and the second printed electrode slurry is burned through. The first dielectric layer is connected to the second doped polysilicon layer;

在所述第二印刷烧结层的表面电镀沉积金属形成第二金属层;Electroplating and depositing metal on the surface of the second printing and sintering layer to form a second metal layer;

所述第二印刷烧结层与所述第二金属层构成第二主栅电极。The second printed sintering layer and the second metal layer constitute a second main gate electrode.

进一步地,在所述第一介质层上设置有多个贯穿所述第一介质层的第二开口,在所述第二开口内电镀金属,通过所述热处理形成第二细栅电极,且所述第二细栅电极与所述第二掺杂多晶硅层连接;Further, a plurality of second openings penetrating the first dielectric layer are provided on the first dielectric layer, metal is electroplated in the second openings, and a second fine gate electrode is formed through the heat treatment, and the The second fine gate electrode is connected to the second doped polysilicon layer;

所述第二细栅电极与所述第二主栅电极相交且电连接,形成第二电极。The second fine gate electrode intersects and is electrically connected to the second main gate electrode to form a second electrode.

本申请提供的太阳能电池,所述多个晶态的第一金属纳米颗粒具有相对低的电阻,从所述硅基板通过隧穿层移动到第一导电类型半导体区域的载流子(例如,电子)可以通过晶态的第一金属纳米颗粒直接移动(接触)到第一主栅电极上,或者可以在晶态的第一金属纳米颗粒与晶态的第一金属纳米颗粒之间的多步跃迁,并且移动到第一电极上。因此晶态的第一金属纳米颗粒可以用于帮助载流子更容易地移动到第一电极。并且晶态的第一金属纳米颗粒位于所述第一掺杂多晶硅层与所述第一主栅电极的交界处,不会破坏隧穿层的性能。第一细栅电极以及第二细栅电极均采用电镀工艺,也不会破坏隧穿层。而且采用电镀工艺不用额外形成种子层,主栅作为接电点,主栅与多晶硅的结合力更好,更有利于提高主栅与焊带之间的拉拔力。In the solar cell provided by the present application, the plurality of crystalline first metal nanoparticles have relatively low resistance and move from the silicon substrate through the tunneling layer to carriers (for example, electrons) in the first conductive type semiconductor region. ) can be directly moved (contacted) to the first main gate electrode by the first metal nanoparticles in the crystalline state, or can be multi-step transition between the first metal nanoparticles in the crystalline state and the first metal nanoparticles in the crystalline state , and move to the first electrode. The crystalline first metal nanoparticles can therefore be used to help carriers move to the first electrode more easily. Moreover, the crystalline first metal nanoparticles are located at the interface between the first doped polysilicon layer and the first main gate electrode and will not damage the performance of the tunneling layer. Both the first fine gate electrode and the second fine gate electrode adopt an electroplating process, which will not damage the tunneling layer. Moreover, the electroplating process does not require the formation of an additional seed layer. The main grid serves as the connection point. The bonding force between the main grid and the polysilicon is better, which is more conducive to improving the pull-out force between the main grid and the welding ribbon.

附图说明Description of the drawings

附图用于更好地理解本申请,不构成对本申请的不当限定。其中:The accompanying drawings are used for a better understanding of the present application and do not constitute an undue limitation of the present application. in:

图1为本申请提供的太阳能电池的结构示意图。Figure 1 is a schematic structural diagram of a solar cell provided by this application.

图2为本申请提供的太阳能电池的结构示意图。Figure 2 is a schematic structural diagram of a solar cell provided by this application.

图3为本申请提供的太阳能电池的结构示意图。Figure 3 is a schematic structural diagram of a solar cell provided by this application.

图4为本申请提供的太阳能电池的受光面或背光面的结构示意图。Figure 4 is a schematic structural diagram of the light-receiving surface or backlight surface of the solar cell provided by this application.

图5为本申请提供的太阳能电池的受光面或背光面的结构示意图。Figure 5 is a schematic structural diagram of the light-receiving surface or backlight surface of the solar cell provided by this application.

图6为本申请提供的太阳能电池的受光面或背光面的结构示意图。Figure 6 is a schematic structural diagram of the light-receiving surface or backlight surface of the solar cell provided by this application.

附图标记说明Explanation of reference signs

1-硅基底,2-隧穿层,3-第一掺杂多晶硅层,4-第一介质层,5-第一主栅电极,6-晶态的第一金属纳米颗粒,7-第一细栅电极,8-掺杂层,9-第二介质层,10-抗反射层,11-第二主栅电极,12-第二细栅电极,13-共晶层,14-第一连接点,15-第一连接栅线,16-第二连接点,17-第二连接栅线,18-第一辅助电极,19-局部背场,20-第二掺杂多晶硅层。1-Silicon substrate, 2-Tunnel layer, 3-First doped polysilicon layer, 4-First dielectric layer, 5-First main gate electrode, 6-Crystalline first metal nanoparticles, 7-First Fine gate electrode, 8-doped layer, 9-second dielectric layer, 10-anti-reflection layer, 11-second main gate electrode, 12-second fine gate electrode, 13-eutectic layer, 14-first connection point, 15-first connection gate line, 16-second connection point, 17-second connection gate line, 18-first auxiliary electrode, 19-local back field, 20-second doped polysilicon layer.

具体实施方式Detailed ways

以下对本申请的示范性实施例做出说明,其中包括本申请实施例的各种细节以助于理解,应当将它们认为仅仅是示范性的。因此,本领域普通技术人员应当认识到,可以对这里描述的实施例做出各种改变和修改,而不会背离本申请的范围和精神。同样,为了清楚和简明,以下的描述中省略了对公知功能和结构的描述。在本申请中上下位置依据光线入射方向而定,光线入射处为上。Exemplary embodiments of the present application are described below, including various details of the embodiments of the present application to facilitate understanding, and they should be considered to be exemplary only. Accordingly, those of ordinary skill in the art will recognize that various changes and modifications can be made to the embodiments described herein without departing from the scope and spirit of the application. Also, descriptions of well-known functions and constructions are omitted from the following description for clarity and conciseness. In this application, the upper and lower positions are determined according to the incident direction of the light, and the incident point of the light is upward.

本申请提供三种太阳能电池,具体如下。This application provides three types of solar cells, as follows.

《第一种太阳能电池》"The First Solar Cell"

如图1所示,本申请提供的太阳能电池,包括硅基底1、第一电极和第二电极,在所述硅基底1的背面(后表面)依次设置有隧穿层2、第一掺杂多晶硅层3、第一介质层4,在所述硅基底1的正面(前表面)依次形成掺杂层8、第二介质层9。所述第一电极贯穿所述第一介质层4伸入所述第一掺杂多晶硅层3内,且在所述第一掺杂多晶硅层3内与所述第一电极的交界处具有晶态的第一金属纳米颗粒6。所述第二电极贯穿所述第二介质层9伸入所述掺杂层8内,且在所述掺杂层8内与所述第二电极的交界处具有晶态的第二金属纳米颗粒或共晶层13和局部背场19。As shown in Figure 1, the solar cell provided by this application includes a silicon substrate 1, a first electrode and a second electrode. On the back (rear surface) of the silicon substrate 1, a tunneling layer 2, a first doped The polysilicon layer 3 and the first dielectric layer 4 are sequentially formed on the front surface (front surface) of the silicon substrate 1 with a doping layer 8 and a second dielectric layer 9 . The first electrode penetrates the first dielectric layer 4 and extends into the first doped polysilicon layer 3 , and has a crystalline state at the interface between the first doped polysilicon layer 3 and the first electrode. The first metal nanoparticles 6. The second electrode extends through the second dielectric layer 9 into the doped layer 8 , and has crystalline second metal nanoparticles at the interface between the doped layer 8 and the second electrode. Or eutectic layer 13 and local back field 19.

具体地,所述第一电极包括多条第一主栅电极5和多条第一细栅电极7,每条所述第一主栅电极5与每条所述第一细栅电极7相交且电连接。在所述第一掺杂多晶硅层3内,与所述第一主栅电极5的交界处具有晶态的第一金属纳米颗粒6。在所述第一掺杂多晶硅层3内,与所述第一细栅电极7的交界处没有晶态的第一金属纳米颗粒6。Specifically, the first electrode includes a plurality of first main gate electrodes 5 and a plurality of first fine gate electrodes 7, each of the first main gate electrodes 5 intersects with each of the first fine gate electrodes 7 and Electrical connection. In the first doped polysilicon layer 3 , there are crystalline first metal nanoparticles 6 at the interface with the first main gate electrode 5 . In the first doped polysilicon layer 3 , there are no crystalline first metal nanoparticles 6 at the interface with the first fine gate electrode 7 .

具体地,所述第二电极包括多条第二主栅电极11和多条第二细栅电极12,每条所述第二主栅电极11与每条所述第二细栅电极12相交且电连接。Specifically, the second electrode includes a plurality of second main gate electrodes 11 and a plurality of second fine gate electrodes 12, each of the second main gate electrodes 11 intersects with each of the second fine gate electrodes 12, and Electrical connection.

进一步地,当所述第二主栅电极11中包括金属银时,在所述掺杂层8内,与所述第二主栅电极11的交界处具有晶态的第二金属纳米颗粒。在所述掺杂层8内。与所述第二细栅电极12的交界处没有晶态的第二金属纳米颗粒。Further, when the second main gate electrode 11 includes metallic silver, there are crystalline second metal nanoparticles in the doped layer 8 at the interface with the second main gate electrode 11 . within the doped layer 8 . There are no crystalline second metal nanoparticles at the interface with the second fine gate electrode 12 .

进一步地,当所述第二主栅电极11中包括金属铝时,在所述掺杂层8内,与所述第二主栅电极11的交界处具有共晶层13和局部背场19。在所述掺杂层8内,与所述第二细栅电极12的交界处没有共晶层13和局部背场19。Further, when the second main gate electrode 11 includes metallic aluminum, there is a eutectic layer 13 and a local back field 19 at the interface with the second main gate electrode 11 in the doped layer 8 . Within the doped layer 8 , there is no eutectic layer 13 and local back field 19 at the interface with the second fine gate electrode 12 .

在本申请中,所述硅基底1可以由单晶或多晶半导体(例如,单晶或多晶硅)制成。所述硅基底1的正面和/或背面可以具有不规则的尺寸的金字塔形状。正面的绒面结构能够减小通过所述硅基底1的正面入射的光的反射率。因此,能够使光损失最小化,到达由基极区域和第一掺杂多晶硅层3或掺杂层8形成的pn结的光的量增加。图1中绒面已经被例示为在所述硅基底1的正面和背面中形成,因此有效地防止通过这两个表面入射的光的反射。也可以仅在所述硅基底1的正面中形成绒面结构,并且可以不在所述硅基底1的背面中形成绒面。在这种情况下,所述硅基底1的形成隧穿层2的背面可以被形成为具有比其正面小的表面粗糙度,使得更稳定地且更均匀地形成所述隧穿层2。In this application, the silicon substrate 1 may be made of single crystal or polycrystalline semiconductor (eg, single crystal or polycrystalline silicon). The front and/or back of the silicon substrate 1 may have a pyramid shape of irregular dimensions. The textured structure on the front side can reduce the reflectivity of light incident through the front side of the silicon substrate 1 . Therefore, light loss can be minimized, and the amount of light reaching the pn junction formed by the base region and the first doped polysilicon layer 3 or the doped layer 8 is increased. Texture has been illustrated in Figure 1 as being formed in the front and back surfaces of the silicon substrate 1, thereby effectively preventing reflection of light incident through these two surfaces. The texture structure may also be formed only in the front surface of the silicon substrate 1 , and the texture structure may not be formed in the back surface of the silicon substrate 1 . In this case, the back surface of the silicon substrate 1 on which the tunnel layer 2 is formed may be formed to have a smaller surface roughness than the front surface thereof, so that the tunnel layer 2 is formed more stably and uniformly.

在本申请中,隧穿层2可以被布置在第一掺杂多晶硅层3的后表面上,并且可以与第一掺杂多晶硅层3直接接触。所述隧穿层2与其上形成的第一掺杂多晶硅层3可以在后表面的整个表面上形成;或者在后表面的部分表面上形成。隧穿层2可以产生隧穿效应,用作电子和空穴的一种屏障。在少数载流子在与隧穿层2相邻的部分中被累积之后,只有具有特定级别或更高级别的能量的多数载流子可以穿过隧穿层2。具有特定级别或更高级别的能量的多数载流子可以通过隧穿效应很容易地穿过隧穿层2。此外,隧穿层2还可以用作用于防止第一掺杂多晶硅层3的掺杂物扩散到所述硅基底1中的扩散屏障。隧穿层2可以包括多数载流子能够隧穿的各种材料。例如,隧穿层2可以包括氧化物、氮化物、半导体和导电聚合物。In the present application, the tunneling layer 2 may be disposed on the rear surface of the first doped polysilicon layer 3 and may be in direct contact with the first doped polysilicon layer 3 . The tunneling layer 2 and the first doped polysilicon layer 3 formed thereon may be formed on the entire surface of the rear surface; or may be formed on part of the rear surface. The tunneling layer 2 can produce a tunneling effect and serve as a barrier for electrons and holes. After minority carriers are accumulated in the portion adjacent to the tunneling layer 2 , only majority carriers having energy of a specific level or higher can pass through the tunneling layer 2 . Majority carriers with energy of a specific level or higher can easily pass through the tunneling layer 2 through the tunneling effect. Furthermore, the tunneling layer 2 may also serve as a diffusion barrier for preventing dopants of the first doped polysilicon layer 3 from diffusing into the silicon substrate 1 . Tunneling layer 2 may include various materials through which majority carriers can tunnel. For example, the tunneling layer 2 may include oxides, nitrides, semiconductors, and conductive polymers.

具体地,所述隧穿层2可以由包括硅氧化物(SiOx)的硅氧化物层形成。硅氧化物层具有极好的钝化特性,并且载流子能够很容易地遂穿通过硅氧化物层。在一些实施方式中,隧穿层2可以由SiCx制成,或者可以由SiNx、氢化的SiNx、AlOx、SiON或氢化的SiON制成。为了充分地实现隧穿效应,隧穿层2的厚度可以是0.5nm~2.5nm。隧穿层2可以通过例如氧化工艺、LPCVD工艺或PECVD沉积工艺来形成。Specifically, the tunneling layer 2 may be formed of a silicon oxide layer including silicon oxide (SiOx). The silicon oxide layer has excellent passivation properties and carriers can easily tunnel through the silicon oxide layer. In some embodiments, tunneling layer 2 may be made of SiCx, or may be made of SiNx, hydrogenated SiNx, AlOx, SiON or hydrogenated SiON. In order to fully realize the tunneling effect, the thickness of the tunneling layer 2 may be 0.5nm˜2.5nm. The tunneling layer 2 may be formed by, for example, an oxidation process, a LPCVD process or a PECVD deposition process.

在本申请中,所述第一掺杂多晶硅层3,如图1中所示地与所述硅基底1间隔开,并且所述第一掺杂多晶硅层3包括在隧穿层2的后表面上形成的掺杂多晶硅材料,具有较好的导电性,并且能够在由氧化物制成的隧穿层2中平滑地产生载流子的隧穿,能够进一步地提高太阳能电池的开路电压Voc。所述第一掺杂多晶硅层3的厚度可以为50nm~500nm。可以通过各种方法(诸如沉积)将杂质掺杂到非晶硅材料或多晶硅材料中来形成第一掺杂多晶硅层3。In the present application, the first doped polysilicon layer 3 is spaced apart from the silicon substrate 1 as shown in FIG. 1 , and the first doped polysilicon layer 3 is included on the rear surface of the tunneling layer 2 The doped polysilicon material formed on the solar cell has good conductivity and can smoothly generate tunneling of carriers in the tunneling layer 2 made of oxide, which can further increase the open circuit voltage Voc of the solar cell. The thickness of the first doped polysilicon layer 3 may be 50 nm to 500 nm. The first doped polysilicon layer 3 may be formed by doping impurities into the amorphous silicon material or the polysilicon material through various methods, such as deposition.

具体地,所述硅基底1可以以低掺杂浓度掺杂有所述第一掺杂多晶硅层3或掺杂层8的杂质。在这种情况下,所述硅基底1可以具有比所述第一掺杂多晶硅层3和掺杂层8中的一个低的掺杂浓度、高的电阻或者低的载流子浓度,该所述第一掺杂多晶硅层3或掺杂层8具有与所述硅基底1相同的导电类型。Specifically, the silicon substrate 1 may be doped with impurities of the first doped polysilicon layer 3 or the doped layer 8 at a low doping concentration. In this case, the silicon substrate 1 may have a lower doping concentration, a higher resistance, or a lower carrier concentration than one of the first doped polysilicon layer 3 and the doped layer 8 , which The first doped polysilicon layer 3 or the doped layer 8 has the same conductivity type as the silicon substrate 1 .

具体地,所述掺杂层8被设置在所述硅基底1的相反的表面上,例如,所述硅基底1的光入射到的前表面上。所述掺杂层8可以包括与半导体基板的导电类型相反的杂质。所述掺杂层8可以被形成为通过将所述掺杂层8中的杂质掺杂到所述硅基底1的部分中而形成的掺杂区域。Specifically, the doped layer 8 is provided on the opposite surface of the silicon substrate 1 , for example, the front surface of the silicon substrate 1 onto which light is incident. The doped layer 8 may include impurities of the opposite conductivity type to that of the semiconductor substrate. The doped layer 8 may be formed as a doped region formed by doping impurities in the doped layer 8 into a portion of the silicon substrate 1 .

具体地,例如在本申请中所述第一掺杂多晶硅层3(第一掺杂多晶硅层3和硅基底1中的杂质为p型导电类型)与所述硅基底1具有相同的导电类型,可以形成后表面场(BSF)区域,该后表面场(BSF)区域具有比所述硅基底1高的掺杂浓度并且形成BSF。所述掺杂层8(掺杂层8中的杂质为n型的导电类型)与所述硅基底1具有相反的导电类型,可以形成pn结的发射极区域,使进入pn结区域的光的路径最小化。Specifically, for example, in this application, the first doped polysilicon layer 3 (the impurities in the first doped polysilicon layer 3 and the silicon substrate 1 are of p-type conductivity type) and the silicon substrate 1 have the same conductivity type, A back surface field (BSF) region having a higher doping concentration than the silicon substrate 1 and forming the BSF may be formed. The doped layer 8 (the impurities in the doped layer 8 are of n-type conductivity type) and the silicon substrate 1 have the opposite conductivity type, and can form the emitter region of the pn junction, so that the light entering the pn junction region is Path minimization.

在本申请中,所述第一介质层4和第二介质层9均可以为单层或多层膜结构,所述第一介质层4可以为硅氮化物膜、包含氢的硅氮化物膜、硅氧化物膜、硅氮氧化物膜、铝氧化物膜、MgF2膜、MgF2膜、TiO2膜、和CeO2膜中的一种或两种以上。在所述第二介质层9的背离所述掺杂层8的一侧表面还可以设置抗反射层10,所述抗反射层10可以为硅氮化物层。In this application, both the first dielectric layer 4 and the second dielectric layer 9 can be a single-layer or multi-layer film structure. The first dielectric layer 4 can be a silicon nitride film or a silicon nitride film containing hydrogen. , one or more of silicon oxide film, silicon oxynitride film, aluminum oxide film, MgF 2 film, MgF 2 film, TiO 2 film, and CeO 2 film. An anti-reflective layer 10 may also be provided on a side surface of the second dielectric layer 9 away from the doped layer 8 , and the anti-reflective layer 10 may be a silicon nitride layer.

具体地,所述第一介质层4可以为第一钝化膜,即硅氮化物膜,可以具有1.9~2.1的折射率,并且可以具有30nm~50nm的厚度。Specifically, the first dielectric layer 4 may be a first passivation film, that is, a silicon nitride film, may have a refractive index of 1.9 to 2.1, and may have a thickness of 30 nm to 50 nm.

具体地,所述第二介质层9可以为第二钝化膜,可以由具有铝氧化物膜和硅氮化物膜被顺序地堆叠在掺杂层8上的双层结构。在这种情况下,铝氧化物膜可以具有1.5~1.7的折射率以及5nm~10nm的厚度。硅氮化物膜可以具有1.9~2.1的折射率以及70nm~120nm的厚度。Specifically, the second dielectric layer 9 may be a second passivation film, and may have a double-layer structure in which an aluminum oxide film and a silicon nitride film are sequentially stacked on the doped layer 8 . In this case, the aluminum oxide film may have a refractive index of 1.5 to 1.7 and a thickness of 5 nm to 10 nm. The silicon nitride film may have a refractive index of 1.9 to 2.1 and a thickness of 70 nm to 120 nm.

在本申请中,所述第一细栅电极7的高度可以为15微米或以下,例如小于10微米,宽度小于35微米,所述第一主栅电极5与第一细栅电极7的高度差为5-35微米,这样的设置可以通过低电阻率的沉积金属电极来降低电极设置的面积和用量,降低生产成本。In this application, the height of the first fine gate electrode 7 may be 15 microns or less, for example less than 10 microns, and the width is less than 35 microns. The height difference between the first main gate electrode 5 and the first fine gate electrode 7 is 5-35 microns. Such a setup can reduce the area and amount of electrode setup and production costs by depositing metal electrodes with low resistivity.

在本申请中,所述第一主栅电极5烧穿所述第一介质层4伸入所述第一掺杂多晶硅层3内,在所述第一介质层4烧出的开口为第一烧结口。在所述第一介质层4上开设有多个贯穿所述第一介质层4的第一开口;所述第一细栅电极7电镀于所述第一开口露出的所述第一掺杂多晶硅层上,即所述第一介质层4上设置有多个第一开窗(第一开窗包括第一开口和第一烧结口),所述第一细栅电极7贯穿所述第一开口,所述第一主栅电极5贯穿第一烧结口均与所述第一掺杂多晶硅层3连接。In this application, the first main gate electrode 5 burns through the first dielectric layer 4 and extends into the first doped polysilicon layer 3. The opening burned in the first dielectric layer 4 is the first sintering port. A plurality of first openings penetrating the first dielectric layer 4 are opened on the first dielectric layer 4; the first fine gate electrode 7 is electroplated on the first doped polysilicon exposed by the first openings. layer, that is, the first dielectric layer 4 is provided with a plurality of first windows (the first windows include a first opening and a first sintering port), and the first fine gate electrode 7 penetrates the first opening , the first main gate electrode 5 is connected to the first doped polysilicon layer 3 through the first sintering port.

在本申请中,所述第一主栅电极5与第一细栅电极7具有双层或多层的结构,所述第一主栅电极5的层数大于第一细栅电极7的层数。所述第一细栅电极7中可以包括铝、铜、银、金和/或镍、钨、钛、钴中的至少两种或以上的组合。所述第一主栅电极5中包括镍(Ni)、铜(Cu)、银(Ag)、铝(Al)、锡(Sn)、锌(Zn)、铟(In)、钛(Ti)和金(Au)及其组合中的至少一种,包括但不仅限于此。In this application, the first main gate electrode 5 and the first fine gate electrode 7 have a double-layer or multi-layer structure, and the number of layers of the first main gate electrode 5 is greater than the number of layers of the first fine gate electrode 7 . The first fine gate electrode 7 may include at least two or a combination of aluminum, copper, silver, gold and/or nickel, tungsten, titanium, and cobalt. The first main gate electrode 5 includes nickel (Ni), copper (Cu), silver (Ag), aluminum (Al), tin (Sn), zinc (Zn), indium (In), titanium (Ti) and At least one of gold (Au) and its combinations, including but not limited to this.

具体地,所述第一主栅电极5包括层叠设置的第一印刷烧结层和第一金属层,所述第一印刷烧结层贯穿所述第一介质层4伸入所述第一掺杂多晶硅层3,且在所述第一掺杂多晶硅层3内,与所述第一印刷烧结层的交界处具有所述晶态的第一金属纳米颗粒6;所述第一金属层设置于所述第一印刷烧结层背离所述第一掺杂多晶硅层3的一侧表面上。所述第一金属层可以为层叠设置的多层金属层。所述第一印刷烧结层与所述第一金属层中所含有的金属不同,例如所述第一印刷烧结层中的金属为银,所述第一金属层中的金属可以为Ni/Cu/Sn,这样设置可以节省高成本的银用量,降低电极材料的成本。所述第一细栅电极7可以为层叠设置的多层金属层。所述第一金属层可以与所述第一细栅电极7相同。Specifically, the first main gate electrode 5 includes a stacked first printed and sintered layer and a first metal layer. The first printed and sintered layer extends through the first dielectric layer 4 into the first doped polysilicon. Layer 3, and in the first doped polysilicon layer 3, there are the crystalline first metal nanoparticles 6 at the interface with the first printed and sintered layer; the first metal layer is disposed on the The first printed sintering layer is on a side surface facing away from the first doped polysilicon layer 3 . The first metal layer may be a stack of multiple metal layers. The metal contained in the first printing and sintering layer is different from that of the first metal layer. For example, the metal in the first printing and sintering layer is silver, and the metal in the first metal layer can be Ni/Cu/ Sn, this setting can save the high-cost amount of silver and reduce the cost of electrode materials. The first fine gate electrode 7 may be a stack of multiple metal layers. The first metal layer may be the same as the first fine gate electrode 7 .

具体地,形成所述第一印刷烧结层的电极浆料为银浆或铝浆。Specifically, the electrode paste forming the first printed sintering layer is silver paste or aluminum paste.

具体地,形成所述第一金属层的电极浆料为银浆、铝浆、银铝浆、铜浆或镍浆。Specifically, the electrode paste forming the first metal layer is silver paste, aluminum paste, silver-aluminum paste, copper paste or nickel paste.

具体地,形成所述第一细栅电极7的电极浆料为银浆、铝浆、银铝浆、铜浆或镍浆。Specifically, the electrode paste forming the first fine gate electrode 7 is silver paste, aluminum paste, silver-aluminum paste, copper paste or nickel paste.

在本申请中,如图5所示,所述第一主栅电极5包括多个第一连接点14和多个第一连接栅线15,相邻两个所述第一连接点14通过所述第一连接栅线15连接,即所述第一连接点14与所述第一连接栅线15依次连接并延伸,形成所述第一主栅电极5;多条所述第一主栅电极5平行等间距设置。In this application, as shown in FIG. 5 , the first main gate electrode 5 includes a plurality of first connection points 14 and a plurality of first connection gate lines 15 , and two adjacent first connection points 14 pass through all the first connection points 14 . The first connection gate lines 15 are connected, that is, the first connection points 14 and the first connection gate lines 15 are connected and extended in sequence to form the first main gate electrode 5; a plurality of the first main gate electrodes 5 parallel and equally spaced settings.

具体地,所述第一连接点14的宽度大于第一连接栅线15的宽度,所述第一连接点14呈点状不连续设置,单个面积为0.5-10mm2。所述第一连接点14为焊点,且所述第一连接点14的横截面可以为矩形、圆形、椭圆形等几何形状。所述第一连接点14的具体尺寸可以为例如1.2mm*1mm、0.7mm*0.8mm、1mm*0.5mm。Specifically, the width of the first connection point 14 is greater than the width of the first connection grid line 15. The first connection point 14 is arranged discontinuously in a point shape, with a single area of 0.5-10 mm 2 . The first connection point 14 is a welding point, and the cross section of the first connection point 14 can be a rectangular, circular, elliptical or other geometric shape. The specific size of the first connection point 14 may be, for example, 1.2mm*1mm, 0.7mm*0.8mm, or 1mm*0.5mm.

具体地,多条所述第一细栅电极7平行等间距设置,所述第一细栅电极7包括多条被所述第一主栅电极5间隔开的第一细栅线,且所述第一细栅线的两端均与所述第一主栅电极5连接,具体地部分所述第一细栅线的两端与所述第一连接栅线15连接,部分所述第一细栅线的两端与所述第一连接点14连接。Specifically, a plurality of first fine gate electrodes 7 are arranged in parallel and at equal intervals, and the first fine gate electrodes 7 include a plurality of first fine gate lines spaced apart by the first main gate electrodes 5 , and the Both ends of the first thin gate line are connected to the first main gate electrode 5. Specifically, both ends of the first thin gate line are connected to the first connection gate line 15, and part of the first thin gate line is connected to the first connection gate line 15. Both ends of the gate line are connected to the first connection point 14 .

所述第一细栅电极7与所述第一主栅电极5垂直相交。The first fine gate electrode 7 vertically intersects the first main gate electrode 5 .

在本申请中,如图6所示,所述第一主栅电极5还包括第一辅助电极18,所述第一辅助电极18位于所述第一主栅电极5与所述第一细栅电极7的相交处,所述第一辅助电极18的一端与所述第一连接点14或第一连接栅线15连接,其另一端与所述第一细栅线连接;所述第一辅助电极18的设置可以加强第一细栅电极7与第一主栅电极5的连接,避免或降低第一细栅电极7被焊接断开的可能性,提高太阳能电池的性能和可靠性。In this application, as shown in Figure 6, the first main gate electrode 5 also includes a first auxiliary electrode 18. The first auxiliary electrode 18 is located between the first main gate electrode 5 and the first fine gate. At the intersection of the electrodes 7, one end of the first auxiliary electrode 18 is connected to the first connection point 14 or the first connection grid line 15, and the other end is connected to the first thin grid line; the first auxiliary electrode 18 The arrangement of the electrode 18 can strengthen the connection between the first fine grid electrode 7 and the first main grid electrode 5 , avoid or reduce the possibility of the first fine grid electrode 7 being disconnected by welding, and improve the performance and reliability of the solar cell.

具体地,所述第一辅助电极18的形状可以为弧形、V形、U形等形状,包括但不仅限于此。优选地,所述第一辅助电极18呈弧形,所述第一辅助电极18在沿垂直于硅基底方向的横截面面积在沿远离所述第一主栅电极5靠近所述第一细栅电极7的方向逐渐减小;即所述第一辅助电极18的在沿垂直于硅基底方向的横截面面积在沿远离所述第一连接点14或第一连接栅线15的方向呈减小的趋势。Specifically, the shape of the first auxiliary electrode 18 may be arc-shaped, V-shaped, U-shaped, etc., including but not limited to these. Preferably, the first auxiliary electrode 18 is arc-shaped, and the cross-sectional area of the first auxiliary electrode 18 in the direction perpendicular to the silicon substrate is away from the first main gate electrode 5 and close to the first fine gate. The direction of the electrode 7 gradually decreases; that is, the cross-sectional area of the first auxiliary electrode 18 in the direction perpendicular to the silicon substrate decreases in the direction away from the first connection point 14 or the first connection gate line 15 the trend of.

与由掺杂多晶硅制成的第一掺杂多晶硅层3相比,多个所述晶态的第一金属纳米颗粒6具有相对低的电阻。由于所述晶态的第一金属纳米颗粒6位于所述第一掺杂多晶硅层3内与所述第一主栅电极5的交界处,因此从所述硅基底1通过所述隧穿层2移动到所述第一掺杂多晶硅层3的载流子(例如,电子)可以通过晶态的第一金属纳米颗粒6直接移动(接触)到第一主栅电极5,或者可以在晶态的第一金属纳米颗粒6与晶态的第一金属纳米颗粒6之间的多步跃迁(通过晶态的第一金属纳米颗粒6与第一主栅电极5之间的玻璃层的隧穿)并且移动到第一电极。因此晶态的第一金属纳米颗粒6可以用于帮助载流子更容易地移动到第一电极。The plurality of first metal nanoparticles 6 in the crystalline state have a relatively low resistance compared to the first doped polysilicon layer 3 made of doped polysilicon. Since the crystalline first metal nanoparticles 6 are located at the interface between the first doped polysilicon layer 3 and the first main gate electrode 5 , they pass through the tunnel layer 2 from the silicon substrate 1 Carriers (eg, electrons) moving to the first doped polysilicon layer 3 may directly move (contact) to the first main gate electrode 5 through the first metal nanoparticles 6 in the crystalline state, or may be in the crystalline state. a multi-step transition between the first metal nanoparticle 6 and the crystalline first metal nanoparticle 6 (tunneling through the glass layer between the crystalline first metal nanoparticle 6 and the first main gate electrode 5 ) and Move to the first electrode. The crystalline first metal nanoparticles 6 can therefore be used to help carriers move to the first electrode more easily.

具体地,所述第一主栅电极5在制备过程中,在所述第一介质层4上印刷有第一印刷电极浆料,通过烧结,所述第一印刷电极浆料烧穿所述第一介质层4与所述第一掺杂多晶硅层3接触,所述第一印刷电极浆料中的金属材料溶解到玻璃料中,通过玻璃的生长到第一掺杂多晶硅层3上,重结晶形成晶态的第一金属纳米颗粒6,因此所述晶态的第一金属纳米颗粒6包括与所述第一主栅电极5中的金属材料相同的金属;如果所述第一印刷电极浆料包括例如银(Ag),则晶态的第一金属纳米颗粒6也可以包括银(Ag)。Specifically, during the preparation process of the first main gate electrode 5, a first printed electrode slurry is printed on the first dielectric layer 4, and through sintering, the first printed electrode slurry burns through the first main gate electrode 5. A dielectric layer 4 is in contact with the first doped polysilicon layer 3. The metal material in the first printed electrode paste is dissolved into the glass frit, grows onto the first doped polysilicon layer 3 through the growth of the glass, and is recrystallized. Crystalline first metal nanoparticles 6 are formed, so the crystalline first metal nanoparticles 6 include the same metal as the metal material in the first main gate electrode 5; if the first printed electrode paste For example, if silver (Ag) is included, the crystalline first metal nanoparticles 6 may also include silver (Ag).

此外,晶态的第一金属纳米颗粒6中的金属形貌和分布与第一印刷烧结层中的金属不同,例如晶态的第一金属纳米颗粒6中的金属呈岛状离散分布在第一掺杂多晶硅层3内与所述第一主栅电极5的界面处(即所述第一掺杂多晶硅层3内与所述第一连接点14、第一连接栅线15、第一辅助栅线的交界处),而所述第一印刷烧结层中的金属通过热处理后与玻璃体结合在一起,所述第一印刷烧结层中形成有许多由于第一印刷电极浆料中溶剂挥发而产生的孔洞,这些孔洞被后续沉积的第一金属层填充。In addition, the metal morphology and distribution in the crystalline first metal nanoparticles 6 are different from the metal in the first printed sintering layer. For example, the metal in the crystalline first metal nanoparticles 6 is discretely distributed in an island shape in the first printing sintering layer. The interface between the doped polysilicon layer 3 and the first main gate electrode 5 (that is, the interface between the first doped polysilicon layer 3 and the first connection point 14, the first connection gate line 15, the first auxiliary gate The intersection of lines), and the metal in the first printed sintering layer is combined with the glass body after heat treatment. There are many formed in the first printed sintering layer due to the volatilization of the solvent in the first printed electrode paste. holes, which are filled by the subsequently deposited first metal layer.

多个所述晶态的第一金属纳米颗粒6不位于所述隧穿层2中,以免晶态的第一金属纳米颗粒6破坏所述隧穿层2或硅基底1,降低太阳能电池的性能。The plurality of crystalline first metal nanoparticles 6 are not located in the tunnel layer 2 to prevent the crystalline first metal nanoparticles 6 from damaging the tunnel layer 2 or the silicon substrate 1 and reducing the performance of the solar cell. .

在本申请中,所述第二细栅电极12的高度可以为15微米或以下,例如小于10微米,宽度小于35微米,所述第二主栅电极11与第二细栅电极12的高度差为5-35微米,这样的设置可以通过低电阻率的沉积金属电极来降低电极设置的面积和用量,降低生产成本。In this application, the height of the second fine gate electrode 12 may be 15 microns or less, for example less than 10 microns, and the width is less than 35 microns. The height difference between the second main gate electrode 11 and the second fine gate electrode 12 is 5-35 microns. Such a setup can reduce the area and amount of electrode setup and production costs by depositing metal electrodes with low resistivity.

所述第二主栅电极11烧穿所述第二介质层9伸入所述掺杂层8内,在所述第二介质层9烧出的开口为第二烧结口。在所述第二介质层9上还开设有多个贯穿所述第二介质层9的第二开口;所述第二细栅电极12电镀于所述第二开口露出的所述掺杂层8上,即所述第二介质层9上设置有多个第二开窗(第二开窗包括第二开口和第二烧结口),所述第二细栅电极12贯穿所述第二开口,所述第二主栅电极11贯穿所述第二烧结口均与所述掺杂层8连接。The second main gate electrode 11 burns through the second dielectric layer 9 and extends into the doping layer 8 , and the opening burned in the second dielectric layer 9 is a second sintering port. A plurality of second openings penetrating the second dielectric layer 9 are also opened on the second dielectric layer 9; the second fine gate electrode 12 is electroplated on the doped layer 8 exposed by the second openings. on the second dielectric layer 9, that is, a plurality of second openings (the second openings include second openings and second sintering ports) are provided on the second dielectric layer 9, and the second thin gate electrode 12 penetrates the second openings, The second main gate electrode 11 is connected to the doping layer 8 through the second sintering port.

在本申请中,所述第二主栅电极11与第二细栅电极12具有双层或多层的结构,所述第二主栅电极11的层数大于第二细栅电极12的层数。所述第二细栅电极12中可以包括铝、铜、银、金和/或镍、钨、钛、钴中的至少两种或以上的组合。所述第二主栅电极11中包括镍(Ni)、铜(Cu)、银(Ag)、铝(Al)、锡(Sn)、锌(Zn)、铟(In)、钛(Ti)和金(Au)及其组合中的至少一种,包括但不仅限于此。In this application, the second main gate electrode 11 and the second fine gate electrode 12 have a double-layer or multi-layer structure, and the number of layers of the second main gate electrode 11 is greater than the number of layers of the second fine gate electrode 12 . The second fine gate electrode 12 may include at least two or a combination of at least two of aluminum, copper, silver, gold, and/or nickel, tungsten, titanium, and cobalt. The second main gate electrode 11 includes nickel (Ni), copper (Cu), silver (Ag), aluminum (Al), tin (Sn), zinc (Zn), indium (In), titanium (Ti) and At least one of gold (Au) and its combinations, including but not limited to this.

具体地,所述第二主栅电极11包括层叠设置的第二印刷烧结层和第二金属层,所述第二印刷烧结层贯穿所述第二介质层9伸入所述掺杂层8,且在所述掺杂层8内,与所述第二印刷烧结层的交界处具有所述晶态的第二金属纳米颗粒;所述第二金属层设置于所述第二印刷烧结层背离所述掺杂层8的一侧表面上。所述第二金属层可以为层叠设置的多层金属层。所述第二印刷烧结层与所述第二金属层中所含有的金属不同,例如所述第二印刷烧结层中的金属为银,所述第二金属层中的金属可以为Ni/Cu/Sn,这样设置可以节省高成本的银用量,降低电极材料的成本。所述第二细栅电极12可以为层叠设置的多层金属层。所述第二金属层可以与所述第二细栅电极12相同。Specifically, the second main gate electrode 11 includes a stacked second printed and sintered layer and a second metal layer, and the second printed and sintered layer extends through the second dielectric layer 9 and into the doped layer 8, And in the doped layer 8, there are the second metal nanoparticles in the crystalline state at the interface with the second printed and sintered layer; the second metal layer is disposed at a distance from the second printed and sintered layer. on one side surface of the doped layer 8. The second metal layer may be a stack of multiple metal layers. The metal contained in the second printed and sintered layer is different from that of the second metal layer. For example, the metal in the second printed and sintered layer is silver, and the metal in the second metal layer can be Ni/Cu/ Sn, this setting can save the high-cost amount of silver and reduce the cost of electrode materials. The second fine gate electrode 12 may be a stack of multiple metal layers. The second metal layer may be the same as the second fine gate electrode 12 .

具体地,形成所述第二印刷烧结层的电极浆料为银浆或铝浆。Specifically, the electrode paste forming the second printed sintering layer is silver paste or aluminum paste.

具体地,形成所述第二金属层的电极浆料为银浆、铝浆、银铝浆、铜浆或镍浆。Specifically, the electrode paste forming the second metal layer is silver paste, aluminum paste, silver-aluminum paste, copper paste or nickel paste.

具体地,形成所述第二细栅电极12的电极浆料为银浆、铝浆、银铝浆、铜浆或镍浆。Specifically, the electrode paste forming the second fine gate electrode 12 is silver paste, aluminum paste, silver-aluminum paste, copper paste or nickel paste.

在本申请中,如图5所示,所述第二主栅电极11包括多个第二连接点16和多个第二连接栅线17,相邻两个所述第二连接点16通过所述第二连接栅线17连接,即所述第二连接点16与所述第二连接栅线17依次连接并延伸,形成所述第二主栅电极11;多条所述第二主栅电极11平行等间距设置。In this application, as shown in FIG. 5 , the second main gate electrode 11 includes a plurality of second connection points 16 and a plurality of second connection gate lines 17 , and two adjacent second connection points 16 pass through all the second connection points 16 . The second connection gate lines 17 are connected, that is, the second connection points 16 and the second connection gate lines 17 are connected and extended in sequence to form the second main gate electrode 11; a plurality of the second main gate electrodes 11 parallel and equally spaced settings.

具体地,所述第二连接点16的宽度大于第二连接栅线17的宽度,所述第二连接点16呈点状不连续设置,单个面积为0.5-10mm2。所述第二连接点16为焊点,且所述第二连接点16的横截面可以为矩形、圆形、椭圆形等几何形状。所述第二连接点16的具体尺寸可以为例如1.2mm*1mm、0.7mm*0.8mm、1mm*0.5mm。Specifically, the width of the second connection point 16 is greater than the width of the second connection grid line 17. The second connection point 16 is arranged discontinuously in a point shape, with a single area of 0.5-10 mm 2 . The second connection point 16 is a welding point, and the cross section of the second connection point 16 can be a rectangular, circular, oval or other geometric shape. The specific size of the second connection point 16 may be, for example, 1.2mm*1mm, 0.7mm*0.8mm, or 1mm*0.5mm.

多条所述第二细栅电极12平行等间距设置,所述第二细栅电极12包括多条被所述第二主栅电极11间隔开的第二细栅线,且所述第二细栅线的两端均与所述第二主栅电极11连接,具体地部分所述第二细栅线的两端与所述第二连接栅线17连接,部分所述第二细栅线的两端与所述第二连接点16连接。A plurality of second fine gate electrodes 12 are arranged in parallel and at equal intervals. The second fine gate electrodes 12 include a plurality of second fine gate lines spaced apart by the second main gate electrodes 11 , and the second fine gate electrodes 12 are spaced apart from each other. Both ends of the gate line are connected to the second main gate electrode 11. Specifically, both ends of part of the second thin gate line are connected to the second connecting gate line 17, and part of the second thin gate line Both ends are connected to the second connection point 16 .

所述第二细栅电极12与所述第二主栅电极11垂直相交。The second fine gate electrode 12 vertically intersects the second main gate electrode 11 .

在本申请中,所述第二主栅电极11还包括第二辅助电极,所述第二辅助电极位于所述第二主栅电极11与所述第二细栅电极12的相交处,所述第二辅助电极的一端与所述第二连接点16或第二连接栅线17连接,其另一端与所述第二细栅线连接;所述第二辅助电极的设置可以加强第二细栅电极12与第二主栅电极11的连接,避免或降低第二细栅电极12被焊接断开的可能性,提高太阳能电池的性能和可靠性。In this application, the second main gate electrode 11 also includes a second auxiliary electrode located at the intersection of the second main gate electrode 11 and the second fine gate electrode 12. One end of the second auxiliary electrode is connected to the second connection point 16 or the second connection gate line 17, and the other end is connected to the second fine gate line; the arrangement of the second auxiliary electrode can strengthen the second fine gate line. The connection between the electrode 12 and the second main grid electrode 11 avoids or reduces the possibility of the second fine grid electrode 12 being disconnected by welding, thereby improving the performance and reliability of the solar cell.

具体地,所述第二辅助电极的形状可以为弧形、V形、U形等形状,包括但不仅限于此。优选地,所述第二辅助电极呈弧形,所述第二辅助电极在沿垂直于硅基底1方向的横截面面积在沿远离所述第二主栅电极5靠近所述第二细栅电极12的方向上逐渐减小。即所述第二辅助电极在沿垂直于硅基底1方向的横截面面积在沿远离所述第二连接点16或第二连接栅线17的方向呈减小的趋势。Specifically, the shape of the second auxiliary electrode may be arc-shaped, V-shaped, U-shaped, etc., including but not limited to these. Preferably, the second auxiliary electrode is arc-shaped, and the cross-sectional area of the second auxiliary electrode in the direction perpendicular to the silicon substrate 1 is away from the second main gate electrode 5 and close to the second fine gate electrode. gradually decreases in the direction of 12. That is, the cross-sectional area of the second auxiliary electrode in the direction perpendicular to the silicon substrate 1 tends to decrease in the direction away from the second connection point 16 or the second connection gate line 17 .

所述第一主栅电极5与第二主栅电极11、第一细栅电极7与第二细栅电极12在所述硅基底1厚度方向上的投影不重合,这样可以使得第一开窗和第二开窗不对称设置,避免开口工艺中在基板两侧对称设置开口显著降低所述硅基底1的机械强度。The projections of the first main gate electrode 5 and the second main gate electrode 11, and the first fine gate electrode 7 and the second fine gate electrode 12 in the thickness direction of the silicon substrate 1 do not overlap, so that the first window can be opened. and the second opening is asymmetrically arranged to avoid significantly reducing the mechanical strength of the silicon substrate 1 by symmetrically arranging the openings on both sides of the substrate during the opening process.

当所述第二主栅电极11中包括金属银时,在所述掺杂层8内,与所述第二主栅电极11的交界处具有晶态的第二金属纳米颗粒。与由掺杂多晶硅制成的掺杂层8相比,多个所述晶态的第二金属纳米颗粒具有相对低的电阻。由于所述晶态的第二金属纳米颗粒位于所述掺杂层8内与所述第二主栅电极11的交界处,因此从所述硅基底1通过所述隧穿层2移动到所述掺杂层8的载流子(例如,电子)可以通过晶态的第二金属纳米颗粒直接移动(接触)到第二主栅电极11,或者可以在晶态的第二金属纳米颗粒与晶态的第二金属纳米颗粒之间的多步跃迁(通过晶态的第二金属纳米颗粒与第二主栅电极11之间的玻璃层的隧穿)并且移动到第二电极。因此晶态的第二金属纳米颗粒可以用于帮助载流子更容易地移动到第二电极。When the second main gate electrode 11 includes metallic silver, there are crystalline second metal nanoparticles in the doped layer 8 at the interface with the second main gate electrode 11 . The plurality of said crystalline second metal nanoparticles have a relatively low resistance compared to the doped layer 8 made of doped polysilicon. Since the crystalline second metal nanoparticles are located at the interface with the second main gate electrode 11 in the doping layer 8 , they move from the silicon substrate 1 through the tunneling layer 2 to the Carriers (eg, electrons) of the doping layer 8 may directly move (contact) to the second main gate electrode 11 through the second metal nanoparticles in the crystalline state, or may interact with the second main gate electrode 11 in the crystalline state. A multi-step transition between the second metal nanoparticles (tunneling through the glass layer between the crystalline second metal nanoparticles and the second main gate electrode 11) and moves to the second electrode. The crystalline second metal nanoparticles can therefore be used to help carriers move to the second electrode more easily.

具体地,所述第二主栅电极11在制备过程中,在所述第二介质层9上印刷有第二印刷电极浆料,通过烧结,所述第二印刷电极浆料烧穿所述第二介质层9与所述掺杂层8接触,所述第二印刷电极浆料中的金属材料溶解到玻璃料中,通过玻璃的生长到掺杂层8上,重结晶形成晶态的第二金属纳米颗粒,因此所述晶态的第二金属纳米颗粒包括与所述第二主栅电极11中的金属材料相同的金属;如果所述第二印刷电极浆料包括例如银(Ag),则晶态的第二金属纳米颗粒也可以包括银(Ag)。Specifically, during the preparation process of the second main gate electrode 11, a second printed electrode paste is printed on the second dielectric layer 9, and through sintering, the second printed electrode paste burns through the second main gate electrode 11. The second dielectric layer 9 is in contact with the doped layer 8. The metal material in the second printed electrode paste is dissolved into the glass frit, grows on the doped layer 8 through the glass, and recrystallizes to form the second crystalline layer. Metal nanoparticles, so the crystalline second metal nanoparticles include the same metal as the metal material in the second main gate electrode 11; if the second printed electrode paste includes, for example, silver (Ag), then The crystalline second metal nanoparticles may also include silver (Ag).

此外,晶态的第二金属纳米颗粒中的金属形貌和分布与第二印刷烧结层中的金属不同,例如晶态的第二金属纳米颗粒中的金属呈岛状离散分布在掺杂层8内与所述第二主栅电极11的界面处(即所述掺杂层8内与所述第二连接点16、第二连接栅线17、第二辅助栅线的交界处),而所述第二印刷烧结层中的金属通过热处理后与玻璃体结合在一起,所述第二印刷烧结层中形成有许多由于第二印刷电极浆料中溶剂挥发而产生的孔洞,这些孔洞被后续沉积的第二金属层填充。In addition, the metal morphology and distribution in the crystalline second metal nanoparticles are different from the metal in the second printed sintering layer. For example, the metal in the crystalline second metal nanoparticles is discretely distributed in the doping layer 8 in an island shape. The interface between the doped layer 8 and the second main gate electrode 11 (that is, the interface between the doped layer 8 and the second connection point 16, the second connection gate line 17, and the second auxiliary gate line), and the The metal in the second printed sintering layer is combined with the glass body after heat treatment. Many holes are formed in the second printed sintering layer due to the volatilization of the solvent in the second printed electrode paste. These holes are subsequently deposited. The second metal layer is filled.

多个所述晶态的第二金属纳米颗粒不位于所述隧穿层2中,以免晶态的第二金属纳米颗粒破坏所述隧穿层2或硅基底1,降低太阳能电池的性能。The plurality of crystalline second metal nanoparticles are not located in the tunnel layer 2 to prevent the crystalline second metal nanoparticles from damaging the tunnel layer 2 or the silicon substrate 1 and reducing the performance of the solar cell.

进一步地,当所述第二主栅电极11中包括金属铝时,在所述掺杂层8内,与所述第二主栅电极11的交界处具有共晶层13和局部背场19。所述共晶层13导电性良好,有利于形成牢固的欧姆接触,局部背场19能够阻挡电子的移动,减小表面的复合速率,以及减少光穿透硅基底1,增强对长波的吸收。Further, when the second main gate electrode 11 includes metallic aluminum, there is a eutectic layer 13 and a local back field 19 at the interface with the second main gate electrode 11 in the doped layer 8 . The eutectic layer 13 has good conductivity and is conducive to forming a strong ohmic contact. The local back field 19 can block the movement of electrons, reduce the recombination rate on the surface, reduce light penetration into the silicon substrate 1 and enhance the absorption of long waves.

具体地,在烧结时p-type的铝掺杂渗入形成使原本掺杂硼的p-type Si形成一层数微米厚的p+-type Si作为局部背场19,以降低背表面复合速率来提高电池的开路电压Voc;因为硅基底1吸收系数差,当厚度变薄时,所述第二介质层9对入射光的吸收减少,此时局部背场19的存在对可以抵达所述硅基底1深度较深的长波光吸收有帮助,所以短路电流密度的影响就更明显;p和p+的能阶差也可以提升开路电压Voc,p+可以形成低电阻的欧姆接触所以填充因子FF也可改善。Specifically, during sintering, p-type aluminum doping infiltrates to form a layer of p+-type Si that is originally doped with boron and forms a layer of p+-type Si several microns thick as a local back field 19 to reduce the back surface recombination rate and improve The open circuit voltage Voc of the cell; due to the poor absorption coefficient of the silicon substrate 1, when the thickness becomes thinner, the absorption of incident light by the second dielectric layer 9 decreases. At this time, the existence of the local back field 19 can reach the silicon substrate 1 Deeper long-wave light absorption is helpful, so the impact of short-circuit current density is more obvious; the energy level difference between p and p+ can also increase the open circuit voltage Voc, and p+ can form a low-resistance ohmic contact, so the fill factor FF can also be improved.

在本申请中,第一种太阳能电池的制备方法,包括如下步骤:In this application, the first solar cell preparation method includes the following steps:

步骤一:提供硅基底1。Step 1: Provide silicon substrate 1.

步骤二:在所述硅基底的一侧表面(正面或前表面)形成掺杂层8。Step 2: Form a doped layer 8 on one side surface (front surface or front surface) of the silicon substrate.

步骤三:在所述硅基底1的一侧表面(背面或后表面)上设置隧穿层2。Step 3: Set a tunneling layer 2 on one side surface (back surface or rear surface) of the silicon substrate 1 .

步骤四:在所述隧穿层2背离所述硅基底1的一侧沉积第一掺杂多晶硅层3。Step 4: Deposit the first doped polysilicon layer 3 on the side of the tunnel layer 2 facing away from the silicon substrate 1 .

步骤五:在所述第一掺杂多晶硅层3背离所述隧穿层2的一侧沉积第一介质层4。Step 5: Deposit a first dielectric layer 4 on the side of the first doped polysilicon layer 3 facing away from the tunnel layer 2 .

步骤六:在所述第一介质层4背离所述第一掺杂多晶硅层3的一侧印刷第一印刷电极浆料,形成第一印刷烧结层,所述第一印刷电极浆料烧穿所述第一介质层4与所述第一掺杂多晶硅层3连接,并在所述第一掺杂多晶硅层3内与所述第一印刷烧结层的交界处形成晶态的第一金属纳米颗粒6。Step 6: Print the first printed electrode paste on the side of the first dielectric layer 4 away from the first doped polysilicon layer 3 to form a first printed sintering layer, and the first printed electrode paste burns through the The first dielectric layer 4 is connected to the first doped polysilicon layer 3, and crystalline first metal nanoparticles are formed at the interface between the first doped polysilicon layer 3 and the first printing and sintering layer. 6.

步骤七:在所述第一印刷烧结层的表面电镀沉积金属形成第一金属层,所述第一印刷烧结层与所述第一金属层构成所述第一主栅电极5。Step 7: Electroplating and depositing metal on the surface of the first printing and sintering layer to form a first metal layer. The first printing and sintering layer and the first metal layer constitute the first main gate electrode 5 .

步骤八:在所述第一介质层4上设置多个贯穿所述第一介质层4的第一开口,在所述第一开口内电镀金属,形成第一细栅电极7,且每条所述第一细栅电极7与每条所述第一主栅电极5相交且电连接,所述第一细栅电极7和所述第一主栅电极5构成第一电极。Step 8: Provide a plurality of first openings penetrating the first dielectric layer 4 on the first dielectric layer 4, electroplating metal in the first openings to form the first fine gate electrode 7, and each of the first thin gate electrodes 7 is formed. The first fine gate electrode 7 intersects and is electrically connected to each of the first main gate electrodes 5 , and the first fine gate electrode 7 and the first main gate electrode 5 constitute a first electrode.

步骤九:在所述掺杂层8背离所述硅基底1的一侧沉积第二介质层9。Step 9: Deposit a second dielectric layer 9 on the side of the doped layer 8 facing away from the silicon substrate 1 .

步骤十:在所述第二介质层9背离所述掺杂层8的一侧印刷第二印刷电极浆料,通过所述烧结形成第二印刷烧结层,所述第二印刷电极浆料烧穿所述第二介质层9与所述掺杂层8连接,并在所述掺杂层8内与所述第二印刷烧结层的交界处形成晶态的第二金属纳米颗粒或共晶层13和局部背场19。Step 10: Print a second printed electrode paste on the side of the second dielectric layer 9 away from the doped layer 8, form a second printed sintering layer through sintering, and burn through the second printed electrode paste. The second dielectric layer 9 is connected to the doped layer 8 and forms a crystalline second metal nanoparticle or eutectic layer 13 at the interface between the doped layer 8 and the second printed sintering layer. and local backfield19.

步骤十一:在所述第二印刷烧结层的表面电镀沉积金属形成第二金属层,所述第二印刷烧结层与所述第二金属层构成所述第二主栅电极11。Step 11: Electroplating and depositing metal on the surface of the second printed and sintered layer to form a second metal layer. The second printed and sintered layer and the second metal layer constitute the second main gate electrode 11 .

步骤十二:在第二介质层9上设置多个贯穿所述第二介质层9的第二开口,在所述第二开口内电镀金属,形成第二细栅电极12,每条所述第二细栅电极12与每条所述第二主栅电极11相交且电连接,形成第二电极。Step 12: Provide a plurality of second openings penetrating the second dielectric layer 9 on the second dielectric layer 9 , electroplating metal in the second openings to form a second fine gate electrode 12 , each of the second thin gate electrodes 12 is formed. Two fine gate electrodes 12 intersect and are electrically connected to each of the second main gate electrodes 11 to form a second electrode.

具体地,在步骤一中,所述硅基底1可以通过对硅片进行清洗、碱制绒以及边缘刻蚀获得,制绒后在硅片的正面(前表面)形成金字塔绒面。Specifically, in step one, the silicon substrate 1 can be obtained by cleaning, alkali texturing and edge etching of the silicon wafer. After texturing, a pyramid texture is formed on the front surface (front surface) of the silicon wafer.

具体地,在步骤二中,所述硅基底正面的硼扩散形成掺杂层;Specifically, in step two, boron on the front side of the silicon substrate is diffused to form a doped layer;

其中的硼扩散可以为:利用硼源在高温条件下对硅基底进行扩散,通过该硼扩散,从而在正面形成掺杂层。The boron diffusion can be: using a boron source to diffuse the silicon substrate under high temperature conditions, and through the boron diffusion, a doping layer is formed on the front side.

所述硼扩散的硼源可以包括三溴化硼,所述硼扩散的扩散温度的取值范围为950-1000℃,扩散时间的取值范围为1.5-2.5小时。The boron source for boron diffusion may include boron tribromide, the diffusion temperature of the boron diffusion ranges from 950 to 1000°C, and the diffusion time ranges from 1.5 to 2.5 hours.

具体地,在步骤三中,采用热氧化方式在硅基底1的背面上生长一层隧穿层2。Specifically, in step three, a tunnel layer 2 is grown on the back side of the silicon substrate 1 using thermal oxidation.

具体地,在步骤四中,采用LPCVD通入硅烷与磷烷在所述隧穿层2背离所述硅基底1的一侧沉积掺杂杂质的非晶硅薄膜,然后对非晶硅薄进行退火,其中退火温度控制在800~1000℃,退火时间控制在30分钟,从而使非晶硅晶化成多晶硅,形成第一掺杂多晶硅层。Specifically, in step four, LPCVD is used to pass silane and phosphorane to deposit an impurity-doped amorphous silicon film on the side of the tunnel layer 2 facing away from the silicon substrate 1, and then anneal the amorphous silicon film. , where the annealing temperature is controlled at 800-1000°C and the annealing time is controlled at 30 minutes, thereby crystallizing amorphous silicon into polysilicon and forming the first doped polysilicon layer.

在形成第一掺杂多晶硅层时,在所述掺杂层上形成了非晶硅薄膜,除去该非晶硅薄膜,具体为采用链式单面刻蚀设备,先采用HF溶液去除非晶硅薄膜表面的氧化层,在采用KOH溶液将绕镀在正面的非晶硅薄膜刻蚀去除。When forming the first doped polysilicon layer, an amorphous silicon film is formed on the doped layer. The amorphous silicon film is removed. Specifically, a chain type single-sided etching equipment is used, and an HF solution is first used to remove the amorphous silicon. The oxide layer on the surface of the film is etched away from the amorphous silicon film coated on the front using KOH solution.

具体地,在步骤五中,采用管式PECVD的方式在所述第一掺杂多晶硅层3背离所述隧穿层2的一侧沉积钝化膜,形成第一介质层4。Specifically, in step five, a passivation film is deposited on the side of the first doped polysilicon layer 3 away from the tunnel layer 2 using tube PECVD to form the first dielectric layer 4 .

具体地,在步骤六中,在所述第一介质层4上印刷有第一印刷电极浆料,所述第一印刷电极浆料烧穿所述第一介质层4与所述第一掺杂多晶硅层3接触,所述第一印刷电极浆料中的金属材料溶解到玻璃料中,通过玻璃的生长到第一掺杂多晶硅层3上,重结晶形成晶态的第一金属纳米颗粒6,因此所述晶态的第一金属纳米颗粒6包括与所述第一主栅电极5中的金属材料相同的金属;如果所述第一印刷电极浆料包括例如银(Ag),则晶态的第一金属纳米颗粒6也可以包括银(Ag)。Specifically, in step six, a first printed electrode paste is printed on the first dielectric layer 4 , and the first printed electrode paste burns through the first dielectric layer 4 and the first doped material. In contact with the polysilicon layer 3, the metal material in the first printed electrode paste is dissolved into the glass frit, grows onto the first doped polysilicon layer 3 through the growth of the glass, and recrystallizes to form crystalline first metal nanoparticles 6, Therefore, the crystalline first metal nanoparticles 6 include the same metal as the metal material in the first main gate electrode 5; if the first printed electrode paste includes, for example, silver (Ag), the crystalline The first metal nanoparticles 6 may also include silver (Ag).

此外,晶态的第一金属纳米颗粒6中的金属形貌和分布与第一印刷烧结层中的金属不同,例如晶态的第一金属纳米颗粒6中的金属呈岛状离散分布在第一掺杂多晶硅层3内与所述第一主栅电极5的界面处(即所述第一掺杂多晶硅层3内与所述第一连接点14、第一连接栅线15、第一辅助栅线的交界处),而所述第一印刷烧结层中的金属通过热处理后与玻璃体结合在一起,所述第一印刷烧结层中形成有许多由于第一印刷电极浆料中溶剂挥发而产生的孔洞,这些孔洞被后续沉积的第一金属层填充。In addition, the metal morphology and distribution in the crystalline first metal nanoparticles 6 are different from the metal in the first printed sintering layer. For example, the metal in the crystalline first metal nanoparticles 6 is discretely distributed in an island shape in the first printing sintering layer. The interface between the doped polysilicon layer 3 and the first main gate electrode 5 (that is, the interface between the first doped polysilicon layer 3 and the first connection point 14, the first connection gate line 15, the first auxiliary gate The intersection of lines), and the metal in the first printed sintering layer is combined with the glass body after heat treatment. There are many formed in the first printed sintering layer due to the volatilization of the solvent in the first printed electrode paste. holes, which are filled by the subsequently deposited first metal layer.

多个所述晶态的第一金属纳米颗粒6不位于所述隧穿层2中,以免晶态的第一金属纳米颗粒6破坏所述隧穿层2或硅基底1,降低太阳能电池的性能。The plurality of crystalline first metal nanoparticles 6 are not located in the tunnel layer 2 to prevent the crystalline first metal nanoparticles 6 from damaging the tunnel layer 2 or the silicon substrate 1 and reducing the performance of the solar cell. .

所述第一印刷电极浆料可以为银浆或铝浆。The first printed electrode paste may be silver paste or aluminum paste.

所述烧结温度为750℃-900℃,所述热处理的温度为250℃-500℃。例如所述烧结温度可以为750℃、800℃、850℃或900℃。The sintering temperature is 750°C-900°C, and the heat treatment temperature is 250°C-500°C. For example, the sintering temperature may be 750°C, 800°C, 850°C or 900°C.

具体地,在所述第一介质层4上开设第一开口的步骤与在所述第一介质层4上形成所述第一主栅电极5的步骤可以不分先后,即可以先形成第一开口,后再形成第一主栅电极5,也可以先形成第一主栅电极5,再在第一介质层4上开设第一开口。Specifically, the step of opening the first opening on the first dielectric layer 4 and the step of forming the first main gate electrode 5 on the first dielectric layer 4 may be in no particular order, that is, the first main gate electrode 5 may be formed first. The first main gate electrode 5 may be formed first, and then the first main gate electrode 5 may be formed, and then the first opening may be opened on the first dielectric layer 4 .

具体地,在步骤八中,还包括对沉积的金属进行热处理,所述热处理的温度可以为250℃、300℃、350℃、400℃、450℃或500℃。Specifically, step eight also includes heat treatment of the deposited metal, and the temperature of the heat treatment may be 250°C, 300°C, 350°C, 400°C, 450°C or 500°C.

具体地,在步骤七和步骤八中,形成第一金属层所采用的电极浆料与所述第一细栅电极7浆料相同。所述第一细栅电极7浆料可以为银浆、铝浆、银铝浆、铜浆或镍浆。Specifically, in steps seven and eight, the electrode slurry used to form the first metal layer is the same as the first fine gate electrode 7 slurry. The first fine gate electrode 7 paste may be silver paste, aluminum paste, silver-aluminum paste, copper paste or nickel paste.

具体地,在步骤九中,采用管式PECVD的方式在所述掺杂层8背离所述隧穿层2的一侧沉积钝化膜,形成第二介质层9。Specifically, in step nine, a passivation film is deposited on the side of the doped layer 8 away from the tunnel layer 2 using tube PECVD to form the second dielectric layer 9 .

进一步地,在步骤十之前还包括,在所述第二介质层9背离所述掺杂层8的一侧沉积抗反射层10。当光线照射在所述太阳能电池上时,所述抗反射层10可以减少光的反射,加强光的利用。Further, before step ten, it also includes depositing an anti-reflective layer 10 on a side of the second dielectric layer 9 away from the doped layer 8 . When light shines on the solar cell, the anti-reflection layer 10 can reduce the reflection of light and enhance the utilization of light.

进一步地,在步骤十中,当所述第二介质层9上沉积了所述抗反射层10后,所述第二主栅电极11烧穿所述抗反射层10以及第二介质层9伸入所述掺杂层8连接。Further, in step ten, after the anti-reflective layer 10 is deposited on the second dielectric layer 9 , the second main gate electrode 11 burns through the anti-reflective layer 10 and the second dielectric layer 9 . into the doped layer 8.

具体地,在步骤十中,当所述第二印刷电极浆料中包括金属银时,在所述第二介质层9上印刷有第二印刷电极浆料后,所述第二印刷电极浆料烧穿所述第二介质层9与所述掺杂层8接触,所述第二印刷电极浆料中的金属材料溶解到玻璃料中,通过玻璃的生长到掺杂层8上,重结晶形成晶态的第二金属纳米颗粒,因此所述晶态的第二金属纳米颗粒包括与所述第二主栅电极11中的金属材料相同的金属银(Ag)。Specifically, in step ten, when the second printed electrode paste includes metallic silver, after the second printed electrode paste is printed on the second dielectric layer 9, the second printed electrode paste After burning through the second dielectric layer 9 and contacting the doped layer 8, the metal material in the second printed electrode paste is dissolved into the glass frit, and is formed by recrystallization through the growth of the glass onto the doped layer 8. The crystalline second metal nanoparticles, therefore, the crystalline second metal nanoparticles include the same metal silver (Ag) as the metal material in the second main gate electrode 11 .

此外,晶态的第二金属纳米颗粒中的金属形貌和分布与第二印刷烧结层中的金属不同,例如晶态的第二金属纳米颗粒中的金属呈岛状离散分布在掺杂层8内与所述第二主栅电极11的界面处(即所述掺杂层8内与所述第二连接点16、第二连接栅线17、第二辅助栅线的交界处),而所述第二印刷烧结层中的金属通过热处理后与玻璃体结合在一起,所述第二印刷烧结层中形成有许多由于第二印刷电极浆料中溶剂挥发而产生的孔洞,这些孔洞被后续沉积的第二金属层填充。多个所述晶态的第二金属纳米颗粒不位于所述隧穿层2中,以免晶态的第二金属纳米颗粒破坏所述隧穿层2或硅基底1,降低太阳能电池的性能。In addition, the metal morphology and distribution in the crystalline second metal nanoparticles are different from the metal in the second printed sintering layer. For example, the metal in the crystalline second metal nanoparticles is discretely distributed in the doping layer 8 in an island shape. The interface between the doped layer 8 and the second main gate electrode 11 (that is, the interface between the doped layer 8 and the second connection point 16, the second connection gate line 17, and the second auxiliary gate line), and the The metal in the second printed sintering layer is combined with the glass body after heat treatment. Many holes are formed in the second printed sintering layer due to the volatilization of the solvent in the second printed electrode paste. These holes are subsequently deposited. The second metal layer is filled. The plurality of crystalline second metal nanoparticles are not located in the tunnel layer 2 to prevent the crystalline second metal nanoparticles from damaging the tunnel layer 2 or the silicon substrate 1 and reducing the performance of the solar cell.

具体地,在步骤十中,当所述第二主栅电极11中包括金属铝时,在所述第二介质层9上印刷有第二印刷电极浆料后,通过烧结,所述第二印刷电极浆料中的金属(如Al)是三价元素,硅是四价元素,热处理过程中铝扩散到所述掺杂层8中,与所述第二主栅电极11的交界处形成共晶层13和局部背场19。在所述掺杂层8内,与所述第二细栅电极12的交界处没有共晶层13和局部背场19。所述共晶层13导电性良好,有利于形成牢固的欧姆接触,局部背场19能够阻挡电子的移动,减小表面的复合速率,以及减少光穿透硅基底1,增强对长波的吸收。Specifically, in step ten, when the second main gate electrode 11 includes metal aluminum, after the second printed electrode paste is printed on the second dielectric layer 9, the second printed electrode paste is The metal (such as Al) in the electrode paste is a trivalent element, and silicon is a tetravalent element. During the heat treatment, aluminum diffuses into the doped layer 8 and forms a eutectic at the interface with the second main gate electrode 11 Layer 13 and local backfield 19. Within the doped layer 8 , there is no eutectic layer 13 and local back field 19 at the interface with the second fine gate electrode 12 . The eutectic layer 13 has good conductivity and is conducive to forming a strong ohmic contact. The local back field 19 can block the movement of electrons, reduce the recombination rate on the surface, reduce light penetration into the silicon substrate 1 and enhance the absorption of long waves.

具体地,所述抗反射层10设置有与所述第二开口贯通的第三开口,所述第二细栅电极12贯穿所述第二开口以及第三开口与所述掺杂层8连接。Specifically, the anti-reflection layer 10 is provided with a third opening that penetrates the second opening, and the second fine gate electrode 12 penetrates the second opening and the third opening to be connected to the doped layer 8 .

所述烧结温度为750℃-900℃,所述热处理的温度为250℃-500℃。例如所述烧结温度可以为750℃、800℃、850℃或900℃。The sintering temperature is 750°C-900°C, and the heat treatment temperature is 250°C-500°C. For example, the sintering temperature may be 750°C, 800°C, 850°C or 900°C.

具体地,在步骤十二中,还包括对沉积的金属进行热处理,所述热处理的温度可以为250℃、300℃、350℃、400℃、450℃或500℃。Specifically, step 12 also includes performing heat treatment on the deposited metal, and the temperature of the heat treatment may be 250°C, 300°C, 350°C, 400°C, 450°C or 500°C.

所述第二印刷电极浆料可以为银浆或铝浆。The second printed electrode paste may be silver paste or aluminum paste.

具体地,在步骤十一步骤十二中,形成第二金属层所采用的电极浆料与所述第二细栅电极12浆料相同。所述第二细栅电极12浆料可以为银浆、铝浆、银铝浆、铜浆或镍浆。Specifically, in steps 11 and 12, the electrode slurry used to form the second metal layer is the same as the second fine gate electrode 12 slurry. The second fine gate electrode 12 paste may be silver paste, aluminum paste, silver-aluminum paste, copper paste or nickel paste.

进一步具体地,所述第一细栅电极7浆料可以与所述第二细栅电极12浆料相同。Further specifically, the first fine gate electrode 7 slurry may be the same as the second fine gate electrode 12 slurry.

在本申请中,第一种太阳能电池的制备方法,包括如下步骤:In this application, the first solar cell preparation method includes the following steps:

步骤一:提供硅基底1。Step 1: Provide silicon substrate 1.

具体地,所述硅基底1可以通过对硅片进行清洗、碱制绒以及边缘刻蚀获得,制绒后在硅片的正面(前表面)形成金字塔绒面。Specifically, the silicon substrate 1 can be obtained by cleaning, alkali texturing and edge etching of the silicon wafer. After texturing, a pyramid texture is formed on the front surface (front surface) of the silicon wafer.

步骤二:在所述硅基底1的一侧表面(正面或前表面)形成掺杂层8。Step 2: Form a doping layer 8 on one side surface (front surface or front surface) of the silicon substrate 1 .

所述硅基底正面的硼扩散形成掺杂层;Boron diffusion on the front side of the silicon substrate forms a doped layer;

其中的硼扩散可以为:利用硼源在高温条件下对硅基底进行扩散,通过该硼扩散,从而在正面形成掺杂层。The boron diffusion can be: using a boron source to diffuse the silicon substrate under high temperature conditions, and through the boron diffusion, a doping layer is formed on the front side.

所述硼扩散的硼源可以包括三溴化硼,所述硼扩散的扩散温度的取值范围为950-1000℃,扩散时间的取值范围为1.5-2.5小时。The boron source for boron diffusion may include boron tribromide, the diffusion temperature of the boron diffusion ranges from 950 to 1000°C, and the diffusion time ranges from 1.5 to 2.5 hours.

步骤三:在所述硅基底1的一侧表面(背面或后表面)上设置隧穿层2。Step 3: Set a tunneling layer 2 on one side surface (back surface or rear surface) of the silicon substrate 1 .

具体地,采用热氧化方式在硅基底1的背面上生长一层隧穿层2。Specifically, a tunnel layer 2 is grown on the back side of the silicon substrate 1 using thermal oxidation.

步骤四:在所述隧穿层2背离所述硅基底1的一侧沉积第一掺杂多晶硅层3。Step 4: Deposit the first doped polysilicon layer 3 on the side of the tunnel layer 2 facing away from the silicon substrate 1 .

具体地,采用LPCVD通入硅烷与磷烷在所述隧穿层2背离所述硅基底1的一侧沉积掺杂杂质的非晶硅薄膜,然后对非晶硅薄进行退火,其中退火温度控制在800~1000℃,退火时间控制在30分钟,从而使非晶硅晶化成多晶硅,形成第一掺杂多晶硅层。Specifically, LPCVD is used to pass silane and phosphorane to deposit an impurity-doped amorphous silicon film on the side of the tunnel layer 2 facing away from the silicon substrate 1, and then anneal the amorphous silicon film, where the annealing temperature is controlled At 800-1000°C, the annealing time is controlled at 30 minutes, thereby crystallizing amorphous silicon into polysilicon to form the first doped polysilicon layer.

在形成第一掺杂多晶硅层时,在所述掺杂层上形成了非晶硅薄膜,除去该非晶硅薄膜,具体为采用链式单面刻蚀设备,先采用HF溶液去除非晶硅薄膜表面的氧化层,在采用KOH溶液将绕镀在正面的非晶硅薄膜刻蚀去除。When forming the first doped polysilicon layer, an amorphous silicon film is formed on the doped layer. The amorphous silicon film is removed. Specifically, a chain type single-sided etching equipment is used, and an HF solution is first used to remove the amorphous silicon. The oxide layer on the surface of the film is etched away from the amorphous silicon film coated on the front using KOH solution.

步骤五:在所述第一掺杂多晶硅层3背离所述隧穿层2的一侧沉积第一介质层4。Step 5: Deposit a first dielectric layer 4 on the side of the first doped polysilicon layer 3 facing away from the tunnel layer 2 .

具体地,采用管式PECVD的方式在所述第一掺杂多晶硅层3背离所述隧穿层2的一侧沉积钝化膜,形成第一介质层4。Specifically, a passivation film is deposited on the side of the first doped polysilicon layer 3 away from the tunnel layer 2 using tube PECVD to form the first dielectric layer 4 .

步骤六:在所述第一介质层4背离所述第一掺杂多晶硅层3的一侧印刷第一印刷电极浆料,烧结形成第一印刷烧结层,所述第一印刷电极浆料烧穿所述第一介质层4伸入所述第一掺杂多晶硅层3,并在所述第一掺杂多晶硅层3内与所述第一印刷烧结层的交界处形成晶态的第一金属纳米颗粒6。Step 6: Print the first printed electrode slurry on the side of the first dielectric layer 4 away from the first doped polysilicon layer 3, and sinter it to form a first printed sintered layer. The first printed electrode slurry burns through The first dielectric layer 4 extends into the first doped polysilicon layer 3 and forms crystalline first metal nanometers at the interface between the first doped polysilicon layer 3 and the first printing and sintering layer. Particle 6.

具体地,在所述第一介质层4上印刷有第一印刷电极浆料,所述第一印刷电极浆料烧穿所述第一介质层4与所述第一掺杂多晶硅层3接触,所述第一印刷电极浆料中的金属材料溶解到玻璃料中,通过玻璃的生长到第一掺杂多晶硅层3上,重结晶形成晶态的第一金属纳米颗粒6,因此所述晶态的第一金属纳米颗粒6包括与所述第一主栅电极5中的金属材料相同的金属;如果所述第一印刷电极浆料包括例如银(Ag),则晶态的第一金属纳米颗粒6也可以包括银(Ag)。Specifically, a first printed electrode paste is printed on the first dielectric layer 4, and the first printed electrode paste burns through the first dielectric layer 4 and contacts the first doped polysilicon layer 3, The metal material in the first printed electrode slurry dissolves into the glass frit, grows onto the first doped polysilicon layer 3 through glass, and recrystallizes to form crystalline first metal nanoparticles 6, so the crystalline state The first metal nanoparticles 6 include the same metal as the metal material in the first main gate electrode 5; if the first printed electrode paste includes, for example, silver (Ag), the crystalline first metal nanoparticles 6 Silver (Ag) may also be included.

此外,晶态的第一金属纳米颗粒6中的金属形貌和分布与第一印刷烧结层中的金属不同,例如晶态的第一金属纳米颗粒6中的金属呈岛状离散分布在第一掺杂多晶硅层3内与所述第一主栅电极5的界面处(即所述第一掺杂多晶硅层3内与所述第一连接点14、第一连接栅线15、第一辅助栅线的交界处),而所述第一印刷烧结层中的金属通过热处理后与玻璃体结合在一起,所述第一印刷烧结层中形成有许多由于第一印刷电极浆料中溶剂挥发而产生的孔洞,这些孔洞被后续沉积的第一金属层填充。In addition, the metal morphology and distribution in the crystalline first metal nanoparticles 6 are different from the metal in the first printed sintering layer. For example, the metal in the crystalline first metal nanoparticles 6 is discretely distributed in an island shape in the first printing sintering layer. The interface between the doped polysilicon layer 3 and the first main gate electrode 5 (that is, the interface between the first doped polysilicon layer 3 and the first connection point 14, the first connection gate line 15, the first auxiliary gate The intersection of lines), and the metal in the first printed sintering layer is combined with the glass body after heat treatment. There are many formed in the first printed sintering layer due to the volatilization of the solvent in the first printed electrode paste. holes, which are filled by the subsequently deposited first metal layer.

多个所述晶态的第一金属纳米颗粒6不位于所述隧穿层2中,以免晶态的第一金属纳米颗粒6破坏所述隧穿层2或硅基底1,降低太阳能电池的性能。The plurality of crystalline first metal nanoparticles 6 are not located in the tunnel layer 2 to prevent the crystalline first metal nanoparticles 6 from damaging the tunnel layer 2 or the silicon substrate 1 and reducing the performance of the solar cell. .

所述烧结温度为750℃-900℃,例如所述烧结温度可以为750℃、800℃、850℃或900℃。The sintering temperature is 750°C-900°C. For example, the sintering temperature may be 750°C, 800°C, 850°C or 900°C.

所述第一印刷电极浆料可以为银浆或铝浆。The first printed electrode paste may be silver paste or aluminum paste.

步骤七:在所述第一印刷烧结层的表面电镀沉积金属形成第一金属层,所述第一印刷烧结层与所述第一金属层构成所述第一主栅电极5。Step 7: Electroplating and depositing metal on the surface of the first printing and sintering layer to form a first metal layer. The first printing and sintering layer and the first metal layer constitute the first main gate electrode 5 .

步骤八:在所述第一介质层4上设置多个贯穿所述第一介质层4的第一开口,在所述第一开口内电镀金属,通过热处理形成第一细栅电极7,且所述第一细栅电极7与所述第一主栅电极5连接,所述第一细栅电极7和所述第一主栅电极5构成第一电极。Step 8: Provide a plurality of first openings penetrating the first dielectric layer 4 on the first dielectric layer 4, electroplating metal in the first openings, forming the first fine gate electrode 7 through heat treatment, and The first fine gate electrode 7 is connected to the first main gate electrode 5 , and the first fine gate electrode 7 and the first main gate electrode 5 constitute a first electrode.

所述热处理的温度为250℃-500℃。例如所述热处理的温度可以为250℃、300℃、350℃、400℃、450℃或500℃。The temperature of the heat treatment is 250°C-500°C. For example, the temperature of the heat treatment may be 250°C, 300°C, 350°C, 400°C, 450°C or 500°C.

形成第一金属层所采用的电极浆料与所述第一细栅电极7浆料相同。所述第一细栅电极7浆料可以为银浆、铝浆、银铝浆、铜浆或镍浆。The electrode paste used to form the first metal layer is the same as the first fine gate electrode 7 paste. The first fine gate electrode 7 paste may be silver paste, aluminum paste, silver-aluminum paste, copper paste or nickel paste.

步骤九:在所述掺杂层8背离所述硅基底1的一侧沉积第二介质层9。Step 9: Deposit a second dielectric layer 9 on the side of the doped layer 8 facing away from the silicon substrate 1 .

具体地,在步骤九中,采用管式PECVD的方式在所述掺杂层8背离所述隧穿层2的一侧沉积钝化膜,形成第二介质层9。Specifically, in step nine, a passivation film is deposited on the side of the doped layer 8 away from the tunnel layer 2 using tube PECVD to form the second dielectric layer 9 .

进一步地,在步骤九之后在步骤十之前还包括,在所述第二介质层9背离所述掺杂层8的一侧沉积抗反射层10。当光线照射在所述太阳能电池上时,所述抗反射层10可以减少光的反射,加强光的利用。Further, after step nine and before step ten, it further includes depositing an anti-reflection layer 10 on a side of the second dielectric layer 9 away from the doped layer 8 . When light shines on the solar cell, the anti-reflection layer 10 can reduce the reflection of light and enhance the utilization of light.

步骤十:在所述第二介质层9背离所述掺杂层8的一侧印刷第二印刷电极浆料,烧结形成第二印刷烧结层,所述第二印刷电极浆料烧穿所述第二介质层9伸入所述掺杂层8。Step 10: Print a second printed electrode paste on the side of the second dielectric layer 9 away from the doped layer 8, and sinter it to form a second printed sintering layer. The second printed electrode paste burns through the first Two dielectric layers 9 extend into the doped layer 8 .

进一步地,当所述第二介质层9上沉积了所述抗反射层10后,所述第二主栅电极11烧穿所述抗反射层10以及第二介质层9伸入所述掺杂层8。Further, after the anti-reflection layer 10 is deposited on the second dielectric layer 9 , the second main gate electrode 11 burns through the anti-reflection layer 10 and the second dielectric layer 9 extends into the doped Layer 8.

具体地,当所述第二印刷电极浆料中包括金属银时,在所述第二介质层9上印刷有第二印刷电极浆料后,所述第二印刷电极浆料烧穿所述第二介质层9与所述掺杂层8接触,所述第二印刷电极浆料中的金属材料溶解到玻璃料中,通过玻璃的生长到掺杂层8上,重结晶形成晶态的第二金属纳米颗粒,因此所述晶态的第二金属纳米颗粒包括与所述第二主栅电极11中的金属材料相同的金属银(Ag)。Specifically, when the second printed electrode paste includes metallic silver, after the second printed electrode paste is printed on the second dielectric layer 9 , the second printed electrode paste burns through the second dielectric layer 9 . The second dielectric layer 9 is in contact with the doped layer 8. The metal material in the second printed electrode paste is dissolved into the glass frit, grows on the doped layer 8 through the glass, and recrystallizes to form the second crystalline layer. The metal nanoparticles, therefore the crystalline second metal nanoparticles include the same metal silver (Ag) as the metal material in the second main gate electrode 11 .

此外,晶态的第二金属纳米颗粒中的金属形貌和分布与第二印刷烧结层中的金属不同,例如晶态的第二金属纳米颗粒中的金属呈岛状离散分布在掺杂层8内与所述第二主栅电极11的界面处(即所述掺杂层8内与所述第二连接点16、第二连接栅线17、第二辅助栅线的交界处),而所述第二印刷烧结层中的金属通过热处理后与玻璃体结合在一起,所述第二印刷烧结层中形成有许多由于第二印刷电极浆料中溶剂挥发而产生的孔洞,这些孔洞被后续沉积的第二金属层填充。多个所述晶态的第二金属纳米颗粒不位于所述隧穿层2中,以免晶态的第二金属纳米颗粒破坏所述隧穿层2或硅基底1,降低太阳能电池的性能。In addition, the metal morphology and distribution in the crystalline second metal nanoparticles are different from the metal in the second printed sintering layer. For example, the metal in the crystalline second metal nanoparticles is discretely distributed in the doping layer 8 in an island shape. The interface between the doped layer 8 and the second main gate electrode 11 (that is, the interface between the doped layer 8 and the second connection point 16, the second connection gate line 17, and the second auxiliary gate line), and the The metal in the second printed sintering layer is combined with the glass body after heat treatment. Many holes are formed in the second printed sintering layer due to the volatilization of the solvent in the second printed electrode paste. These holes are subsequently deposited. The second metal layer is filled. The plurality of crystalline second metal nanoparticles are not located in the tunnel layer 2 to prevent the crystalline second metal nanoparticles from damaging the tunnel layer 2 or the silicon substrate 1 and reducing the performance of the solar cell.

具体地,在步骤十中,当所述第二主栅电极11中包括金属铝时,在所述第二介质层9上印刷有第二印刷电极浆料后,通过烧结,所述第二印刷电极浆料中的金属(如Al)是三价元素,硅是四价元素,热处理过程中铝扩散到所述掺杂层8中,与所述第二主栅电极11的交界处形成共晶层13和局部背场19。在所述掺杂层8内,与所述第二细栅电极12的交界处没有共晶层13和局部背场19。Specifically, in step ten, when the second main gate electrode 11 includes metal aluminum, after the second printed electrode paste is printed on the second dielectric layer 9, the second printed electrode paste is The metal (such as Al) in the electrode paste is a trivalent element, and silicon is a tetravalent element. During the heat treatment, aluminum diffuses into the doped layer 8 and forms a eutectic at the interface with the second main gate electrode 11 Layer 13 and local backfield 19. Within the doped layer 8 , there is no eutectic layer 13 and local back field 19 at the interface with the second fine gate electrode 12 .

所述共晶层13导电性良好,有利于形成牢固的欧姆接触,局部背场19能够阻挡电子的移动,减小表面的复合速率,以及减少光穿透硅基底1,增强对长波的吸收。The eutectic layer 13 has good conductivity and is conducive to forming a strong ohmic contact. The local back field 19 can block the movement of electrons, reduce the recombination rate on the surface, reduce light penetration into the silicon substrate 1 and enhance the absorption of long waves.

具体地,所述抗反射层10设置有与所述第二开口贯通的第三开口,所述第二细栅电极12贯穿所述第二开口以及第三开口与所述掺杂层8连接。Specifically, the anti-reflection layer 10 is provided with a third opening that penetrates the second opening, and the second fine gate electrode 12 penetrates the second opening and the third opening to be connected to the doped layer 8 .

具体地,所述烧结温度为750℃-900℃,例如所述烧结温度可以为750℃、800℃、850℃或900℃。Specifically, the sintering temperature is 750°C-900°C. For example, the sintering temperature may be 750°C, 800°C, 850°C or 900°C.

所述第二印刷电极浆料可以为银浆或铝浆。The second printed electrode paste may be silver paste or aluminum paste.

步骤十一:在所述第二印刷烧结层的表面电镀沉积金属形成第二金属层,所述第二印刷烧结层与所述第二金属层构成所述第二主栅电极11。Step 11: Electroplating and depositing metal on the surface of the second printed and sintered layer to form a second metal layer. The second printed and sintered layer and the second metal layer constitute the second main gate electrode 11 .

具体地,所述热处理的温度为250℃-500℃。例如所述热处理的温度可以为250℃、300℃、350℃、400℃、450℃或500℃。Specifically, the temperature of the heat treatment is 250°C-500°C. For example, the temperature of the heat treatment may be 250°C, 300°C, 350°C, 400°C, 450°C or 500°C.

步骤十二:在第二介质层9上设置多个贯穿所述第二介质层9的第二开口,在所述第二开口内电镀金属,通过所述热处理形成第二细栅电极12,所述第二细栅电极12与所述第二主栅电极11连接,形成第二电极。Step 12: Provide a plurality of second openings penetrating the second dielectric layer 9 on the second dielectric layer 9 , electroplating metal in the second openings, and forming the second fine gate electrode 12 through the heat treatment. The second fine gate electrode 12 is connected to the second main gate electrode 11 to form a second electrode.

具体地,形成第二金属层所采用的电极浆料与所述第二细栅电极12浆料相同。所述第二细栅电极12浆料可以为银浆、铝浆、银铝浆、铜浆或镍浆。Specifically, the electrode paste used to form the second metal layer is the same as the second fine gate electrode 12 paste. The second fine gate electrode 12 paste may be silver paste, aluminum paste, silver-aluminum paste, copper paste or nickel paste.

进一步具体地,所述第一细栅电极7浆料可以与所述第二细栅电极12浆料相同。Further specifically, the first fine gate electrode 7 slurry may be the same as the second fine gate electrode 12 slurry.

《第二种太阳能电池》"Second Solar Cell"

如图2所示,本申请提供的太阳能电池,包括硅基底1、第一电极和第二电极,在所述硅基底1的正面设置有第二介质层9。在所述硅基底1的背面依次层叠设置的隧穿层2、第一掺杂多晶硅层3、第一介质层4,所述第一电极贯穿所述第一介质层4伸入所述第一掺杂多晶硅层3内。在所述第一掺杂多晶硅层3内与所述第一电极的交界处具有晶态的第一金属纳米颗粒6。所述第二电极贯穿所述第一介质层4与所述硅基底1的背面连接。As shown in Figure 2, the solar cell provided by this application includes a silicon substrate 1, a first electrode and a second electrode. A second dielectric layer 9 is provided on the front side of the silicon substrate 1. A tunnel layer 2, a first doped polysilicon layer 3, and a first dielectric layer 4 are sequentially stacked on the back side of the silicon substrate 1. The first electrode penetrates the first dielectric layer 4 and extends into the first Doped polysilicon layer 3. There are crystalline first metal nanoparticles 6 at the interface between the first doped polysilicon layer 3 and the first electrode. The second electrode penetrates the first dielectric layer 4 and is connected to the back surface of the silicon substrate 1 .

具体地,所述第一电极包括多条第一主栅电极5和多条第一细栅电极7,每条所述第一主栅电极5与每条所述第一细栅电极7相交且电连接。在所述第一掺杂多晶硅层3内与所述第一主栅电极5的交界处具有晶态的第一金属纳米颗粒6。在所述第一掺杂多晶硅层3内与所述第一细栅电极7的交界处没有晶态的第一金属纳米颗粒6。Specifically, the first electrode includes a plurality of first main gate electrodes 5 and a plurality of first fine gate electrodes 7, each of the first main gate electrodes 5 intersects with each of the first fine gate electrodes 7 and Electrical connection. There are crystalline first metal nanoparticles 6 at the interface between the first doped polysilicon layer 3 and the first main gate electrode 5 . There are no crystalline first metal nanoparticles 6 at the interface between the first doped polysilicon layer 3 and the first fine gate electrode 7 .

具体地,所述第二电极包括第二主栅电极11和第二细栅电极12,且所述第二主栅电极11和第二细栅电极12相交且电连接。Specifically, the second electrode includes a second main gate electrode 11 and a second fine gate electrode 12, and the second main gate electrode 11 and the second fine gate electrode 12 intersect and are electrically connected.

具体地,在所述硅基底1的背面,所述隧穿层2包括多个间隔设置的隧穿单元,相邻所述隧穿单元之间的区域为第一区域,所述第一介质层4覆盖所述第一掺杂多晶硅层3的表面以及第一区域中第一掺杂多晶硅层3的侧面、隧穿单元的侧面以及硅基底1的表面。所述第二主栅电极11贯穿所述第一区域中的第一介质层4与所述硅基底1连接。Specifically, on the back side of the silicon substrate 1, the tunneling layer 2 includes a plurality of tunneling units arranged at intervals. The area between adjacent tunneling units is a first area, and the first dielectric layer 4 covers the surface of the first doped polysilicon layer 3 and the side surfaces of the first doped polysilicon layer 3 in the first region, the side surfaces of the tunneling unit and the surface of the silicon substrate 1 . The second main gate electrode 11 penetrates the first dielectric layer 4 in the first region and is connected to the silicon substrate 1 .

进一步地,当所述第二主栅电极11中包括金属银时,在所述硅基底1内,与所述第二主栅电极11的交界处具有晶态的第二金属纳米颗粒。在所述硅基底1内,与所述第二细栅电极12的交界处没有晶态的第二金属纳米颗粒。Further, when the second main gate electrode 11 includes metallic silver, there are crystalline second metal nanoparticles in the silicon substrate 1 at the interface with the second main gate electrode 11 . In the silicon substrate 1 , there are no crystalline second metal nanoparticles at the interface with the second fine gate electrode 12 .

进一步地,当所述第二主栅电极11中包括金属铝时,在所述硅基底1内,与所述第二主栅电极11的交界处具有共晶层13和局部背场19。在所述硅基底1内,与所述第二细栅电极12的交界处没有共晶层13和局部背场19。Further, when the second main gate electrode 11 includes metallic aluminum, there is a eutectic layer 13 and a local back field 19 at the interface with the second main gate electrode 11 in the silicon substrate 1 . In the silicon substrate 1 , there is no eutectic layer 13 and local back field 19 at the interface with the second fine gate electrode 12 .

具体地,如图4所示,多条所述第一细栅电极7等间距设置,所述第一细栅电极7包括多条被所述第一主栅电极5和第二主栅电极11间隔开的第一细栅线,且所述第一细栅线的一端与所述第一主栅电极5连接,另一端被所述第二主栅电极11间隔开。所述第一细栅电极7与所述第一主栅电极5垂直相交。Specifically, as shown in FIG. 4 , a plurality of first fine gate electrodes 7 are arranged at equal intervals. The first fine gate electrode 7 includes a plurality of first main gate electrodes 5 and second main gate electrodes 11 . First thin gate lines are spaced apart, and one end of the first thin gate line is connected to the first main gate electrode 5 , and the other end is spaced apart by the second main gate electrode 11 . The first fine gate electrode 7 vertically intersects the first main gate electrode 5 .

多条所述第二细栅电极12等间距设置,所述第二细栅电极12包括多条被所述第一主栅电极5和第二主栅电极11间隔开的第二细栅线,且所述第二细栅线的一端与所述第二主栅电极11连接,另一端被所述第一主栅电极5间隔开。所述第二细栅电极12与所述第二主栅电极11垂直相交。A plurality of second fine gate electrodes 12 are arranged at equal intervals, and the second fine gate electrode 12 includes a plurality of second fine gate lines spaced apart by the first main gate electrode 5 and the second main gate electrode 11, One end of the second thin gate line is connected to the second main gate electrode 11 , and the other end is separated by the first main gate electrode 5 . The second fine gate electrode 12 vertically intersects the second main gate electrode 11 .

所述第二细栅电极12与所述第一细栅电极7彼此交替平行,即所述第一细栅电极7与第二细栅电极12依次平行,且相邻所述第一细栅电极7之间设置有所述第二细栅电极12。所述第二主栅电极11与所述第一主栅电极5彼此交替平行,即所述第一主栅电极5与第二主栅电极11依次平行,且相邻所述第一主栅电极5之间设置有所述第二主栅电极11。The second fine gate electrode 12 and the first fine gate electrode 7 are alternately parallel to each other, that is, the first fine gate electrode 7 and the second fine gate electrode 12 are parallel to each other in sequence and adjacent to the first fine gate electrode. The second thin gate electrode 12 is disposed between 7 . The second main gate electrode 11 and the first main gate electrode 5 are alternately parallel to each other, that is, the first main gate electrode 5 and the second main gate electrode 11 are parallel to each other in sequence and adjacent to the first main gate electrode. The second main gate electrode 11 is disposed between 5 .

本实施方式中的隧穿层2、第一掺杂多晶硅层3、第一介质层4、所述第一电极以及晶态的第一金属纳米颗粒6均可以参考前述针对第一种太阳能电池的描述,即太阳能电池的隧穿层2、第一掺杂多晶硅层3、第一介质层4、所述第一电极以及晶态的第一金属纳米颗粒6的具体的结构和材料均可以参考在第一种太阳能电池部分描述的内容。In this embodiment, the tunneling layer 2 , the first doped polysilicon layer 3 , the first dielectric layer 4 , the first electrode and the crystalline first metal nanoparticles 6 can all refer to the aforementioned method for the first solar cell. For description, that is, the specific structures and materials of the tunneling layer 2 of the solar cell, the first doped polysilicon layer 3, the first dielectric layer 4, the first electrode and the crystalline first metal nanoparticles 6 can be referred to in The first type of solar cell is described in the section.

本实施方式中的第二电极的材料可以与所述第一电极的材料相同,也可以与所述第一电极的材料不同,当所述第二电极的材料与所述第一电极的材料相同时,可以参考在前述第一种太阳能电池部分中第一电极的材料描述。当所述第二电极的材料不同时,所述第二印刷电极浆料为银浆或铝浆。所述第二金属层的电极浆料为银浆、铝浆、银铝浆、铜浆或镍浆。所述第二细栅电极12的电极浆料为银浆、铝浆、银铝浆、铜浆或镍浆。The material of the second electrode in this embodiment may be the same as the material of the first electrode, or may be different from the material of the first electrode. When the material of the second electrode is the same as the material of the first electrode, At the same time, reference may be made to the material description of the first electrode in the aforementioned first solar cell part. When the materials of the second electrode are different, the second printed electrode paste is silver paste or aluminum paste. The electrode paste of the second metal layer is silver paste, aluminum paste, silver-aluminum paste, copper paste or nickel paste. The electrode paste of the second fine gate electrode 12 is silver paste, aluminum paste, silver-aluminum paste, copper paste or nickel paste.

本实施方式中的太阳能电池,由于所述硅基底1的正面没有设置第二掺杂多晶硅层以及第二电极,因此当光线照射在所述太阳能电池上时,光线可以直接照射在所述硅基底1上,因此所述太阳能电池,不仅结构简单,而且光线利用率较高。另外由于第一电极和第二电极位于所述硅基底1的同一侧,可以大大减少电极浆料的用量,成本较低。In the solar cell in this embodiment, since the second doped polysilicon layer and the second electrode are not provided on the front side of the silicon substrate 1, when light shines on the solar cell, the light can directly shine on the silicon substrate. 1, so the solar cell not only has a simple structure, but also has a high light utilization rate. In addition, since the first electrode and the second electrode are located on the same side of the silicon substrate 1, the amount of electrode slurry can be greatly reduced and the cost is low.

在本申请中,第二种太阳能电池的制备方法,包括如下步骤:In this application, the second method of preparing a solar cell includes the following steps:

步骤一:提供硅基底1。Step 1: Provide silicon substrate 1.

步骤二:在所述硅基底1的一侧表面(正面或前表面)上形成第二介质层9。Step 2: Form a second dielectric layer 9 on one side surface (front surface or front surface) of the silicon substrate 1 .

步骤三:在所述硅基底1的一侧表面上设置隧穿层2。Step 3: Provide a tunneling layer 2 on one side surface of the silicon substrate 1 .

步骤四:在所述隧穿层2背离所述硅基底1的一侧沉积第一掺杂多晶硅层3。Step 4: Deposit the first doped polysilicon layer 3 on the side of the tunnel layer 2 facing away from the silicon substrate 1 .

步骤五:在所述第一掺杂多晶硅层3背离所述隧穿层2的一侧沉积第一介质层4。Step 5: Deposit a first dielectric layer 4 on the side of the first doped polysilicon layer 3 facing away from the tunnel layer 2 .

步骤六:在所述第一介质层4背离所述第一掺杂多晶硅层3的一侧间隔地印刷第一印刷电极浆料和第二印刷电极浆料,烧结形成第一印刷烧结层和第二印刷烧结层,所述第一印刷电极浆料烧穿所述第一介质层4伸入所述第一掺杂多晶硅层3内,并在所述第一掺杂多晶硅层3内与所述第一印刷烧结层的交界处形成晶态的第一金属纳米颗粒6,所述第二印刷电极浆料烧穿所述第一介质层4与所述硅基底1连接。Step 6: Print the first printed electrode paste and the second printed electrode paste at intervals on the side of the first dielectric layer 4 away from the first doped polysilicon layer 3, and sinter to form the first printed and sintered layer and the second printed electrode paste. Two printed sintering layers, the first printed electrode paste burns through the first dielectric layer 4 and extends into the first doped polysilicon layer 3, and is in contact with the first doped polysilicon layer 3. Crystalline first metal nanoparticles 6 are formed at the interface of the first printed sintering layer, and the second printed electrode paste burns through the first dielectric layer 4 and is connected to the silicon substrate 1 .

步骤七:在所述第一印刷烧结层的表面电镀沉积金属形成第一金属层,所述第一印刷烧结层与所述第一金属层构成所述第一主栅电极5。Step 7: Electroplating and depositing metal on the surface of the first printing and sintering layer to form a first metal layer. The first printing and sintering layer and the first metal layer constitute the first main gate electrode 5 .

步骤八:在所述第二印刷烧结层的表面电镀沉积金属形成第二金属层,所述第二印刷烧结层与所述第二金属层构成所述第二主栅电极11。Step 8: Electroplating and depositing metal on the surface of the second printed and sintered layer to form a second metal layer. The second printed and sintered layer and the second metal layer constitute the second main gate electrode 11 .

步骤九:在所述第一介质层4上设置多个贯穿所述第一介质层4的第一开口和第二开口,在所述第一开口和第二开口内分别电镀金属,通过热处理形成第一细栅电极7和第二细栅电极12,且所述第一细栅电极7与所述第一主栅电极5相交且电连接,所述第一细栅电极7和所述第一主栅电极5构成第一电极,所述第二细栅电极12与所述第二主栅电极11相交且电连接,所述第二细栅电极12和所述第二主栅电极11构成第二电极。Step 9: Provide a plurality of first openings and second openings penetrating the first dielectric layer 4 on the first dielectric layer 4, electroplating metal in the first openings and second openings, and forming them through heat treatment. The first fine gate electrode 7 and the second fine gate electrode 12 intersect and are electrically connected to the first main gate electrode 5 . The first fine gate electrode 7 and the first main gate electrode 5 intersect and are electrically connected. The main gate electrode 5 constitutes a first electrode, the second fine gate electrode 12 intersects and is electrically connected to the second main gate electrode 11 , and the second fine gate electrode 12 and the second main gate electrode 11 constitute a third electrode. Two electrodes.

步骤十:在所述硅基底1背离所述隧穿层2的一侧表面设置第二介质层9。Step 10: Provide a second dielectric layer 9 on the surface of the silicon substrate 1 facing away from the tunnel layer 2 .

具体地,在步骤一中,所述硅基底1可以通过对硅片进行清洗、碱制绒以及边缘刻蚀获得,制绒后在硅片双面形成金字塔绒面。Specifically, in step one, the silicon substrate 1 can be obtained by cleaning, alkali texturing and edge etching of the silicon wafer. After texturing, pyramid textures are formed on both sides of the silicon wafer.

具体地,在步骤二中,氧化所述硅基底的正面,在所述硅基底的正面形成氧化硅层,即所述氧化硅层为第二介质层。Specifically, in step two, the front side of the silicon substrate is oxidized, and a silicon oxide layer is formed on the front side of the silicon substrate, that is, the silicon oxide layer is the second dielectric layer.

具体地,在步骤三中,采用热氧化方式在硅基底1的背面上生长形成所述隧穿层2。Specifically, in step three, the tunnel layer 2 is grown on the back side of the silicon substrate 1 using thermal oxidation.

具体地,在步骤五中,在所述第一掺杂多晶硅层3的表面,间隔地烧蚀掉所述第一掺杂多晶硅层3和隧穿层2以露出所述硅基底1,从而形成多个间隔的第一区域。在所述第一掺杂多晶硅层的表面以及第一区域中第一掺杂多晶硅层的侧面、隧穿层的侧面以及硅基底的表沉积第一介质层。Specifically, in step five, the first doped polysilicon layer 3 and the tunneling layer 2 are ablated at intervals on the surface of the first doped polysilicon layer 3 to expose the silicon substrate 1, thereby forming First area of multiple intervals. A first dielectric layer is deposited on the surface of the first doped polysilicon layer and the side surfaces of the first doped polysilicon layer, the side surfaces of the tunnel layer and the surface of the silicon substrate in the first region.

进一步地,在所述第一掺杂多晶硅层3的表面,采用激光技术间隔地烧蚀掉所述第一掺杂多晶硅层3和隧穿层2以露出所述硅基底1,从而形成多个间隔的第一区域。Further, on the surface of the first doped polysilicon layer 3, laser technology is used to ablate the first doped polysilicon layer 3 and the tunneling layer 2 at intervals to expose the silicon substrate 1, thereby forming a plurality of The first area of the interval.

具体地,在步骤六,在所述第一区域中的第一介质层4的表面上印刷第二印刷电极浆料,烧结形成第二印刷烧结层,所述第二印刷电极浆料烧穿所述第二介质层9与硅基底1连接。Specifically, in step six, a second printed electrode slurry is printed on the surface of the first dielectric layer 4 in the first area and sintered to form a second printed sintered layer, and the second printed electrode slurry is burned through the The second dielectric layer 9 is connected to the silicon substrate 1 .

进一步地,当所述第二主栅电极11浆料中包括金属银时,在所述硅基底1内,与所述第二主栅电极11的交界处形成晶态的第二金属纳米颗粒。Further, when the second main gate electrode 11 slurry includes metallic silver, crystalline second metal nanoparticles are formed in the silicon substrate 1 at the interface with the second main gate electrode 11 .

进一步地,当所述第二主栅电极11浆料中包括金属铝时,在所述硅基底1内,与所述第二主栅电极11的交界处形成共晶层13和局部背场19。Further, when the second main gate electrode 11 paste includes metallic aluminum, a eutectic layer 13 and a local back field 19 are formed in the silicon substrate 1 at the interface with the second main gate electrode 11 .

具体地,在步骤八中,在所述第一介质层4上设置有多个贯穿所述第一介质层4的第二开口,在所述第二开口内电镀金属,通过所述热处理形成第二细栅电极12,且所述第二细栅电极12与所述硅基底1连接;所述第二细栅电极12与所述第二主栅电极11相交且电连接,形成第二电极。Specifically, in step eight, a plurality of second openings penetrating the first dielectric layer 4 are provided on the first dielectric layer 4 , metal is electroplated in the second openings, and a third opening is formed through the heat treatment. Two fine gate electrodes 12 are connected to the silicon substrate 1; the second fine gate electrode 12 intersects and is electrically connected to the second main gate electrode 11 to form a second electrode.

在本申请中,第二种太阳能电池的制备方法,包括如下步骤:In this application, the second method of preparing a solar cell includes the following steps:

步骤一:提供硅基底1。Step 1: Provide silicon substrate 1.

步骤二:在所述硅基底1的一侧表面(正面或前表面)上形成第二介质层9。Step 2: Form a second dielectric layer 9 on one side surface (front surface or front surface) of the silicon substrate 1 .

步骤三:在所述硅基底1的一侧表面上设置隧穿层2。Step 3: Provide a tunneling layer 2 on one side surface of the silicon substrate 1 .

具体地,采用热氧化方式在硅基底1的背面上生长形成所述隧穿层2。Specifically, the tunnel layer 2 is grown on the back side of the silicon substrate 1 using thermal oxidation.

步骤四:在所述隧穿层2背离所述硅基底1的一侧沉积第一掺杂多晶硅层3。Step 4: Deposit the first doped polysilicon layer 3 on the side of the tunnel layer 2 facing away from the silicon substrate 1 .

步骤五:在所述第一掺杂多晶硅层3背离所述隧穿层2的一侧沉积第一介质层4。Step 5: Deposit a first dielectric layer 4 on the side of the first doped polysilicon layer 3 facing away from the tunnel layer 2 .

具体地,在所述第一掺杂多晶硅层3的表面,间隔地烧蚀掉所述第一掺杂多晶硅层3和隧穿层2以露出所述硅基底1,从而形成多个间隔的第一区域。在所述第一掺杂多晶硅层的表面以及第一区域中第一掺杂多晶硅层的侧面、隧穿层的侧面以及硅基底的表沉积第一介质层。Specifically, on the surface of the first doped polysilicon layer 3, the first doped polysilicon layer 3 and the tunneling layer 2 are ablated at intervals to expose the silicon substrate 1, thereby forming a plurality of spaced-apart third layers. a region. A first dielectric layer is deposited on the surface of the first doped polysilicon layer and the side surfaces of the first doped polysilicon layer, the side surfaces of the tunnel layer and the surface of the silicon substrate in the first region.

进一步地,在所述第一掺杂多晶硅层3的表面,采用激光技术间隔地烧蚀掉所述第一掺杂多晶硅层3和隧穿层2以露出所述硅基底1,从而形成多个间隔的第一区域。Further, on the surface of the first doped polysilicon layer 3, laser technology is used to ablate the first doped polysilicon layer 3 and the tunneling layer 2 at intervals to expose the silicon substrate 1, thereby forming a plurality of The first area of the interval.

步骤六:在所述第一介质层4背离所述第一掺杂多晶硅层3的一侧间隔地印刷第一印刷电极浆料和第二印刷电极浆料,烧结形成第一印刷烧结层和第二印刷烧结层,所述第一印刷电极浆料烧穿所述第一介质层4进入所述第一掺杂多晶硅层3,并在所述第一掺杂多晶硅层3内与所述第一印刷烧结层的交界处形成晶态的第一金属纳米颗粒6,所述第二印刷电极浆料烧穿所述第一介质层4与所述硅基底1连接。Step 6: Print the first printed electrode paste and the second printed electrode paste at intervals on the side of the first dielectric layer 4 away from the first doped polysilicon layer 3, and sinter to form the first printed and sintered layer and the second printed electrode paste. Two printed sintering layers, the first printed electrode paste burns through the first dielectric layer 4 into the first doped polysilicon layer 3, and interacts with the first doped polysilicon layer 3 within the first doped polysilicon layer 3 Crystalline first metal nanoparticles 6 are formed at the junction of the printed and sintered layers, and the second printed electrode paste burns through the first dielectric layer 4 and is connected to the silicon substrate 1 .

具体地,在所述第一区域中的第一介质层4的表面上印刷第二印刷电极浆料,烧结形成第二印刷烧结层,所述第二印刷电极浆料烧穿所述第二介质层9与硅基底1连接。Specifically, a second printed electrode paste is printed on the surface of the first dielectric layer 4 in the first area and sintered to form a second printed sintering layer, and the second printed electrode paste burns through the second dielectric. Layer 9 is connected to silicon substrate 1 .

进一步地,当所述第二印刷电极浆料中包括金属银时,在所述硅基底1内,与所述第二印刷烧结层的交界处形成晶态的第二金属纳米颗粒。Further, when the second printed electrode paste includes metallic silver, crystalline second metal nanoparticles are formed in the silicon substrate 1 at the interface with the second printed sintering layer.

进一步地,当所述第二印刷电极浆料中包括金属铝时,在所述硅基底1内,与所述第二印刷烧结层的交界处形成共晶层13和局部背场19。Further, when the second printed electrode paste includes metallic aluminum, a eutectic layer 13 and a local back field 19 are formed in the silicon substrate 1 at the interface with the second printed sintering layer.

步骤七:在所述第一印刷烧结层的表面电镀沉积金属形成第一金属层,所述第一印刷烧结层与所述第一金属层构成所述第一主栅电极5。Step 7: Electroplating and depositing metal on the surface of the first printing and sintering layer to form a first metal layer. The first printing and sintering layer and the first metal layer constitute the first main gate electrode 5 .

步骤八:在所述第二印刷烧结层的表面电镀沉积金属形成第二金属层,所述第二印刷烧结层与所述第二金属层构成所述第二主栅电极11。Step 8: Electroplating and depositing metal on the surface of the second printed and sintered layer to form a second metal layer. The second printed and sintered layer and the second metal layer constitute the second main gate electrode 11 .

步骤九:在所述第一介质层4上设置多个贯穿所述第一介质层4的第一开口和第二开口,在所述第一开口和第二开口内分别电镀金属,通过热处理形成第一细栅电极7和第二细栅电极12,且每条所述第一细栅电极7与每条所述第一主栅电极5相交且电连接,所述第一细栅电极7和所述第一主栅电极5构成第一电极,每条所述第二细栅电极12与每条所述第二主栅电极11相交且电连接,所述第二细栅电极12和所述第二主栅电极11构成第二电极。Step 9: Provide a plurality of first openings and second openings penetrating the first dielectric layer 4 on the first dielectric layer 4, electroplating metal in the first openings and second openings, and forming them through heat treatment. The first fine gate electrode 7 and the second fine gate electrode 12, and each of the first fine gate electrodes 7 intersects and is electrically connected to each of the first main gate electrodes 5. The first fine gate electrodes 7 and The first main gate electrode 5 constitutes a first electrode, each of the second fine gate electrodes 12 intersects and is electrically connected to each of the second main gate electrodes 11 , and the second fine gate electrodes 12 and the The second main gate electrode 11 constitutes a second electrode.

具体地,在所述第一介质层4上设置有多个贯穿所述第一介质层4的第二开口,在所述第二开口内电镀金属,通过所述热处理形成第二细栅电极12,且所述第二细栅电极12与所述硅基底1连接;每条所述第二细栅电极12与每条所述第二主栅电极11相交且电连接,形成第二电极。Specifically, a plurality of second openings penetrating the first dielectric layer 4 are provided on the first dielectric layer 4 , metal is electroplated in the second openings, and the second fine gate electrode 12 is formed through the heat treatment. , and the second fine gate electrode 12 is connected to the silicon substrate 1; each of the second fine gate electrodes 12 intersects and is electrically connected to each of the second main gate electrodes 11 to form a second electrode.

步骤十:在所述硅基底1背离所述隧穿层2的一侧表面设置第二介质层9。Step 10: Provide a second dielectric layer 9 on the surface of the silicon substrate 1 facing away from the tunnel layer 2 .

本实施方式中的隧穿层2、第一掺杂多晶硅层3、第一介质层4、所述第一电极以及晶态的第一金属纳米颗粒6均可以参考前述针对第一种太阳能电池的制备方法的描述,即太阳能电池的隧穿层2、第一掺杂多晶硅层3、第一介质层4、所述第一电极以及晶态的第一金属纳米颗粒6的材料、结构、制备方法均可以参考在第一种太阳能电池及其制备方法部分描述的内容。In this embodiment, the tunneling layer 2 , the first doped polysilicon layer 3 , the first dielectric layer 4 , the first electrode and the crystalline first metal nanoparticles 6 can all refer to the aforementioned method for the first solar cell. Description of the preparation method, that is, the materials, structure, and preparation method of the tunneling layer 2 of the solar cell, the first doped polysilicon layer 3, the first dielectric layer 4, the first electrode, and the crystalline first metal nanoparticles 6 Reference may be made to the content described in the first solar cell and its preparation method.

《第三种太阳能电池》"The Third Solar Cell"

如图3所示,本申请提供的太阳能电池,第三种太阳能电池是第二种太阳能电池的变体。所述太阳能电池包括硅基底1、第一电极和第二电极,在所述硅基底1的正面设置有第二介质层9。在所述硅基底1的背面依次层叠设置的隧穿层2、第一掺杂多晶硅层3、第一介质层4,所述第一电极贯穿所述第一介质层4伸入所述第一掺杂多晶硅层3内;在所述第一掺杂多晶硅层3内,与所述第一电极的交界处具有晶态的第一金属纳米颗粒6。As shown in Figure 3, of the solar cells provided by this application, the third solar cell is a variation of the second solar cell. The solar cell includes a silicon substrate 1, a first electrode and a second electrode, and a second dielectric layer 9 is provided on the front side of the silicon substrate 1. A tunnel layer 2, a first doped polysilicon layer 3, and a first dielectric layer 4 are sequentially stacked on the back side of the silicon substrate 1. The first electrode penetrates the first dielectric layer 4 and extends into the first In the doped polysilicon layer 3; in the first doped polysilicon layer 3, there are crystalline first metal nanoparticles 6 at the interface with the first electrode.

具体地,所述第一电极包括多条第一主栅电极5和多条第一细栅电极7,每条所述第一主栅电极5与每条所述第一细栅电极7相交且连接;在所述第一掺杂多晶硅层3内与所述第一主栅电极5的交界处具有晶态的第一金属纳米颗粒6。Specifically, the first electrode includes a plurality of first main gate electrodes 5 and a plurality of first fine gate electrodes 7, each of the first main gate electrodes 5 intersects with each of the first fine gate electrodes 7 and Connection; There are crystalline first metal nanoparticles 6 at the interface between the first doped polysilicon layer 3 and the first main gate electrode 5 .

具体地,所述第二电极包括第二主栅电极11和第二细栅电极12,且每条所述第二主栅电极11和每条第二细栅电极12相交且连接。Specifically, the second electrode includes a second main gate electrode 11 and a second fine gate electrode 12, and each second main gate electrode 11 and each second fine gate electrode 12 intersect and are connected.

在所述隧穿层2的表面上,所述第一掺杂多晶硅层3包括多个间隔设置的第一掺杂多晶硅单元;相邻所述第一掺杂多晶硅单元之间的区域为第二区域;所述第二区域内设置有第二掺杂多晶硅单元,多个所述第二掺杂多晶硅单元构成第二掺杂多晶硅层20;所述第一介质层4覆盖所述第一掺杂多晶硅单元以及第二掺杂多晶硅单元的表面。On the surface of the tunnel layer 2, the first doped polysilicon layer 3 includes a plurality of first doped polysilicon units arranged at intervals; the area between the adjacent first doped polysilicon units is the second doped polysilicon unit. area; a second doped polysilicon unit is provided in the second area, and a plurality of the second doped polysilicon units constitute the second doped polysilicon layer 20; the first dielectric layer 4 covers the first doped polysilicon unit The surface of the polysilicon unit and the second doped polysilicon unit.

所述第一掺杂多晶硅单元与所述第二掺杂多晶硅单元之间具有区域,即所述第二掺杂多晶硅层20的宽度小于所述第二区域的宽度,所述第一掺杂多晶硅层3与所述第二掺杂多晶硅层20不接触。所述第二掺杂多晶硅层20位于所述第二区域的中部。There is a region between the first doped polysilicon unit and the second doped polysilicon unit, that is, the width of the second doped polysilicon layer 20 is smaller than the width of the second region, and the first doped polysilicon Layer 3 is not in contact with said second doped polysilicon layer 20 . The second doped polysilicon layer 20 is located in the middle of the second region.

所述第二主栅电极11贯穿所述第一介质层4与所述第二掺杂多晶硅层20连接。所述第二掺杂多晶硅层20与所述第一掺杂多晶硅层3的导电类型相反,所述第二主栅电极11与第一主栅电极5不同。The second main gate electrode 11 penetrates the first dielectric layer 4 and is connected to the second doped polysilicon layer 20 . The conductivity type of the second doped polysilicon layer 20 is opposite to that of the first doped polysilicon layer 3 , and the second main gate electrode 11 is different from the first main gate electrode 5 .

进一步地,当所述第二主栅电极11中包括金属银时,在所述第二掺杂多晶硅层20内,与所述第二主栅电极11的交界处形成晶态的第二金属纳米颗粒。Further, when the second main gate electrode 11 includes metallic silver, crystalline second metal nanometers are formed in the second doped polysilicon layer 20 at the interface with the second main gate electrode 11 Particles.

进一步地,当所述第二主栅电极11中包括金属铝时,在所述第二掺杂多晶硅层20内,与所述第二主栅电极11的交界处形成共晶层13和局部背场19。Further, when the second main gate electrode 11 includes metallic aluminum, a eutectic layer 13 and a local back layer are formed at the interface with the second main gate electrode 11 in the second doped polysilicon layer 20 . Field 19.

本实施方式中的隧穿层2、第一掺杂多晶硅层3、第一介质层4、所述第一电极以及晶态的第一金属纳米颗粒6均可以参考前述针对第一种太阳能电池的描述,即太阳能电池的隧穿层2、第一掺杂多晶硅层3、第一介质层4、所述第一电极以及晶态的第一金属纳米颗粒6的具体的结构和材料均可以参考在第一种太阳能电池部分描述的内容。In this embodiment, the tunneling layer 2 , the first doped polysilicon layer 3 , the first dielectric layer 4 , the first electrode and the crystalline first metal nanoparticles 6 can all refer to the aforementioned method for the first solar cell. For description, that is, the specific structures and materials of the tunneling layer 2 of the solar cell, the first doped polysilicon layer 3, the first dielectric layer 4, the first electrode and the crystalline first metal nanoparticles 6 can be referred to in The first type of solar cell is described in the section.

本实施例中的第二电极的材料与前述第二种太阳能电池中的第二电极的材料相同,可参考前述第二种太阳能电池部分描述的内容。The material of the second electrode in this embodiment is the same as the material of the second electrode in the aforementioned second solar cell. Please refer to the content described in the aforementioned second solar cell.

本实施方式中第二电极与所述第一电极在所述第一介质层4表面的位置关系如图4,可参考前述第二种太阳能电池部分描述的内容。In this embodiment, the positional relationship between the second electrode and the first electrode on the surface of the first dielectric layer 4 is shown in Figure 4 , and reference can be made to the content described in the second solar cell section.

在本申请中,第三种太阳能电池的制备方法,包括如下步骤:In this application, the third method for preparing solar cells includes the following steps:

步骤一:提供硅基底1。Step 1: Provide silicon substrate 1.

步骤二:在所述硅基底1的一侧表面(正面或前表面)上形成第二介质层9。Step 2: Form a second dielectric layer 9 on one side surface (front surface or front surface) of the silicon substrate 1 .

步骤三:在所述硅基底1的一侧表面(背面或后表面)上设置隧穿层2。Step 3: Set a tunneling layer 2 on one side surface (back surface or rear surface) of the silicon substrate 1 .

步骤四:在所述隧穿层2背离所述硅基底1的一侧依次间隔地沉积第一掺杂多晶硅单元和第二掺杂多晶硅单元,多个所述第一掺杂多晶硅单元构成所述第一掺杂多晶硅层3,多个所述第二掺杂多晶硅单元构成所述第二掺杂多晶硅层20。Step 4: Deposit first doped polysilicon units and second doped polysilicon units at intervals on the side of the tunnel layer 2 facing away from the silicon substrate 1. A plurality of the first doped polysilicon units constitute the A first doped polysilicon layer 3, and a plurality of second doped polysilicon units constitute the second doped polysilicon layer 20.

步骤五:在所述第一掺杂多晶硅层3以及第二掺杂多晶硅层20背离所述隧穿层2的一侧沉积第一介质层4。Step 5: Deposit a first dielectric layer 4 on the side of the first doped polysilicon layer 3 and the second doped polysilicon layer 20 away from the tunnel layer 2 .

步骤六:在所述第一介质层4背离所述第一掺杂多晶硅层3的一侧印刷第一印刷电极浆料,烧结形成第一印刷烧结层,所述第一印刷电极浆料烧穿所述第一介质层4与所述第一掺杂多晶硅层3连接,并在所述第一掺杂多晶硅层3内与所述第一印刷烧结层的交界处形成晶态的第一金属纳米颗粒6。Step 6: Print the first printed electrode slurry on the side of the first dielectric layer 4 away from the first doped polysilicon layer 3, and sinter to form a first printed and sintered layer. The first printed electrode slurry burns through The first dielectric layer 4 is connected to the first doped polysilicon layer 3 and forms crystalline first metal nanometers at the interface between the first doped polysilicon layer 3 and the first printing and sintering layer. Particle 6.

步骤七:在所述第一印刷烧结层的表面电镀沉积金属形成第一金属层,所述第一印刷烧结层与所述第一金属层构成所述第一主栅电极5。Step 7: Electroplating and depositing metal on the surface of the first printing and sintering layer to form a first metal layer. The first printing and sintering layer and the first metal layer constitute the first main gate electrode 5 .

步骤八:在所述第一介质层4背离所述第二掺杂多晶硅层20的一侧印刷第二印刷电极浆料,烧结形成第二印刷烧结层,所述第二印刷电极浆料烧穿所述第一介质层4伸入所述第二掺杂多晶硅层20连接。Step 8: Print a second printed electrode slurry on the side of the first dielectric layer 4 away from the second doped polysilicon layer 20, and sinter it to form a second printed sintered layer. The second printed electrode slurry burns through The first dielectric layer 4 extends into the second doped polysilicon layer 20 and is connected.

步骤九:在所述第二印刷烧结层的表面电镀沉积金属形成第二金属层,所述第二印刷烧结层与所述第二金属层构成所述第二主栅电极11。Step 9: Electroplating and depositing metal on the surface of the second printed and sintered layer to form a second metal layer. The second printed and sintered layer and the second metal layer constitute the second main gate electrode 11 .

步骤十:在所述第一介质层4上设置多个贯穿所述第一介质层4的第一开口和第二开口,在所述第一开口内电镀金属,在所述第二开口内电镀金属,通过热处理形成第一细栅电极7和第二细栅电极12,且每条所述第一细栅电极7与每条所述第一主栅电极5相交且电连接,每条所述第二细栅电极12与每条所述第二主栅电极11相交且电连接。Step 10: Provide a plurality of first openings and second openings penetrating the first dielectric layer 4 on the first dielectric layer 4, electroplating metal in the first openings, and electroplating metal in the second openings. Metal, the first fine gate electrode 7 and the second fine gate electrode 12 are formed through heat treatment, and each of the first fine gate electrodes 7 intersects and is electrically connected to each of the first main gate electrodes 5, and each of the first fine gate electrodes 7 intersects and is electrically connected to each of the first main gate electrodes 5. The second fine gate electrode 12 intersects and is electrically connected to each of the second main gate electrodes 11 .

具体地,在步骤四中,多个第一掺杂多晶硅单元等间距设置;多个第二掺杂多晶硅单元等间距设置。Specifically, in step four, a plurality of first doped polysilicon units are arranged at equal intervals; a plurality of second doped polysilicon units are arranged at equal intervals.

具体地,在步骤五中,所述第一介质层4沉积在所述第一掺杂多晶硅单元的表面和第二掺杂多晶硅单元的表面,即所述第一介质层4覆盖所述第一掺杂多晶硅单元和第二掺杂多晶硅单元的表面。Specifically, in step five, the first dielectric layer 4 is deposited on the surface of the first doped polysilicon unit and the surface of the second doped polysilicon unit, that is, the first dielectric layer 4 covers the first The surface of the doped polysilicon unit and the second doped polysilicon unit.

具体地,在步骤六中,在所述第一掺杂多晶硅层3对应的第一介质层4的表面上印刷第一印刷电极浆料,烧结形成第一印刷烧结层。Specifically, in step six, the first printed electrode paste is printed on the surface of the first dielectric layer 4 corresponding to the first doped polysilicon layer 3 and sintered to form a first printed and sintered layer.

具体地,在步骤八中,在所述第二掺杂多晶硅层20对应的第一介质层4的表面上印刷第二印刷电极浆料,烧结形成第二印刷烧结层。Specifically, in step eight, a second printed electrode paste is printed on the surface of the first dielectric layer 4 corresponding to the second doped polysilicon layer 20 and sintered to form a second printed and sintered layer.

在本申请中,第三种太阳能电池的制备方法,包括如下步骤:In this application, the third method for preparing solar cells includes the following steps:

步骤一:提供硅基底1。Step 1: Provide silicon substrate 1.

步骤二:在所述硅基底1的一侧表面(正面或前表面)上形成第二介质层9。Step 2: Form a second dielectric layer 9 on one side surface (front surface or front surface) of the silicon substrate 1 .

步骤三:在所述硅基底1的一侧表面上设置隧穿层2。Step 3: Provide a tunneling layer 2 on one side surface of the silicon substrate 1 .

步骤四:在所述隧穿层2背离所述硅基底1的一侧依次间隔地沉积第一掺杂多晶硅单元和第二掺杂多晶硅单元,多个所述第一掺杂多晶硅单元构成所述第一掺杂多晶硅层3,多个所述第二掺杂多晶硅单元构成所述第二掺杂多晶硅层20。Step 4: Deposit first doped polysilicon units and second doped polysilicon units at intervals on the side of the tunnel layer 2 facing away from the silicon substrate 1. A plurality of the first doped polysilicon units constitute the A first doped polysilicon layer 3, and a plurality of second doped polysilicon units constitute the second doped polysilicon layer 20.

具体地,多个第一掺杂多晶硅单元等间距设置;多个第二掺杂多晶硅单元等间距设置。Specifically, a plurality of first doped polysilicon units are arranged at equal intervals; a plurality of second doped polysilicon units are arranged at equal intervals.

步骤五:在所述第一掺杂多晶硅层3以及第二掺杂多晶硅层20背离所述隧穿层2的一侧沉积第一介质层4。Step 5: Deposit a first dielectric layer 4 on the side of the first doped polysilicon layer 3 and the second doped polysilicon layer 20 away from the tunnel layer 2 .

具体地,所述第一介质层4沉积在所述第一掺杂多晶硅单元的表面和第二掺杂多晶硅单元的表面,即所述第一介质层4覆盖所述第一掺杂多晶硅单元和第二掺杂多晶硅单元的表面。Specifically, the first dielectric layer 4 is deposited on the surface of the first doped polysilicon unit and the surface of the second doped polysilicon unit, that is, the first dielectric layer 4 covers the first doped polysilicon unit and the surface of the second doped polysilicon unit. The surface of the second doped polysilicon unit.

步骤六:在所述第一介质层4背离所述第一掺杂多晶硅层3的一侧印刷第一印刷电极浆料,烧结形成第一印刷烧结层,所述第一印刷电极浆料烧穿所述第一介质层4伸入所述第一掺杂多晶硅层3,并在所述第一掺杂多晶硅层3内与所述第一印刷烧结层的交界处形成晶态的第一金属纳米颗粒6。Step 6: Print the first printed electrode slurry on the side of the first dielectric layer 4 away from the first doped polysilicon layer 3, and sinter it to form a first printed sintered layer. The first printed electrode slurry burns through The first dielectric layer 4 extends into the first doped polysilicon layer 3 and forms crystalline first metal nanometers at the interface between the first doped polysilicon layer 3 and the first printing and sintering layer. Particle 6.

具体地,在所述第一掺杂多晶硅层3对应的第一介质层4的表面上印刷第一印刷电极浆料,烧结形成第一印刷烧结层。Specifically, the first printed electrode paste is printed on the surface of the first dielectric layer 4 corresponding to the first doped polysilicon layer 3 and sintered to form a first printed and fired layer.

步骤七:在所述第一印刷烧结层的表面电镀沉积金属形成第一金属层,所述第一印刷烧结层与所述第一金属层构成所述第一主栅电极5。Step 7: Electroplating and depositing metal on the surface of the first printing and sintering layer to form a first metal layer. The first printing and sintering layer and the first metal layer constitute the first main gate electrode 5 .

步骤八:在所述第一介质层4背离所述第二掺杂多晶硅层20的一侧印刷第二印刷电极浆料,烧结形成第二印刷烧结层,所述第二印刷电极浆料烧穿所述第一介质层4伸入所述第二掺杂多晶硅层20。Step 8: Print a second printed electrode slurry on the side of the first dielectric layer 4 away from the second doped polysilicon layer 20, and sinter it to form a second printed sintered layer. The second printed electrode slurry burns through The first dielectric layer 4 extends into the second doped polysilicon layer 20 .

具体地,在步骤八中,在所述第二掺杂多晶硅层20对应的第一介质层4的表面上印刷第二印刷电极浆料,烧结形成第二印刷烧结层。Specifically, in step eight, a second printed electrode paste is printed on the surface of the first dielectric layer 4 corresponding to the second doped polysilicon layer 20 and sintered to form a second printed and sintered layer.

步骤九:在所述第二印刷烧结层的表面电镀沉积金属形成第二金属层,所述第二印刷烧结层与所述第二金属层构成所述第二主栅电极11。Step 9: Electroplating and depositing metal on the surface of the second printed and sintered layer to form a second metal layer. The second printed and sintered layer and the second metal layer constitute the second main gate electrode 11 .

步骤十:在所述第一介质层4上设置多个贯穿所述第一介质层4的第一开口和第二开口,在所述第一开口内电镀金属,在所述第二开口内电镀金属,通过热处理形成第一细栅电极7和第二细栅电极12,且所述第一细栅电极7与所述第一主栅电极5连接,所述第二细栅电极12与所述第二主栅电极11连接。Step 10: Provide a plurality of first openings and second openings penetrating the first dielectric layer 4 on the first dielectric layer 4, electroplating metal in the first openings, and electroplating metal in the second openings. Metal, the first fine gate electrode 7 and the second fine gate electrode 12 are formed through heat treatment, and the first fine gate electrode 7 is connected to the first main gate electrode 5, and the second fine gate electrode 12 is connected to the first main gate electrode 5. The second main gate electrode 11 is connected.

本实施方式中的隧穿层2、第一掺杂多晶硅层3、第一介质层4、所述第一电极以及晶态的第一金属纳米颗粒6均可以参考前述针对第一种太阳能电池的制备方法的描述,即太阳能电池的隧穿层2、第一掺杂多晶硅层3、第一介质层4、所述第一电极以及晶态的第一金属纳米颗粒6的材料、结构、制备方法均可以参考在第一种太阳能电池及其制备方法部分描述的内容。In this embodiment, the tunneling layer 2 , the first doped polysilicon layer 3 , the first dielectric layer 4 , the first electrode and the crystalline first metal nanoparticles 6 can all refer to the aforementioned method for the first solar cell. Description of the preparation method, that is, the materials, structure, and preparation method of the tunneling layer 2 of the solar cell, the first doped polysilicon layer 3, the first dielectric layer 4, the first electrode, and the crystalline first metal nanoparticles 6 Reference may be made to the content described in the first solar cell and its preparation method.

实施例Example

下述实施例中所使用的实验方法如无特殊要求,均为常规方法。The experimental methods used in the following examples are all conventional methods unless there are special requirements.

下述实施例中所使用的材料、试剂等,如无特殊说明,均可从商业途径得到。The materials, reagents, etc. used in the following examples can all be obtained from commercial sources unless otherwise specified.

实施例1Example 1

本实施例中的太阳能电池为第一种太阳能电池,包括如下步骤:The solar cell in this embodiment is the first solar cell and includes the following steps:

步骤一:提供硅基底。Step 1: Provide silicon substrate.

通过对硅片进行清洗、碱制绒以及边缘刻蚀获得,制绒后在硅片正面(前表面)形成金字塔绒面,得到p型晶体硅层。It is obtained by cleaning, alkali texturing and edge etching of the silicon wafer. After texturing, a pyramid texture is formed on the front surface (front surface) of the silicon wafer to obtain a p-type crystalline silicon layer.

步骤二:形成掺杂层Step 2: Form the doped layer

所述硅基底正面的硼扩散形成掺杂层;Boron diffusion on the front side of the silicon substrate forms a doped layer;

其中的硼扩散可以为:利用硼源在高温条件下对硅基底进行扩散,通过该硼扩散,从而在正面形成掺杂层。The boron diffusion can be: using a boron source to diffuse the silicon substrate under high temperature conditions, and through the boron diffusion, a doping layer is formed on the front side.

所述硼扩散的硼源可以包括三溴化硼,所述硼扩散的扩散温度的取值范围为950-1000℃,扩散时间的取值范围为1.5-2.5小时。The boron source for boron diffusion may include boron tribromide, the diffusion temperature of the boron diffusion ranges from 950 to 1000°C, and the diffusion time ranges from 1.5 to 2.5 hours.

步骤三:形成隧穿层。Step 3: Form the tunneling layer.

在步骤二中硼扩散在所述硅基底的背面(后表面)还形成了背面硼扩散层,然后去除所述背面硼扩散层,并采用热氧化方式在硅基底的背面上生长一层隧穿层,所述隧穿层为氧化硅层,厚度为1nm。In step two, boron is diffused on the back surface (back surface) of the silicon substrate to form a back boron diffusion layer, and then the back boron diffusion layer is removed, and a thermal oxidation method is used to grow a tunneling layer on the back surface of the silicon substrate. layer, the tunneling layer is a silicon oxide layer with a thickness of 1 nm.

所述背面硼扩散层是利用湿法刻蚀设备去除的。The backside boron diffusion layer is removed using wet etching equipment.

具体的,可利用湿法刻蚀设备通过湿法刻蚀去除背面的背面硼扩散层,湿法刻蚀设备可实现单面清洗、刻蚀,刻蚀深度可以为1.5~3微米。Specifically, wet etching equipment can be used to remove the backside boron diffusion layer on the backside through wet etching. The wet etching equipment can achieve single-side cleaning and etching, and the etching depth can be 1.5 to 3 microns.

步骤四:形成第一掺杂多晶硅层Step 4: Form the first doped polysilicon layer

采用LPCVD通入硅烷与磷烷在所述隧穿层背离所述硅基底的一侧沉积原位掺磷的非晶硅薄膜,然后对非晶硅薄进行退火,其中退火温度控制在800~1000℃,退火时间控制在30分钟,从而使非晶硅晶化成多晶硅,形成第一掺杂多晶硅层。所述第一掺杂多晶硅层的厚度为100nm。Use LPCVD to pass silane and phosphorane to deposit an in-situ phosphorus-doped amorphous silicon film on the side of the tunnel layer away from the silicon substrate, and then anneal the amorphous silicon film, where the annealing temperature is controlled at 800 to 1000 ℃, and the annealing time is controlled at 30 minutes, thereby crystallizing amorphous silicon into polysilicon and forming the first doped polysilicon layer. The thickness of the first doped polysilicon layer is 100 nm.

在形成第一掺杂多晶硅层时,在所述掺杂层上形成了非晶硅薄膜,除去该非晶硅薄膜,具体为采用链式单面刻蚀设备,先采用HF溶液去除正面非晶硅薄膜表面的氧化层,在采用KOH溶液将绕镀在正面的非晶硅薄膜刻蚀去除。When forming the first doped polysilicon layer, an amorphous silicon film is formed on the doped layer. The amorphous silicon film is removed by using chain-type single-sided etching equipment and first using HF solution to remove the front amorphous silicon film. The oxide layer on the surface of the silicon film is removed by etching the amorphous silicon film around the front using KOH solution.

步骤五:形成第一介质层。Step 5: Form the first dielectric layer.

采用管式PECVD的方式在所述第一掺杂多晶硅层背离所述隧穿层的一侧沉积氮化硅膜,形成第一介质层,所述第一介质层的厚度为50nm。A silicon nitride film is deposited on the side of the first doped polysilicon layer away from the tunnel layer using tubular PECVD to form a first dielectric layer. The thickness of the first dielectric layer is 50 nm.

步骤六:形成第一电极Step 6: Form the first electrode

在所述第一介质层背离所述第一掺杂多晶硅层的一侧印刷第一印刷电极浆料,通过900℃的烧结温度,所述第一印刷电极浆料烧穿所述第一介质层与所述第一掺杂多晶硅层连接,并在所述第一掺杂多晶硅层内与所述第一印刷烧结层的交界处形成晶态的第一金属纳米颗粒。在所述第一印刷烧结层的表面电镀沉积电极金属形成第一金属层,所述第一印刷烧结层与所述第一金属层构成所述第一主栅电极。A first printed electrode paste is printed on the side of the first dielectric layer facing away from the first doped polysilicon layer. The first printed electrode paste burns through the first dielectric layer at a sintering temperature of 900°C. Connected to the first doped polysilicon layer, and forming crystalline first metal nanoparticles at the interface between the first doped polysilicon layer and the first printed sintering layer. An electrode metal is electroplated and deposited on the surface of the first printed and sintered layer to form a first metal layer, and the first printed and sintered layer and the first metal layer constitute the first main gate electrode.

在所述第一介质层上开设有多个贯穿所述第一介质层的第一开口,在所述第一开口内电镀第一细栅电极金属,通过250℃的热处理形成第一细栅电极,所述第一细栅电极与所述第一掺杂多晶硅层连接。所述第一细栅电极所在的直线与所述第一主栅电极所在的直线垂直,且每条所述第一细栅电极与每条所述第一主栅电极相交且电连接,所述第一细栅电极和所述第一主栅电极构成第一电极。A plurality of first openings penetrating the first dielectric layer are opened on the first dielectric layer, a first fine gate electrode metal is electroplated in the first openings, and the first fine gate electrode is formed by heat treatment at 250°C. , the first fine gate electrode is connected to the first doped polysilicon layer. The straight line where the first fine gate electrode is located is perpendicular to the straight line where the first main gate electrode is located, and each of the first fine gate electrodes intersects and is electrically connected to each of the first main gate electrodes, and the The first fine gate electrode and the first main gate electrode constitute a first electrode.

所述第一主栅电极包括多个第一连接点、多个第一连接栅线以及多个第一辅助电极,所述第一连接点与所述第一连接栅线依次连接并延伸,所述第一辅助电极位于所述第一主栅电极与所述第一细栅电极的连接处,所述第一辅助电极的一端与所述第一连接点或第一连接栅线连接,其另一端与所述第一细栅线连接。所述第一辅助电极呈弧形,所述第一辅助电极的宽度沿远离所述第一连接点或第一连接栅线的方向呈减小的趋势。The first main gate electrode includes a plurality of first connection points, a plurality of first connection gate lines and a plurality of first auxiliary electrodes. The first connection points and the first connection gate lines are connected and extend in sequence, so The first auxiliary electrode is located at the connection between the first main gate electrode and the first fine gate electrode. One end of the first auxiliary electrode is connected to the first connection point or the first connection gate line, and the other end of the first auxiliary electrode is connected to the first connection point or the first connection gate line. One end is connected to the first thin grid line. The first auxiliary electrode is in an arc shape, and the width of the first auxiliary electrode tends to decrease in a direction away from the first connection point or the first connection grid line.

所述第一印刷电极浆料为Ag浆料。The first printed electrode paste is Ag paste.

所述晶态的第一金属纳米颗粒包括银。The crystalline first metal nanoparticles include silver.

形成所述第一金属层为Ni。The first metal layer is formed of Ni.

所述第一细栅电极为Ni。The first fine gate electrode is Ni.

所述第一主栅电极的高度为10微米。宽度为100微米。The height of the first main gate electrode is 10 microns. Width is 100 microns.

所述第一细栅电极的高度为5微米。宽度为10微米。The height of the first fine gate electrode is 5 microns. Width is 10 microns.

步骤七:形成第二介质层Step 7: Form the second dielectric layer

采用管式PECVD的方式在所述掺杂层背离所述隧穿层的一侧表面沉积氮化硅膜,形成第二介质层,所述第二介质层的厚度为50nm。A silicon nitride film is deposited on the surface of the side of the doped layer away from the tunnel layer using tube PECVD to form a second dielectric layer. The thickness of the second dielectric layer is 50 nm.

步骤八:形成抗反射层Step 8: Form anti-reflective layer

在所述第二介质层背离所述掺杂层的一侧沉积抗反射层。An anti-reflective layer is deposited on a side of the second dielectric layer facing away from the doped layer.

所述抗反射层为氧化铝层和氮化硅层结合在一起,氧化铝层的厚度为10nm,氮化硅的厚度为60nm。The anti-reflection layer is an aluminum oxide layer and a silicon nitride layer combined together. The thickness of the aluminum oxide layer is 10 nm and the thickness of the silicon nitride is 60 nm.

步骤九:形成第二电极Step 9: Form the second electrode

在所述抗反射层的一侧表面印刷第二印刷电极浆料,通过所述900℃的烧结温度,所述第二印刷电极浆料烧穿所述抗反射层和所述第二介质层伸入所述掺杂层连接,并在所述掺杂层内与所述第二印刷烧结层的交界处形成晶态的第二金属纳米颗粒。在所述第二印刷烧结层的表面电镀沉积金属形成第二金属层,所述第二印刷烧结层与所述第二金属层构成所述第二主栅电极。A second printed electrode paste is printed on one side of the anti-reflective layer. At the sintering temperature of 900°C, the second printed electrode paste burns through the anti-reflective layer and the second dielectric layer. The doping layer is connected, and crystalline second metal nanoparticles are formed at the interface between the doping layer and the second printing and sintering layer. Metal is electroplated and deposited on the surface of the second printed and sintered layer to form a second metal layer, and the second printed and sintered layer and the second metal layer constitute the second main gate electrode.

在所述抗反射层上开设有贯穿所述抗反射层的第三开口,在所述第二介质层上开设有多个贯穿所述第二介质层的第二开口,且所述第二开口与所述第三开口贯通。在所述第二开口以及第三开口内电镀,通过250℃的热处理形成第二细栅电极,所述第二细栅电极与所述掺杂层连接。所述第二细栅电极所在的直线与所述第二主栅电极所在的直线垂直,且每条所述第二细栅电极与每条所述第二主栅电极相交且电连接,所述第二细栅电极和所述第二主栅电极构成第二电极。A third opening penetrating the anti-reflective layer is formed on the anti-reflective layer, a plurality of second openings penetrating the second dielectric layer is formed on the second dielectric layer, and the second openings It is connected with the third opening. Electroplating is performed in the second opening and the third opening, and a second fine gate electrode is formed through heat treatment at 250° C., and the second fine gate electrode is connected to the doped layer. The straight line where the second fine gate electrode is located is perpendicular to the straight line where the second main gate electrode is located, and each of the second fine gate electrodes intersects and is electrically connected to each of the second main gate electrodes, and the The second fine gate electrode and the second main gate electrode constitute a second electrode.

所述第二印刷电极浆料为Ag浆料。The second printed electrode paste is Ag paste.

所述晶态的第二金属纳米颗粒包括银。The crystalline second metal nanoparticles include silver.

形成所述第二金属层为Ni。The second metal layer is formed of Ni.

所述第二细栅电极为Ni。The second fine gate electrode is Ni.

所述第二主栅电极的高度为10微米。宽度为100微米。The height of the second main gate electrode is 10 microns. Width is 100 microns.

所述第二细栅电极的高度为5微米。宽度为10-微米。The height of the second thin gate electrode is 5 microns. Width is 10-micron.

实施例2Example 2

本实施例中的太阳能电池为第二种太阳能电池,包括如下步骤:The solar cell in this embodiment is the second type of solar cell and includes the following steps:

步骤一:提供硅基底(具体工艺可参考实施例1)Step 1: Provide a silicon substrate (for specific processes, please refer to Embodiment 1)

步骤二:形成第二介质层Step 2: Form the second dielectric layer

氧化所述硅基底的正面,在所述硅基底的正面形成氧化硅层,即所述氧化硅层为第二介质层。The front surface of the silicon substrate is oxidized to form a silicon oxide layer on the front surface of the silicon substrate, that is, the silicon oxide layer is the second dielectric layer.

步骤三:形成隧穿层(具体工艺可参考实施例1)Step 3: Form a tunneling layer (for specific processes, please refer to Embodiment 1)

步骤四:形成第一掺杂多晶硅层(具体工艺可参考实施例1)Step 4: Form the first doped polysilicon layer (for specific processes, please refer to Embodiment 1)

步骤五:形成第一介质层Step 5: Form the first dielectric layer

在所述第一掺杂多晶硅层表面,采用激光间隔地烧蚀掉所述第一掺杂多晶硅层和隧穿层以露出所述硅基底,从而形成多个间隔的第一区域。On the surface of the first doped polysilicon layer, a laser is used to ablate the first doped polysilicon layer and the tunneling layer at intervals to expose the silicon substrate, thereby forming a plurality of spaced first regions.

在所述第一掺杂多晶硅层的表面以及第一区域中第一掺杂多晶硅层的侧面、隧穿层的侧面以及硅基底的表沉积第一介质层(具体沉积工艺可参考实施例1)。A first dielectric layer is deposited on the surface of the first doped polysilicon layer and the side of the first doped polysilicon layer, the side of the tunnel layer and the surface of the silicon substrate in the first region (for specific deposition processes, please refer to Embodiment 1) .

步骤六:形成第一电极和第二电极Step 6: Form the first electrode and the second electrode

在所述第一介质层背离所述第一掺杂多晶硅层的一侧间隔地印刷第一印刷电极浆料和第二印刷电极浆料,所述第一印刷电极浆料印刷在所述第一掺杂多晶硅层对应在第一介质层上所在区域,所述第二印刷电极浆料印刷在第一区域对应的第一介质层上所在的区域。然后通过800℃的烧结,形成第一印刷烧结层和第二印刷烧结层。所述第一印刷电极浆料烧穿所述第一介质层伸入所述第一掺杂多晶硅层,并在所述第一掺杂多晶硅层内与所述第一印刷烧结层的交界处形成晶态的第一金属纳米颗粒,所述第二印刷电极浆料烧穿所述第一介质层伸入所述硅基底,并在所述硅基底内靠近所述第二印刷烧结层的交界处形成共晶层和局部背场。A first printed electrode paste and a second printed electrode paste are printed at intervals on the side of the first dielectric layer away from the first doped polysilicon layer, and the first printed electrode paste is printed on the first The doped polysilicon layer corresponds to the area on the first dielectric layer, and the second printed electrode paste is printed on the area of the first dielectric layer corresponding to the first area. Then, through sintering at 800° C., a first printed and fired layer and a second printed and fired layer were formed. The first printed electrode paste burns through the first dielectric layer, extends into the first doped polysilicon layer, and is formed at the interface between the first doped polysilicon layer and the first printed sintering layer. Crystalline first metal nanoparticles, the second printed electrode paste burns through the first dielectric layer, extends into the silicon substrate, and is close to the junction of the second printed sintering layer in the silicon substrate Formation of eutectic layer and local back field.

在所述第一印刷烧结层的表面电镀沉积金属形成第一金属层,所述第一印刷烧结层与所述第一金属层构成所述第一主栅电极。Metal is electroplated and deposited on the surface of the first printing and sintering layer to form a first metal layer, and the first printing and sintering layer and the first metal layer constitute the first main gate electrode.

在所述第二印刷烧结层的表面电镀沉积金属形成第二金属层,所述第二印刷烧结层与所述第二金属层构成所述第二主栅电极。Metal is electroplated and deposited on the surface of the second printed and sintered layer to form a second metal layer, and the second printed and sintered layer and the second metal layer constitute the second main gate electrode.

在所述第一介质层上开设多个贯穿所述第一介质层的第一开口和第二开口,在所述第一开口和第二开口内分别电镀金属,通过250℃的热处理形成第一细栅电极和第二细栅电极,且每条所述第一细栅电极与每条所述第一主栅电极相交且电连接,所述第一细栅电极和所述第一主栅电极构成第一电极,每条所述第二细栅电极与每条所述第二主栅电极相交且电连接,所述第二细栅电极和所述第二主栅电极构成第二电极。A plurality of first openings and second openings penetrating the first dielectric layer are opened on the first dielectric layer, metal is electroplated in the first opening and the second opening respectively, and the first opening is formed by heat treatment at 250°C. a fine gate electrode and a second fine gate electrode, and each of the first fine gate electrodes intersects and is electrically connected to each of the first main gate electrodes; the first fine gate electrode and the first main gate electrode Constituting a first electrode, each second fine gate electrode intersects and is electrically connected to each second main gate electrode, and the second fine gate electrode and the second main gate electrode constitute a second electrode.

所述第一主栅电极包括多个第一连接点和多个第一连接栅线,相邻两个所述第一连接点通过所述第一连接栅线连接,即所述第二连接点与所述第二连接栅线依次连接并延伸,形成所述第一主栅电极;多条所述第一主栅电极平行等间距设置。The first main gate electrode includes a plurality of first connection points and a plurality of first connection grid lines. Two adjacent first connection points are connected through the first connection grid lines, that is, the second connection point The first main gate electrodes are sequentially connected and extended with the second connection gate lines to form the first main gate electrodes; a plurality of the first main gate electrodes are arranged in parallel and at equal intervals.

所述第二主栅电极包括多个第二连接点和多个第二连接栅线,相邻两个所述第二连接点通过所述第二连接栅线连接,即所述第二连接点与所述第二连接栅线依次连接并延伸,形成所述第二主栅电极;多条所述第二主栅电极平行等间距设置。The second main gate electrode includes a plurality of second connection points and a plurality of second connection grid lines. Two adjacent second connection points are connected by the second connection grid lines, that is, the second connection points The second connection gate lines are connected and extended in sequence to form the second main gate electrode; a plurality of the second main gate electrodes are arranged in parallel and at equal intervals.

所述第二细栅电极与所述第一细栅电极彼此交替平行。所述第二主栅电极与所述第一主栅电极彼此交替平行。The second fine gate electrodes and the first fine gate electrodes are alternately parallel to each other. The second main gate electrodes and the first main gate electrodes are alternately parallel to each other.

多条所述第一细栅电极等间距设置,所述第一细栅电极包括多条被所述第一主栅电极和第二主栅电极间隔开的第一细栅线,且所述第一细栅线的一端与所述第一主栅电极连接,另一端被所述第二主栅电极间隔开。所述第一细栅电极与所述第一主栅电极垂直相交。A plurality of first fine gate electrodes are arranged at equal intervals, and the first fine gate electrode includes a plurality of first fine gate lines spaced apart by the first main gate electrode and the second main gate electrode, and the first fine gate electrode One end of a thin gate line is connected to the first main gate electrode, and the other end is separated by the second main gate electrode. The first fine gate electrode vertically intersects the first main gate electrode.

多条所述第二细栅电极等间距设置,所述第二细栅电极包括多条被所述第一主栅电极和第二主栅电极间隔开的第二细栅线,且所述第二细栅线的一端与所述第二主栅电极连接,另一端被所述第一主栅电极间隔开。所述第二细栅电极与所述第二主栅电极垂直相交。A plurality of second fine gate electrodes are arranged at equal intervals, the second fine gate electrode includes a plurality of second fine gate lines spaced apart by the first main gate electrode and the second main gate electrode, and the second fine gate electrode One end of the two thin gate lines is connected to the second main gate electrode, and the other end is separated by the first main gate electrode. The second fine gate electrode vertically intersects the second main gate electrode.

所述第一印刷电极浆料为Ag浆料。The first printed electrode paste is Ag paste.

所述晶态的第一金属纳米颗粒包括银。The crystalline first metal nanoparticles include silver.

形成所述第一金属层为Cu。The first metal layer is made of Cu.

所述第一细栅电极为Cu。The first fine gate electrode is Cu.

所述第一主栅电极的高度为30微米。宽度为1000微米。The height of the first main gate electrode is 30 microns. Width is 1000 microns.

所述第一细栅电极的高度为15微米。宽度为40微米。The height of the first fine gate electrode is 15 microns. Width is 40 microns.

所述第二印刷电极浆料为Ag浆料。The second printed electrode paste is Ag paste.

形成所述第二金属层为Cu。The second metal layer is formed of Cu.

所述第二细栅电极为Cu。The second fine gate electrode is Cu.

所述第二主栅电极的高度为30微米,宽度为1000微米。The second main gate electrode has a height of 30 microns and a width of 1000 microns.

所述第二细栅电极的高度为15微米,宽度为40微米。The second thin gate electrode has a height of 15 microns and a width of 40 microns.

实施例3Example 3

在本申请中,第三种太阳能电池的制备方法,包括如下步骤:In this application, the third method for preparing solar cells includes the following steps:

步骤一:提供硅基底(具体工艺可参考实施例1)。Step 1: Provide a silicon substrate (for specific processes, please refer to Embodiment 1).

步骤二:形成第二介质层Step 2: Form the second dielectric layer

氧化所述硅基底的正面,在所述硅基底的正面形成氧化硅层,即所述氧化硅层为第二介质层。The front surface of the silicon substrate is oxidized to form a silicon oxide layer on the front surface of the silicon substrate, that is, the silicon oxide layer is the second dielectric layer.

步骤三:在所述硅基底的一侧表面上设置隧穿层(具体工艺可参考实施例1)。Step 3: Provide a tunneling layer on one side surface of the silicon substrate (for specific processes, please refer to Embodiment 1).

步骤四:形成第一掺杂多晶硅层和第二掺杂多晶硅层Step 4: Form the first doped polysilicon layer and the second doped polysilicon layer

在所述隧穿层背离所述硅基底的一侧依次间隔地沉积第一掺杂多晶硅单元和第二掺杂多晶硅单元。First doped polysilicon units and second doped polysilicon units are sequentially deposited on a side of the tunnel layer facing away from the silicon substrate.

多个所述第一掺杂多晶硅单元构成所述第一掺杂多晶硅层;多个所述第二掺杂多晶硅单元构成所述第二掺杂多晶硅层。A plurality of the first doped polysilicon units constitute the first doped polysilicon layer; a plurality of the second doped polysilicon units constitute the second doped polysilicon layer.

所述第一掺杂多晶硅层的宽度为600nm,所述第二掺杂多晶硅层的宽度为1200nm。The width of the first doped polysilicon layer is 600 nm, and the width of the second doped polysilicon layer is 1200 nm.

所述第一掺杂多晶硅层和所述第二掺杂多晶硅层的高度相同,均为250nm。The first doped polysilicon layer and the second doped polysilicon layer have the same height, which is 250 nm.

步骤五:形成第一介质层(具体工艺可参考实施例1)Step 5: Form the first dielectric layer (for specific processes, please refer to Embodiment 1)

在所述第一掺杂多晶硅层以及第二掺杂多晶硅层背离所述隧穿层的一侧表面沉积第一介质层。所述第一介质层覆盖所述第一掺杂多晶硅单元和第二掺杂多晶硅单元的表面。A first dielectric layer is deposited on a side surface of the first doped polysilicon layer and the second doped polysilicon layer facing away from the tunnel layer. The first dielectric layer covers surfaces of the first doped polysilicon unit and the second doped polysilicon unit.

步骤六:形成第一电极(具体工艺可参考实施例1)Step 6: Form the first electrode (for specific processes, please refer to Embodiment 1)

在所述第一介质层背离所述第一掺杂多晶硅层的一侧印刷第一印刷电极浆料,通过900℃的烧结形成第一印刷烧结层,所述第一印刷电极浆料烧穿所述第一介质层伸入所述第一掺杂多晶硅层,并在所述第一掺杂多晶硅层内与所述第一印刷烧结层的交界处形成晶态的第一金属纳米颗粒。在所述第一印刷烧结层的表面电镀沉积金属形成第一金属层,所述第一印刷烧结层与所述第一金属层构成所述第一主栅电极。A first printed electrode slurry is printed on the side of the first dielectric layer away from the first doped polysilicon layer, and a first printed sintered layer is formed by sintering at 900°C. The first printed electrode slurry burns through all The first dielectric layer extends into the first doped polysilicon layer, and forms crystalline first metal nanoparticles at the interface between the first doped polysilicon layer and the first printing and sintering layer. Metal is electroplated and deposited on the surface of the first printing and sintering layer to form a first metal layer, and the first printing and sintering layer and the first metal layer constitute the first main gate electrode.

在所述第一介质层上设置多个贯穿所述第一介质层的第一开口,所述第一开口与所述第一掺杂多晶硅单元对应,在所述第一开口内电镀第一细栅电极浆料,通过300℃的热处理形成第一细栅电极。每条所述第一细栅电极与每条所述第一主栅电极相交且电连接。A plurality of first openings penetrating the first dielectric layer are provided on the first dielectric layer, the first openings correspond to the first doped polysilicon units, and first fine particles are electroplated in the first openings. The gate electrode slurry is heat treated at 300°C to form the first fine gate electrode. Each of the first fine gate electrodes intersects and is electrically connected to each of the first main gate electrodes.

所述第一印刷电极浆料为Ag浆料。The first printed electrode paste is Ag paste.

所述晶态的第一金属纳米颗粒包括银。The crystalline first metal nanoparticles include silver.

形成所述第一金属层为/Sn。The first metal layer is /Sn.

所述第一细栅电极为Sn。The first fine gate electrode is Sn.

所述第一主栅电极的高度为30微米。宽度为1000微米。The height of the first main gate electrode is 30 microns. Width is 1000 microns.

所述第一细栅电极的高度为5微米。宽度为10微米。The height of the first fine gate electrode is 5 microns. Width is 10 microns.

步骤七:形成第二电极Step 7: Form the second electrode

在所述第一介质层背离所述第二掺杂多晶硅层的一侧表面印刷第二印刷电极浆料,通过900℃的烧结形成第二印刷烧结层,所述第二印刷电极浆料烧穿所述第一介质层与所述第二掺杂多晶硅层连接。A second printed electrode slurry is printed on the side surface of the first dielectric layer facing away from the second doped polysilicon layer, and a second printed sintered layer is formed by sintering at 900°C. The second printed electrode slurry burns through The first dielectric layer is connected to the second doped polysilicon layer.

在所述第二印刷烧结层的表面电镀沉积金属形成第二金属层,所述第二印刷烧结层与所述第二金属层构成所述第二主栅电极。Metal is electroplated and deposited on the surface of the second printed and sintered layer to form a second metal layer, and the second printed and sintered layer and the second metal layer constitute the second main gate electrode.

在所述第一介质层上设置多个贯穿所述第一介质层的第二开口,所述第二开口与所述第二掺杂多晶硅单元对应,在所述第二开口内电镀第二细栅电极浆料,通过300℃的热处理形成第二细栅电极。每条所述第二细栅电极与每条所述第二主栅电极相交且电连接。A plurality of second openings penetrating the first dielectric layer are provided on the first dielectric layer. The second openings correspond to the second doped polysilicon units. A second fine layer is electroplated in the second openings. The gate electrode paste is heat treated at 300°C to form a second fine gate electrode. Each of the second fine gate electrodes intersects and is electrically connected to each of the second main gate electrodes.

所述第二印刷电极浆料为Ag浆料。The second printed electrode paste is Ag paste.

形成所述第二金属层为Sn。The second metal layer is made of Sn.

所述第二细栅电极为Sn。The second fine gate electrode is Sn.

所述第二主栅电极的高度为30微米,宽度为100微米。The second main gate electrode has a height of 30 microns and a width of 100 microns.

所述第二细栅电极的高度为15微米,宽度为40微米。The second thin gate electrode has a height of 15 microns and a width of 40 microns.

本实施方式中第一电极以及第二电极在第一介质层表面的排布方式可参考实施例2。In this embodiment, the arrangement of the first electrode and the second electrode on the surface of the first dielectric layer may refer to Embodiment 2.

尽管以上结合对本申请的实施方案进行了描述,但本申请并不局限于上述的具体实施方案和应用领域,上述的具体实施方案仅仅是示意性的、指导性的,而不是限制性的。本领域的普通技术人员在本说明书的启示下和在不脱离本申请权利要求所保护的范围的情况下,还可以做出很多种的形式,这些均属于本申请保护之列。Although the embodiments of the present application have been described above, the present application is not limited to the above-mentioned specific embodiments and application fields. The above-mentioned specific embodiments are only illustrative and instructive, rather than restrictive. Under the inspiration of this description and without departing from the scope of protection of the claims of this application, those of ordinary skill in the art can also make many forms, which all belong to the scope of protection of this application.

Claims (22)

1. A solar cell, which is characterized by comprising a silicon substrate, a tunneling layer, a first doped polysilicon layer, a first dielectric layer and a first electrode;
the tunneling layer, the first doped polysilicon layer and the first dielectric layer are sequentially laminated on one side surface of the silicon substrate;
the first electrode comprises a first main gate electrode and a first thin gate electrode, and the first thin gate electrode is intersected with and electrically connected with the first main gate electrode;
the first main gate electrode burns through the first dielectric layer and stretches into the first doped polysilicon layer; a first metal nano particle with a crystalline state at the junction of the first doped polysilicon layer and the first main gate electrode;
a plurality of first openings penetrating through the first dielectric layer are formed in the first dielectric layer; the first thin gate electrode is electroplated on the first doped polysilicon layer exposed by the first opening.
2. The solar cell of claim 1, wherein the crystalline first metal nanoparticles comprise the same metal as the metal material in the first main gate electrode;
the crystalline first metal nano particles are discretely distributed in island shapes at the junction of the first doped polysilicon layer and the first main gate electrode.
3. The solar cell of claim 1, wherein the crystalline first metal nanoparticle comprises metallic silver.
4. The solar cell of claim 1, wherein the first main gate electrode comprises a first printed sintered layer and a first metal layer disposed in a stack,
the first printed sintering layer penetrates through the first dielectric layer and stretches into the first doped polycrystalline silicon layer, and crystalline first metal nano particles are arranged at the junction of the first doped polycrystalline silicon layer and the first printed sintering layer;
the first metal layer is arranged on the surface of one side of the first printing sintering layer, which is away from the first doped polysilicon layer.
5. The solar cell of claim 1, wherein the first main gate electrode further comprises a first auxiliary electrode located at an intersection of the first main gate electrode and the first thin gate electrode; the first auxiliary electrode gradually decreases in cross-sectional area in a direction perpendicular to the silicon substrate in a direction away from the first main gate electrode and toward the first thin gate electrode.
6. The solar cell of any one of claims 1-5, further comprising a second electrode of opposite polarity to the first electrode, the second electrode comprising a second main gate electrode and a second thin gate electrode intersecting and electrically connected to the second main gate electrode;
The second main gate electrode further comprises a second auxiliary electrode, and the second auxiliary electrode is positioned at the intersection of the second main gate electrode and the second fine gate electrode; the second auxiliary electrode gradually decreases in cross-sectional area in a direction perpendicular to the silicon substrate in a direction away from the second main gate electrode and toward the second thin gate electrode.
7. The solar cell according to claim 6, wherein a doped layer is formed on a surface of a side of the silicon substrate facing away from the tunneling layer, and a second dielectric layer is disposed on a surface of the doped layer;
the second main gate electrode burns through the second dielectric layer and stretches into the doping layer;
a second metal nanoparticle having a crystalline state at the junction of the doped layer and the second main gate electrode; or a eutectic layer and a local back field are arranged at the junction of the doped layer and the second main gate electrode.
8. The solar cell of claim 7, wherein the second main gate electrode comprises metallic aluminum or metallic silver;
when the second main gate electrode comprises metal aluminum, a eutectic layer and a local back field are arranged at the junction of the doped layer and the second main gate electrode;
When the second main gate electrode comprises metallic silver, second metal nano particles with crystalline state are arranged at the junction with the second main gate electrode in the doping layer; the crystalline second metal nano particles are discretely distributed at the junction of the doped layer and the second main gate electrode in an island shape.
9. The solar cell of claim 7 wherein the second main gate electrode comprises a second printed sintered layer and a second metal layer disposed in a stack,
the second printed sintering layer penetrates through the second medium layer and stretches into the doping layer, and the junction between the second printed sintering layer and the second printed sintering layer in the doping layer is provided with the crystalline second metal nano particles;
the second metal layer is arranged on the surface of one side of the second printing sintering layer, which is away from the doped layer.
10. The solar cell of any of claims 6, wherein the first electrode and the second electrode are on the same side of the silicon substrate.
11. The solar cell of claim 10, wherein the second thin-gate electrode and the first thin-gate electrode are alternately parallel to each other;
the second main gate electrode and the first main gate electrode are alternately parallel to each other.
12. The solar cell according to claim 10 or 11, wherein the tunneling layer comprises a plurality of tunneling cells arranged at intervals on the surface of the silicon substrate,
the area between adjacent tunneling units is a first area,
the first dielectric layer covers the surface of the first doped polysilicon layer and the side surface of the first doped polysilicon layer, the side surface of the tunneling unit and the surface of the silicon substrate in the first region.
13. The solar cell of claim 12, wherein the second main gate electrode is connected to the silicon substrate through a first dielectric layer in the first region.
14. The solar cell of claim 10 or 11, wherein the first doped polysilicon layer comprises a plurality of first doped polysilicon units disposed at intervals on a surface of the tunneling layer;
the area between the adjacent first doped polysilicon units is a second area;
a second doped polysilicon unit is arranged in the second region, and a plurality of second doped polysilicon units form a second doped polysilicon layer;
the first dielectric layer covers the surfaces of the first doped polysilicon unit and the second doped polysilicon unit;
The second main gate electrode penetrates through the first dielectric layer and is connected with the second doped polysilicon layer.
15. A method of manufacturing a solar cell, comprising the steps of:
providing a silicon substrate;
providing a tunneling layer on one side surface of the silicon substrate;
depositing a first doped polysilicon layer on a side of the tunneling layer facing away from the silicon substrate;
depositing a first dielectric layer on one side of the first doped polysilicon layer away from the tunneling layer;
printing a first printing electrode slurry on one side of the first medium layer, which is away from the first doped polysilicon layer, and sintering the first printing electrode slurry to enable the first printing electrode slurry to burn through the first medium layer to form a first printing sintering layer connected with the first doped polysilicon layer, and forming crystalline first metal nano particles at the junction of the first doped polysilicon layer and the first printing sintering layer;
a plurality of first openings penetrating through the first dielectric layer are formed in the first dielectric layer;
electroplating and depositing metal on the surface of the first printed sintering layer to form a first metal layer, wherein the first printed sintering layer and the first metal layer form the first main gate electrode;
A metal is electrodeposited on a silicon substrate having a first opening.
16. The method of claim 15, further comprising heat treating the deposited metal; the sintering temperature is 750-900 ℃, and the heat treatment temperature is 250-500 ℃.
17. The method of claim 15 or 16, wherein a second dielectric layer is deposited on a surface of the silicon substrate on a side facing away from the tunneling layer;
ablating the first doped polysilicon layer and the tunneling layer at intervals on the surface of the first doped polysilicon layer to expose the silicon substrate, thereby forming a first region;
the first dielectric layer is deposited on the surface of the first doped polysilicon layer and the side surface of the first doped polysilicon layer, the side surface of the tunneling unit and the surface of the silicon substrate in the first region.
18. The method of claim 17, wherein a second printed electrode paste is printed on a surface of the first dielectric layer in the first region, a second printed sintered layer is formed by the sintering, the second printed electrode paste is sintered through the second dielectric layer to connect with a doped layer, and crystalline second metal nanoparticles or eutectic layers and a local back field are formed at a junction of the doped layer near the second printed sintered layer;
Electroplating and depositing metal on the surface of the second printing sintering layer to form a second metal layer;
the second printed sintered layer and the second metal layer form a second main gate electrode.
19. The method of claim 18, wherein a plurality of second openings are provided through the first dielectric layer on the first dielectric layer, a metal is deposited by electroplating in the second openings, a second thin gate electrode is formed by the heat treatment, and the second thin gate electrode is connected to the silicon substrate;
the second thin gate electrode intersects and is electrically connected with the second main gate electrode to form a second electrode.
20. The method of claim 15 or 16, wherein first and second doped polysilicon units are sequentially deposited at intervals on the surface of the tunneling layer,
a plurality of the first doped polysilicon units form the first doped polysilicon layer;
a plurality of the second doped polysilicon units form the second doped polysilicon layer;
the first dielectric layer is deposited on the surface of the first doped polysilicon unit and the surface of the second doped polysilicon unit.
21. The method of claim 20, wherein a second printed electrode paste is printed on a surface of the first dielectric layer corresponding to the second doped polysilicon layer and sintered to form a second printed sintered layer, the second printed electrode paste being sintered through the first dielectric layer and connected to the second doped polysilicon layer;
Electroplating and depositing metal on the surface of the second printing sintering layer to form a second metal layer;
the second printed sintered layer and the second metal layer form a second main gate electrode.
22. The method of claim 21, wherein a plurality of second openings are provided through the first dielectric layer on the first dielectric layer, metal is plated in the second openings, a second thin gate electrode is formed by the heat treatment, and the second thin gate electrode is connected to the second doped polysilicon layer;
the second thin gate electrode intersects and is electrically connected with the second main gate electrode to form a second electrode.
CN202111234260.1A 2021-10-22 2021-10-22 Solar cell and preparation method thereof Active CN114188431B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111234260.1A CN114188431B (en) 2021-10-22 2021-10-22 Solar cell and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111234260.1A CN114188431B (en) 2021-10-22 2021-10-22 Solar cell and preparation method thereof

Publications (2)

Publication Number Publication Date
CN114188431A CN114188431A (en) 2022-03-15
CN114188431B true CN114188431B (en) 2024-02-02

Family

ID=80601118

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111234260.1A Active CN114188431B (en) 2021-10-22 2021-10-22 Solar cell and preparation method thereof

Country Status (1)

Country Link
CN (1) CN114188431B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118969862A (en) 2023-09-18 2024-11-15 晶科能源(海宁)有限公司 Solar cells and photovoltaic modules
CN117457757A (en) * 2023-10-18 2024-01-26 西安隆基乐叶光伏科技有限公司 A solar cell and a method for manufacturing a solar cell
CN118016745B (en) * 2024-04-07 2024-10-01 浙江晶科能源有限公司 Solar cell and preparation method thereof, laminated cell and photovoltaic module
CN118763137B (en) * 2024-09-05 2025-02-21 隆基绿能科技股份有限公司 Solar cell and preparation method
CN119584707B (en) * 2024-11-05 2025-07-01 隆基绿能科技股份有限公司 Solar cell and photovoltaic module
CN119545979A (en) * 2025-01-22 2025-02-28 西安隆基乐叶光伏科技有限公司 Solar cells and photovoltaic modules

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108666386A (en) * 2018-07-11 2018-10-16 泰州隆基乐叶光伏科技有限公司 A kind of p-type back contacts solar cell and preparation method thereof
CN109585578A (en) * 2019-01-15 2019-04-05 晶澳(扬州)太阳能科技有限公司 A kind of back junction solar battery and preparation method thereof
CN210200743U (en) * 2019-06-24 2020-03-27 泰州隆基乐叶光伏科技有限公司 Solar cell
CN112310233A (en) * 2020-10-16 2021-02-02 泰州隆基乐叶光伏科技有限公司 Solar cell and production method, battery module

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN212848424U (en) * 2020-10-12 2021-03-30 苏州阿特斯阳光电力科技有限公司 Solar battery
CN112310231A (en) * 2020-11-23 2021-02-02 天合光能股份有限公司 P-type crystalline silicon solar cell with tunnel passivation and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108666386A (en) * 2018-07-11 2018-10-16 泰州隆基乐叶光伏科技有限公司 A kind of p-type back contacts solar cell and preparation method thereof
CN109585578A (en) * 2019-01-15 2019-04-05 晶澳(扬州)太阳能科技有限公司 A kind of back junction solar battery and preparation method thereof
CN210200743U (en) * 2019-06-24 2020-03-27 泰州隆基乐叶光伏科技有限公司 Solar cell
CN112310233A (en) * 2020-10-16 2021-02-02 泰州隆基乐叶光伏科技有限公司 Solar cell and production method, battery module

Also Published As

Publication number Publication date
CN114188431A (en) 2022-03-15

Similar Documents

Publication Publication Date Title
CN114188431B (en) Solar cell and preparation method thereof
CN112331742B (en) A selective emitter passivation contact solar cell and its preparation method
CN106449876B (en) The preparation method of the two-sided PERC crystal silicon solar energy batteries of selective emitter
US9502590B2 (en) Photovoltaic devices with electroplated metal grids
TWI643351B (en) Solar cell metallization and interconnection method
KR101295552B1 (en) Solar cell and method for manufacturing the same
KR101110825B1 (en) Interdigitated back contact solar cell and manufacturing method thereof
CN108470781A (en) The production method of the two-sided PERC crystal silicon solar energy batteries of the black silicon of selective emitter
WO2023077772A1 (en) Solar cell and preparation method therefor
AU2019453945B2 (en) Solar cell and manufacturing method therefor
WO2024045917A1 (en) Back-contact solar cell and preparation method therefor
CN117423763A (en) Solar cell, preparation method thereof and solar cell module
CN106252466A (en) A kind of back contacts hetero-junctions monocrystaline silicon solar cell and preparation method thereof
CN116072742A (en) Solar cell and preparation method thereof
CN114361297A (en) A kind of preparation method of solar cell
CN107359211A (en) Solar cell with the two-dimentional embedded transparent electrode thin film of conductive material array
JP2025090026A (en) Hybrid heterojunction solar cell, battery module and manufacturing method
CN119604072A (en) Solar cell, preparation method thereof and photovoltaic module
CN116072738A (en) Solar cell and its preparation method
KR20110018651A (en) Solar cell and manufacturing method thereof
CN112133768A (en) Manufacturing method of back contact solar cell and back contact solar cell
TWI573284B (en) Solar cell, module comprising the same, and method of manufacturing the same
WO2020258884A1 (en) Method for manufacturing crystalline silicon solar cell and crystalline silicon solar cell
CN113437161A (en) Solar cell, preparation method thereof and photovoltaic module
CN119789597B (en) Solar cell and manufacturing method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant