[go: up one dir, main page]

CN114181956B - Wheat stripe rust resistance related metabolite and synthesis related gene and application thereof - Google Patents

Wheat stripe rust resistance related metabolite and synthesis related gene and application thereof Download PDF

Info

Publication number
CN114181956B
CN114181956B CN202210090847.8A CN202210090847A CN114181956B CN 114181956 B CN114181956 B CN 114181956B CN 202210090847 A CN202210090847 A CN 202210090847A CN 114181956 B CN114181956 B CN 114181956B
Authority
CN
China
Prior art keywords
ala
gly
hga
wheat
tahpd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210090847.8A
Other languages
Chinese (zh)
Other versions
CN114181956A (en
Inventor
杨宇衡
刘赛斐
马子慧
肖牧野
宿嘉轩
田斌年
方安菲
余洋
毕朝位
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest University
Original Assignee
Southwest University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest University filed Critical Southwest University
Priority to CN202210090847.8A priority Critical patent/CN114181956B/en
Publication of CN114181956A publication Critical patent/CN114181956A/en
Application granted granted Critical
Publication of CN114181956B publication Critical patent/CN114181956B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0069Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/50Isolated enzymes; Isolated proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8282Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for fungal resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y113/00Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13)
    • C12Y113/11Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13) with incorporation of two atoms of oxygen (1.13.11)
    • C12Y113/110274-Hydroxyphenylpyruvate dioxygenase (1.13.11.27)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Dentistry (AREA)
  • Environmental Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明属于植物基因工程技术领域,尤其涉及小麦条锈病抗性相关代谢物及其合成相关基因与应用。在小麦被条锈菌侵染后的代谢组和转录组联合分析中,发现2,5‑二羟基苯乙酸(HGA)及其合成相关基因TaHPD被诱导上调,外源喷施HGA可以提高小麦、玉米对锈病的抗性,并且可以抑制锈菌夏孢子的萌发。通过基因沉默和过表达TaHPD也证明了HGA含量的变化影响着植物的抗病性。本发明的化合物HGA可加工成防治剂,实现绿色防控作物病害。

The invention belongs to the technical field of plant genetic engineering, and particularly relates to wheat stripe rust resistance-related metabolites and their synthesis-related genes and applications. In the joint analysis of metabolome and transcriptome after wheat was infected by stripe rust fungus, it was found that 2,5-dihydroxyphenylacetic acid (HGA) and its synthesis-related gene TaHPD were induced and up-regulated. Exogenous spraying of HGA can improve wheat, Corn is resistant to rust and can inhibit the germination of rust fungus summer spores. Gene silencing and overexpression of TaHPD also demonstrated that changes in HGA content affect plant disease resistance. The compound HGA of the present invention can be processed into a control agent to realize green prevention and control of crop diseases.

Description

小麦条锈病抗性相关代谢物及其合成相关基因与应用Metabolites related to wheat stripe rust resistance and their synthesis-related genes and applications

技术领域Technical field

本发明属于植物基因工程技术领域,尤其涉及小麦与条锈非亲和互作中筛选出的天然化合物HGA及其合成相关基因与应用。The invention belongs to the technical field of plant genetic engineering, and in particular relates to the natural compound HGA screened out from the incompatible interaction between wheat and stripe rust and its synthesis-related genes and applications.

背景技术Background technique

小麦是世界上种植范围广、产量高、种植历史悠久的粮食作物。由小麦加工的面包、面条、馒头等食物也得到了大家的喜爱,占据了消费市场。据统计显示,中国小麦种植面积由2014年的2407.16万公顷上升到2017年的2451.04万公顷,产量由2014年的12621.52万吨上升到2017年的13434.06万吨,并呈逐年上升趋势。由此可见,中国对小麦的需求量持续增大,按此增长速度,预计到2050年,需求量将增加60%。但由于气候、品种等原因影响,小麦时刻受到各种病害的威胁而导致减产,而小麦条锈病就是其中一种非常重要的病害。Wheat is a food crop with wide planting range, high yield and long cultivation history in the world. Bread, noodles, steamed buns and other foods processed from wheat are also loved by everyone and occupy the consumer market. According to statistics, China's wheat planting area increased from 24.0716 million hectares in 2014 to 24.5104 million hectares in 2017, and the output increased from 126.2152 million tons in 2014 to 134.3406 million tons in 2017, showing an upward trend year by year. It can be seen that China's demand for wheat continues to increase. At this growth rate, it is expected that demand will increase by 60% by 2050. However, due to climate, variety and other reasons, wheat is always threatened by various diseases, resulting in reduced yields, and wheat stripe rust is one of the very important diseases.

小麦条锈病是由条形柄锈菌小麦专化型(Puccinia striiformis f.sp.tritici,Pst)引起的病害,由于其发生具有致病性变异迅速且变异频繁、暴发性、流行性、长期性、复发性等特点,容易造成主栽小麦品种抗条锈的频繁“丧失”,导致小麦条锈病的爆发流行,严重威胁着全球小麦的安全生产。Wheat stripe rust is a disease caused by Puccinia striiformis f.sp.tritici (Pst). Due to its rapid and frequent pathogenic mutation, it is explosive, epidemic and long-term. , recurrence and other characteristics, it is easy to cause the frequent "loss" of resistance to stripe rust in main wheat varieties, leading to the outbreak of wheat stripe rust, seriously threatening the safe production of global wheat.

目前,该病害的防治主要是化学防治,但化学药剂的长期和超量使用,造成了土壤中有益微生物的种群的破坏,重金属超标等环境污染问题。因此,加强小麦抗锈机制研究,合理利用小麦抗锈性,对延缓病菌变异和绿色调控条锈病具有重要的意义。At present, the prevention and control of this disease is mainly chemical control, but the long-term and excessive use of chemical agents has caused the destruction of beneficial microorganism populations in the soil, excessive heavy metals and other environmental pollution problems. Therefore, strengthening the research on the rust resistance mechanism of wheat and rationally utilizing the rust resistance of wheat are of great significance for delaying the mutation of pathogens and green control of stripe rust.

发明内容Contents of the invention

有鉴于此,本发明的目的之一是提供小麦与条锈非亲和互作中的显著差异代谢物HGA及其合成相关基因。In view of this, one of the purposes of the present invention is to provide the significantly different metabolite HGA and its synthesis-related genes in the incompatible interaction between wheat and stripe rust.

本发明的目的通过以下技术手段实现:The object of the present invention is achieved by the following technical means:

通过小麦与条锈非亲和互作的代谢组和转录组关联分析筛选出差异代谢物HGA和合成HGA的相关基因TaHPD,所述基因TaHPD在6A,6B和6D染色体上有三个同源拷贝,所述同源拷贝基因TaHPD-6A、TaHPD-6B、TaHPD-6D的核苷酸序列分别如SEQ ID NO.1、SEQ IDNO.2、SEQ ID NO.3所示。对羟基苯丙酮酸双加氧酶(HPD)是2,5-二羟基苯乙酸(HGA)代谢过程中重要的酶,TaHPD是编码对羟基苯丙酮酸双加氧酶(HPD)的基因。所述基因TaHPD-6A、TaHPD-6B、TaHPD-6D编码蛋白HPD的氨基酸序列分别如SEQ ID NO.4、SEQ ID NO.5、SEQ IDNO.6所示。Through metabolome and transcriptome association analysis of the non-affinity interaction between wheat and stripe rust, the differential metabolite HGA and the gene TaHPD related to the synthesis of HGA were screened out. The gene TaHPD has three homologous copies on chromosomes 6A, 6B and 6D. The nucleotide sequences of the homologous copy genes TaHPD-6A, TaHPD-6B, and TaHPD-6D are shown in SEQ ID NO. 1, SEQ ID NO. 2, and SEQ ID NO. 3 respectively. Para-hydroxyphenylpyruvate dioxygenase (HPD) is an important enzyme in the metabolism of 2,5-dihydroxyphenylacetic acid (HGA), and TaHPD is the gene encoding p-hydroxyphenylpyruvate dioxygenase (HPD). The amino acid sequences of the protein HPD encoded by the genes TaHPD-6A, TaHPD-6B and TaHPD-6D are shown in SEQ ID NO.4, SEQ ID NO.5 and SEQ IDNO.6 respectively.

本发明的目的之二是提供含有合成代谢物HGA的相关基因TaHPD的基因沉默载体。The second object of the present invention is to provide a gene silencing vector containing TaHPD, a gene related to the anabolic metabolite HGA.

本发明的目的之三是提供含有合成代谢物的相关基因TaHPD的重组载体pCNF3-TaHPD。The third object of the present invention is to provide a recombinant vector pCNF3-TaHPD containing the gene TaHPD related to anabolites.

本发明的目的之四是提供HGA在抑制小麦条锈菌孢子和/或玉米普通锈孢子萌发中的应用。The fourth object of the present invention is to provide the application of HGA in inhibiting the germination of wheat stripe rust spores and/or corn rust spores.

本发明的目的之五是提供HGA作为小麦条锈病和/或玉米锈病防治剂的应用,这为小麦条锈病提供绿色防控技术,具有重要的应用前景。The fifth object of the present invention is to provide the application of HGA as a control agent for wheat stripe rust and/or corn rust, which provides a green prevention and control technology for wheat stripe rust and has important application prospects.

本发明的目的之六是TaHPD基因的重组载体pCNF3-TaHPD在提高烟草对核盘菌抗性上的应用。The sixth object of the present invention is the application of the recombinant vector pCNF3-TaHPD of the TaHPD gene in improving tobacco resistance to Sclerotinia sclerotiorum.

本发明的目的之七是提供防治或抑制小麦对条锈病病害的方法,将HGA溶液喷施于小麦叶片,HGA溶液中HGA的浓度为1-10mmol/L。HGA可以提高小麦抗条锈菌的能力也可以有效抑制锈菌孢子的萌发。The seventh object of the present invention is to provide a method for preventing or inhibiting wheat stripe rust disease. HGA solution is sprayed on wheat leaves, and the concentration of HGA in the HGA solution is 1-10 mmol/L. HGA can improve the ability of wheat to resist stripe rust and can also effectively inhibit the germination of rust spores.

本发明的目的之八是提供防治或抑制玉米锈病病害的方法,将HGA溶液喷施于玉米叶片,所述HGA溶液中HAG的浓度为1-20mmol/L。HGA可以提高玉米抗锈菌的能力也可以有效抑制锈菌孢子的萌发。An eighth object of the present invention is to provide a method for preventing or inhibiting corn rust disease. HGA solution is sprayed on corn leaves, and the concentration of HAG in the HGA solution is 1-20 mmol/L. HGA can improve the resistance of corn to rust fungi and can also effectively inhibit the germination of rust fungus spores.

与现有技术相比,本发明具有以下有益的技术效果:本发明首次公开了天然化合物HGA参与植物抗条锈和锈病的过程以及HGA作为小麦条锈病和玉米锈病防治剂的防治效果。(1)首次公开了小麦条锈病抗性相关代谢物HGA;(2)获得了合成HGA相关基因TaHPD以及其核苷酸序列;(3)运用分子生物学及基因工程技术证实了HGA参与植物的抗条锈菌和锈菌的过程;(4)外源喷施HGA可以提高小麦抗条锈和玉米抗锈病能力,也可抑制条锈菌和锈菌孢子的萌发。本发明证实了HGA作为小麦条锈病和玉米锈病防治剂的效果,实现了绿色防控小麦条锈病和玉米锈病。Compared with the existing technology, the present invention has the following beneficial technical effects: The present invention discloses for the first time that the natural compound HGA participates in the process of plant resistance to stripe rust and rust diseases, and the control effect of HGA as a control agent for wheat stripe rust and corn rust. (1) The wheat stripe rust resistance-related metabolite HGA was disclosed for the first time; (2) The synthetic HGA-related gene TaHPD and its nucleotide sequence were obtained; (3) The use of molecular biology and genetic engineering technology confirmed that HGA is involved in plant The process of resisting stripe rust and rust fungi; (4) Exogenous spraying of HGA can improve the resistance of wheat and corn to stripe rust, and can also inhibit the germination of stripe rust and rust spores. The invention confirms the effect of HGA as a control agent for wheat stripe rust and corn rust, and realizes green prevention and control of wheat stripe rust and corn rust.

附图说明Description of the drawings

图1是实施例1的差异代谢物趋势分析图;Figure 1 is a differential metabolite trend analysis diagram of Example 1;

图2是实施例1的代谢组和转录组关联分析图、实施例5实时荧光定量PCR检测结果图和接菌后HGA含量测定图;Figure 2 is a diagram showing the correlation analysis of the metabolome and transcriptome of Example 1, the real-time fluorescence quantitative PCR detection result diagram of Example 5, and the HGA content measurement diagram after inoculation;

图3是实施例2小麦(a)和玉米(b)外源喷施HGA的表型图;Figure 3 is a phenotypic diagram of exogenous spraying of HGA on wheat (a) and corn (b) in Example 2;

图4是实施例3的HGA处理对小麦条锈菌孢子(a)和玉米普通锈孢子(b)的萌发影响结果图;Figure 4 is a graph showing the effect of HGA treatment in Example 3 on the germination of wheat stripe rust spores (a) and corn rust spores (b);

图5是实施例6基因沉默后接条锈菌CYR23表型观察(a),基因沉默后HGA含量变化图(d)。Figure 5 is the phenotypic observation of stripe rust fungus CYR23 after gene silencing in Example 6 (a), and the change in HGA content after gene silencing (d).

图6是实施例7过表达TaHPD对核盘菌侵染图(a),侵染后病变部位直径(b),过表达TaHPD后HGA含量变化图(c)。Figure 6 shows the infection of Sclerotinia sclerotiorum by overexpression of TaHPD in Example 7 (a), the diameter of the lesion after infection (b), and the change of HGA content after overexpression of TaHPD (c).

具体实施方式Detailed ways

以下将结合附图和具体实施例对本发明进行详细说明:The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments:

本发明中小麦Suwon11(Su11)、MingXian169(MX169)、玉米、本氏烟、条锈菌生理小种CYR23、CYR34、玉米普通锈菌、大肠杆菌感受态DH5α、农杆菌感受态GV3101、载体pCNF3、BSMV:γ等由西南大学植物保护学院植物真菌病害研究室提供。In the present invention, wheat Suwon11 (Su11), MingXian169 (MX169), corn, Nicotiana benthamiana, stripe rust physiological races CYR23, CYR34, corn rust fungus, Escherichia coli competent DH5α, Agrobacterium competent GV3101, vector pCNF3, BSMV:γ and others were provided by the Plant Fungal Disease Research Laboratory, College of Plant Protection, Southwest University.

以下是实例中荧光定量引物利用NCBI数据库设计,其余引物由primer 5件设计完成。试验引物合成、菌液测序均由生工生物工程(上海)股份有限公司完成。The following is an example of fluorescent quantitative primers designed using the NCBI database, and the remaining primers were designed using Primer 5. Test primer synthesis and bacterial liquid sequencing were completed by Sangon Bioengineering (Shanghai) Co., Ltd.

本发明所使用的HGA购买于梯希爱(TCI)化成工业发展有限公司,其他试剂均为市售。The HGA used in the present invention was purchased from TCI Chemical Industry Development Co., Ltd., and other reagents are commercially available.

LB培养基配方/L:胰蛋白胨10g、酵母提取物5g、NaCl 5g、配固体时加20g琼脂粉;PDA培养基配方/L:土豆200g、葡萄糖20g、琼脂20g。LB medium formula/L: 10g tryptone, 5g yeast extract, 5g NaCl, add 20g agar powder when preparing solid; PDA medium formula/L: 200g potatoes, 20g glucose, 20g agar.

实施例1条锈菌CYR23侵染小麦后的代谢物分析Example 1 Analysis of metabolites after stripe rust fungus CYR23 infects wheat

(1)材料处理(1)Material handling

将水源11(Suwon11)小麦种子用75%酒精消毒后,用超纯水清洗4-5遍,浸种催芽后播种于营养钵中,于12℃±2℃环境中培养至麦苗长至1叶期时,将条锈菌生理小种CYR23涂抹在叶片上,黑暗保湿24h,以正常生长的小麦作为对照CK。分别在接种后的12h、24h、48h进行取材。Disinfect the Suwon11 wheat seeds with 75% alcohol, wash them 4-5 times with ultrapure water, soak them for germination, sow them in a nutrient bowl, and cultivate them in a 12°C ± 2°C environment until the wheat seedlings reach the 1-leaf stage. At that time, stripe rust fungus physiological race CYR23 was applied on the leaves and kept moisturized in the dark for 24 hours. Normally grown wheat was used as the control CK. Samples were collected at 12h, 24h, and 48h after inoculation.

(2)用超高效液相色谱和串联质谱的方法检测代谢物(2) Detect metabolites using ultra-high performance liquid chromatography and tandem mass spectrometry

用超高效液相色谱和串联质谱的方法对步骤(1)中获取的材料进行代谢物的检测。具体操作方法为:S1,标准品与试剂,所有的化学试剂都是分析纯。所用水是双重去离子后的超纯水,超纯水仪纯化系统为Millipore产品。化学标准品从BioBioPha公司与美国Sigma-Aldrich公司购买。标准品是通过二甲基亚砜(DMSO)或甲醇作为溶剂溶解,并保存在-20℃。标准品的工作样品在使用前用70%甲醇稀释成不同梯度浓度用于质谱分析。S2:代谢物提取,取出步骤S1获得的经过超低温冷冻保存的生物材料样本,对样本进行真空冷冻干燥。干燥后的样品,利用研磨仪(MM 400,Retsch)在30Hz条件下研磨1.5分钟,称取100mg的粉末,利用含有0.1mg/l利多卡因作为内标的70%甲醇1.0ml于4℃提取过夜,期间涡旋三次,使提取更为充分。提取后,10000g离心10分钟,吸取上清,用微孔滤膜(0.22μmpore size)过滤样品,并保存在进样瓶中随后用于LC-MS分析。质控样本(QC)由样本提取物混合制备而成,用于分析样本在相同的处理方法下的重复性。在仪器分析的过程中,一般每10个检测分析样本中插入一个QC样本,以考察分析过程的重复性。S3,代谢物检测,数据采集仪器系统主要包括超高效液相色谱(Ultra Performance Liquid Chromatograp,UPLC)(Shim-pack UFLC SHIMADZU CBM20A,http://www.shimadzu.com.cn/)和串联质谱(Tandemmass spectrometry,MS/MS)(Applied Biosystems 4500QTRAP,http://www.appliedbiosystems.com.cn/)。UPLC分析条件主要包括:色谱柱:Waters ACQUITYUPLC HSS T3 C181.8μm,2.1mm*100mm;流动相:水相为超纯水(加入0.04%的乙酸),有机相为乙腈(加入0.04%的乙酸);洗脱梯度,水:乙腈,0min为95:5V/V,11.0min为5:95V/V,12.0min为5:95V/V,12.1min为95:5V/V,15.0min为95:5V/V;流速为0.4ml/min;柱温为40℃;进样量为5μl。分离的样品进入ESI-QTRAP-MS进行质谱分析。API 4500QTRAP LC/MS/MS系统中,线性离子阱和三重四级杆的主要参数包括:电喷雾离子源(electrosprayionization,ESI)温度为550℃,质谱电压为5500V,帘气(curtain gas,CUR)为25psi,碰撞诱导电离(collision-activated dissociation,CD)参数设置为高。在三重四级杆(QQQ)中,每个离子对是根据优化的去簇电压(declustering potential,DP)和碰撞能(collision energy,CE)进行扫描检测。所得到的数据利用软件Analyst 1.6.1(AB SCIEX)进行数据处理。Use ultra-high performance liquid chromatography and tandem mass spectrometry to detect metabolites from the material obtained in step (1). The specific operation methods are: S1, standards and reagents. All chemical reagents are of analytical grade. The water used is ultrapure water after double deionization, and the ultrapure water instrument purification system is a Millipore product. Chemical standards were purchased from BioBioPha Company and Sigma-Aldrich Company of the United States. Standards are dissolved in dimethyl sulfoxide (DMSO) or methanol as solvent and stored at -20°C. The working samples of the standards were diluted with 70% methanol into different gradient concentrations before use for mass spectrometry analysis. S2: Metabolite extraction, take out the ultra-low temperature cryopreserved biological material sample obtained in step S1, and vacuum freeze-dry the sample. The dried sample was ground with a grinder (MM 400, Retsch) at 30 Hz for 1.5 minutes, 100 mg of powder was weighed, and extracted with 1.0 ml of 70% methanol containing 0.1 mg/l lidocaine as an internal standard at 4°C overnight. , vortex three times during this period to make the extraction more complete. After extraction, centrifuge at 10,000 g for 10 minutes, aspirate the supernatant, filter the sample with a microporous membrane (0.22 μm pore size), and store it in a sample bottle for subsequent LC-MS analysis. Quality control samples (QC) are prepared by mixing sample extracts and used to analyze the repeatability of samples under the same processing method. During the instrument analysis process, one QC sample is generally inserted into every 10 detection and analysis samples to examine the repeatability of the analysis process. S3, metabolite detection, data acquisition instrument system mainly includes ultra-performance liquid chromatography (Ultra Performance Liquid Chromatograp, UPLC) (Shim-pack UFLC SHIMADZU CBM20A, http://www.shimadzu.com.cn/) and tandem mass spectrometry ( Tandem mass spectrometry, MS/MS) (Applied Biosystems 4500QTRAP, http://www.appliedbiosystems.com.cn/). UPLC analysis conditions mainly include: chromatographic column: Waters ACQUITYUPLC HSS T3 C181.8μm, 2.1mm*100mm; mobile phase: the aqueous phase is ultrapure water (0.04% acetic acid is added), the organic phase is acetonitrile (0.04% acetic acid is added) ; Elution gradient, water: acetonitrile, 0min is 95:5V/V, 11.0min is 5:95V/V, 12.0min is 5:95V/V, 12.1min is 95:5V/V, 15.0min is 95:5V /V; the flow rate is 0.4ml/min; the column temperature is 40°C; the injection volume is 5μl. The separated samples enter ESI-QTRAP-MS for mass spectrometry analysis. In the API 4500QTRAP LC/MS/MS system, the main parameters of the linear ion trap and triple quadrupole include: the electrospray ionization source (ESI) temperature is 550°C, the mass spectrometer voltage is 5500V, and the curtain gas (CUR) is 25 psi, and the collision-activated dissociation (CD) parameter is set to high. In the triple quadrupole (QQQ), each ion pair is scanned and detected based on the optimized declustering potential (DP) and collision energy (CE). The obtained data were processed using software Analyst 1.6.1 (AB SCIEX).

本实验中检测结果发现,在条锈菌CYR23侵染小麦后的显著差异代谢物中24h时显著差异代谢物最多,SN-甘油-3-磷酸胆碱、乳清酸、烟酰胺、川陈皮素、抗坏血酸、橙皮苷、水杨酸和新橙皮苷显著下调,显著上调的有2-氨基己二酸、甲氧基吲哚乙酸、N'-对香豆酰基胍丁胺、N-对香豆酰丁胺、L-组氨酸、L-(+)-精氨酸、L-酵母氨酸和2,5-二羟基苯乙酸对这些显著差异代谢物进行了趋势分析(见附图1),通过代谢组和转录组关联分析发现(见附图2),小麦水源11中2,5-二羟基苯乙酸(HGA)及其合成相关基因TaHPD均被小麦条锈菌CYR23诱导上调,证明HGA参与小麦抗条锈反应。The test results in this experiment found that among the significantly different metabolites after the stripe rust fungus CYR23 infected wheat, the most significantly different metabolites at 24 hours were SN-glyceryl-3-phosphocholine, orotic acid, nicotinamide, and nobiletin. , ascorbic acid, hesperidin, salicylic acid and neohesperidin were significantly down-regulated, and those that were significantly up-regulated were 2-aminoadipic acid, methoxyindoleacetic acid, N'-p-coumaroyl agmatine, N-p Coumaroylbutamide, L-histidine, L-(+)-arginine, L-yeastine and 2,5-dihydroxyphenylacetic acid were used for trend analysis of these significantly different metabolites (see attached figure 1), through metabolome and transcriptome correlation analysis, it was found (see Figure 2) that 2,5-dihydroxyphenylacetic acid (HGA) and its synthesis-related gene TaHPD in wheat water source 11 were induced and up-regulated by Triticum stripe rust CYR23, It is proved that HGA is involved in the anti-stripe rust reaction of wheat.

实施例2HGA叶面喷施小麦、玉米后的抗条锈菌实验Example 2 Experiment on stripe rust resistance after HGA foliar spraying on wheat and corn

(1)材料培养(1) Material cultivation

将水源11小麦种子用75%酒精消毒后,用超纯水清洗4-5遍,浸种催芽后播种于营养钵中,在12℃±2℃温室培养,光照16h,黑暗8h。将玉米种子用75%酒精消毒后,用超纯水清洗4-5遍,浸种催芽后播种于营养钵中,在25℃±2℃温室培养,光照16h,黑暗8h。Disinfect the wheat seeds of Water Source 11 with 75% alcohol, wash them 4-5 times with ultrapure water, soak them for germination, sow them in a nutrient bowl, and cultivate them in a greenhouse at 12°C ± 2°C with 16 hours of light and 8 hours of darkness. After sterilizing the corn seeds with 75% alcohol, wash them 4-5 times with ultrapure water, soak them for germination, sow them in a nutrient bowl, and culture them in a greenhouse at 25°C ± 2°C with 16 hours of light and 8 hours of darkness.

(2)材料处理(2)Material handling

在小麦叶面分别喷施浓度为2.5mmol、5mmol、10mmol的HGA溶液,每个处理重复3次,对照组CK不做喷施处理,然后分别摩擦接种条锈菌亲和生理小种CYR34,接种12天后观察小麦叶片的发病程度。HGA solutions with concentrations of 2.5mmol, 5mmol, and 10mmol were sprayed on the wheat leaves respectively. Each treatment was repeated three times. The control group CK was not sprayed, and then the stripe rust fungus compatible physiological race CYR34 was rubbed and inoculated. Observe the degree of disease on the wheat leaves after 12 days.

在玉米叶面分别喷施浓度为5mmol、10mmol、20mmol的HGA溶液,每个处理重复3次,对照组CK不做喷施处理,然后分别摩擦接种玉米普通锈,然后观察玉米叶片的发病程度。HGA solutions with concentrations of 5mmol, 10mmol, and 20mmol were sprayed on the corn leaves respectively. Each treatment was repeated three times. The control group CK was not sprayed, and then the corn rust was rubbed and inoculated, and then the disease degree of the corn leaves was observed.

本实验发现(见附图3)喷施2.5、5、10mmol/L HGA的小麦叶片发病程度明显低于对照组,其中10mmol/L HGA喷施量小麦叶片的发病程度最低。证明小麦外源喷施2.5-10mmol/L的HGA可以减轻小麦条锈病的发病程度。喷施5、10、20mmol/L HGA的玉米叶片发病程度明显低于对照组,其中20mmol/L HGA喷施量玉米叶片的发病程度最低。证明外源喷施HGA可以减轻玉米普通锈的发生。This experiment found (see Figure 3) that the disease level of wheat leaves sprayed with 2.5, 5, and 10 mmol/L HGA was significantly lower than that of the control group, and the disease level of wheat leaves sprayed with 10 mmol/L HGA was the lowest. It is proved that exogenous spraying of 2.5-10mmol/L HGA on wheat can reduce the incidence of wheat stripe rust. The degree of disease on the corn leaves sprayed with 5, 10, and 20 mmol/L HGA was significantly lower than that in the control group, and the degree of disease on the corn leaves sprayed with 20 mmol/L HGA was the lowest. It is proved that exogenous spraying of HGA can reduce the occurrence of common rust in corn.

实施例3HGA对小麦条锈菌孢子和玉米普通锈孢子萌发率的影响实验Example 3 Experiment on the influence of HGA on the germination rate of wheat stripe rust spores and corn common rust spores

分别配置浓度为1mmol/L、2mmol/L、5mmol/L、10mmol/L的HGA溶液。取一个干净的载玻片,加一滴上述不同浓度的HGA溶液,对照组CK滴加一滴蒸馏水,用解剖针挑取少量条锈菌孢子分别置于上述不同浓度的溶液和蒸馏水中,在低倍显微镜下调节孢子浓度,约有孢子40-60个/视野。将载玻片置于垫有吸水纸的培养皿中,然后于12℃±2℃恒温箱中培养。24h后取出观察,每个处理重复3次,玉米锈孢子抑制实验方法同上,培养温度为20℃±2℃。Prepare HGA solutions with concentrations of 1mmol/L, 2mmol/L, 5mmol/L, and 10mmol/L respectively. Take a clean glass slide, add a drop of the above-mentioned HGA solutions of different concentrations, and add a drop of distilled water to the control group CK. Use a dissecting needle to pick out a small amount of stripe rust spores and place them in the above-mentioned solutions of different concentrations and distilled water respectively. Adjust the spore concentration under a microscope to approximately 40-60 spores/field of view. Place the slide in a petri dish lined with absorbent paper, and then culture it in an incubator at 12°C ± 2°C. Take them out for observation after 24 hours. Each treatment is repeated three times. The experimental method for corn rust spore inhibition is the same as above. The culture temperature is 20℃±2℃.

本实验结果表明(见附图4),在对小麦条锈菌孢子抑制实验中,浓度为1、2、5、10mmol/L的HGA均可抑制孢子萌发,其中以10mmol/L的HGA对条锈孢子的抑制效果最好,可以完全抑制孢子的萌发,而且低浓度(1-5mmol/L)状态时,可以使夏孢子产生的芽管畸形。在对玉米锈菌的孢子抑制实验中,1-10mmol/L的HGA可以使孢子产生畸形,也可以抑制芽管的伸长。本实验证明1-10mmol/L的HGA可以有效抑制小麦条锈菌和玉米锈菌孢子的萌发。The results of this experiment show (see Figure 4) that in the spore inhibition experiment of wheat stripe rust fungus, HGA at concentrations of 1, 2, 5, and 10mmol/L can inhibit spore germination. Among them, 10mmol/L HGA can inhibit spore germination. Rust spores have the best inhibitory effect and can completely inhibit the germination of spores. At low concentrations (1-5mmol/L), the germ tubes produced by summer spores can be deformed. In the spore inhibition experiment of corn rust fungus, 1-10mmol/L HGA can deform the spores and inhibit the elongation of the germ tube. This experiment proves that 1-10mmol/L HGA can effectively inhibit the germination of wheat stripe rust and corn rust spores.

实施例4基因TaHPD的获得Example 4 Obtainment of gene TaHPD

(1)总RNA的提取及其反转录(1) Extraction of total RNA and its reverse transcription

将小麦叶片,用植物总RNA提取试剂盒(购买于天根生化科技有限公司)提取小麦幼苗总RNA,然后用反转录试剂盒(购买于Thermo Scientific公司)将RNA反转录cDNA,反应体系如下。取1μg totalRNA,按照Thermo Scientific RevertAid First Strand cDNASynthesis Kit(Thermo)试剂盒说明书进行第一链cDNA合成,在nuclease-free的PCR管中加入下列组分:total RNA 1μg 10×DNaseI Buffer 1μL DNase I 1μL nuclease-freeddH2O up to 10μL混匀后在PCR仪中37℃孵育30min后,65℃孵育5min使酶失活,立即插入冰中冷却,继续在体系中加入以下组分:Oligo(dT)18(0.5μg/μL)1μL nuclease-freeddH2O 1μL混匀后65℃孵育5min,冰上冷却2min后,加入以下组分:5×Reaction Buffer 4μL Ribollock Rnase Inhibitor(20U/μL)1μL 10mM dNTP Mix 2μL RevertAid M-MuL V RT(200U/μL)1μL混匀后在PCR仪中45℃孵育1h后,70℃孵育5min使酶失活,产物放于-20℃中储存备用。From the wheat leaves, use a plant total RNA extraction kit (purchased from Tiangen Biochemical Technology Co., Ltd.) to extract total RNA from wheat seedlings, and then use a reverse transcription kit (purchased from Thermo Scientific) to reverse-transcribe the RNA into cDNA. Reaction system as follows. Take 1μg total RNA and perform first-strand cDNA synthesis according to the instructions of the Thermo Scientific RevertAid First Strand cDNASynthesis Kit (Thermo). Add the following components to the nuclease-free PCR tube: total RNA 1μg 10×DNaseI Buffer 1μL DNase I 1μL nuclease -freeddH2O up to 10μL, mix well and incubate in a PCR machine at 37°C for 30 minutes, incubate at 65°C for 5 minutes to inactivate the enzyme, immediately insert it into ice to cool, and continue to add the following components to the system: Oligo (dT) 18 (0.5μg /μL) 1μL nuclease-freeddH2O 1μL, mix and incubate at 65°C for 5 minutes, cool on ice for 2 minutes, then add the following components: 5×Reaction Buffer 4μL Ribollock RNase Inhibitor (20U/μL) 1μL 10mM dNTP Mix 2μL RevertAid M-MuL V RT (200U/μL) 1μL was mixed and incubated in a PCR machine at 45°C for 1 hour, then incubated at 70°C for 5 minutes to inactivate the enzyme, and the product was stored at -20°C for later use.

(2)TaHPD基因全长序列的扩增与回收。(2) Amplification and recovery of the full-length sequence of TaHPD gene.

上游引物:5'-ATGCCGCCCACCCCCACC-3',如SEQ ID NO.7所示;Upstream primer: 5'-ATGCCGCCCACCCCCACC-3', as shown in SEQ ID NO.7;

下游引物:5'-ATCCCTGAACTGCAGCAGATTG-3',如SEQ ID NO.8所示;Downstream primer: 5'-ATCCCTGAACTGCAGCAGATTG-3', as shown in SEQ ID NO.8;

以步骤(1)中获得的反应产物cDNA为PCR反应的模板,对TaHPD基因进行PCR扩增,反应体系如表1。Using the cDNA of the reaction product obtained in step (1) as the template for the PCR reaction, perform PCR amplification of the TaHPD gene. The reaction system is shown in Table 1.

表1基因扩增反应体系Table 1 Gene amplification reaction system

PCR扩增反应程序为:95℃3min,(95℃30sec,55℃30sec,72℃90sec)35个循环,72℃10min,16℃终止反应。The PCR amplification reaction program was: 95°C for 3 min, 35 cycles of (95°C for 30 sec, 55°C for 30 sec, 72°C for 90 sec), 72°C for 10 min, and terminating the reaction at 16°C.

对PCR产物进行琼脂糖凝胶电泳检测,将具有目的条带的凝胶进行回收,并由生工生物工程(上海)股份有限公司测序,基因TaHPD在6A,6B和6D染色体上有三个同源拷贝,所述同源拷贝基因TaHPD-6A、TaHPD-6B、TaHPD-6D的核苷酸序列分别如SEQ ID NO.9、SEQ IDNO.10、SEQ ID NO.11所示。基因TaHPD-6A、TaHPD-6B、TaHPD-6D编码蛋白HPD的氨基酸序列分别如SEQ ID NO.12、SEQ ID NO.13、SEQ ID NO.14所示,HPD是HGA代谢过程中重要的酶。The PCR product was detected by agarose gel electrophoresis, and the gel with the target band was recovered and sequenced by Sangon Bioengineering (Shanghai) Co., Ltd. The gene TaHPD has three homologs on chromosomes 6A, 6B and 6D. Copy, the nucleotide sequences of the homologous copy genes TaHPD-6A, TaHPD-6B, and TaHPD-6D are shown in SEQ ID NO. 9, SEQ ID NO. 10, and SEQ ID NO. 11 respectively. The amino acid sequences of the protein HPD encoded by the genes TaHPD-6A, TaHPD-6B, and TaHPD-6D are shown in SEQ ID NO. 12, SEQ ID NO. 13, and SEQ ID NO. 14 respectively. HPD is an important enzyme in the metabolism of HGA.

TaHPD-6A的核苷酸序列为:The nucleotide sequence of TaHPD-6A is:

ATGCCGCCCACCCCCACCACCCCCGCAGCCACCGGCGCCGCCGCGGTGACGCCGGAGCACGCGCGGCCGCGCCGAATGGTCCGCTTCAACCCGCGCAGCGACCGCTTCCACACGCTCGCCTTCCACCACGTCGAGTTCTGGTGCGCGGACGCCGCCTCCGCCGCCGGCCGCTTCGCCTTCGCGCTCGGCGCGCCGCTCGCCGCCAGGTCCGACCTCTCCACGGGGAACTCCGTGCACGCCTCCCAGCTGCTCCGCTCGGGCAACCTCGCCTTCCTCTTCACGGCCCCCTACGCCAACGGCTGCGACGCCGCCACCGCCTCCCTGCCCTCCTTCTCCGCCGACGCCGCGCGCCAGTTCTCCGCGGACCACGGCCTCGCGGTGCGCTCCATAGCGCTGCGCGTCGCGGACGCTGCCGAGGCCTTCCGCGCCAGCGTCGACGGGGGCGCGCGCCCGGCCTTCAGCCCTGTGGACCTCGGCCGCGGCTTCGGCTTCGCGGAGGTCGAGCTCTACGGCGACGTCGTGCTCCGCTTCGTCAGCCACCCGGACGGCAGGGACGTGCCCTTCTTGCCGGGGTTCGAGGGCGTGAGCAACCCAGACGCCGTGGACTACGGCCTGACGCGGTTCGACCACGTCGTCGGCAACGTCCCGGAGCTTGCCCCCGCCGCGGCCTACGTCGCCGGGTTCACGGGGTTCCACGAGTTCGCCGAGTTCACGACGGAGGACGTGGGCACGGCCGAGAGCGGGCTCAACTCGATGGTGCTCGCCAACAACTCGGAGGGCGTGCTGCTGCCGCTCAACGAGCCGGTGCACGGCACCAAGCGCCGGAGCCAGATACAGACGTTCCTGGAACACCACGGCGGCTCGGGCGTGCAGCACATCGCGGTGGCCAGCAGCGACGTGCTCAGGACGCTCAGGGAGATGCGTGCGCGCTCCGCCATGGGCGGCTTCGACTTCCTGCCACCCCCGCTGCCGAAGTACTACGAAGGCGTGCGGCGCATCGCCGGGGATGTGCTCTCGGAGGCGCAGATCAAGGAATGCCAGGAGCTGGGGGTGCTCGTCGACAGGGACGACCAAGGGGTGTTGCTACAAATCTTCACCAAGCCAGTAGGGGACAGGCCGACGTTGTTCCTGGAGATGATCCAGAGGATCGGGTGCATGGAGAAGGACGAGAGAGGGGAAGAGTACCAGAAGGGTGGCTGCGGCGGGTTCGGCAAAGGCAACTTCTCCGAGCTGTTCAAGTCCATTGAAGATTACGAGAAGTCCCTTGAAGCCAAGCAATCTGCTGCAGTTCAGGGATCATAGATGCCGCCCACCCCCACCACCCCCGCAGCCACCGGCGCCGCCGCGGTGACGCCGGAGCACGCGCGGCCGCGCCGAATGGTCCGCTTCAACCCGCGCAGCGACCGCTTCCACACGCTCGCCTTCCACCACGTCGAGTTCTGGTGCGCGGACGCCGCCTCCGCCGCCGGCCGCTTCGCCTTCGCGCTCGGCGCCGCTCGCCGCCAGGTCCGACCTCTCCACGGGGAACTCCGTGCACGCCTCCCAGCTGCTCCGCTCG GGCAACCTCGCCTTCCTCTTCACGGCCCCCTACGCGCCAACGGCTGCGACGCCGCCACCGCCTCCCTGCCCTCCTTCCGCCGACGCCGCGCCAGTTCCTCCGCGGACCACGGCCTCGCGGTGCGCTCCATAGCGCTGCGCGTCGCGGACGCTGCCGAGGCCTTCCGCGCCAGCGTCGACGGGGGCGCGCGCCCGGCCTTCAGCCCTGTGGACCTCGGCCGCGGCTTCGGCTTCGCGGAGGTCGAGCTCTA CGGCGACGTCGTGCTCCGCTTCGTCAGCCACCCGGACGGCAGGGACGTGCCCTTCTTGCCGGGGTTCGAGGGCGTGAGCAACCCAGACGCCGTGGACTACGGCCTGACGCGGTTCGACCACGTCGTCGGCAACGTCCCGGAGCTTGCCCCCGCCGCGGCCTACGTCGCCGGGTTCACGGGGTTCCACGAGTTCGCCGAGTTCACGACGGAGGACGTGGGCACGGCCGAGAGCGGGCTCAACTCGATGGTGC TCGCCAACAACTCGGAGGGCGTGCTGCTGCCGCTCAACGAGCCGGTGCACGGCACCAAGCGCCGGAGCCAGATACAGACGTTCCTGGAACACCACGGCGGCTCGGGCGTGCAGCACATCGCGGTGGCCAGCAGCGACGTGCTCAGGACGCTCAGGGAGATGCGTGCGCGCTCCGCCATGGGCGGCTTCGACTTCCTGCCACCCCCGCTGCCGAAGTACTACGAAGGCGTGCGGCGCATCGCCGGGGATGTGCTC TCGGAGGCGCAGATCAAGGAATGCCAGGAGCTGGGGGTGCTCGTCGACAGGGACGACCAAGGGGTGTTGCTACAAATCTTCACCAAGCCAGTAGGGGACAGGCCGACGTTGTTCCTGGAGATGATCCAGAGGATCGGGTGCATGGAGAAGGACGAGAGAGGGGAAGAGTACCAGAAGGGTGGCTGCGGCGGGTTCGGCAAAGGCAACTTCTCCGAGCTGTTCAAGTCCATTGAAGATTACGAGAAGTCCCTTGAA GCCAAGCAATCTGCTGCAGTTCAGGGATCATAG

TaHPD-6B的核苷酸序列为:The nucleotide sequence of TaHPD-6B is:

ATGCCGCCCACCCCCACCACCCCGGCAGCTACCGGCGCCGCCGCCGCCGCCGCGGTGACGCCGGAGCATGCACGGCCACGTAGAATGGTCCGCTTCAACCCGCGGAGCGACCGCTTCCACACGCTCGCCTTCCACCACGTCGAGTTCTGGTGCGCGGACGCCGCCTCCGCCGCCGGCCGCTTCGCCTTCGCGCTCGGCGCGCCGCTCGCCGCCAGGTCCGACCTCTCCACGGGGAACTCCGTGCACGCCTCCCAGCTGCTCCGCTCGGGCAACCTCGCCTTCCTCTTCACCGCGCCCTACGCGAACGGCTGCGACGCCGCCACCGCCTCCCTGCCCTCCTTCTCCGCCGACGCCGCGCGCCGGTTCTCCGCGGACCACGGGCTCGCAGTGCGCTCCATAGCACTGCGCGTCGCAGACGCCGCAGAGGCCTTCCGCGCCAGCGTCGACGGAGGCGCGCGCCCGGCCTTCAGCCCCGTGGACCTCGGCCGCGGCTTCGGCTTCGCGGAGGTCGAGCTCTACGGCGACGTCGTGCTCCGCTTCGTCAGTCACCCGGATGACACGGACGTGCCCTTCTTGCCGGGGTTCGAGGGCGTGAGCAACCCGGATGCCGTGGACTACGGCCTGACGCGGTTCGACCACGTCGTCGGCAACGTCCCGGAGCTTGCCCCCGCCGCCGCATACGTCGCCGGGTTCGCGGGGTTCCACGAGTTCGCCGAGTTCACGACGGAGGACGTGGGCACGGCCGAGAGCGGGCTCAACTCGATGGTGCTCGCCAACAACTCCGAGGGCGTGCTGCTGCCGCTCAACGAGCCGGTGCACGGCACCAAGCGCCGGAGCCAGATACAGACGTTCCTGGAACACCACGGTGGCCCGGGCGTGCAGCACATCGCGGTGGCCAGCAGCGACGTGCTCAGGACGCTCAGGGAGATGCGTGCGCGCTCCGCCATGGGCGGCTTCGACTTCCTGCCACCCCCGCTGCCGAAGTACTATGAAGGCGTGCGGCGCATCGCGGGGGATGTGCTCTCGGAGGCGCAGATCAAGGAATGCCAGGAGCTGGGGGTGCTCGTCGACAGGGACGACCAAGGGGTGTTGCTCCAAATCTTCACCAAGCCAGTGGGGGACAGGCCAACGCTGTTCCTGGAGATGATCCAAAGGATCGGGTGCATGGAGAAGGACGAGAGAGGGGAAGAGTACCAGAAGGGTGGCTGCGGCGGGTTTGGCAAAGGCAACTTCTCCGAGCTGTTCAAGTCCATTGAGGATTATGAGAAATCCCTTGAAGCCAAGCAATCTGCTGCAGTTCAGGCATCATAGATGCCGCCCACCCCCACCACCCCGGCAGCTACCGGCGCCGCCGCCGCCGCCGCGGGTGACGCCGGAGCATGCACGGCCACGTAGAATGGTCCGCTTCAACCCGCGGAGCGACCGCTTCCACACGCTCGCCTTCCACCACGTCGAGTTCTGGTGCGCGGACGCCGCCTCCGCCGCCGGCCGCTTCGCCTTCGCGCTCGGCGCGCCGCTCGCCGCCAGGTCCGACCTCTCCACGGGGAACTCCGTGCACGCCTCCCAGCT GCTCCGCTCGGGCAACCTCGCCTTCCTTCACCGCGCCCTACGCGAACGGCTGCGACGCCGCCACCGCCTCCCTGCCCTCCTTCTCCGCCGACGCCGCCGCCGGTTCTCCGCGGACCACGGGCTCGCAGTGCGCTCCATAGCACTGCGCGTCGCAGACGCCGCAGAGGCCTTCCGCGCCAGCGTCGACGGAGGCGCGCGCCCGGCCTTCAGCCCCGTGGACCTCGGCCGCGGCTTCGGCTTCGCGGAGGTCGA GCTCTACGGCGACGTCGTGCTCCGCTTCGTCAGTCACCCGGATGACACGGACGTGCCCTTCTTGCCGGGGTTCGAGGGCGTGAGCAACCCGGATGCCGTGGACTACGGCCTGACGCGGTTCGACCACGTCGTCGGCAACGTCCCGGAGCTTGCCCCCGCCGCCGCATACGTCGCCGGGTTCGCGGGGTTCCACGAGTTCGCCGAGTTCACGACGGAGGACGTGGGCACGGCCGAGAGCGGGCTCAACTCGATG GTGCTCGCCAACAACTCCGAGGGCGTGCTGCTGCCGCTCAACGAGCCGGTGCACGGCACCAAGCGCCGGAGCCAGATACAGACGTTCCTGGAACACCACGGTGGCCCGGGCGTGCAGCACATCGCGGTGGCCAGCAGCGACGTGCTCAGGACGCTCAGGGAGATGCGTGCGCGCTCCGCCATGGGCGGCTTCGACTTCCTGCCACCCCCGCTGCCGAAGTACTATGAAGGCGTGCGGCGCATCGCGGGGGATGT GCTCTCGGAGGCGCAGATCAAGGAATGCCAGGAGCTGGGGGTGCTCGTCGACAGGGACGACCAAGGGGTGTTGCTCCAAATCTTCACCAAGCCAGTGGGGGACAGGCCAACGCTGTTCCTGGAGATGATCCAAAGGATCGGGTGCATGGAGAAGGACGAGAGAGGGGAAGAGTACCAGAAGGGTGGCTGCGGCGGGTTTGGCAAAGGCAACTTCTCCGAGCTGTTCAAGTCCATTGAGGATTATGAGAAATCCCTT GAAGCCAAGCAATCTGCTGCAGTTCAGGCATCATAG

TaHPD-6D的核苷酸序列为:The nucleotide sequence of TaHPD-6D is:

ATGCCGCCCACCCCCACCACCCCCGCAGCCACCGGCGCCGGCGCTGCCGCCGCGGTGACGCCGGAGCACGCGCGGCCGCGCCGAATGGTCCGCTTCAACCCGCGCAGCGACCGCTTCCACACGCTCTCCTTCCACCACGTCGAGTTCTGGTGCGCGGACGCCGCCTCCGCCGCCGGCCGCTTCGCCTTCGCGCTCGGCGCGCCGCTCGCCGCCAGGTCCGACCTCTCCACGGGGAACTCCGTGCACGCCTCCCAGCTGCTCCGCTCGGGCAACCTCGCCTTCCTCTTCACCGCGCCCTACGCCAACGGCTGCGACGCCGCCACCGCCTCCCTGCCCTCCTTCTCCGCCGACGCCGCGCGCCGGTTCTCCGCGGACCACGGGCTCGCGGTGCGCTCCATAGCGCTGCGCGTCGCGGACGCCGCCGAGGCCTTCCGCGCCAGCGTCGACGGGGGCGCGCGCCCGGCCTTCAGCCCCGTGGACCTCGGCCGCGGCTTCGGCTTTGCGGAGGTCGAGCTCTACGGCGACGTCGTGCTCCGCTTCGTCAGCCATCCGGACGGCACGGACGTGCCCTTCTTGCCGGGGTTCGAGGGCGTGAGCAACCCGGGTGCCGTGGACTACGGCCTGACACGGTTTGACCACGTCGTCGGCAACGTCCCGGAGCTTGCTTCCGCCGCCGCCTACGTAGCCGGCTTCACGGGTTTCCATGAGTTCGCCGAGTTCACGACGGAGGACGTGGGCACGGCCGAGAGCGGGCTCAACTCGATGGTGCTCGCCAACAACTCGGAGGGCGTGCTGCTGCCGCTCAACGAGCCGGTGCACGGCACCAAGCGCCGGAGCCAGATACAGACGTTCCTGGAACACCACGGCGGCCCGGGTGTGCAGCACATCGCGGTGGCCAGCAGCGACGTGCTCAGGACGCTCAGGGAGATGCGTGCGCGCTCCGCCATGGGCGGCTTCGACTTCCTGCCACCCCCGCTGCCGAAGTACTACGAAGGCGTGCGGCGCATCGCCGGGGATGTGCTCTCGGAGGCGCAGATCAAGGAATGCCAGGAGCTGGGGGTGCTCGTCGACAGGGACGACCAAGGGGTGTTGCTACAAATCTTCACAAAGCCAGTGGGGGACAGGCCAACGCTGTTCCTGGAGATGATCCAAAGGATCGGGTGCATGGAGAAGGACGAGAGAGGGGAAGAGTACCAGAAGGGTGGCTGCGGCGGGTTCGGCAAAGGCAACTTCTCCGAGCTGTTCAAGTCCATTGAAGATTACGAGAAGTCCCTTGAAGCCAAGCAATCTGCTGCAGTTCAGGGATCATAGATGCCGCCCACCCCCACCACCCCCGCAGCCACCGGCGCCGGCGCTGCCGCCGCGGTGACGCCGGAGCACGCGCGGCCGCGCCGAATGGTCCGCTTCAACCCGCGCAGCGACCGCTTCCACACGCTCTCCTTCCACCACGTCGAGTTCTGGTGCGCGGACGCCGCCTCCGCCGCCGGCCGCTTCGCCTTCGCGCTCGGCGCGCCGCTCGCCGCCAGGTCCGACCTCTCCACGGGGAACTCCGTGCACGCCTCCCAGCTGC TCCGCTCGGGCAACCTCGCCTTCCTCTTCACCGCGCCCTACGCCAACGGCTGCGACGCCGCCACCGCCTCCCTGCCCTCCTTCTCCGCCGACGCCGCGCCGCCGGTTCTCCGCGGACCACGGGCTCGCGGTGCGCTCCATAGCGCTGCGCGTCGCGGACGCCGCCGAGGCCTTCCGCGCCAGCGTCGACGGGGGCGCGCGCCCGGCCTTCAGCCCCGTGGACCTCGGCCGCGGCTTCGGCTTTGCCGGAGGTCGA GCTCTACGGCGACGTCGTGCTCCGCTTCGTCAGCCATCCGGACGGCACGGACGTGCCCTTCTTGCCGGGGTTCGAGGGCGTGAGCAACCCGGGTGCCGTGGACTACGGCCTGACACGGGTTTGACCACGTCGTCGGCAACGTCCCGGAGCTTGCTTCCGCCGCCGCCTACGTAGCCGGCTTCACGGGTTTCCATGAGTTCGCCGAGTTCACGACGGAGGACGTGGGCACGGCCGAGAGCGGGCTCAACTCGATG GTGCTCGCCAACAACTCGGAGGGCGTGCTGCTGCCGCTCAACGAGCCGGTGCACGGCACCAAGCGCCGGAGCCAGATACAGACGTTCCTGGAACCACGGCGGCCCGGGTGTGCAGCACATCGCGGTGGCCAGCAGCGACGTGCTCAGGACGCTCAGGGAGATGCGTGCGCGCTCCGCCATGGGCGGCTTCGACTTCCTGCCACCCCCGCTGCCGAAGTACTACGAAGGCGTGCGGCGCATCGCCGGGGATGT GCTCTCGGAGGCGCAGATCAAGGAATGCCAGGAGCTGGGGGTGCTCGTCGACAGGGACGACCAAGGGGTGTTGCTACAAATCTTCACAAAGCCAGTGGGGGACAGGCCAACGCTGTTCCTGGAGATGATCCAAAGGATCGGGTGCATGGAGAAGGACGAGAGAGGGGAAGAGTACCAGAAGGGTGGCTGCGGCGGGTTCGGCAAAGGCAACTTCTCCGAGCTGTTCAAGTCCATTGAAGATTACGAGAAGTCCCTT GAAGCCAAGCAATCTGCTGCAGTTCAGGGATCATAG

实施例5实时荧光定量PCR检测基因在条锈菌诱导条件下在小麦中的表达特性Example 5 Real-time fluorescence quantitative PCR detection of gene expression characteristics in wheat under stripe rust induction conditions

将水源11小麦种子用75%酒精消毒后,用超纯水清洗4-5遍,浸种催芽后播种于营养钵中,于12℃±2℃环境中培养至麦苗长至1叶期时,将条锈菌生理小种CYR23涂抹在叶片上,黑暗保湿24h,以正常生长的小麦作为对照CK。分别在接种后的12h,24h和48h剪取幼苗叶片放入冰箱中备用,每个样品3个生物学重复。根据实施例4中的方法获得各处理的cDNA,根据全长cDNA序列设计荧光定量表达引物:Disinfect the wheat seeds of Water Source 11 with 75% alcohol, wash them 4-5 times with ultrapure water, soak them for germination, sow them in a nutrient bowl, and cultivate them in an environment of 12°C ± 2°C until the wheat seedlings reach the 1-leaf stage. The stripe rust fungus physiological race CYR23 was applied on the leaves and kept moisturized in the dark for 24 hours. Normally grown wheat was used as the control CK. The seedling leaves were cut off at 12h, 24h and 48h after inoculation and placed in the refrigerator for later use. There were 3 biological replicates for each sample. Obtain the cDNA of each treatment according to the method in Example 4, and design fluorescent quantitative expression primers based on the full-length cDNA sequence:

上游引物5'-CAGTAGGGGACAGGCCGA-3',如SEQ ID NO.9所示Upstream primer 5'-CAGTAGGGGACAGGCCGA-3', as shown in SEQ ID NO.9

下游引物5'-CCGCATCTTACAAACAACATCA-3',如SEQ ID NO.10所示Downstream primer 5'-CCGCATCTTACAAACAACATCA-3', as shown in SEQ ID NO.10

内参基因引物:Internal reference gene primers:

上游引物:5'-TGGTGTCATCAAGCCTGGTATGGT-3',如SEQ ID NO.11所示Upstream primer: 5'-TGGTGTCATCAAGCCTGGTATGGT-3', as shown in SEQ ID NO.11

下游引物:5'-ACTCATGGTGCATCTCAACGGACT-3',如SEQ ID NO.12所示Downstream primer: 5'-ACTCATGGTGCATCTCAACGGACT-3', as shown in SEQ ID NO.12

实时荧光定量PCR反应体系如表2。The real-time fluorescence quantitative PCR reaction system is shown in Table 2.

表2实时荧光定量反应体系Table 2 Real-time fluorescence quantitative reaction system

反应程序为:95℃1min,(95℃10sec,60℃20sec,72℃40sec)40个循环,结束反应。The reaction program is: 95°C for 1 min, (95°C for 10 sec, 60°C for 20 sec, 72°C for 40 sec) for 40 cycles, and then the reaction is completed.

使用相对定量法公式(2-ΔΔCt)计算TaHPD基因的相对表达量。The relative expression of TaHPD gene was calculated using the relative quantification formula (2 -ΔΔCt ).

相对比值=2-ΔΔCt,ΔΔCt=(Ctreat M-Ctreat A)-(Ccontrol M-Ccontrol A)。Relative ratio=2 -ΔΔCt , ΔΔCt=(C treat M -C treat A )-(C control M -C control A ).

本实验结果如附图2可知,TaHPD基因相对表达量在接菌后的小麦叶片中0-48h均表现为上调表达,在接菌后的24h时,表达量显著高于对照处理。本实验证明TaHPD基因参与小麦抗条锈病的过程。The results of this experiment are shown in Figure 2. The relative expression of TaHPD gene showed up-regulation in wheat leaves from 0 to 48h after inoculation. At 24h after inoculation, the expression level was significantly higher than that in the control treatment. This experiment proves that the TaHPD gene is involved in the process of wheat stripe rust resistance.

实施例6利用BSMV介导的基因沉默实验验证TaHPD基因的抗条锈病功能Example 6 Using BSMV-mediated gene silencing experiment to verify the stripe rust resistance function of TaHPD gene

选择TaHPD的特定片段并将其与BSMV:γ连接以形成重组载体。然后线性化BSMV:α、BSMV:β、BSMV:γ和重组载体,BSMV:α、BSMV:γ质粒、BSMV:PDS及重组质粒BSMV:TaHPD-V1,BSMV:TaHPD-V2用MluI,BSMV:β质粒用Spe I。以线性化质粒为模板使用Ribo MAXTMLargeScale RNA Production Systems-T7体外转录试剂盒对上述反应中得到的质粒进行体外转录。吸0.5μl体外转录产物用nuclease-free水稀释10倍,1%琼脂糖凝胶电泳检测。保存于-80℃备用。Specific fragments of TaHPD were selected and ligated with BSMV:γ to form a recombinant vector. Then linearize BSMV:α, BSMV:β, BSMV:γ and recombinant vectors, BSMV:α, BSMV:γ plasmids, BSMV:PDS and recombinant plasmids BSMV:TaHPD-V1, BSMV:TaHPD-V2 using MluI, BSMV:β Use Spe I for plasmids. Use the linearized plasmid as a template and use the Ribo MAX TM LargeScale RNA Production Systems-T7 in vitro transcription kit to conduct in vitro transcription of the plasmid obtained in the above reaction. Aspirate 0.5 μl of the in vitro transcription product and dilute it 10 times with nuclease-free water, and detect it by 1% agarose gel electrophoresis. Store at -80°C for later use.

接种病毒试验:Virus vaccination test:

(1)将所有体外转录产物用nuclease-free H2O稀释3倍,取α、β、γ或重组的γ载体体外转录产物各2.5μl等量混合;(1) Dilute all in vitro transcription products 3 times with nuclease-free H 2 O, take 2.5 μl of each α, β, γ or recombinant γ vector in vitro transcription products and mix them in equal amounts;

(2)在向其中后入45μl FES缓冲液,用微量移液枪混匀充分后平均分成5份;(2) Add 45 μl of FES buffer into it, mix thoroughly with a micropipette, and divide into 5 equal portions;

(3)接毒时手戴乳胶手套,食指沾取病毒液,选取生长状态良好的小麦第二叶从基部到尖端来回摩擦3次;(3) Wear latex gloves when receiving the virus, dip your index finger into the virus liquid, select the second leaf of wheat in good growth condition and rub it back and forth 3 times from the base to the tip;

(4)向接好病毒的小麦上喷洒少量nuclease-free H2O,放在25±2℃温室中避光保湿24h,放在16h光照/8h黑暗周期培养。每次试验接种BSMV:γ作为对照,接BSMV:γ-PDS作为阳性对照。(4) Spray a small amount of nuclease-free H 2 O on the wheat that has been grafted with the virus, place it in a greenhouse at 25±2°C to avoid light and moisturize for 24 hours, and culture it in a 16h light/8h dark cycle. In each experiment, BSMV:γ was inoculated as a control, and BSMV:γ-PDS was used as a positive control.

条锈菌接种、取样及表型观察:Stripe rust inoculation, sampling and phenotypic observation:

待接种BSMV:γ-PDS的植株出现漂白褪绿现象时,选取病毒症状良好的小麦,在第四叶做好标记的部位接种条锈菌CYR23。在0、24、48hpi分别剪取标记并接菌的叶片,用液氮速冻后,-80℃保存备用。用反转录的cDNA检测目的基因沉默效率和相关防卫基因的表达水平以接种BSMV:γ病毒的小麦第四叶片cDNA为对照。接种病毒后定期观察并拍照记录病毒的侵染症状;接种条锈菌后定期观察并拍照记录小麦发病状况。When the plants inoculated with BSMV:γ-PDS show bleaching and chlorosis, select wheat with good virus symptoms and inoculate the stripe rust fungus CYR23 in the marked part of the fourth leaf. The marked and inoculated leaves were cut at 0, 24, and 48 hpi, quickly frozen in liquid nitrogen, and stored at -80°C for later use. Reverse transcribed cDNA was used to detect the silencing efficiency of the target gene and the expression level of related defense genes. The cDNA of the fourth leaf of wheat inoculated with BSMV:γ virus was used as a control. After inoculation with the virus, regularly observe and take photos to record the infection symptoms of the virus; after inoculation with the stripe rust fungus, regularly observe and take photos to record the disease status of the wheat.

表型观察结果:将小麦TaHPD基因沉默后,小麦对条锈菌表现更为敏感,并且HAG含量也明显减少(见附图5)。证明HGA参与小麦抗条锈病的过程。Phenotypic observation results: After silencing the wheat TaHPD gene, wheat became more sensitive to stripe rust fungus, and the HAG content was also significantly reduced (see Figure 5). It was proved that HGA is involved in the process of wheat stripe rust resistance.

实施例7重组载体pCNF3-TaHPD的构建Example 7 Construction of recombinant vector pCNF3-TaHPD

以TaHPD基因完整开放阅读框的基础设计引物:Design primers based on the complete open reading frame of the TaHPD gene:

上游引物:Upstream primer:

5'-TGCTCTAGAATGCCGCCCACCCCCACC-3',如SEQ ID NO.13所示5'-TGC TCTAGA ATGCCGCCCACCCCCACC-3', as shown in SEQ ID NO.13

下游引物:Downstream primers:

5'-CGGGGTACCGTGGTGGTGGTGGTGGTGTGATCCCTGAACTGCAGCAGATTG-3',如SEQ IDNO.14所示5'-CGG GGTACC GTGGTGGTGGTGGTGGTGTGATCCCTGAACTGCAGCAGATTG-3', as shown in SEQ IDNO.14

将实施例4中PCR扩增产物与pCNF3进行连接。然后将连接产物转化大肠杆菌DH5α感受态(购自上海唯地生物科技有限公司),加连接产物于50ul刚刚解冻的感受态中,混匀,冰浴30min,42℃水浴进行热激45s,立即置放于冰上2min。加入500ul不含抗生素的LB液体培养基,200rpm,37℃培养1h。离心1min,用移液枪弃掉部分上清,轻弹悬浮菌体,保留200ul菌液,在含Kan的LB琼脂培养基上均匀涂开,倒置平板,37℃过夜培养。挑取状态正常的多个单菌落分别放入含有Kan的LB液体培养基中培养,37℃,200rpm,摇菌12h-16h到菌液浑浊,将3个独立克隆进行双向测序,存菌备用。The PCR amplification product in Example 4 was connected to pCNF3. Then transform the ligation product into Escherichia coli DH5α competent cells (purchased from Shanghai Weidi Biotechnology Co., Ltd.), add the ligation product to 50ul of the freshly thawed competent cells, mix well, incubate on ice for 30 minutes, heat shock in 42°C water bath for 45 seconds, and immediately Place on ice for 2 minutes. Add 500ul of LB liquid culture medium without antibiotics, 200rpm, and incubate at 37°C for 1 hour. Centrifuge for 1 minute, discard part of the supernatant with a pipette, flick to suspend the bacterial cells, retain 200ul of bacterial liquid, spread evenly on the LB agar medium containing Kan, invert the plate, and culture at 37°C overnight. Pick multiple single colonies with normal status and culture them in LB liquid medium containing Kan at 37°C and 200 rpm. Shake the bacteria for 12h-16h until the bacterial liquid becomes turbid. Sequence three independent clones in both directions and save the bacteria for later use.

重摇测序正确的菌液并进行质粒的提取,质粒提取完成后进行浓度测定与琼脂糖凝胶电泳检测,选取浓度高、条带亮的质粒候选备用。以质粒为模板,与设计克隆引物进行PCR,PCR程序如下:95℃3min,(95℃30sec,55℃30sec,72℃90sec)35个循环,72℃10min,16℃终止反应。Shake the correctly sequenced bacterial solution and extract the plasmid. After the plasmid extraction is completed, conduct concentration measurement and agarose gel electrophoresis detection, and select plasmid candidates with high concentration and bright bands for later use. Use the plasmid as a template and perform PCR with the designed cloning primers. The PCR program is as follows: 95°C for 3 minutes, (95°C for 30 seconds, 55°C for 30 seconds, 72°C for 90 seconds) for 35 cycles, 72°C for 10 minutes, and 16°C to terminate the reaction.

琼脂糖凝胶电泳后进行PCR产物回收,浓度测定后,-20℃备用。摇pCNF3表达载体的菌液,提质粒,选取浓度高的进行酶切试验。酶切体系如表3。After agarose gel electrophoresis, the PCR product was recovered, and after concentration determination, it was stored at -20°C for later use. Shake the bacterial culture of the pCNF3 expression vector, extract the plasmid, and select the one with a high concentration for the enzyme digestion test. The enzyme digestion system is shown in Table 3.

表3酶切体系Table 3 Enzyme digestion system

37℃酶切4h,胶回收得酶切载体片段,测定浓度。将目的片段和线性化载体片段进行重组,得到烟草瞬时表达载体。通过构建烟草瞬时表达载体,利用GV3101农杆菌注射到本氏烟中,进行瞬时表达。After digestion at 37°C for 4 hours, the digested vector fragment was recovered from the gel and the concentration was determined. The target fragment and the linearized vector fragment were recombined to obtain a tobacco transient expression vector. By constructing a tobacco transient expression vector, GV3101 Agrobacterium was used to inject into Nicotiana benthamiana for transient expression.

将构建的烟草瞬时表达载体转化到农杆菌感受态中,将农杆菌转接于液体培养基培养至对数生长期,离心收集菌体沉淀,加入缓冲液,重悬至OD 600值约为0.6-0.8,农杆菌渗入法感染小麦。在构建烟草瞬时表达载体48h后接种刚活化的核盘菌1980。Transform the constructed tobacco transient expression vector into Agrobacterium competent cells, transfer Agrobacterium to liquid culture medium and culture it to the logarithmic growth phase, collect the cell pellet by centrifugation, add buffer, and resuspend until the OD 600 value is about 0.6 -0.8, infected wheat by Agrobacterium infiltration method. Freshly activated S. sclerotiorum 1980 was inoculated 48 hours after constructing the tobacco transient expression vector.

本实验结果(见附图6):24h后注射pCNF3-TaHPD区域的发病面积明显小于注射pCNF3-eGFP的区域。HGA含量在pCNF3-TaHPD过表达植物中含量显著高于pCNF3-eGFP的。本实验说明表过表达TaHPD可以提高烟草对核盘菌的抗性。The results of this experiment (see Figure 6): 24 hours later, the diseased area in the area injected with pCNF3-TaHPD was significantly smaller than the area injected with pCNF3-eGFP. The HGA content in pCNF3-TaHPD overexpression plants was significantly higher than that in pCNF3-eGFP. This experiment shows that overexpression of TaHPD can improve tobacco resistance to Sclerotinia sclerotiorum.

以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。本发明未详细描述的技术、形状、构造部分均为公知技术。The above embodiments are only used to illustrate the technical solutions of the present invention and are not limiting. Although the present invention has been described in detail with reference to the preferred embodiments, those of ordinary skill in the art should understand that the technical solutions of the present invention can be modified or equivalently substituted. Without departing from the purpose and scope of the technical solutions of the present invention, they should all be covered by the claims of the present invention. The technology, shape, and structural parts not described in detail in the present invention are all known technologies.

序列表 sequence list

<110> 西南大学<110> Southwest University

<120> 小麦条锈病抗性相关代谢物及其合成相关基因与应用<120> Metabolites related to wheat stripe rust resistance and their synthesis-related genes and applications

<160> 14<160> 14

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 1302<211> 1302

<212> DNA<212> DNA

<213> 小麦(Triticum aestivum L.)<213> Wheat (Triticum aestivum L.)

<400> 1<400> 1

atgccgccca cccccaccac ccccgcagcc accggcgccg ccgcggtgac gccggagcac 60atgccgccca cccccaccac ccccgcagcc accggcgccg ccgcggtgac gccggagcac 60

gcgcggccgc gccgaatggt ccgcttcaac ccgcgcagcg accgcttcca cacgctcgcc 120gcgcggccgc gccgaatggt ccgcttcaac ccgcgcagcg accgcttcca cacgctcgcc 120

ttccaccacg tcgagttctg gtgcgcggac gccgcctccg ccgccggccg cttcgccttc 180ttccaccacg tcgagttctg gtgcgcggac gccgcctccg ccgccggccg cttcgccttc 180

gcgctcggcg cgccgctcgc cgccaggtcc gacctctcca cggggaactc cgtgcacgcc 240gcgctcggcg cgccgctcgc cgccaggtcc gacctctcca cggggaactc cgtgcacgcc 240

tcccagctgc tccgctcggg caacctcgcc ttcctcttca cggcccccta cgccaacggc 300tcccagctgc tccgctcggg caacctcgcc ttcctcttca cggccccccta cgccaacggc 300

tgcgacgccg ccaccgcctc cctgccctcc ttctccgccg acgccgcgcg ccagttctcc 360tgcgacgccg ccaccgcctc cctgccctcc ttctccgccg acgccgcgcg ccagttctcc 360

gcggaccacg gcctcgcggt gcgctccata gcgctgcgcg tcgcggacgc tgccgaggcc 420gcggaccacg gcctcgcggt gcgctccata gcgctgcgcg tcgcggacgc tgccgaggcc 420

ttccgcgcca gcgtcgacgg gggcgcgcgc ccggccttca gccctgtgga cctcggccgc 480ttccgcgcca gcgtcgacgg gggcgcgcgc ccggccttca gccctgtgga cctcggccgc 480

ggcttcggct tcgcggaggt cgagctctac ggcgacgtcg tgctccgctt cgtcagccac 540ggcttcggct tcgcggaggt cgagctctac ggcgacgtcg tgctccgctt cgtcagccac 540

ccggacggca gggacgtgcc cttcttgccg gggttcgagg gcgtgagcaa cccagacgcc 600ccggacggca gggacgtgcc cttcttgccg gggttcgagg gcgtgagcaa cccagacgcc 600

gtggactacg gcctgacgcg gttcgaccac gtcgtcggca acgtcccgga gcttgccccc 660gtggactacg gcctgacgcg gttcgaccac gtcgtcggca acgtcccgga gcttgccccc 660

gccgcggcct acgtcgccgg gttcacgggg ttccacgagt tcgccgagtt cacgacggag 720gccgcggcct acgtcgccgg gttcacgggg ttccacgagt tcgccgagtt cacgacggag 720

gacgtgggca cggccgagag cgggctcaac tcgatggtgc tcgccaacaa ctcggagggc 780gacgtgggca cggccgagag cgggctcaac tcgatggtgc tcgccaacaa ctcggagggc 780

gtgctgctgc cgctcaacga gccggtgcac ggcaccaagc gccggagcca gatacagacg 840gtgctgctgc cgctcaacga gccggtgcac ggcaccaagc gccggagcca gatacagacg 840

ttcctggaac accacggcgg ctcgggcgtg cagcacatcg cggtggccag cagcgacgtg 900ttcctggaac accacggcgg ctcgggcgtg cagcacatcg cggtggccag cagcgacgtg 900

ctcaggacgc tcagggagat gcgtgcgcgc tccgccatgg gcggcttcga cttcctgcca 960ctcaggacgc tcaggggagat gcgtgcgcgc tccgccatgg gcggcttcga cttcctgcca 960

cccccgctgc cgaagtacta cgaaggcgtg cggcgcatcg ccggggatgt gctctcggag 1020cccccgctgc cgaagtacta cgaaggcgtg cggcgcatcg ccggggatgt gctctcggag 1020

gcgcagatca aggaatgcca ggagctgggg gtgctcgtcg acagggacga ccaaggggtg 1080gcgcagatca aggaatgcca ggagctgggg gtgctcgtcg acagggacga ccaaggggtg 1080

ttgctacaaa tcttcaccaa gccagtaggg gacaggccga cgttgttcct ggagatgatc 1140ttgctacaaa tcttcaccaa gccagtaggg gacaggccga cgttgttcct ggagatgatc 1140

cagaggatcg ggtgcatgga gaaggacgag agaggggaag agtaccagaa gggtggctgc 1200cagaggatcg ggtgcatgga gaaggacgag agaggggaag agtaccagaa gggtggctgc 1200

ggcgggttcg gcaaaggcaa cttctccgag ctgttcaagt ccattgaaga ttacgagaag 1260ggcgggttcg gcaaaggcaa cttctccgag ctgttcaagt ccattgaaga ttacgagaag 1260

tcccttgaag ccaagcaatc tgctgcagtt cagggatcat ag 1302tcccttgaag ccaagcaatc tgctgcagtt cagggatcat ag 1302

<210> 2<210> 2

<211> 1311<211> 1311

<212> DNA<212> DNA

<213> 小麦(Triticum aestivum L.)<213> Wheat (Triticum aestivum L.)

<400> 2<400> 2

atgccgccca cccccaccac cccggcagct accggcgccg ccgccgccgc cgcggtgacg 60atgccgccca cccccaccac cccggcagct accggcgccg ccgccgccgc cgcggtgacg 60

ccggagcatg cacggccacg tagaatggtc cgcttcaacc cgcggagcga ccgcttccac 120ccggagcatg cacggccacg tagaatggtc cgcttcaacc cgcggagcga ccgcttccac 120

acgctcgcct tccaccacgt cgagttctgg tgcgcggacg ccgcctccgc cgccggccgc 180acgctcgcct tccaccacgt cgagttctgg tgcgcggacg ccgcctccgc cgccggccgc 180

ttcgccttcg cgctcggcgc gccgctcgcc gccaggtccg acctctccac ggggaactcc 240ttcgccttcg cgctcggcgc gccgctcgcc gccaggtccg acctctccac ggggaactcc 240

gtgcacgcct cccagctgct ccgctcgggc aacctcgcct tcctcttcac cgcgccctac 300gtgcacgcct cccagctgct ccgctcgggc aacctcgcct tcctcttcac cgcgccctac 300

gcgaacggct gcgacgccgc caccgcctcc ctgccctcct tctccgccga cgccgcgcgc 360gcgaacggct gcgacgccgc caccgcctcc ctgccctcct tctccgccga cgccgcgcgc 360

cggttctccg cggaccacgg gctcgcagtg cgctccatag cactgcgcgt cgcagacgcc 420cggttctccg cggaccacgg gctcgcagtg cgctccatag cactgcgcgt cgcagacgcc 420

gcagaggcct tccgcgccag cgtcgacgga ggcgcgcgcc cggccttcag ccccgtggac 480gcagaggcct tccgcgccag cgtcgacgga ggcgcgcgcc cggccttcag ccccgtggac 480

ctcggccgcg gcttcggctt cgcggaggtc gagctctacg gcgacgtcgt gctccgcttc 540ctcggccgcg gcttcggctt cgcggaggtc gagctctacg gcgacgtcgt gctccgcttc 540

gtcagtcacc cggatgacac ggacgtgccc ttcttgccgg ggttcgaggg cgtgagcaac 600gtcagtcacc cggatgacac ggacgtgccc ttcttgccgg ggttcgaggg cgtgagcaac 600

ccggatgccg tggactacgg cctgacgcgg ttcgaccacg tcgtcggcaa cgtcccggag 660ccggatgccg tggactacgg cctgacgcgg ttcgaccacg tcgtcggcaa cgtcccggag 660

cttgcccccg ccgccgcata cgtcgccggg ttcgcggggt tccacgagtt cgccgagttc 720cttgcccccg ccgccgcata cgtcgccggg ttcgcggggt tccacgagtt cgccgagttc 720

acgacggagg acgtgggcac ggccgagagc gggctcaact cgatggtgct cgccaacaac 780acgacggagg acgtgggcac ggccgagagc gggctcaact cgatggtgct cgccaacaac 780

tccgagggcg tgctgctgcc gctcaacgag ccggtgcacg gcaccaagcg ccggagccag 840tccgagggcg tgctgctgcc gctcaacgag ccggtgcacg gcaccaagcg ccggagccag 840

atacagacgt tcctggaaca ccacggtggc ccgggcgtgc agcacatcgc ggtggccagc 900atacagacgt tcctggaaca ccacggtggc ccgggcgtgc agcacatcgc ggtggccagc 900

agcgacgtgc tcaggacgct cagggagatg cgtgcgcgct ccgccatggg cggcttcgac 960agcgacgtgc tcaggacgct cagggagatg cgtgcgcgct ccgccatggg cggcttcgac 960

ttcctgccac ccccgctgcc gaagtactat gaaggcgtgc ggcgcatcgc gggggatgtg 1020ttcctgccac ccccgctgcc gaagtactat gaaggcgtgc ggcgcatcgc gggggatgtg 1020

ctctcggagg cgcagatcaa ggaatgccag gagctggggg tgctcgtcga cagggacgac 1080ctctcggagg cgcagatcaa ggaatgccag gagctggggg tgctcgtcga cagggacgac 1080

caaggggtgt tgctccaaat cttcaccaag ccagtggggg acaggccaac gctgttcctg 1140caaggggtgt tgctccaaat cttcaccaag ccagtggggg acaggccaac gctgttcctg 1140

gagatgatcc aaaggatcgg gtgcatggag aaggacgaga gaggggaaga gtaccagaag 1200gagatgatcc aaaggatcgg gtgcatggag aaggacgaga gaggggaaga gtaccagaag 1200

ggtggctgcg gcgggtttgg caaaggcaac ttctccgagc tgttcaagtc cattgaggat 1260ggtggctgcg gcgggtttgg caaaggcaac ttctccgagc tgttcaagtc cattgaggat 1260

tatgagaaat cccttgaagc caagcaatct gctgcagttc aggcatcata g 1311tatgagaaat cccttgaagc caagcaatct gctgcagttc aggcatcata g 1311

<210> 3<210> 3

<211> 1311<211> 1311

<212> DNA<212> DNA

<213> 小麦(Triticum aestivum L.)<213> Wheat (Triticum aestivum L.)

<400> 3<400> 3

atgccgccca cccccaccac ccccgcagcc accggcgccg gcgctgccgc cgcggtgacg 60atgccgccca cccccaccac ccccgcagcc accggcgccg gcgctgccgc cgcggtgacg 60

ccggagcacg cgcggccgcg ccgaatggtc cgcttcaacc cgcgcagcga ccgcttccac 120ccggagcacg cgcggccgcg ccgaatggtc cgcttcaacc cgcgcagcga ccgcttccac 120

acgctctcct tccaccacgt cgagttctgg tgcgcggacg ccgcctccgc cgccggccgc 180acgctctcct tccaccacgt cgagttctgg tgcgcggacg ccgcctccgc cgccggccgc 180

ttcgccttcg cgctcggcgc gccgctcgcc gccaggtccg acctctccac ggggaactcc 240ttcgccttcg cgctcggcgc gccgctcgcc gccaggtccg acctctccac ggggaactcc 240

gtgcacgcct cccagctgct ccgctcgggc aacctcgcct tcctcttcac cgcgccctac 300gtgcacgcct cccagctgct ccgctcgggc aacctcgcct tcctcttcac cgcgccctac 300

gccaacggct gcgacgccgc caccgcctcc ctgccctcct tctccgccga cgccgcgcgc 360gccaacggct gcgacgccgc caccgcctcc ctgccctcct tctccgccga cgccgcgcgc 360

cggttctccg cggaccacgg gctcgcggtg cgctccatag cgctgcgcgt cgcggacgcc 420cggttctccg cggaccacgg gctcgcggtg cgctccatag cgctgcgcgt cgcggacgcc 420

gccgaggcct tccgcgccag cgtcgacggg ggcgcgcgcc cggccttcag ccccgtggac 480gccgaggcct tccgcgccag cgtcgacggg ggcgcgcgcc cggccttcag ccccgtggac 480

ctcggccgcg gcttcggctt tgcggaggtc gagctctacg gcgacgtcgt gctccgcttc 540ctcggccgcg gcttcggctt tgcggaggtc gagctctacg gcgacgtcgt gctccgcttc 540

gtcagccatc cggacggcac ggacgtgccc ttcttgccgg ggttcgaggg cgtgagcaac 600gtcagccatc cggacggcac ggacgtgccc ttcttgccgg ggttcgaggg cgtgagcaac 600

ccgggtgccg tggactacgg cctgacacgg tttgaccacg tcgtcggcaa cgtcccggag 660ccgggtgccg tggactacgg cctgacacgg tttgaccacg tcgtcggcaa cgtcccggag 660

cttgcttccg ccgccgccta cgtagccggc ttcacgggtt tccatgagtt cgccgagttc 720cttgcttccg ccgccgccta cgtagccggc ttcacgggtt tccatgagtt cgccgagttc 720

acgacggagg acgtgggcac ggccgagagc gggctcaact cgatggtgct cgccaacaac 780acgacggagg acgtgggcac ggccgagagc gggctcaact cgatggtgct cgccaacaac 780

tcggagggcg tgctgctgcc gctcaacgag ccggtgcacg gcaccaagcg ccggagccag 840tcggagggcg tgctgctgcc gctcaacgag ccggtgcacg gcaccaagcg ccggagccag 840

atacagacgt tcctggaaca ccacggcggc ccgggtgtgc agcacatcgc ggtggccagc 900atacagacgt tcctggaaca ccacggcggc ccgggtgtgc agcacatcgc ggtggccagc 900

agcgacgtgc tcaggacgct cagggagatg cgtgcgcgct ccgccatggg cggcttcgac 960agcgacgtgc tcaggacgct cagggagatg cgtgcgcgct ccgccatggg cggcttcgac 960

ttcctgccac ccccgctgcc gaagtactac gaaggcgtgc ggcgcatcgc cggggatgtg 1020ttcctgccac ccccgctgcc gaagtactac gaaggcgtgc ggcgcatcgc cggggatgtg 1020

ctctcggagg cgcagatcaa ggaatgccag gagctggggg tgctcgtcga cagggacgac 1080ctctcggagg cgcagatcaa ggaatgccag gagctggggg tgctcgtcga cagggacgac 1080

caaggggtgt tgctacaaat cttcacaaag ccagtggggg acaggccaac gctgttcctg 1140caaggggtgt tgctacaaat cttcacaaag ccagtggggg acaggccaac gctgttcctg 1140

gagatgatcc aaaggatcgg gtgcatggag aaggacgaga gaggggaaga gtaccagaag 1200gagatgatcc aaaggatcgg gtgcatggag aaggacgaga gaggggaaga gtaccagaag 1200

ggtggctgcg gcgggttcgg caaaggcaac ttctccgagc tgttcaagtc cattgaagat 1260ggtggctgcg gcgggttcgg caaaggcaac ttctccgagc tgttcaagtc cattgaagat 1260

tacgagaagt cccttgaagc caagcaatct gctgcagttc agggatcata g 1311tacgagaagt cccttgaagc caagcaatct gctgcagttc agggatcata g 1311

<210> 4<210> 4

<211> 433<211> 433

<212> PRT<212> PRT

<213> 小麦(Triticum aestivum L.)<213> Wheat (Triticum aestivum L.)

<400> 4<400> 4

Met Pro Pro Thr Pro Thr Thr Pro Ala Ala Thr Gly Ala Ala Ala ValMet Pro Pro Thr Pro Thr Thr Pro Ala Ala Thr Gly Ala Ala Ala Val

1 5 10 151 5 10 15

Thr Pro Glu His Ala Arg Pro Arg Arg Met Val Arg Phe Asn Pro ArgThr Pro Glu His Ala Arg Pro Arg Arg Met Val Arg Phe Asn Pro Arg

20 25 30 20 25 30

Ser Asp Arg Phe His Thr Leu Ala Phe His His Val Glu Phe Trp CysSer Asp Arg Phe His Thr Leu Ala Phe His His Val Glu Phe Trp Cys

35 40 45 35 40 45

Ala Asp Ala Ala Ser Ala Ala Gly Arg Phe Ala Phe Ala Leu Gly AlaAla Asp Ala Ala Ser Ala Ala Gly Arg Phe Ala Phe Ala Leu Gly Ala

50 55 60 50 55 60

Pro Leu Ala Ala Arg Ser Asp Leu Ser Thr Gly Asn Ser Val His AlaPro Leu Ala Ala Arg Ser Asp Leu Ser Thr Gly Asn Ser Val His Ala

65 70 75 8065 70 75 80

Ser Gln Leu Leu Arg Ser Gly Asn Leu Ala Phe Leu Phe Thr Ala ProSer Gln Leu Leu Arg Ser Gly Asn Leu Ala Phe Leu Phe Thr Ala Pro

85 90 95 85 90 95

Tyr Ala Asn Gly Cys Asp Ala Ala Thr Ala Ser Leu Pro Ser Phe SerTyr Ala Asn Gly Cys Asp Ala Ala Thr Ala Ser Leu Pro Ser Phe Ser

100 105 110 100 105 110

Ala Asp Ala Ala Arg Gln Phe Ser Ala Asp His Gly Leu Ala Val ArgAla Asp Ala Ala Arg Gln Phe Ser Ala Asp His Gly Leu Ala Val Arg

115 120 125 115 120 125

Ser Ile Ala Leu Arg Val Ala Asp Ala Ala Glu Ala Phe Arg Ala SerSer Ile Ala Leu Arg Val Ala Asp Ala Ala Glu Ala Phe Arg Ala Ser

130 135 140 130 135 140

Val Asp Gly Gly Ala Arg Pro Ala Phe Ser Pro Val Asp Leu Gly ArgVal Asp Gly Gly Ala Arg Pro Ala Phe Ser Pro Val Asp Leu Gly Arg

145 150 155 160145 150 155 160

Gly Phe Gly Phe Ala Glu Val Glu Leu Tyr Gly Asp Val Val Leu ArgGly Phe Gly Phe Ala Glu Val Glu Leu Tyr Gly Asp Val Val Leu Arg

165 170 175 165 170 175

Phe Val Ser His Pro Asp Gly Arg Asp Val Pro Phe Leu Pro Gly PhePhe Val Ser His Pro Asp Gly Arg Asp Val Pro Phe Leu Pro Gly Phe

180 185 190 180 185 190

Glu Gly Val Ser Asn Pro Asp Ala Val Asp Tyr Gly Leu Thr Arg PheGlu Gly Val Ser Asn Pro Asp Ala Val Asp Tyr Gly Leu Thr Arg Phe

195 200 205 195 200 205

Asp His Val Val Gly Asn Val Pro Glu Leu Ala Pro Ala Ala Ala TyrAsp His Val Val Gly Asn Val Pro Glu Leu Ala Pro Ala Ala Ala Tyr

210 215 220 210 215 220

Val Ala Gly Phe Thr Gly Phe His Glu Phe Ala Glu Phe Thr Thr GluVal Ala Gly Phe Thr Gly Phe His Glu Phe Ala Glu Phe Thr Thr Glu

225 230 235 240225 230 235 240

Asp Val Gly Thr Ala Glu Ser Gly Leu Asn Ser Met Val Leu Ala AsnAsp Val Gly Thr Ala Glu Ser Gly Leu Asn Ser Met Val Leu Ala Asn

245 250 255 245 250 255

Asn Ser Glu Gly Val Leu Leu Pro Leu Asn Glu Pro Val His Gly ThrAsn Ser Glu Gly Val Leu Leu Pro Leu Asn Glu Pro Val His Gly Thr

260 265 270 260 265 270

Lys Arg Arg Ser Gln Ile Gln Thr Phe Leu Glu His His Gly Gly SerLys Arg Arg Ser Gln Ile Gln Thr Phe Leu Glu His His Gly Gly Ser

275 280 285 275 280 285

Gly Val Gln His Ile Ala Val Ala Ser Ser Asp Val Leu Arg Thr LeuGly Val Gln His Ile Ala Val Ala Ser Ser Asp Val Leu Arg Thr Leu

290 295 300 290 295 300

Arg Glu Met Arg Ala Arg Ser Ala Met Gly Gly Phe Asp Phe Leu ProArg Glu Met Arg Ala Arg Ser Ala Met Gly Gly Phe Asp Phe Leu Pro

305 310 315 320305 310 315 320

Pro Pro Leu Pro Lys Tyr Tyr Glu Gly Val Arg Arg Ile Ala Gly AspPro Pro Leu Pro Lys Tyr Tyr Glu Gly Val Arg Arg Ile Ala Gly Asp

325 330 335 325 330 335

Val Leu Ser Glu Ala Gln Ile Lys Glu Cys Gln Glu Leu Gly Val LeuVal Leu Ser Glu Ala Gln Ile Lys Glu Cys Gln Glu Leu Gly Val Leu

340 345 350 340 345 350

Val Asp Arg Asp Asp Gln Gly Val Leu Leu Gln Ile Phe Thr Lys ProVal Asp Arg Asp Asp Gln Gly Val Leu Leu Gln Ile Phe Thr Lys Pro

355 360 365 355 360 365

Val Gly Asp Arg Pro Thr Leu Phe Leu Glu Met Ile Gln Arg Ile GlyVal Gly Asp Arg Pro Thr Leu Phe Leu Glu Met Ile Gln Arg Ile Gly

370 375 380 370 375 380

Cys Met Glu Lys Asp Glu Arg Gly Glu Glu Tyr Gln Lys Gly Gly CysCys Met Glu Lys Asp Glu Arg Gly Glu Glu Tyr Gln Lys Gly Gly Cys

385 390 395 400385 390 395 400

Gly Gly Phe Gly Lys Gly Asn Phe Ser Glu Leu Phe Lys Ser Ile GluGly Gly Phe Gly Lys Gly Asn Phe Ser Glu Leu Phe Lys Ser Ile Glu

405 410 415 405 410 415

Asp Tyr Glu Lys Ser Leu Glu Ala Lys Gln Ser Ala Ala Val Gln GlyAsp Tyr Glu Lys Ser Leu Glu Ala Lys Gln Ser Ala Ala Val Gln Gly

420 425 430 420 425 430

SerSer

<210> 5<210> 5

<211> 436<211> 436

<212> PRT<212> PRT

<213> 小麦(Triticum aestivum L.)<213> Wheat (Triticum aestivum L.)

<400> 5<400> 5

Met Pro Pro Thr Pro Thr Thr Pro Ala Ala Thr Gly Ala Ala Ala AlaMet Pro Pro Thr Pro Thr Thr Pro Ala Ala Thr Gly Ala Ala Ala Ala

1 5 10 151 5 10 15

Ala Ala Val Thr Pro Glu His Ala Arg Pro Arg Arg Met Val Arg PheAla Ala Val Thr Pro Glu His Ala Arg Pro Arg Arg Met Val Arg Phe

20 25 30 20 25 30

Asn Pro Arg Ser Asp Arg Phe His Thr Leu Ala Phe His His Val GluAsn Pro Arg Ser Asp Arg Phe His Thr Leu Ala Phe His His Val Glu

35 40 45 35 40 45

Phe Trp Cys Ala Asp Ala Ala Ser Ala Ala Gly Arg Phe Ala Phe AlaPhe Trp Cys Ala Asp Ala Ala Ser Ala Ala Gly Arg Phe Ala Phe Ala

50 55 60 50 55 60

Leu Gly Ala Pro Leu Ala Ala Arg Ser Asp Leu Ser Thr Gly Asn SerLeu Gly Ala Pro Leu Ala Ala Arg Ser Asp Leu Ser Thr Gly Asn Ser

65 70 75 8065 70 75 80

Val His Ala Ser Gln Leu Leu Arg Ser Gly Asn Leu Ala Phe Leu PheVal His Ala Ser Gln Leu Leu Arg Ser Gly Asn Leu Ala Phe Leu Phe

85 90 95 85 90 95

Thr Ala Pro Tyr Ala Asn Gly Cys Asp Ala Ala Thr Ala Ser Leu ProThr Ala Pro Tyr Ala Asn Gly Cys Asp Ala Ala Thr Ala Ser Leu Pro

100 105 110 100 105 110

Ser Phe Ser Ala Asp Ala Ala Arg Arg Phe Ser Ala Asp His Gly LeuSer Phe Ser Ala Asp Ala Ala Arg Arg Phe Ser Ala Asp His Gly Leu

115 120 125 115 120 125

Ala Val Arg Ser Ile Ala Leu Arg Val Ala Asp Ala Ala Glu Ala PheAla Val Arg Ser Ile Ala Leu Arg Val Ala Asp Ala Ala Glu Ala Phe

130 135 140 130 135 140

Arg Ala Ser Val Asp Gly Gly Ala Arg Pro Ala Phe Ser Pro Val AspArg Ala Ser Val Asp Gly Gly Ala Arg Pro Ala Phe Ser Pro Val Asp

145 150 155 160145 150 155 160

Leu Gly Arg Gly Phe Gly Phe Ala Glu Val Glu Leu Tyr Gly Asp ValLeu Gly Arg Gly Phe Gly Phe Ala Glu Val Glu Leu Tyr Gly Asp Val

165 170 175 165 170 175

Val Leu Arg Phe Val Ser His Pro Asp Asp Thr Asp Val Pro Phe LeuVal Leu Arg Phe Val Ser His Pro Asp Asp Thr Asp Val Pro Phe Leu

180 185 190 180 185 190

Pro Gly Phe Glu Gly Val Ser Asn Pro Asp Ala Val Asp Tyr Gly LeuPro Gly Phe Glu Gly Val Ser Asn Pro Asp Ala Val Asp Tyr Gly Leu

195 200 205 195 200 205

Thr Arg Phe Asp His Val Val Gly Asn Val Pro Glu Leu Ala Pro AlaThr Arg Phe Asp His Val Val Gly Asn Val Pro Glu Leu Ala Pro Ala

210 215 220 210 215 220

Ala Ala Tyr Val Ala Gly Phe Ala Gly Phe His Glu Phe Ala Glu PheAla Ala Tyr Val Ala Gly Phe Ala Gly Phe His Glu Phe Ala Glu Phe

225 230 235 240225 230 235 240

Thr Thr Glu Asp Val Gly Thr Ala Glu Ser Gly Leu Asn Ser Met ValThr Thr Glu Asp Val Gly Thr Ala Glu Ser Gly Leu Asn Ser Met Val

245 250 255 245 250 255

Leu Ala Asn Asn Ser Glu Gly Val Leu Leu Pro Leu Asn Glu Pro ValLeu Ala Asn Asn Ser Glu Gly Val Leu Leu Pro Leu Asn Glu Pro Val

260 265 270 260 265 270

His Gly Thr Lys Arg Arg Ser Gln Ile Gln Thr Phe Leu Glu His HisHis Gly Thr Lys Arg Arg Ser Gln Ile Gln Thr Phe Leu Glu His His

275 280 285 275 280 285

Gly Gly Pro Gly Val Gln His Ile Ala Val Ala Ser Ser Asp Val LeuGly Gly Pro Gly Val Gln His Ile Ala Val Ala Ser Ser Asp Val Leu

290 295 300 290 295 300

Arg Thr Leu Arg Glu Met Arg Ala Arg Ser Ala Met Gly Gly Phe AspArg Thr Leu Arg Glu Met Arg Ala Arg Ser Ala Met Gly Gly Phe Asp

305 310 315 320305 310 315 320

Phe Leu Pro Pro Pro Leu Pro Lys Tyr Tyr Glu Gly Val Arg Arg IlePhe Leu Pro Pro Pro Leu Pro Lys Tyr Tyr Glu Gly Val Arg Arg Ile

325 330 335 325 330 335

Ala Gly Asp Val Leu Ser Glu Ala Gln Ile Lys Glu Cys Gln Glu LeuAla Gly Asp Val Leu Ser Glu Ala Gln Ile Lys Glu Cys Gln Glu Leu

340 345 350 340 345 350

Gly Val Leu Val Asp Arg Asp Asp Gln Gly Val Leu Leu Gln Ile PheGly Val Leu Val Asp Arg Asp Asp Gln Gly Val Leu Leu Gln Ile Phe

355 360 365 355 360 365

Thr Lys Pro Val Gly Asp Arg Pro Thr Leu Phe Leu Glu Met Ile GlnThr Lys Pro Val Gly Asp Arg Pro Thr Leu Phe Leu Glu Met Ile Gln

370 375 380 370 375 380

Arg Ile Gly Cys Met Glu Lys Asp Glu Arg Gly Glu Glu Tyr Gln LysArg Ile Gly Cys Met Glu Lys Asp Glu Arg Gly Glu Glu Tyr Gln Lys

385 390 395 400385 390 395 400

Gly Gly Cys Gly Gly Phe Gly Lys Gly Asn Phe Ser Glu Leu Phe LysGly Gly Cys Gly Gly Phe Gly Lys Gly Asn Phe Ser Glu Leu Phe Lys

405 410 415 405 410 415

Ser Ile Glu Asp Tyr Glu Lys Ser Leu Glu Ala Lys Gln Ser Ala AlaSer Ile Glu Asp Tyr Glu Lys Ser Leu Glu Ala Lys Gln Ser Ala Ala

420 425 430 420 425 430

Val Gln Ala SerVal Gln Ala Ser

435 435

<210> 6<210> 6

<211> 436<211> 436

<212> PRT<212> PRT

<213> 小麦(Triticum aestivum L.)<213> Wheat (Triticum aestivum L.)

<400> 6<400> 6

Met Pro Pro Thr Pro Thr Thr Pro Ala Ala Thr Gly Ala Gly Ala AlaMet Pro Pro Thr Pro Thr Thr Pro Ala Ala Thr Gly Ala Gly Ala Ala

1 5 10 151 5 10 15

Ala Ala Val Thr Pro Glu His Ala Arg Pro Arg Arg Met Val Arg PheAla Ala Val Thr Pro Glu His Ala Arg Pro Arg Arg Met Val Arg Phe

20 25 30 20 25 30

Asn Pro Arg Ser Asp Arg Phe His Thr Leu Ser Phe His His Val GluAsn Pro Arg Ser Asp Arg Phe His Thr Leu Ser Phe His His Val Glu

35 40 45 35 40 45

Phe Trp Cys Ala Asp Ala Ala Ser Ala Ala Gly Arg Phe Ala Phe AlaPhe Trp Cys Ala Asp Ala Ala Ser Ala Ala Gly Arg Phe Ala Phe Ala

50 55 60 50 55 60

Leu Gly Ala Pro Leu Ala Ala Arg Ser Asp Leu Ser Thr Gly Asn SerLeu Gly Ala Pro Leu Ala Ala Arg Ser Asp Leu Ser Thr Gly Asn Ser

65 70 75 8065 70 75 80

Val His Ala Ser Gln Leu Leu Arg Ser Gly Asn Leu Ala Phe Leu PheVal His Ala Ser Gln Leu Leu Arg Ser Gly Asn Leu Ala Phe Leu Phe

85 90 95 85 90 95

Thr Ala Pro Tyr Ala Asn Gly Cys Asp Ala Ala Thr Ala Ser Leu ProThr Ala Pro Tyr Ala Asn Gly Cys Asp Ala Ala Thr Ala Ser Leu Pro

100 105 110 100 105 110

Ser Phe Ser Ala Asp Ala Ala Arg Arg Phe Ser Ala Asp His Gly LeuSer Phe Ser Ala Asp Ala Ala Arg Arg Phe Ser Ala Asp His Gly Leu

115 120 125 115 120 125

Ala Val Arg Ser Ile Ala Leu Arg Val Ala Asp Ala Ala Glu Ala PheAla Val Arg Ser Ile Ala Leu Arg Val Ala Asp Ala Ala Glu Ala Phe

130 135 140 130 135 140

Arg Ala Ser Val Asp Gly Gly Ala Arg Pro Ala Phe Ser Pro Val AspArg Ala Ser Val Asp Gly Gly Ala Arg Pro Ala Phe Ser Pro Val Asp

145 150 155 160145 150 155 160

Leu Gly Arg Gly Phe Gly Phe Ala Glu Val Glu Leu Tyr Gly Asp ValLeu Gly Arg Gly Phe Gly Phe Ala Glu Val Glu Leu Tyr Gly Asp Val

165 170 175 165 170 175

Val Leu Arg Phe Val Ser His Pro Asp Gly Thr Asp Val Pro Phe LeuVal Leu Arg Phe Val Ser His Pro Asp Gly Thr Asp Val Pro Phe Leu

180 185 190 180 185 190

Pro Gly Phe Glu Gly Val Ser Asn Pro Gly Ala Val Asp Tyr Gly LeuPro Gly Phe Glu Gly Val Ser Asn Pro Gly Ala Val Asp Tyr Gly Leu

195 200 205 195 200 205

Thr Arg Phe Asp His Val Val Gly Asn Val Pro Glu Leu Ala Ser AlaThr Arg Phe Asp His Val Val Gly Asn Val Pro Glu Leu Ala Ser Ala

210 215 220 210 215 220

Ala Ala Tyr Val Ala Gly Phe Thr Gly Phe His Glu Phe Ala Glu PheAla Ala Tyr Val Ala Gly Phe Thr Gly Phe His Glu Phe Ala Glu Phe

225 230 235 240225 230 235 240

Thr Thr Glu Asp Val Gly Thr Ala Glu Ser Gly Leu Asn Ser Met ValThr Thr Glu Asp Val Gly Thr Ala Glu Ser Gly Leu Asn Ser Met Val

245 250 255 245 250 255

Leu Ala Asn Asn Ser Glu Gly Val Leu Leu Pro Leu Asn Glu Pro ValLeu Ala Asn Asn Ser Glu Gly Val Leu Leu Pro Leu Asn Glu Pro Val

260 265 270 260 265 270

His Gly Thr Lys Arg Arg Ser Gln Ile Gln Thr Phe Leu Glu His HisHis Gly Thr Lys Arg Arg Ser Gln Ile Gln Thr Phe Leu Glu His His

275 280 285 275 280 285

Gly Gly Pro Gly Val Gln His Ile Ala Val Ala Ser Ser Asp Val LeuGly Gly Pro Gly Val Gln His Ile Ala Val Ala Ser Ser Asp Val Leu

290 295 300 290 295 300

Arg Thr Leu Arg Glu Met Arg Ala Arg Ser Ala Met Gly Gly Phe AspArg Thr Leu Arg Glu Met Arg Ala Arg Ser Ala Met Gly Gly Phe Asp

305 310 315 320305 310 315 320

Phe Leu Pro Pro Pro Leu Pro Lys Tyr Tyr Glu Gly Val Arg Arg IlePhe Leu Pro Pro Pro Leu Pro Lys Tyr Tyr Glu Gly Val Arg Arg Ile

325 330 335 325 330 335

Ala Gly Asp Val Leu Ser Glu Ala Gln Ile Lys Glu Cys Gln Glu LeuAla Gly Asp Val Leu Ser Glu Ala Gln Ile Lys Glu Cys Gln Glu Leu

340 345 350 340 345 350

Gly Val Leu Val Asp Arg Asp Asp Gln Gly Val Leu Leu Gln Ile PheGly Val Leu Val Asp Arg Asp Asp Gln Gly Val Leu Leu Gln Ile Phe

355 360 365 355 360 365

Thr Lys Pro Val Gly Asp Arg Pro Thr Leu Phe Leu Glu Met Ile GlnThr Lys Pro Val Gly Asp Arg Pro Thr Leu Phe Leu Glu Met Ile Gln

370 375 380 370 375 380

Arg Ile Gly Cys Met Glu Lys Asp Glu Arg Gly Glu Glu Tyr Gln LysArg Ile Gly Cys Met Glu Lys Asp Glu Arg Gly Glu Glu Tyr Gln Lys

385 390 395 400385 390 395 400

Gly Gly Cys Gly Gly Phe Gly Lys Gly Asn Phe Ser Glu Leu Phe LysGly Gly Cys Gly Gly Phe Gly Lys Gly Asn Phe Ser Glu Leu Phe Lys

405 410 415 405 410 415

Ser Ile Glu Asp Tyr Glu Lys Ser Leu Glu Ala Lys Gln Ser Ala AlaSer Ile Glu Asp Tyr Glu Lys Ser Leu Glu Ala Lys Gln Ser Ala Ala

420 425 430 420 425 430

Val Gln Gly SerVal Gln Gly Ser

435 435

<210> 7<210> 7

<211> 18<211> 18

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 7<400> 7

atgccgccca cccccacc 18atgccgcccacccccacc 18

<210> 8<210> 8

<211> 22<211> 22

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 8<400> 8

atccctgaac tgcagcagat tg 22atccctgaac tgcagcagat tg 22

<210> 9<210> 9

<211> 18<211> 18

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 9<400> 9

cagtagggga caggccga 18cagtagggga caggccga 18

<210> 10<210> 10

<211> 22<211> 22

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 10<400> 10

ccgcatctta caaacaacat ca 22ccgcatctta caaacaacat ca 22

<210> 11<210> 11

<211> 24<211> 24

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 11<400> 11

tggtgtcatc aagcctggta tggt 24tggtgtcatc aagcctggta tggt 24

<210> 12<210> 12

<211> 24<211> 24

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 12<400> 12

actcatggtg catctcaacg gact 24actcatggtg catctcaacg gact 24

<210> 13<210> 13

<211> 27<211> 27

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 13<400> 13

tgctctagaa tgccgcccac ccccacc 27tgctctagaa tgccgcccac ccccacc 27

<210> 14<210> 14

<211> 51<211> 51

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 14<400> 14

cggggtaccg tggtggtggt ggtggtgtga tccctgaact gcagcagatt g 51cggggtaccg tggtggtggt ggtggtgtga tccctgaact gcagcagatt g 51

Claims (4)

  1. The application of the 2, 5-dihydroxyphenylacetic acid HGA in inhibiting the germination of wheat or corn rust spores is characterized in that the related genes for synthesizing the HGA areTaHPD,The geneTaHPDThere are three homologous copies on the 6A,6B and 6D chromosomes, the homologous copies of the geneTaHPD-6A、TaHPD-6B、TaHPD-The nucleotide sequences of the 6D are respectively shown as SEQ ID NO.1, SEQ ID NO.2 and SEQ ID NO. 3.
  2. The application of 2.2,5-dihydroxyphenylacetic acid HGA as wheat or corn stripe rust preventing and treating agent is characterized in that the related gene for synthesizing the HGA isTaHPD,The geneTaHPDThere are three homologous copies on the 6A,6B and 6D chromosomes, the homologous copies of the geneTaHPD-6A、TaHPD-6B、TaHPD-The nucleotide sequences of the 6D are respectively shown as SEQ ID NO.1, SEQ ID NO.2 and SEQ ID NO. 3.
  3. 3. A method for preventing and treating wheat stripe rust disease is characterized in that 2, 5-dihydroxyphenylacetic acid HGA solution is sprayed on wheat leaves, and the concentration of the HGA solution is 1-10mmol/L.
  4. 4. The method for preventing and treating corn stripe rust disease is characterized in that 2, 5-dihydroxyphenylacetic acid HGA solution is sprayed on corn leaves, and the concentration of the HGA solution is 1-20mmol/L.
CN202210090847.8A 2022-01-26 2022-01-26 Wheat stripe rust resistance related metabolite and synthesis related gene and application thereof Active CN114181956B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210090847.8A CN114181956B (en) 2022-01-26 2022-01-26 Wheat stripe rust resistance related metabolite and synthesis related gene and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210090847.8A CN114181956B (en) 2022-01-26 2022-01-26 Wheat stripe rust resistance related metabolite and synthesis related gene and application thereof

Publications (2)

Publication Number Publication Date
CN114181956A CN114181956A (en) 2022-03-15
CN114181956B true CN114181956B (en) 2023-11-28

Family

ID=80545781

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210090847.8A Active CN114181956B (en) 2022-01-26 2022-01-26 Wheat stripe rust resistance related metabolite and synthesis related gene and application thereof

Country Status (1)

Country Link
CN (1) CN114181956B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116333076B (en) * 2023-05-19 2023-08-25 西北农林科技大学深圳研究院 Effector protein PST-8853 containing iron-sulfur cluster and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108220304A (en) * 2018-02-02 2018-06-29 山东农业大学 The breeding method of application and Rust resistance bacterium wheat of the wheat stripe rust PSTG_06371 genes in stripe rust prevention
CN110183525A (en) * 2019-06-14 2019-08-30 中国科学院遗传与发育生物学研究所 The relevant TXR albumen of wheat stripe rust resisting disease and its encoding gene and application
CN113574173A (en) * 2019-09-17 2021-10-29 北京大北农生物技术有限公司 Mutated hydroxyphenylpyruvate dioxygenase polypeptide, its encoding gene and use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108220304A (en) * 2018-02-02 2018-06-29 山东农业大学 The breeding method of application and Rust resistance bacterium wheat of the wheat stripe rust PSTG_06371 genes in stripe rust prevention
CN110183525A (en) * 2019-06-14 2019-08-30 中国科学院遗传与发育生物学研究所 The relevant TXR albumen of wheat stripe rust resisting disease and its encoding gene and application
CN113574173A (en) * 2019-09-17 2021-10-29 北京大北农生物技术有限公司 Mutated hydroxyphenylpyruvate dioxygenase polypeptide, its encoding gene and use

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
4-Hydroxyphenylpyruvate Dioxygenase and Its Inhibition in Plants and Animals: Small Molecules as Herbicides and Agents for the Treatment of Human Inherited Diseases;SANTUCCI, A.等;《JOURNAL OF MEDICINAL CHEMISTRY》;第60卷(第10期);4101-4125 *
LIU,S.F.等.Integrated Metabolo-transcriptomics Reveals the Defense Response of Homogentisic Acid in Wheat against Puccinia striiformis f.sp.tritici.《JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY》.2023,第70卷3719-3729. *

Also Published As

Publication number Publication date
CN114181956A (en) 2022-03-15

Similar Documents

Publication Publication Date Title
Kim et al. In-depth insight into in vivo apoplastic secretome of rice-Magnaporthe oryzae interaction
Godiard et al. MtbHLH1, a bHLH transcription factor involved in Medicago truncatula nodule vascular patterning and nodule to plant metabolic exchanges
Li et al. MtCAS31 aids symbiotic nitrogen fixation by protecting the leghemoglobin MtLb120-1 under drought stress in Medicago truncatula
CN114437188B (en) Phytophthora litchii secreted protein exciton PlPeL8 and application thereof
CN108164588A (en) Application of the cotton transport protein GhBASS5 genes in plant salt tolerance
CN112481294A (en) Application of persimmon WRKY transcription factor gene in improvement of persimmon anthracnose resistance
CN106244599A (en) A kind of Radix Notoginseng pathogenesis-related proteins 1 family gene PnPR1 2 and application
CN114181956B (en) Wheat stripe rust resistance related metabolite and synthesis related gene and application thereof
CN107365794B (en) Application of Panax notoginseng chitinase gene PnCHI1
Xiang et al. Characterization of CRN-like genes from Plasmopara viticola: searching for the most virulent ones
CN106244598B (en) Radix Notoginseng Dirigent albuminoid gene PnDIR1 and application
Hu et al. TaAP2-10, an AP2/ERF transcription factor, contributes to wheat resistance against stripe rust
CN101875940B (en) Salt-tolerant sinorhizobium meliloti NSM18 and special gene cluster thereof
CN110358776A (en) A kind of Rhizoctonia solani Kuhn pathogenic related gene and its application
CN110352961B (en) A genetically engineered Escherichia coli strain and its application
D'Antuono et al. Defects in rhizobial cyclic glucan and lipopolysaccharide synthesis alter legume gene expression during nodule development
CN116425847B (en) Rice OsGLP8-10 for inhibiting sclerotinia and application thereof
CN116444636B (en) Rice OsGLP3-6 that inhibits Sclerotinia sclerotiorum and its application
CN105906695A (en) Sophora alopecuroides aquaporin and encoding gene and application thereof
Tao et al. Bacillus velezensis Y6, a Potential and Efficient Biocontrol Agent in Control of Rice Sheath Blight Caused by Rhizoctonia solani
CN103275996B (en) Soybean chalcone reductase gene CHR4 and application
Ahmed et al. Molecular detection, phylogenetic analysis and designing of siRNA against Potato Virus X
CN114106119A (en) Burneritic ScSoloist gene and application thereof
CN111808832A (en) A cation transporting ATPase gene of Rhizoctonia oryzae and its fragment Rscta and its application
CN115386582B (en) A protein and coding gene for cassava resistance to bacterial wilt and its application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant