CN114186139A - Graph neural network session recommendation method based on time enhancement - Google Patents
Graph neural network session recommendation method based on time enhancement Download PDFInfo
- Publication number
- CN114186139A CN114186139A CN202111660113.0A CN202111660113A CN114186139A CN 114186139 A CN114186139 A CN 114186139A CN 202111660113 A CN202111660113 A CN 202111660113A CN 114186139 A CN114186139 A CN 114186139A
- Authority
- CN
- China
- Prior art keywords
- session
- representation
- item
- time
- graph
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 68
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 41
- 238000003062 neural network model Methods 0.000 claims abstract description 17
- 238000006243 chemical reaction Methods 0.000 claims abstract description 16
- 238000012545 processing Methods 0.000 claims abstract description 5
- 230000002123 temporal effect Effects 0.000 claims description 59
- 239000011159 matrix material Substances 0.000 claims description 30
- 230000007246 mechanism Effects 0.000 claims description 19
- 230000007774 longterm Effects 0.000 claims description 17
- 230000000306 recurrent effect Effects 0.000 claims description 14
- 230000003044 adaptive effect Effects 0.000 claims description 12
- 230000003190 augmentative effect Effects 0.000 claims description 7
- 238000011176 pooling Methods 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 26
- 230000007704 transition Effects 0.000 description 15
- 230000006870 function Effects 0.000 description 9
- 238000012549 training Methods 0.000 description 9
- 238000012360 testing method Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 6
- 230000009471 action Effects 0.000 description 5
- 230000002457 bidirectional effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000009499 grossing Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000001651 catalytic steam reforming of methanol Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 1
- 241001123248 Arma Species 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000013434 data augmentation Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/953—Querying, e.g. by the use of web search engines
- G06F16/9535—Search customisation based on user profiles and personalisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/049—Temporal neural networks, e.g. delay elements, oscillating neurons or pulsed inputs
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Biophysics (AREA)
- Evolutionary Computation (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Computational Linguistics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Databases & Information Systems (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Information Transfer Between Computers (AREA)
Abstract
Description
技术领域technical field
本发明涉及互联网大数据技术领域,具体涉及一种基于时间增强的图神经网络会话推荐方法。The invention relates to the technical field of Internet big data, in particular to a time-enhanced graph neural network session recommendation method.
背景技术Background technique
基于会话的推荐是一种针对匿名用户或未登录用户的推荐模式,其在如今的各大电商平台(淘宝、京东等)或流媒体平台(抖音,YouTobe等)发挥着重要作用。实际场景中,某些时候只能获取到用户的短期历史交互,比如:新用户或未登录用户。此时,依赖于用户长期历史交互的推荐算法在会话推荐中的表现会收到限制,例如基于协同过滤或马尔可夫链的方法。因此,基于会话的推荐成为一个研究热点,其目标是根据用户在会话中的行为序列来推荐用户感兴趣的下一个项目(或商品)。Session-based recommendation is a recommendation mode for anonymous users or users who are not logged in, which plays an important role in today's major e-commerce platforms (Taobao, JD, etc.) or streaming media platforms (Douyin, YouTube, etc.). In actual scenarios, only short-term historical interactions of users can be obtained at certain times, such as new users or users who have not logged in. At this time, recommendation algorithms that rely on long-term historical interactions of users will be limited in their performance in conversational recommendation, such as methods based on collaborative filtering or Markov chains. Therefore, session-based recommendation has become a research hotspot, and its goal is to recommend the next item (or item) of interest to the user based on the user's behavior sequence in the session.
针对现有会话推荐方法的项目推荐准确性不高的问题,公开号为CN112035746A的中国专利公开了《一种基于时空序列图卷积网络的会话推荐方法》,其包括:将所有会话序列建模为有向会话图;以会话中共有的商品为链接,构建全局图;将ARMA过滤器嵌入到门控图神经网络中,提取图模型中随时间变化的拓扑图信号,并得到会话图中涉及的各个节点的特征向量;采用注意力机制从用户历史会话中得到全局偏好信息;从用户点击的最后一个会话中获取用户的局部偏好信息,并结合全局偏好信息得到用户最终偏好信息;预测每个会话中下一点击商品可能出现的概率,并给出Top-K推荐商品。Aiming at the problem that the item recommendation accuracy of the existing conversation recommendation method is not high, the Chinese Patent Publication No. CN112035746A discloses "A Conversation Recommendation Method Based on Spatio-temporal Sequence Graph Convolutional Network", which includes: modeling all conversation sequences It is a directed session graph; build a global graph with the common commodities in the session as links; embed the ARMA filter into the gated graph neural network to extract the time-varying topology graph signal in the graph model, and obtain the graphs involved in the session graph. The feature vector of each node of the node; use the attention mechanism to obtain the global preference information from the user's historical sessions; obtain the user's local preference information from the last session clicked by the user, and combine the global preference information to obtain the user's final preference information; predict each The probability that the next clicked item in the session may appear, and the Top-K recommended item is given.
上述现有方案中的会话推荐方法从全局图中捕获丰富的会话表示(上下文关系),通过注意力机制学习用户的全局和局部偏好,进而提供准确的商品预测。但是现有会话推荐方法在探索项目间过渡关系中用户兴趣变化方面所做的努力有限,其一般是平等地对待项目之间的每个转换关系,忽略了转换关系中丰富的用户兴趣漂移信息,进而只能捕获连续动作之间的顺序转换,而不能有效地建模非相邻动作之间的复杂转换,使得项目嵌入的质量偏低,导致会话推荐的准确性仍然不高。因此,如何设计一种能够基于用户兴趣漂移程度提升项目嵌入质量的会话推荐方法是亟需解决的技术问题。The conversational recommendation methods in the above existing schemes capture rich conversational representations (contextual relations) from a global graph, learn users' global and local preferences through an attention mechanism, and then provide accurate item predictions. However, the existing conversational recommendation methods have limited efforts in exploring the change of user interest in the transition relationship between items. They generally treat each transition relationship between items equally, ignoring the rich user interest drift information in the transition relationship. In turn, only sequential transitions between consecutive actions can be captured, but complex transitions between non-adjacent actions cannot be effectively modeled, resulting in low quality of item embeddings, resulting in still low accuracy of session recommendation. Therefore, how to design a conversational recommendation method that can improve the quality of item embedding based on the degree of user interest drift is an urgent technical problem to be solved.
发明内容SUMMARY OF THE INVENTION
针对上述现有技术的不足,本发明所要解决的技术问题是:如何提供一种基于时间增强的图神经网络会话推荐方法,以能够基于用户兴趣漂移程度提升项目嵌入质量,从而提升会话推荐的准确性。In view of the above-mentioned deficiencies of the prior art, the technical problem to be solved by the present invention is: how to provide a graph neural network session recommendation method based on time enhancement, so as to improve the quality of item embedding based on the degree of user interest drift, thereby improving the accuracy of session recommendation sex.
为了解决上述技术问题,本发明采用了如下的技术方案:In order to solve the above-mentioned technical problems, the present invention adopts the following technical solutions:
一种基于时间增强的图神经网络会话推荐方法,将目标会话输入经过训练的时间增强图神经网络模型中;所述时间增强图神经网络模型通过会话项目转换发生的时间间隔生成用户兴趣漂移程度,并构造能够根据用户兴趣漂移程度对应处理会话项目间转换关系的时间增强会话图,然后基于时间增强会话图学习项目嵌入并生成新会话表示,最后基于新会话表示计算候选项目的概率分布,以完成会话推荐。A time-enhanced graph neural network session recommendation method, wherein a target session is input into a trained time-enhanced graph neural network model; the time-enhanced graph neural network model generates a user interest drift degree through the time interval when the conversation item conversion occurs, And construct a time-enhanced session graph that can handle the conversion relationship between conversation items according to the degree of user interest drift, then learn item embedding based on the time-enhanced session graph and generate a new session representation, and finally calculate the probability distribution of candidate items based on the new session representation to complete Session recommendation.
优选的,时间增强图神经网络模型通过如下步骤完成会话推荐:Preferably, the time-enhanced graph neural network model completes the session recommendation through the following steps:
S1:将目标会话S=(v1,v2,…,vn)映射到会话嵌入序列H=(h1,h2,…,hn);S1: map the target session S=(v 1 ,v 2 ,...,v n ) to the session embedding sequence H=(h 1 ,h 2 ,...,h n );
S2:基于目标会话的会话图,将用户兴趣漂移的程度映射到会话图的边的权重以生成对应的时间增强会话图;S2: Based on the session graph of the target session, the degree of user interest drift is mapped to the weights of the edges of the session graph to generate the corresponding time-enhanced session graph;
S3:通过多层时间图卷积网络基于时间增强会话图和会话嵌入序,学习时间增强会话图的项目表示并聚合项目的高阶相邻信息,以生成对应的会话项目表示;S3: Learn item representations of temporally augmented conversational graphs and aggregate high-order neighbor information of items based on temporally augmented conversational graphs and conversational embeddings through a multi-layered temporal graph convolutional network to generate corresponding conversational item representations;
S4:通过时间兴趣注意力网络为目标会话中的各个会话项目分配用户兴趣箱,并生成用户兴趣箱序列表示;然后将用户兴趣箱序列表示与会话项目表示聚合生成新会话表示;S4: Allocate user interest boxes for each session item in the target session through the temporal interest attention network, and generate a user interest box sequence representation; then aggregate the user interest box sequence representation and the session item representation to generate a new session representation;
S5:基于新会话表示计算长期兴趣表示和短期兴趣表示,并融合得到会话最终表示;然后基于会话最终表示选取候选项目,并计算候选项目的概率分布,以完成会话推荐。S5: Calculate the long-term interest representation and the short-term interest representation based on the new session representation, and fuse to obtain the final session representation; then select candidate items based on the final session representation, and calculate the probability distribution of the candidate items to complete the session recommendation.
优选的,步骤S2中,时间增强会话图的定义为:对于目标会话S=(v1,v2,…,vn),其时间增强会话图为gs=(Vs,εs,Ws),其中,εS代表边的集合,WS表示边的权重矩阵;Preferably, in step S2, the time-enhanced session graph is defined as: for the target session S=(v 1 ,v 2 ,...,v n ), the time-enhanced session graph is g s =(V s ,ε s ,W s ), where ε S represents the set of edges, and W S represents the weight matrix of the edges;
每个节点vi∈VS和边(vi-1,vi)∈εs表示两个连续的项目vi-1和vi邻接关系,其矩阵表达形式为入边矩阵AI和出边矩阵AO;每条边(vi-1,vi)都对应着一个权重Wi-1,i∈WS;每个节点vi∈VS添加了自连边,其矩阵表示为自连接矩阵AS。Each node v i ∈ V S and edge (v i-1 ,v i )∈ε s represents the adjacency relationship between two consecutive items v i-1 and v i , and its matrix expression is the in-edge matrix A I and out- Edge matrix A O ; each edge (v i-1 ,v i ) corresponds to a weight W i-1,i ∈W S ; each node v i ∈ V S adds a self-connected edge, and its matrix is expressed as Self-connection matrix A S .
优选的,步骤S3中,通过如下步骤生成会话项目表示:Preferably, in step S3, the conversation item representation is generated by the following steps:
S301:通过多层时间图卷积网络的第l层输出嵌入表示 S301: Layer l output embedding representation through a multilayer temporal graph convolutional network
S302:将多层时间图卷积网络输出的嵌入表示hi L作为会话项目vi∈S的嵌入表示;S302: Use the embedded representation h i L output by the multi-layer temporal graph convolutional network as the embedded representation of the conversation item v i ∈ S;
S303:通过高速公路网络将多层时间图卷积网络输出的嵌入表示与其初始嵌入的表示进行合并得到会话项目vi∈S的项目表示并生成会话项目表示 S303: Embedding representation of the output of a multi-layer temporal graph convolutional network via a highway network with its initial embedding to merge the representations of the conversation items to obtain the item representation of the conversation item v i ∈ S and generate the session item representation
优选的,通过公式计算嵌入表示 Preferably, by formula Computational embedded representation
通过公式计算项目表示 by formula Calculated item representation
其中, in,
上述式中:和分别表示时间增强会话图入边矩阵AI、入边矩阵AO和自连接矩阵AS的第i行;l、L均表示多层时间图卷积网络的层数;表示可训练参数;σ表示函数Sigmoid。In the above formula: and respectively represent the ith row of the time-enhanced session graph input edge matrix A I , the input edge matrix A O and the self-connection matrix A S ; l and L both represent the number of layers of the multi-layer time graph convolutional network; represents the trainable parameters; σ represents the function Sigmoid.
优选的,步骤S4中,通过如下步骤生成新会话表示:Preferably, in step S4, a new session representation is generated through the following steps:
S401:基于目标会话S中每个会话项目的点击时间戳T=(t1,t2,…,tn)计算每个项目距离最后一个项目的时间间隔序列Q=(q1,q2,…,qn);S401: Calculate the time interval sequence Q=(q 1 , q 2 , the distance between each item and the last item) based on the click timestamp T=(t 1 , t 2 , . . . , t n ) of each session item in the target session S ...,q n );
S402:将时间间隔序列Q映射为兴趣敏感序列Γ=(γ1,γ2,…,γn),并计算自适应时间跨度μ;S402: Map the time interval sequence Q to an interest-sensitive sequence Γ=(γ 1 ,γ 2 ,...,γ n ), and calculate the adaptive time span μ;
S403:通过时间兴趣注意力网络基于自适应时间跨度μ为目标会话S中的各个会话项目分配用户兴趣箱bini,并生成用户兴趣箱序列B=(bin1,bin2,…,binn);S403: Assign user interest bins bin i to each session item in the target session S based on the adaptive time span μ through the temporal interest attention network, and generate a user interest bin sequence B=(bin 1 , bin 2 ,..., bin n ) ;
S404:将用户兴趣箱序列B=(bin1,bin2,…,binn)中的各个用户兴趣箱bini映射到低维稠密向量ei,并生成对应的用户兴趣箱表示E=(e1,e2,…,en);S404: Map each user interest box bin i in the user interest box sequence B=(bin 1 , bin 2 , . . . , bin n ) to a low-dimensional dense vector e i , and generate a corresponding user interest box representation E=(e 1 ,e 2 ,…, en );
S405:通过非对称门控循环神经网络对用户兴趣箱表示的前向上下文信息和后向上下文信息进行不对称处理,生成对应的用户兴趣箱序列增强表示 S405: Perform asymmetric processing on the forward context information and backward context information represented by the user interest box through an asymmetric gated recurrent neural network, and generate a corresponding enhanced representation of the user interest box sequence
S406:通过注意力机制聚合用户兴趣箱序列增强表示和会话项目表示生成捕获了项目顺序结构信息和用户时间兴趣特征的新会话表示C=(c1,c2,…,cn)。S406: Aggregate user interest box sequences to enhance representation through attention mechanism and session item representation A new session representation C=(c 1 , c 2 , . . . , c n ) is generated that captures item order structure information and user temporal interest features.
优选的,通过公式计算兴趣敏感序列Γ=(γ1,γ2,…,γn);Preferably, by formula Calculate the interest-sensitive sequence Γ=(γ 1 ,γ 2 ,...,γ n );
其中,m=tn-t1;in, m=t n -t 1 ;
通过公式计算自适应时间跨度μ;by formula Calculate the adaptive time span μ;
通过公式bini=k,whereγi∈(μ×(k-1),μ×k]计算用户兴趣箱bini;The user interest bin bin i is calculated by the formula bin i =k,whereγ i ∈(μ×(k-1),μ×k];
非对称门控循环神经网络通过如下公式生成用户兴趣箱序列增强表示 The asymmetric gated recurrent neural network generates the enhanced representation of the sequence of user interest bins by the following formula
通过公式计算新会话表示C=(c1,c2,…,cn);by formula Calculate the new session representation C=(c 1 ,c 2 ,..., cn );
其中, in,
上述式中:和lp分别表示衰减常数和左偏移量;Dinit和Dfinal表示两个预先指定的常数设置Dinit=0.98,Dfinal=0.01;e表示自然常数;N表示用户兴趣箱的个数;μ表示目标会话S所需要的自适应时间间隔;k∈(1,2,…,N);表示可训练参数。In the above formula: and l p represent the decay constant and left offset, respectively; D init and D final represent two pre-specified constant settings D init = 0.98, D final = 0.01; e represents a natural constant; N represents the number of user interest boxes; μ denotes the adaptive time interval required by the target session S; k∈(1,2,…,N); Represents trainable parameters.
优选的,步骤S5中,通过如下步骤生成候选项目的概率分布:Preferably, in step S5, the probability distribution of the candidate items is generated by the following steps:
S501:基于新会话表示C=(c1,c2,…,cn)结合加和池化,生成长期兴趣表示zlong;S501: Based on the new session representation C=(c 1 , c 2 , . . . , c n ) combined with addition and pooling, generate a long-term interest representation z long ;
S502:通过GRU从新会话表示C中获取短期兴趣表示zshort;S502: Obtain the short-term interest representation z short from the new session representation C through the GRU;
S503:结合门控机制融合长期兴趣表示zlong和短期兴趣表示zshort,生成会话最终表示zfinal;S503: Combine the long-term interest representation z long and the short-term interest representation z short in combination with the gating mechanism, and generate the final session representation z final ;
S504:基于会话最终表示zfinal从候选项目集合V=(v1,v2,…,v|V|)中选取前K个候选项目vi∈V进行推荐,并计算各个候选项目vi∈V的分数;S504: Select the top K candidate items v i ∈ V from the candidate item set V=(v 1 ,v 2 ,...,v |V| ) based on the session final representation z final for recommendation, and calculate each candidate item v i ∈ Fraction of V;
S505:基于各个候选项目vi∈V的分数应用softmax函数,生成候选项目的概率分布。S505: Apply a softmax function based on the scores of each candidate item v i ∈ V to generate a probability distribution of the candidate items.
优选的,通过公式计算长期兴趣表示zlong;Preferably, by formula Calculate the long-term interest representation z long ;
通过公式计算短期兴趣表示zshort,其中,代表在时间步长i-1处的会话项目表示,将最后一个会话项目表示作为会话短期表示 by formula Calculate the short-term interest representation z short , where, Represents the session item representation at time step i-1, taking the last session item representation as the session short term representation
通过公式zfinal=f⊙zlong+(1-f)⊙zshort计算会话最终表示zfinal;Calculate the session final representation z final by the formula z final =f⊙z long +(1-f)⊙z short ;
其中, in,
通过公式计算候选项目vi∈V的分数 by formula Calculate the score of the candidate item v i ∈ V
通过公式计算候选项目vi∈V的概率,进而生成候选项目的概率分布;by formula Calculate the probability of the candidate item v i ∈ V, and then generate the probability distribution of the candidate item;
上述式中:表示候选项目vi∈V的初始化嵌入表示;表示可训练参数。In the above formula: represents the initialized embedding representation of candidate items v i ∈ V; Represents trainable parameters.
优选的,通过时间反向传播算法训练时间增强图神经网络模型,并采用交叉熵作为损失函数;Preferably, a time-enhanced graph neural network model is trained by a time back-propagation algorithm, and cross-entropy is used as a loss function;
其中,交叉熵损失函数表示为 Among them, the cross entropy loss function is expressed as
上述式中:yi表示真实标签。In the above formula: y i represents the true label.
本发明的会话推荐方法与现有技术相比,具有如下有益效果:Compared with the prior art, the session recommendation method of the present invention has the following beneficial effects:
本发明通过项目转换发生的时间间隔生成用户兴趣漂移程度,并根据用户兴趣漂移的程度对应处理会话项目间转换关系,使得能够关注转换关系中丰富的用户兴趣漂移信息,捕获非相邻动作之间的复杂转换关系,生成捕获了项目顺序结构信息和用户时间兴趣特征的新会话表示,即能够基于用户兴趣漂移程度提升项目嵌入的质量,从而能够提升会话推荐的准确性。同时,多层时间图卷积网络能够有效获取时间增强会话图的结构信息,使得能够准确的学习项目的嵌入,从而能够更好的提升项目嵌入的质量。此外,时间兴趣注意力网络能够捕获具有共同用户兴趣的项目的复杂转换模式,使得能够对在时间维度上具有相似用户兴趣的项目进行建模,进而能够关注项目之间的局部共性,生成捕获了项目顺序结构信息和用户时间兴趣特征的新会话表示,从而能够进一步提升会话推荐的准确性。The present invention generates the degree of user interest drift through the time interval when item conversion occurs, and correspondingly processes the conversion relationship between conversation items according to the degree of user interest drift, so that the rich user interest drift information in the conversion relationship can be paid attention to, and the difference between non-adjacent actions can be captured. It generates a new session representation that captures item sequence structure information and user temporal interest features, which can improve the quality of item embedding based on the degree of user interest drift, thereby improving the accuracy of session recommendation. At the same time, the multi-layer temporal graph convolutional network can effectively obtain the structural information of the temporally enhanced conversation graph, so that the embedding of the item can be learned accurately, and the quality of the item embedding can be better improved. Furthermore, the temporal interest attention network is able to capture the complex transition patterns of items with common user interests, enabling the modeling of items with similar user interests in the temporal dimension, which in turn can focus on local commonalities between items, generating a captured The new session representation of item order structure information and user temporal interest features can further improve the accuracy of session recommendation.
附图说明Description of drawings
为了使发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步的详细描述,其中:In order to make the purpose, technical solutions and advantages of the invention clearer, the present invention will be described in further detail below in conjunction with the accompanying drawings, wherein:
图1为会话推荐方法的逻辑框图;Fig. 1 is the logical block diagram of the session recommendation method;
图2为时间增强图神经网络模型的网络结构图;Fig. 2 is the network structure diagram of the time-enhanced graph neural network model;
图3为实际实例的示意图;Fig. 3 is the schematic diagram of practical example;
图4为时间图卷积网络层数的变化的实验结果图;Fig. 4 is the experimental result graph of the change of the number of layers of the time graph convolutional network;
图5为时间兴趣箱数量变化的实验结果图。Figure 5 is a graph of the experimental results of changes in the number of temporal interest bins.
具体实施方式Detailed ways
下面通过具体实施方式进一步详细的说明:The following is a further detailed description through specific embodiments:
实施例:Example:
本实施例中公开了一种基于时间增强的图神经网络会话推荐方法。This embodiment discloses a graph neural network session recommendation method based on time enhancement.
基于时间增强的图神经网络会话推荐方法,将目标会话输入经过训练的时间增强图神经网络模型中;所述时间增强图神经网络模型通过会话项目转换发生的时间间隔生成用户兴趣漂移程度,并构造能够根据用户兴趣漂移程度对应处理会话项目间转换关系的时间增强会话图,然后基于时间增强会话图学习项目嵌入并生成新会话表示,最后基于新会话表示计算候选项目的概率分布,以完成会话推荐。The time-enhanced graph neural network session recommendation method is based on inputting the target session into the trained time-enhanced graph neural network model; the time-enhanced graph neural network model generates the degree of user interest drift through the time interval when the conversation item transition occurs, and constructs A time-enhanced session graph that can handle the conversion relationship between conversation items according to the degree of user interest drift, then learn item embedding based on the time-enhanced session graph and generate a new session representation, and finally calculate the probability distribution of candidate items based on the new session representation to complete the session recommendation. .
如图1和图2所示,时间增强图神经网络模型通过如下步骤完成会话推荐:As shown in Figure 1 and Figure 2, the time-enhanced graph neural network model completes the session recommendation through the following steps:
S1:将目标会话S=(v1,v2,…,vn)映射到会话嵌入序列H=(h1,h2,…,hn);S1: map the target session S=(v 1 ,v 2 ,...,v n ) to the session embedding sequence H=(h 1 ,h 2 ,...,h n );
S2:基于目标会话的会话图,将用户兴趣漂移的程度映射到会话图的边的权重以生成对应的时间增强会话图(TES Graph);S2: Based on the session graph of the target session, the degree of user interest drift is mapped to the weights of the edges of the session graph to generate the corresponding time-enhanced session graph (TES Graph);
S3:通过多层时间图卷积网络(T-GCN)基于时间增强会话图和会话嵌入序,学习时间增强会话图的项目表示并聚合项目的高阶相邻信息,以生成对应的会话项目表示;S3: Learn item representations of temporally augmented conversational graphs and aggregate high-order neighbor information of items based on temporally augmented conversational graphs and conversational embeddings through a multi-layered temporal graph convolutional network (T-GCN) to generate corresponding conversational item representations ;
S4:通过时间兴趣注意力网络(Temporal Interest Attention Network,TIAN)为目标会话中的各个会话项目分配用户兴趣箱,并生成用户兴趣箱序列表示;然后将用户兴趣箱序列表示与会话项目表示聚合生成新会话表示;S4: Allocate user interest boxes for each session item in the target session through the Temporal Interest Attention Network (TIAN), and generate a sequence representation of user interest boxes; then aggregate the sequence representation of user interest boxes and session item representations to generate new session representation;
S5:基于新会话表示计算长期兴趣表示和短期兴趣表示,并融合得到会话最终表示;然后基于会话最终表示选取候选项目,并计算候选项目的概率分布,以完成会话推荐。S5: Calculate the long-term interest representation and the short-term interest representation based on the new session representation, and fuse to obtain the final session representation; then select candidate items based on the final session representation, and calculate the probability distribution of the candidate items to complete the session recommendation.
本发明通过项目转换发生的时间间隔生成用户兴趣漂移程度,并根据用户兴趣漂移的程度对应处理会话项目间转换关系,使得能够关注转换关系中丰富的用户兴趣漂移信息,捕获非相邻动作之间的复杂转换关系,生成捕获了项目顺序结构信息和用户时间兴趣特征的新会话表示,即能够基于用户兴趣漂移程度提升项目嵌入的质量,从而能够提升会话推荐的准确性。同时,多层时间图卷积网络能够有效获取时间增强会话图的结构信息,使得能够准确的学习项目的嵌入,从而能够更好的提升项目嵌入的质量。此外,时间兴趣注意力网络能够捕获具有共同用户兴趣的项目的复杂转换模式,使得能够对在时间维度上具有相似用户兴趣的项目进行建模,进而能够关注项目之间的局部共性,生成捕获了项目顺序结构信息和用户时间兴趣特征的新会话表示,从而能够进一步提升会话推荐的准确性。The present invention generates the degree of user interest drift through the time interval when item conversion occurs, and correspondingly processes the conversion relationship between conversation items according to the degree of user interest drift, so that the rich user interest drift information in the conversion relationship can be paid attention to, and the difference between non-adjacent actions can be captured. It generates a new session representation that captures item sequence structure information and user temporal interest features, which can improve the quality of item embedding based on the degree of user interest drift, thereby improving the accuracy of session recommendation. At the same time, the multi-layer temporal graph convolutional network can effectively obtain the structural information of the temporally enhanced conversation graph, so that the embedding of the item can be learned accurately, and the quality of the item embedding can be better improved. Furthermore, the temporal interest attention network is able to capture the complex transition patterns of items with common user interests, enabling the modeling of items with similar user interests in the temporal dimension, which in turn can focus on local commonalities between items, generating a captured The new session representation of item order structure information and user temporal interest features can further improve the accuracy of session recommendation.
具体实施过程中,时间增强会话图的定义为:对于目标会话S=(v1,v2,…,vn),其时间增强会话图为gs=(Vs,εs,Ws),其中,εS代表边的集合,WS表示边的权重矩阵;每个节点vi∈VS和边(vi-1,vi)∈εs表示两个连续的项目vi-1和vi邻接关系,其矩阵表达形式为入边矩阵AI和出边矩阵AO;每条边(vi-1,vi)都对应着一个权重Wi-1,i∈WS;每个节点vi∈VS添加了自连边,其矩阵表示为自连接矩阵AS。In the specific implementation process, the time-enhanced session graph is defined as: for the target session S=(v 1 ,v 2 ,...,v n ), the time-enhanced session graph is g s =(V s ,ε s ,W s ) , where ε S represents the set of edges, W S represents the weight matrix of the edge; each node v i ∈ V S and edge (vi -1 ,vi ) ∈ε s represents two consecutive items vi -1 Adjacency relationship with v i , its matrix expression is in-edge matrix A I and out-edge matrix A O ; each edge (v i-1 ,v i ) corresponds to a weight Wi -1,i ∈W S ; Each node v i ∈ V S adds a self-connected edge, and its matrix is denoted as a self-connected matrix A S .
用户兴趣漂移与正在进行的会话中的两个连续项目之间的时间间隔密切相关,即两个连续项目之间的时间间隔越长,用户兴趣漂移越大,反之亦然。结合图3所示,我们可以观察到:(1)“Sweater”和“Iphone”之间的转换关系弱于“Iphone”和“Airpods”之间的转换关系,因为前者的用户兴趣漂移远大于后者;(2)用户兴趣漂移与时间间隔密切相关,即两个连续项目之间的时间间隔越大,表示用户兴趣漂移的程度越高;(3)短时间间隔内的物品(如“Shirt”、“Overcoat”和“Sweater”)通常具有相似的用户兴趣而只有较小的兴趣偏移。User interest drift is closely related to the time interval between two consecutive items in an ongoing session, i.e., the longer the time interval between two consecutive items, the greater the user interest drift, and vice versa. Combined with Figure 3, we can observe: (1) The conversion relationship between "Sweater" and "Iphone" is weaker than that between "Iphone" and "Airpods", because the user interest drift of the former is much larger than that of the latter (2) User interest drift is closely related to the time interval, that is, the larger the time interval between two consecutive items, the higher the degree of user interest drift; (3) Items within a short time interval (such as "Shirt" , "Overcoat" and "Sweater") generally have similar user interests with only a small interest shift.
图3中,会话包含了5个项目(衬衫8′大衣7′毛衣405′手机15′耳机),其中毛衣和手机的时间间隔是405分钟,该时间间隔远远大于了手机和耳机15分钟的时间间隔,同时我们也能看出从毛衣到手机用户的兴趣发生了偏移,根据这一观察,我们按照如下方式进行边的权重计算:对于每个会话S=(v1,v2,…,vn),我们首先获取其项目的点击时间T=(t1,t2,…,tn),并基于用户兴趣漂移程度来测量时间增强会话图中每条边的权重,该程度基于对应于该边的时间间隔来计算。In Figure 3, the session contains 5 items (shirt 8' coat 7' sweater 40 5 ' mobile phone 15' earphone), and the time interval between sweater and mobile phone is 405 minutes, which is much longer than 15 minutes for mobile phone and earphone At the same time, we can also see that there is a shift in interest from sweaters to mobile phone users. According to this observation, we calculate the weights of the edges as follows: For each session S=(v 1 ,v 2 , ...,v n ), we first obtain the click time T=(t 1 ,t 2 ,...,t n ) of its item, and measure the weight of each edge in the time-enhanced session graph based on the degree of user interest drift, which degree Calculated based on the time interval corresponding to the edge.
利用牛顿冷却定律来计算边缘重量。目标会话S中两个相邻项目会话vi∈S和vj∈S之间的边的权重τ(i,j)计算公式为:The edge weight is calculated using Newton's law of cooling. The weight τ( i,j) of the edge between two adjacent item sessions v i ∈ S and v j ∈ S in the target session S is calculated as:
m=tn-t1;m=t n -t 1 ;
式中:Dinit和Dfinal表示两个预先指定的常数,其用于衰减的初始和最终边的权重,设置Dinit=0.98,Dfinal=0.01;e表示自然常数;ti、tj表示项目会话vi∈S和vj∈S的点击时间戳;tn、t1示会话项目v1∈S和会话项目vn∈S的点击时间戳;和lp分别表示衰减常数和左偏移量,lp用于使τ(i,j)适应不同的会话。In the formula: D init and D final represent two pre-specified constants, which are used for the weights of the initial and final edges of the decay, set D init =0.98, D final =0.01; e represents a natural constant; t i , t j represent Click timestamps of item sessions v i ∈ S and v j ∈ S; t n , t 1 show click timestamps of session item v 1 ∈ S and session item v n ∈ S; and lp denote the decay constant and left offset, respectively, and lp is used to adapt τ (i,j) to different sessions.
本发明将用户兴趣漂移程度映射到会话图的边的权重以生成时间增强会话图,能够实现根据用户兴趣漂移的程度对应处理会话项目间转换关系,使得能够关注转换关系中丰富的用户兴趣漂移信息,捕获非相邻动作之间的复杂转换关系,生成捕获了项目顺序结构信息和用户时间兴趣特征的新会话表示,即能够基于用户兴趣漂移程度提升项目嵌入的质量,从而能够提升会话推荐的准确性。The present invention maps the degree of user interest drift to the weight of the edge of the conversation graph to generate a time-enhanced conversation graph, which can realize the corresponding processing of the conversion relationship between conversation items according to the degree of user interest drift, so that the rich user interest drift information in the conversion relationship can be paid attention to. , capture the complex transformation relationship between non-adjacent actions, and generate a new session representation that captures item sequence structure information and user temporal interest features, that is, it can improve the quality of item embedding based on the degree of user interest drift, thereby improving the accuracy of session recommendation. sex.
具体实施过程中,通过如下步骤生成会话项目表示:In the specific implementation process, the session item representation is generated through the following steps:
S301:通过多层时间图卷积网络的第l层输出嵌入表示 S301: Layer l output embedding representation through a multilayer temporal graph convolutional network
S302:将多层时间图卷积网络输出的嵌入表示作为会话项目vi∈S的嵌入表示;S302: Embedding representation of the output of the multi-layer temporal graph convolutional network as the embedded representation of the conversation item vi ∈ S;
S303:通过高速公路网络将多层时间图卷积网络输出的嵌入表示与其初始嵌入的表示进行合并得到会话项目vi∈S的项目表示并生成会话项目表示 S303: Embedding representation of the output of a multi-layer temporal graph convolutional network via a highway network with its initial embedding to merge the representations of the conversation items to obtain the item representation of the conversation item v i ∈ S and generate the session item representation
单层时间图卷积网络(T-GCN)将聚合项目本身及其一阶邻居的信息。在T-GCN中,我们放弃了现有图神经网络(GCN)中最常用的两种机制(即线性转化和非线性激活)。为了捕获远距离项目之间的转移关系,我们堆叠了多层T-GCN来聚合项目的高阶相邻信息。A single-layer temporal graph convolutional network (T-GCN) will aggregate information about the item itself and its first-order neighbors. In T-GCN, we abandon the two most commonly used mechanisms (i.e. linear transformation and nonlinear activation) in existing graph neural networks (GCNs). To capture the transfer relationship between distant items, we stack multiple layers of T-GCN to aggregate high-order neighbor information of items.
通过公式计算嵌入表示 by formula Computational embedded representation
通过公式计算项目表示 by formula Calculated item representation
其中, in,
上述式中:和分别表示时间增强会话图入边矩阵AI、入边矩阵AO和自连接矩阵AS的第i行;l、L均表示多层时间图卷积网络的层数;表示可训练参数;σ表示函数Sigmoid。In the above formula: and respectively represent the ith row of the time-enhanced session graph input edge matrix A I , the input edge matrix A O and the self-connection matrix A S ; l and L both represent the number of layers of the multi-layer time graph convolutional network; represents the trainable parameters; σ represents the function Sigmoid.
本发明通过多层时间图卷积网络能够有效获取时间增强会话图的结构信息,使得能够准确的学习项目的嵌入,从而能够更好的提升项目嵌入的质量。同时,能够通过高速公路网络解决项目表示过度平滑的问题。The present invention can effectively acquire the structure information of the time-enhanced session graph through the multi-layer temporal graph convolution network, so that the embedding of the item can be learned accurately, and the quality of the item embedding can be better improved. At the same time, the problem of over-smoothing of item representations can be solved by expressway networks.
具体实施过程中,通过如下步骤生成新会话表示:In the specific implementation process, a new session representation is generated through the following steps:
S401:基于目标会话S中每个会话项目的点击时间戳T=(t1,t2,…,tn)计算每个项目距离最后一个项目的时间间隔序列Q=(q1,q2,…,qn);S401: Calculate the time interval sequence Q=(q 1 , q 2 , the distance between each item and the last item) based on the click timestamp T=(t 1 , t 2 , . . . , t n ) of each session item in the target session S ...,q n );
S402:将时间间隔序列Q映射为兴趣敏感序列Γ=(γ1,γ2,…,γn),并计算自适应时间跨度μ;S402: Map the time interval sequence Q to an interest-sensitive sequence Γ=(γ 1 ,γ 2 ,...,γ n ), and calculate the adaptive time span μ;
S403:通过时间兴趣注意力网络基于自适应时间跨度μ为目标会话S中的各个会话项目分配用户兴趣箱bini,并生成用户兴趣箱序列B=(bin1,bin2,…,binn);S403 : Allocate user interest bins bin i for each session item in the target session S based on the adaptive time span μ through the temporal interest attention network, and generate a user interest bin sequence B=(bin 1 , bin 2 , . . . , bin n ) ;
S404:将用户兴趣箱序列B=(bin1,bin2,…,binn)中的各个用户兴趣箱bini映射到低维稠密向量ei,并生成对应的用户兴趣箱表示E=(e1,e2,…,en);S404: Map each user interest box bin i in the user interest box sequence B=(bin 1 , bin 2 , . . . , bin n ) to a low-dimensional dense vector e i , and generate a corresponding user interest box representation E=(e 1 ,e 2 ,…, en );
S405:通过非对称门控循环神经网络(Asym-BiGRU)对用户兴趣箱表示的前向上下文信息和后向上下文信息进行不对称处理,生成对应的用户兴趣箱序列增强表示 S405: Perform asymmetric processing on the forward context information and backward context information represented by the user interest box through an asymmetric gated recurrent neural network (Asym-BiGRU), and generate a corresponding enhanced representation of the user interest box sequence
S406:通过注意力机制聚合用户兴趣箱序列增强表示和会话项目表示生成捕获了项目顺序结构信息和用户时间兴趣特征的新会话表示C=(c1,c2,…,cn)。S406: Aggregate user interest box sequences to enhance representation through attention mechanism and session item representation A new session representation C=(c 1 , c 2 , . . . , c n ) is generated that captures item order structure information and user temporal interest features.
具体的,我们将时间间隔较短的项目被分隔到同一个用户兴趣箱中。然后将每个箱子映射到一个嵌入,并将其与其对应的项目嵌入拼接起来。接下来,一种非对称的双向门控循环神经网络被用于对会话中的用户兴趣箱序列,并获得增强的用户兴趣箱序列表示。最后,利用注意力网络将增强后的用户兴趣箱表示形成对于项目的重要性系数,为相应的项目进行加权形成新的项目表示。Specifically, we separate items with shorter time intervals into the same user interest bin. Each bin is then mapped to an embedding and concatenated with its corresponding item embedding. Next, an asymmetric bidirectional gated recurrent neural network is used to analyze the user interest bin sequences in the session and obtain an enhanced user interest bin sequence representation. Finally, the enhanced user interest box representation is used to form the importance coefficient for the item by using the attention network, and the corresponding item is weighted to form a new item representation.
通过公式计算兴趣敏感序列Г=(γ1,γ2,…,γn);by formula Calculate the interest-sensitive sequence Г=(γ 1 ,γ 2 ,…,γ n );
其中,m=tn-t1;in, m=t n -t 1 ;
通过公式计算自适应时间跨度μ;by formula Calculate the adaptive time span μ;
通过公式bini=k,whereγi∈(μ×(k-1),μ×k]计算用户兴趣箱bini;The user interest bin bin i is calculated by the formula bin i =k,whereγ i ∈(μ×(k-1),μ×k];
非对称门控循环神经网络通过如下公式生成用户兴趣箱序列增强表示 The asymmetric gated recurrent neural network generates the enhanced representation of the sequence of user interest bins by the following formula
通过公式计算新会话表示C=(c1,c2,…,cn);by formula Calculate the new session representation C=(c 1 ,c 2 ,..., cn );
其中, in,
上述式中:和lp分别表示衰减常数和左偏移量;Dinit和Dfinal表示两个预先指定的常数设置Dinit=0.98,Dfinal=0.01;e表示自然常数;N表示用户兴趣箱的个数;μ表示目标会话S所需要的自适应时间间隔;k∈(1,2,…,N);表示可训练参数。In the above formula: and l p represent the decay constant and left offset, respectively; D init and D final represent two pre-specified constant settings D init = 0.98, D final = 0.01; e represents a natural constant; N represents the number of user interest boxes; μ denotes the adaptive time interval required by the target session S; k∈(1,2,…,N); Represents trainable parameters.
本发明通过时间兴趣注意力网络能够捕获具有共同用户兴趣的项目的复杂转换模式,使得能够对在时间维度上具有相似用户兴趣的项目进行建模,进而能够关注项目之间的局部共性,生成捕获了项目顺序结构信息和用户时间兴趣特征的新会话表示,从而能够进一步提升会话推荐的准确性。The present invention can capture complex conversion patterns of items with common user interests through a temporal interest attention network, so that items with similar user interests in the time dimension can be modeled, and then local commonality between items can be paid attention to, generating captures A new session representation that incorporates item order structure information and user temporal interest features can further improve the accuracy of session recommendation.
具体实施过程中,通过如下步骤生成候选项目的概率分布:In the specific implementation process, the probability distribution of candidate items is generated through the following steps:
S501:基于新会话表示C=(c1,c2,…,cn)结合加和池化,生成长期兴趣表示zlong;S501: Based on the new session representation C=(c 1 , c 2 , . . . , c n ) combined with addition and pooling, generate a long-term interest representation z long ;
S502:通过GRU从新会话表示C中获取短期兴趣表示zshort;S502: Obtain the short-term interest representation z short from the new session representation C through the GRU;
S503:结合门控机制融合长期兴趣表示zlong和短期兴趣表示zshort,生成会话最终表示zfinal;S503: Combine the long-term interest representation z long and the short-term interest representation z short in combination with the gating mechanism, and generate the final session representation z final ;
S504:基于会话最终表示zfinal从候选项目集合V=(v1,v2,…,v|V|)中选取前K个候选项目vi∈V进行推荐,并计算各个候选项目vi∈V的分数;S504: Select the top K candidate items v i ∈ V from the candidate item set V=(v 1 ,v 2 ,...,v |V| ) based on the session final representation z final for recommendation, and calculate each candidate item v i ∈ Fraction of V;
S505:基于各个候选项目vi∈V的分数应用softmax函数,生成候选项目的概率分布。S505: Apply a softmax function based on the scores of each candidate item v i ∈ V to generate a probability distribution of the candidate items.
通过公式计算长期兴趣表示zlong;by formula Calculate the long-term interest representation z long ;
通过公式计算短期兴趣表示zshort,其中,代表在时间步长i-1处的会话项目表示,将最后一个会话项目表示作为会话短期表示 by formula Calculate the short-term interest representation z short , where, Represents the session item representation at time step i-1, taking the last session item representation as the session short term representation
通过公式zfinal=f⊙zlong+(1-f)⊙zshort计算会话最终表示zfinal;Calculate the session final representation z final by the formula z final =f⊙z long +(1-f)⊙z short ;
其中, in,
通过公式计算候选项目vi∈V的分数 by formula Calculate the score of the candidate item v i ∈ V
通过公式计算候选项目vi∈V的概率,进而生成候选项目的概率分布;by formula Calculate the probability of the candidate item v i ∈ V, and then generate the probability distribution of the candidate item;
上述式中:表示候选项目vi∈V的初始化嵌入表示;表示可训练参数。In the above formula: represents the initialized embedding representation of candidate items v i ∈ V; Represents trainable parameters.
本发明基于长期兴趣表示和短期兴趣表示计算会话最终表示,并基于会话最终表示计算生成候选项目的概率分布,使得能够有效的保证会话推荐的准确性。The invention calculates the final representation of the session based on the long-term interest representation and the short-term interest representation, and calculates and generates the probability distribution of the candidate items based on the final session representation, so that the accuracy of the session recommendation can be effectively guaranteed.
具体实施过程中,通过时间反向传播算法训练时间增强图神经网络模型,并采用交叉熵作为损失函数;其中,交叉熵损失函数表示为 In the specific implementation process, the time-enhanced graph neural network model is trained by the time backpropagation algorithm, and the cross-entropy is used as the loss function; wherein, the cross-entropy loss function is expressed as
上述式中:yi表示真实标签。In the above formula: y i represents the true label.
本发明通过时间反向传播算法和交叉熵损失函数,能够有效的训练时间增强图神经网络模型,进而能够提升模型的会话推荐效果。The present invention can effectively train the time-enhanced graph neural network model through the time back-propagation algorithm and the cross-entropy loss function, thereby improving the session recommendation effect of the model.
为了更好的说明本发明会话推荐方法的优势,本实施例公开了如下实验。In order to better illustrate the advantages of the session recommendation method of the present invention, this embodiment discloses the following experiments.
一、数据集1. Data set
本实验在三个广泛使用的基准数据集(Diginetica,Tmall,Nowplaying,Retailrocket)上测试了本发明的时间增强图神经网络模型(后称为TE-GNN)和一系列基线模型的性能。This experiment tests the performance of the time-enhanced graph neural network model of the present invention (hereinafter referred to as TE-GNN) and a series of baseline models on three widely used benchmark datasets (Diginetica, Tmall, Nowplaying, Retailrocket).
Diginetica:该数据来自于2016年CIKM Cup挑战赛。由于其包含商品交易类型的数据,所以经常被用于会话推荐任务,我们提取其最后一周的数据作为测试数据。Diginetica: The data is from the 2016 CIKM Cup Challenge. Since it contains commodity transaction type data, it is often used for conversational recommendation tasks, and we extract the data of the last week as test data.
Tmall:该数据来自于2015年IJCAI竞赛,其由匿名用户在天猫网上购物平台上的购物日志组成。由于项目数量太多,我们选择会话最近的1/64部分作为数据集,其中最后一天的会话用作测试数据,其余会话用于训练。Tmall: This data comes from the 2015 IJCAI competition, which consists of the shopping logs of anonymous users on the Tmall online shopping platform. Due to the large number of items, we choose the most recent 1/64 part of the session as the dataset, in which the session of the last day is used as test data and the rest of the sessions are used for training.
Nowplaying:该数据集由Twitter构建,其描述了用户的音乐收听习惯。我们将数据分为训练和测试两部分,其中最近两个月的数据用于测试,剩余的历史数据作为训练集。Nowplaying: This dataset is constructed by Twitter, which describes users' music listening habits. We divide the data into two parts: training and testing, in which the data of the last two months is used for testing, and the remaining historical data is used as training set.
Retailrocket:该数据来自于2016年的Kaggle竞赛,其包含了用户在电子商务网站上4.5个月的行为数据。我们提取最近的1/4数据作为训练集,最后15天的数据作为测试集。Retailrocket: This data comes from a 2016 Kaggle competition, which includes 4.5 months of user behavior data on e-commerce sites. We extract the most recent 1/4 of the data as the training set and the last 15 days of data as the test set.
在三个数据集中,将会话长度小于2的会话和项目出现次数小于5的项目进行过滤。In the three datasets, sessions with session length less than 2 and items with item occurrences less than 5 were filtered.
我们同样进行了数据增强,例如:对于会话S=(v1,v2,…,vn),可以产生样本和标签:([v1],v2),([v1,v2],v3),…,([v1,v2,…,vn-1],vn)。We also perform data augmentation, for example: for session S=(v 1 ,v 2 ,...,v n ), samples and labels can be generated: ([v 1 ],v 2 ),([v 1 ,v 2 ] ,v 3 ),…,([v 1 ,v 2 ,…,v n-1 ],v n ).
二、评测指标2. Evaluation indicators
我们使用2个广泛使用的评测指标P@20和MRR@20来评估所有模型的性能。P@K和MRR@K的值越高,代表模型性能越好。We use 2 widely used evaluation metrics P@20 and MRR@20 to evaluate the performance of all models. Higher values of P@K and MRR@K represent better model performance.
P@K(Precision):它衡量目标项目在top-K推荐中排名时的数量比例,是评估未排名结果的指标。P@K (Precision): It measures the number proportion of the target item when it is ranked in the top-K recommendation, and is an indicator for evaluating the unranked results.
其中N是测试集数量,nhit是目标项目在预测的top-K列表中的样本数量。 where N is the number of test sets and n hit is the number of samples of the target item in the predicted top-K list.
MRR@K(Mean Reciprocal Rank):它是目标项在推荐列表中的倒数排名的平均值。此指标考虑正确推荐项目在排名列表中的位置。MRR@K (Mean Reciprocal Rank): It is the average of the reciprocal rank of the target item in the recommendation list. This metric takes into account the position of the correctly recommended item in the ranking list.
其中N是测试集数量,ranki是第i个目标项目在推荐列表中的位置。若目标项目未在top-K推荐列表中,则MRR@K为0。 where N is the number of test sets and rank i is the position of the i-th target item in the recommendation list. If the target item is not in the top-K recommendation list, MRR@K is 0.
三、基线模型3. Baseline Model
为了全面评估我们模型的性能,我们将其与11种基线方法进行了比较,这些方法大致可分为三类,即:传统推荐方法,基于循环神经网络RNN和注意力机制的方法,基于图神经网络GNN的方法。所有基线的详细信息简要描述如下。To comprehensively evaluate the performance of our model, we compare it with 11 baseline methods, which can be roughly divided into three categories, namely: traditional recommendation methods, methods based on recurrent neural networks (RNNs) and attention mechanisms, and graph neural network based methods Methods of Network GNNs. Details of all baselines are briefly described below.
传统推荐方法:Traditional recommended method:
POP:是推荐系统中常用的一种基线方法,它推荐训练集中前N个出现频率最高的项目。POP: A commonly used baseline method in recommender systems, it recommends the top N items with the highest frequency in the training set.
Item-KNN:是一种基于协同过滤的方法,其通过向用户推荐与当前会话最相似的项目。Item-KNN: is a collaborative filtering based method that recommends the most similar items to the current session to the user.
FPMC:该方法将矩阵分解和马尔科夫链结合起来,其中序列数据由转移矩阵建模,所有转移矩阵都是用户特定的。它引入了一个因子分解模型,该模型给出了转换立方体的低秩近似值,其中每一个部分都是用户历史点击在马尔科夫链下的转移矩阵。FPMC: This method combines matrix factorization and Markov chains, where sequence data is modeled by transition matrices, all of which are user-specific. It introduces a factorization model that gives a low-rank approximation of the transition cube, where each part is the transition matrix of the user's historical clicks under the Markov chain.
基于循环神经网络和注意力机制的方法:Methods based on recurrent neural networks and attention mechanisms:
GRU4REC:该方法利用门控循环神经网络GRU模拟用户的顺序行为并采用并行小批次训练方案进行模型训练。GRU4REC: This method uses a gated recurrent neural network GRU to simulate the sequential behavior of users and adopts a parallel mini-batch training scheme for model training.
NARM:该方法使用循环神经网络RNN来建模用户的顺序行为并结合注意力机制来捕获用户的主要偏好。同时,它结合双线性匹配机制为每个候选项目生成推荐概率。NARM: This method uses a recurrent neural network (RNN) to model the sequential behavior of users combined with an attention mechanism to capture the user's main preferences. At the same time, it combines bilinear matching mechanism to generate recommendation probability for each candidate item.
STAMP:该模型通过捕获用户的长期偏好和短期兴趣来缓解用户的偏好转移的问题。STAMP: This model alleviates the problem of user preference transfer by capturing users' long-term preferences and short-term interests.
CSRM:该方法提出利用协作邻域信息进行基于会话的推荐。它利用内部编码器捕获当前会话的信息,同时它也利用外部编码器捕获邻域会话的协作信息。CSRM: This method proposes to utilize collaborative neighborhood information for session-based recommendation. It uses the inner encoder to capture the information of the current session, while it also captures the collaboration information of the neighborhood session using the outer encoder.
SR-IEM:该方法利用改进的注意机制生成项目的重要性得分,并根据用户的全局偏好和当前兴趣生成会话表示。SR-IEM: This method utilizes an improved attention mechanism to generate item importance scores and generates session representations based on the user's global preferences and current interests.
基于图神经网络的方法:Methods based on graph neural networks:
SR-GNN:SR-GNN通过将会话序列建模为会话图来捕获项目在会话中复杂的转换关系。同时,它还结合门控图神经网络和自注意力机制来生成会话表示。SR-GNN: SR-GNN captures the complex transition relationships of items in a conversation by modeling the conversation sequence as a conversation graph. At the same time, it also combines a gated graph neural network and a self-attention mechanism to generate conversational representations.
TAGNN:该方法通过会话序列建模为会话图并通过图神经网络获取项目的嵌入表示,它还引入了目标感知模块,以揭示给定目标项目与所有候选项目的相关性,从而提升会话表示质量。TAGNN: This method models the conversation sequence as a conversation graph and obtains the embedding representation of the item through a graph neural network, it also introduces a target-aware module to reveal the correlation of a given target item with all candidate items, thereby improving the quality of the conversation representation .
GCE-GNN:是目前性能最好的模型,它通过2个不同的视角学习项目的表示,例如:会话视角和全局视角。会话视角旨在通过会话内项目的转换关系学习项目的表示,全局视角旨在通过项目在所有会话中的转换关系学习项目的表示。GCE-GNN: is currently the best performing model, it learns the representation of items through 2 different perspectives, such as: conversational perspective and global perspective. Conversational perspective aims to learn the representation of items through their transition relations within a session, and global perspective aims to learn the representation of items through their transition relations across all sessions.
四、实验参数设置Fourth, the experimental parameter settings
在TE-GNN的所有实验中,我们设置训练批次大小为256,项目嵌入的向量维度为256。用户兴趣箱的数量N为6,T-GCN的层数为2。In all experiments on TE-GNN, we set the training batch size to 256 and the vector dimension of item embeddings to be 256. The number N of user interest boxes is 6, and the number of layers of T-GCN is 2.
在实验中的模型参数初始化按照均值为0,方差为0.1进行初始化。我们使用Adam优化器并配备0.001的学习率,该学习率会每训练3轮衰减为之前的0.1倍,dropout的随机丢弃率设置为0.3。另一方面,我们利用L2正则化来避免过拟合,其值设定为1e-4。TE-GNN由Pytorch实现并在GPU GeForce GTX 2080Ti上部署。同时,我们根据基线模型的论文来设置它们对应的参数。The model parameters in the experiment are initialized according to the mean value of 0 and the variance of 0.1. We use the Adam optimizer with a learning rate of 0.001, which decays by a factor of 0.1 every 3 epochs of training, and the random dropout rate for dropout is set to 0.3. On the other hand, we utilize L2 regularization to avoid overfitting, which is set to 1e-4. TE-GNN is implemented by Pytorch and deployed on GPU GeForce GTX 2080Ti. Meanwhile, we set their corresponding parameters according to the papers of the baseline models.
五、整体实验5. Overall experiment
为了验证TE-GNN的有效性,在表1中报告了TE-GNN与最先进基线之间的性能比较。To verify the effectiveness of TE-GNN, the performance comparison between TE-GNN and state-of-the-art baselines is reported in Table 1.
表1 TE-GNN与基线模型的性能比较Table 1 Performance comparison of TE-GNN and baseline models
从表1中,可以观察到传统的推荐方法POP在所有数据集的两个指标上表现最差。这主要是因为它只关注出现频率高的项目,而忽略了会话内有用的序列信息。FPMC表现出比POP更好的性能,因为它应用了一阶马尔可夫链和矩阵分解来捕获用户的偏好。在所有传统的推荐方法中,Item-KNN在所有数据集上都取得了最好的性能。这是因为用户的潜在偏好对推荐效果的影响更大From Table 1, it can be observed that the traditional recommendation method POP performs the worst on both metrics across all datasets. This is mainly because it only focuses on frequently occurring items and ignores useful sequence information within a session. FPMC shows better performance than POP because it applies first-order Markov chains and matrix factorization to capture user preferences. Among all traditional recommendation methods, Item-KNN achieves the best performance on all datasets. This is because the potential preferences of users have a greater impact on the recommendation effect
与传统的推荐方法相比,基于循环神经网络RNN和注意力机制的方法表现出更好的性能。其中GRU4REC是第一个基于RNN的会话推荐方法,它在大部分数据集上都优于传统的推荐方法,这表明了通过RNN对与建模序列信息的实用性。NARM和STAMP的性能均优于GRU4REC,因为它们进一步结合了注意力机制来动态捕获会话中项目的重要性。CSRM通过融合来自其他会话的辅助信息来增强当前会话表示,并在所有数据集上表示出比NARM和STAMP更好的性能。SR-IEM是最近提出的一个模型,该方法修改了自注意力机制,从而更精准的获得会话中每个项目的重要性来捕获用户的长期偏好,同时,该方法基于用户的长期偏好和会话中最后一个项目生成的短期偏好进行推荐。Compared with traditional recommendation methods, methods based on recurrent neural network (RNN) and attention mechanism show better performance. Among them, GRU4REC is the first RNN-based conversational recommendation method, which outperforms traditional recommendation methods on most datasets, which shows the practicality of pairing and modeling sequence information through RNN. Both NARM and STAMP outperform GRU4REC because they further incorporate an attention mechanism to dynamically capture the importance of items in a session. CSRM enhances the current session representation by fusing auxiliary information from other sessions and shows better performance than NARM and STAMP on all datasets. SR-IEM is a recently proposed model. This method modifies the self-attention mechanism to more accurately obtain the importance of each item in the session to capture the user's long-term preference. At the same time, the method is based on the user's long-term preference and session. The short-term preference generated by the last item in the recommendation is made.
在所有基线模型的实验报告来看,基于图神经网络的方法体现了其优越性。其原因也许是图神经网络GNN放松了连续项目之间的时间依赖性假设并将复杂项目转换关系建模为成对关系(例如:有向图)。例如:SR-GNN通过将会话序列建模为图形结构,以此来捕获项目之间更多的隐式连接。TAGNN在SR-GNN的基础上结合目标感知注意力机制进一步考虑了用户偏好。在所有基于GNN的方法中,GCE-GNN在所有数据集上的性能最好。这是因为GCE-GNN有效地从全局上下文(其他会话)和当前会话来同时学习项目的表示。From the experimental reports of all the baseline models, the graph neural network-based method demonstrates its superiority. The reason for this may be that the graph neural network GNN relaxes the assumption of temporal dependencies between consecutive items and models complex item transition relationships as pairwise relationships (eg: directed graphs). For example: SR-GNN captures more implicit connections between items by modeling conversation sequences as graph structures. Based on SR-GNN, TAGNN further considers user preference by combining target-aware attention mechanism. Among all GNN-based methods, GCE-GNN has the best performance on all datasets. This is because GCE-GNN effectively learns representations of items from the global context (other sessions) and the current session simultaneously.
我们提出的方法TE-GNN在所有数据集上都优于所有最先进的基线方法。具体而言,TE-GNN在Diginetica、Tmall、Nowplaying、Retairocket上的P@20上分别高出最先进的基线模型1.03%、16.73%、6.62%、2.73。在MRR@20上也能看到类似的性能改进。实验结果表明,对复杂用户兴趣漂移和用户共同兴趣进行建模至关重要,TE-GNN通过引入时间图卷积网络和时态兴趣注意力网络,可以有效地对这两种模式信息进行建模。Our proposed method TE-GNN outperforms all state-of-the-art baseline methods on all datasets. Specifically, TE-GNN outperforms the state-of-the-art baseline models by 1.03%, 16.73%, 6.62%, and 2.73% on P@20 on Diginetica, Tmall, Nowplaying, and Retairocket, respectively. Similar performance improvements can be seen on MRR@20. Experimental results show that it is crucial to model complex user interest drift and user common interests, and TE-GNN can effectively model these two modal information by introducing temporal graph convolutional network and temporal interest attention network .
六、时间图卷积网络(T-GCN)的影响6. Influence of Temporal Graph Convolutional Network (T-GCN)
为了探究时间图卷积网络(T-GCN)对模型性能的影响,我们将其与几种变体模型进行比较,变体模型的简要描述如下:To explore the impact of Temporal Graph Convolutional Network (T-GCN) on model performance, we compare it with several variant models, which are briefly described as follows:
TE-GNN-MLP:利用多层感知器(MLP)代替TE-GNN中的T-GCN模块。TE-GNN-MLP: Utilizes a multilayer perceptron (MLP) to replace the T-GCN module in TE-GNN.
TE-GNN-GGNN:该变体使用门控图神经网络(GGNN)取代TE-GNN中的T-GCN。TE-GNN-GGNN: This variant uses a gated graph neural network (GGNN) to replace T-GCN in TE-GNN.
TE-GNN-GAT:将TE-GNN中的T-GCN替换为图形注意网络(GAT)。TE-GNN-GAT: Replace T-GCN in TE-GNN with Graph Attention Network (GAT).
表2变体模型的性能实验结果Table 2 Experimental results of performance of variant models
表2报告了所有变体模型的性能实验结果。从表2可以观察到三个变体模型的性能在两个指标上都有较大程度的下降。更准确地说,用MLP替换T-GCN表现出最差的性能,因为它缺乏捕获复杂项目转换关系的能力。TE-GNN-GGCN和TE-GNN-GAT均显示出优于TE-GNN-MLP的性能,因为它们基于图形神经网络有效地对项目之间丰富的结构信息进行了建模。其中,TE-GNN-GAT的表现优于TE-GNN-GGCN,这是因为它通过图注意力网络考虑了相邻项目的重要性。我们提出的方法TE-GNN比所有三种变体都具有更高的性能,这表明了在我们的模型中加入时间图卷积网络的有效性。Table 2 reports the performance experimental results of all variant models. From Table 2, it can be observed that the performance of the three variant models drops to a large extent on both metrics. More precisely, replacing T-GCN with MLP exhibits the worst performance because it lacks the ability to capture complex item transformation relationships. Both TE-GNN-GGCN and TE-GNN-GAT show better performance than TE-GNN-MLP because they effectively model the rich structural information between items based on graph neural networks. Among them, TE-GNN-GAT outperforms TE-GNN-GGCN because it considers the importance of adjacent items through a graph attention network. Our proposed method TE-GNN achieves higher performance than all three variants, which demonstrates the effectiveness of incorporating temporal graph convolutional networks into our model.
七、时间兴趣注意力网络(TIAN)的影响7. The influence of Temporal Interest Attention Network (TIAN)
我们比较了时间兴趣注意力网络(TIAN)与SASRec和SGNN中分别使用的自注意力网络和位置感知注意力网络的性能。与自注意力网络和位置感知注意力网络不同的是,本发明的时间兴趣注意网络(TIAN)对时间信息进行了细粒度的挖掘。此外,我们通过丢弃Aasym-BiGRU组件或用传统BiGRU替换它,进一步研究了TIAN中提出的组件非对称双向门控循环神经网络(Asym-BiGRU)的有效性。所有变体的简要说明如下所示:We compare the performance of the Temporal Interest Attention Network (TIAN) with the self-attention network and location-aware attention network used in SASRec and SGNN, respectively. Different from the self-attention network and the location-aware attention network, the temporal interest attention network (TIAN) of the present invention performs fine-grained mining of temporal information. Furthermore, we further investigate the effectiveness of the component Asymmetric Bidirectional Gated Recurrent Neural Network (Asym-BiGRU) proposed in TIAN by dropping the Aasym-BiGRU component or replacing it with traditional BiGRU. A brief description of all variants is shown below:
w/o TIAN:删除TE-GNN中的时间兴趣注意网络(TIAN)。w/o TIAN: Remove Temporal Interest Attention Network (TIAN) in TE-GNN.
TE-GNN-SA:将TE-GNN中的时间兴趣注意网络(TIAN)替换为自注意力网络。TE-GNN-SA: Replacing the Temporal Interest Attention Network (TIAN) in TE-GNN with a Self-Attention Network.
TE-GNN-PA:采用SGNN中的位置感知注意力网络,而不是TE-GNN中的时间兴趣注意网络(TIAN)。TE-GNN-PA: Adopt the location-aware attention network in SGNN instead of the temporal interest attention network (TIAN) in TE-GNN.
TIAN-w/o GRU:我们丢弃TIAN中的Asym-BiGRU,并且不考虑会话中的用户兴趣箱的顺序关系。TIAN-w/o GRU: We discard Asym-BiGRU in TIAN and do not consider the order relation of user interest bins in the session.
TIAN-BiGRU:我们将Asym BiGRU替换为常规BiGRU,该BiGRU将平等地处理用户兴趣箱前向和后向的上下文信息。TIAN-BiGRU: We replace the Asym BiGRU with a regular BiGRU, which will handle the context information of user interest bin forward and backward equally.
通过实验可以看出,配备时间兴趣注意网络将实现显著的性能改进,这表明了时间兴趣注意网络的有效性。TE-GNN-w/o TIAN显示出显著的性能下降,因为它不能对用户的时间兴趣信息进行建模。与TE-GNN-w/o TIAN相比,TE-GNN-SA和TE-GNN-PA都没有表现出显著的性能改进,这是由于TE-GNN-SA只捕获项目之间的语义关系,而TE-GNN-PA只关注项目的位置信息,因此两者都不能捕获用户的时间兴趣信息。与这些变体不同,TIAN-w/o GRU使用多粒度兴趣分离策略来显式地建模用户的时间兴趣信息,因此获得了优异的性能。TIAN-BiGRU通过进一步考虑会话中每个用户兴趣箱的上下文信息来提高性能。然而,优于BiGRU的一个主要局限性是它平等地对待一个兴趣点前向和后向的上下文信息。然而,在基于会话的推荐场景中,前向上下文信息比后向上下文信息发挥更重要的作用。与所有变体相比,我们提出的方法TE-GNN通过引入了非对称双向门控循环神经网络(Asym BiGRU)实现了最佳性能,该网络对用户兴趣箱上下文信息的两侧进行了不同的建模。It can be seen through experiments that equipping the Temporal Interest Attention Network will achieve significant performance improvements, which demonstrates the effectiveness of the Temporal Interest Attention Network. TE-GNN-w/o TIAN shows a significant performance drop because it cannot model users' temporal interest information. Compared with TE-GNN-w/o TIAN, neither TE-GNN-SA nor TE-GNN-PA show significant performance improvement, which is due to the fact that TE-GNN-SA only captures semantic relations between items, while TE-GNN-PA only focuses on the location information of items, so neither can capture the temporal interest information of users. Unlike these variants, TIAN-w/o GRU uses a multi-granularity interest separation strategy to explicitly model the temporal interest information of users, thus achieving excellent performance. TIAN-BiGRU improves the performance by further considering the contextual information of each user's interest bin in the session. However, a major limitation over BiGRU is that it treats the forward and backward contextual information of a point of interest equally. However, in session-based recommendation scenarios, forward context information plays a more important role than backward context information. Compared to all variants, our proposed method TE-GNN achieves the best performance by introducing an asymmetric bidirectional gated recurrent neural network (Asym BiGRU) that differentiates both sides of the user interest bin context information. modeling.
八、时间图卷积网络层数的影响8. The influence of the number of layers of the time graph convolutional network
为了验证探索图增强的注意力网络(GEA)对推荐性能的影响,我们设计了以下三种变体模型:为了检验TE-GNN中T-GNN层数的影响,我们研究了TE-GNN分别配备1到6层T-GNN的性能变化。由于在我们的模型中利用了高速公路网络来缓解过度平滑问题,我们还比较了我们的方法与其相应的变体TE-GNN-w/o HN的性能,该变体在不同数量的T-GNN层上丢弃了高速公路网络。所有四个数据集上的实验结果如图4所示。从图4中,我们可以观察到,在Diginetica数据集上,我们的方法TE-GNN的性能首先上升,并在T-GNN层数L=2时达到峰值,然后开始下降并变大。在Tmall数据集上,随着T-GNN层数不断增多,In order to verify the impact of Exploratory Graph Augmented Attention Network (GEA) on recommendation performance, we design the following three variant models: To examine the impact of the number of layers of T-GNN in TE-GNN, we study the Variation in performance of T-GNNs with 1 to 6 layers. Since the highway network is exploited in our model to alleviate the over-smoothing problem, we also compare the performance of our method with its corresponding variant TE-GNN-w/o HN, which runs on different numbers of T-GNNs The highway network is dropped on the layer. The experimental results on all four datasets are shown in Fig. 4. From Figure 4, we can observe that on the Diginetica dataset, the performance of our method TE-GNN first rises and peaks when the number of T-GNN layers L = 2, and then starts to decline and become larger. On the Tmall dataset, with the increasing number of T-GNN layers,
TE-GNN的性能逐渐提高,并在T-GNN层数L=4时达到峰值。如果我们进一步扩大层的数量,将导致TE-GNN大幅度的性能下降。在其他两个数据集(Nowplaying和Retailrocket)上也可以观察到类似的结果。这一趋势表明,当我们增加T-GNN层的数量时,我们的模型可以有效地捕获远处项目之间的转换关系。然而,如果TGNN层的数量过大,则会向模型中注入更多不相关或噪声高阶的相邻项,从而导致模型次优性能。我们还可以在图4中观察到,我们的模型TE-GNN始终比其相应的变体TE-GNN-w/o HN表现更好。此外,随着T-GNN层数的增加,TE-GNN-w/o HN与我们的方法TE-GNN相比,性能退化更大。结果表明,高速公路网络可以有效地缓解由这些多层GCN结构引起的过度平滑问题。The performance of TE-GNN gradually improves and peaks when the number of T-GNN layers is L=4. If we further expand the number of layers, it will lead to a large performance drop of TE-GNN. Similar results are observed on the other two datasets (Nowplaying and Retailrocket). This trend shows that when we increase the number of T-GNN layers, our model can effectively capture the translation relationship between distant items. However, if the number of TGNN layers is too large, more irrelevant or noisy high-order neighbors are injected into the model, resulting in suboptimal model performance. We can also observe in Fig. 4 that our model TE-GNN consistently performs better than its corresponding variant TE-GNN-w/o HN. Furthermore, as the number of T-GNN layers increases, the performance of TE-GNN-w/o HN is more degraded compared to our method TE-GNN. The results show that the highway network can effectively alleviate the over-smoothing problem caused by these multilayer GCN structures.
九、时间兴趣箱数量的影响9. The influence of the number of time interest boxes
为了探索TE-GNN中时间兴趣箱的数量N的影响,我们在Diginetica和Tmall数据集上将时间兴趣箱的数量从1变为10。实验结果如图5所示。从图5中,我们可以看到用户兴趣箱的数量对TE-GNN的性能影响很大。更准确地说,在Diginetica数据集上,TE-GNN的性能首先提高,并在N=6时达到峰值,在N为7-10时,模型性能逐渐下降。模型在Tmall数据集的性能变化趋势与Diginetica数据集上的性能变化趋势相似。具体来说,随着时间兴趣箱数量的增加,TE-GNN的性能先是不断上升,直到达到峰值(等于8),然后开始快速下降。这种变化趋势是合理的,因为当它很小时,它不能捕获细粒度的用户兴趣以及时间维度。当规模过大时,会话中的共同用户兴趣将被忽略,从而导致推荐性能低下。To explore the effect of the number N of temporal interest bins in TE-GNN, we change the number of temporal interest bins from 1 to 10 on Diginetica and Tmall datasets. The experimental results are shown in Figure 5. From Figure 5, we can see that the number of user interest bins has a great impact on the performance of TE-GNN. More precisely, on the Diginetica dataset, the performance of TE-GNN first improves and peaks when N = 6, and the model performance gradually decreases when N is 7-10. The performance trend of the model on the Tmall dataset is similar to that on the Diginetica dataset. Specifically, as the number of temporal interest bins increases, the performance of TE-GNN first keeps rising until it reaches a peak (equal to 8), and then starts to drop rapidly. This variation trend is reasonable because when it is small, it cannot capture the fine-grained user interest as well as the temporal dimension. When the scale is too large, the common user interests in the session will be ignored, resulting in poor recommendation performance.
需要说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管通过参照本发明的优选实施例已经对本发明进行了描述,但本领域的普通技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离所附权利要求书所限定的本发明的精神和范围。同时,实施例中公知的具体结构及特性等常识在此未作过多描述。最后,本发明要求的保护范围应当以其权利要求的内容为准,说明书中的具体实施方式等记载可以用于解释权利要求的内容。It should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention and not to limit them. Although the present invention has been described with reference to the preferred embodiments of the present invention, those of ordinary skill in the art should Various changes in the above and in the details may be made therein without departing from the spirit and scope of the present invention as defined by the appended claims. Meanwhile, common knowledge such as well-known specific structures and characteristics in the embodiments are not described too much here. Finally, the scope of protection claimed in the present invention should be based on the contents of the claims, and the descriptions of the specific implementation manners in the description can be used to interpret the contents of the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111660113.0A CN114186139B (en) | 2021-12-30 | 2021-12-30 | Graph neural network session recommendation method based on time enhancement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111660113.0A CN114186139B (en) | 2021-12-30 | 2021-12-30 | Graph neural network session recommendation method based on time enhancement |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114186139A true CN114186139A (en) | 2022-03-15 |
CN114186139B CN114186139B (en) | 2022-08-16 |
Family
ID=80606472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111660113.0A Expired - Fee Related CN114186139B (en) | 2021-12-30 | 2021-12-30 | Graph neural network session recommendation method based on time enhancement |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114186139B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114625969A (en) * | 2022-03-22 | 2022-06-14 | 辽宁工程技术大学 | Recommendation method based on interactive neighbor session |
CN117763300A (en) * | 2023-12-04 | 2024-03-26 | 淮阴工学院 | Intelligent program recommendation method based on tense map converter and preference fluctuation |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140058778A1 (en) * | 2012-08-24 | 2014-02-27 | Vmware, Inc. | Location-aware calendaring |
CN111783963A (en) * | 2020-07-24 | 2020-10-16 | 中国人民解放军国防科技大学 | A recommendation method based on star map neural network |
CN112150210A (en) * | 2020-06-19 | 2020-12-29 | 南京理工大学 | Improved neural network recommendation method and system based on GGNN (global warming network) |
CN112364976A (en) * | 2020-10-14 | 2021-02-12 | 南开大学 | User preference prediction method based on session recommendation system |
KR20210059845A (en) * | 2019-11-15 | 2021-05-26 | 에스케이텔레콤 주식회사 | Apparatus for recommending context-aware content based on deep learning and a method therefor |
CN113158038A (en) * | 2021-04-02 | 2021-07-23 | 上海交通大学 | Interest point recommendation method and system based on STA-TCN neural network framework |
CN113220901A (en) * | 2021-05-11 | 2021-08-06 | 中国科学院自动化研究所 | Writing concept auxiliary system and network system based on enhanced intelligence |
CN113313381A (en) * | 2021-05-28 | 2021-08-27 | 北京航空航天大学 | User interaction sensitive dynamic graph sequence recommendation system |
CN113487018A (en) * | 2021-07-28 | 2021-10-08 | 辽宁工程技术大学 | Global context enhancement graph neural network method based on session recommendation |
-
2021
- 2021-12-30 CN CN202111660113.0A patent/CN114186139B/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140058778A1 (en) * | 2012-08-24 | 2014-02-27 | Vmware, Inc. | Location-aware calendaring |
KR20210059845A (en) * | 2019-11-15 | 2021-05-26 | 에스케이텔레콤 주식회사 | Apparatus for recommending context-aware content based on deep learning and a method therefor |
CN112150210A (en) * | 2020-06-19 | 2020-12-29 | 南京理工大学 | Improved neural network recommendation method and system based on GGNN (global warming network) |
CN111783963A (en) * | 2020-07-24 | 2020-10-16 | 中国人民解放军国防科技大学 | A recommendation method based on star map neural network |
CN112364976A (en) * | 2020-10-14 | 2021-02-12 | 南开大学 | User preference prediction method based on session recommendation system |
CN113158038A (en) * | 2021-04-02 | 2021-07-23 | 上海交通大学 | Interest point recommendation method and system based on STA-TCN neural network framework |
CN113220901A (en) * | 2021-05-11 | 2021-08-06 | 中国科学院自动化研究所 | Writing concept auxiliary system and network system based on enhanced intelligence |
CN113313381A (en) * | 2021-05-28 | 2021-08-27 | 北京航空航天大学 | User interaction sensitive dynamic graph sequence recommendation system |
CN113487018A (en) * | 2021-07-28 | 2021-10-08 | 辽宁工程技术大学 | Global context enhancement graph neural network method based on session recommendation |
Non-Patent Citations (2)
Title |
---|
YUPU GUO ET AL.: "A Time-Aware Graph Neural Network for Session-Based Recommendation", 《IEEE》 * |
单良: "增强时间特征的兴趣点推荐算法研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114625969A (en) * | 2022-03-22 | 2022-06-14 | 辽宁工程技术大学 | Recommendation method based on interactive neighbor session |
CN117763300A (en) * | 2023-12-04 | 2024-03-26 | 淮阴工学院 | Intelligent program recommendation method based on tense map converter and preference fluctuation |
Also Published As
Publication number | Publication date |
---|---|
CN114186139B (en) | 2022-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhou et al. | Interactive recommender system via knowledge graph-enhanced reinforcement learning | |
CN111523047B (en) | Multi-relation collaborative filtering algorithm based on graph neural network | |
Pang et al. | Heterogeneous global graph neural networks for personalized session-based recommendation | |
Pan et al. | Star graph neural networks for session-based recommendation | |
CN111581519B (en) | Item recommendation method and system based on user intent in conversation | |
CN111797321B (en) | A method and system for personalized knowledge recommendation for different scenarios | |
CN113222700B (en) | Session-based recommendation method and device | |
CN112364976B (en) | User preference prediction method based on session recommendation system | |
CN110119467A (en) | A kind of dialogue-based item recommendation method, device, equipment and storage medium | |
CN114186139B (en) | Graph neural network session recommendation method based on time enhancement | |
Deng et al. | G 3 SR: Global graph guided session-based recommendation | |
CN111783963A (en) | A recommendation method based on star map neural network | |
Peng et al. | GC–HGNN: A global-context supported hypergraph neural network for enhancing session-based recommendation | |
CN114595383B (en) | Marine environment data recommendation method and system based on session sequence | |
CN113010774B (en) | Click rate prediction method based on dynamic deep attention model | |
CN112765461A (en) | Session recommendation method based on multi-interest capsule network | |
Chen et al. | Session-based recommendation with local invariance | |
Tang et al. | Time enhanced graph neural networks for session-based recommendation | |
CN114492763A (en) | Graph neural network method for enhancing attention by fusing global context information | |
CN105574213A (en) | Microblog recommendation method and device based on data mining technology | |
CN115470406A (en) | Graph neural network session recommendation method based on dual-channel information fusion | |
CN116542742A (en) | Heterogeneous dynamic social recommendation method based on multiple relation types | |
CN106991496A (en) | A kind of user behavior towards mobile social environment is layered interaction prediction method | |
CN112000873B (en) | Session-based recommendation system, method, device and storage medium | |
CN114912984B (en) | Self-attention-based time scoring perception context recommendation method and system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220816 |