CN114163526B - A nanobody targeting glucose regulatory protein 78 and its application - Google Patents
A nanobody targeting glucose regulatory protein 78 and its application Download PDFInfo
- Publication number
- CN114163526B CN114163526B CN202111338662.6A CN202111338662A CN114163526B CN 114163526 B CN114163526 B CN 114163526B CN 202111338662 A CN202111338662 A CN 202111338662A CN 114163526 B CN114163526 B CN 114163526B
- Authority
- CN
- China
- Prior art keywords
- seq
- nanobody
- regulatory protein
- glucose regulatory
- protein
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57484—Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
- G01N33/57492—Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites involving compounds localized on the membrane of tumor or cancer cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
- C07K2317/565—Complementarity determining region [CDR]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
- C07K2317/567—Framework region [FR]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
- C07K2317/569—Single domain, e.g. dAb, sdAb, VHH, VNAR or nanobody®
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/90—Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
- C07K2317/92—Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Cell Biology (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Medicinal Chemistry (AREA)
- Zoology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Oncology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Urology & Nephrology (AREA)
- Wood Science & Technology (AREA)
- Hematology (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Hospice & Palliative Care (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Plant Pathology (AREA)
- Food Science & Technology (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Peptides Or Proteins (AREA)
Abstract
本发明提供了一种靶向葡萄糖调节蛋白78的纳米抗体及其应用,所述靶向葡萄糖调节蛋白78的纳米抗体的氨基酸序列的互补决定区为如SEQ ID NO:2所示的CDR1、如SEQ ID NO:4所示的CDR2、如SEQ ID NO:6所示的CDR3;或如SEQ ID NO:9所示的CDR1、如SEQ ID NO:11所示的CDR2、如SEQ ID NO:13所示的CDR3。本发明的靶向葡萄糖调节蛋白78的纳米抗体,与葡萄糖调节蛋白78的亲和力均在纳摩尔水平,具有较高的亲和力,对细胞膜表面的GRP78蛋白具有特异性识别能力。
The present invention provides a nanobody targeting glucose regulatory protein 78 and its application, wherein the complementarity determining region of the amino acid sequence of the nanobody targeting glucose regulatory protein 78 is CDR1 as shown in SEQ ID NO: 2, as shown in CDR2 shown in SEQ ID NO:4, CDR3 shown in SEQ ID NO:6; or CDR1 shown in SEQ ID NO:9, CDR2 shown in SEQ ID NO:11, CDR2 shown in SEQ ID NO:13 CDR3 shown. The nanobody targeting glucose-regulated protein 78 of the present invention has a nanomolar affinity with glucose-regulated protein 78, has high affinity, and has specific recognition ability for GRP78 protein on the cell membrane surface.
Description
技术领域technical field
本发明属于免疫学或分子生物学技术领域,尤其涉及一种靶向葡萄糖调节蛋白78的纳米抗体及其应用。The invention belongs to the technical field of immunology or molecular biology, and in particular relates to a nanobody targeting glucose regulatory protein 78 and its application.
背景技术Background technique
葡萄糖调节蛋白78(glucose regulated protein 78 kDa, GRP78),是1977年IraPastan等人在无葡萄糖培养的鸡胚成纤维细胞中发现的一种分子量为78 kDa的蛋白,与免疫球蛋白重链结合蛋白(binding immunoglobulin protein, BIP)完全相同,故而又称为免疫球蛋白重链结合蛋白(BiP)是重要的内质网分子伴侣,参与内质网应激和蛋白质的折叠转运,对肿瘤增殖、侵袭、转移以及血管形成至关重要。GRP78 蛋白全长由两个功能结构域组成, 包括核苷酸结合域(nucleotide-binding domain, NBD),能够结合ATP,和底物结合域(substrate-binding domain, SBD),能够结合多肽/蛋白。GRP78 广泛存在于细胞质内,但在肿瘤微环境缺氧、缺葡萄糖、pH 降低等应激环境下,会从胞质转运到膜表面,即表面GRP78(cell surface GRP78, csGRP78)。研究发现,csGRP78 在多种高度恶性肿瘤(如TNBC、胶质母细胞瘤、胃癌)中高表达;csGRP78主要以外周蛋白的形式存在于质膜上,并与其他细胞表面蛋白(如糖基磷脂酰肌醇锚定蛋白)相互作用,介导肿瘤细胞的信号转导。Glucose regulated protein 78 (glucose regulated protein 78 kDa, GRP78) is a protein with a molecular weight of 78 kDa discovered by IraPastan et al. in 1977 in chicken embryo fibroblasts cultured without glucose. (binding immunoglobulin protein, BIP) is exactly the same, so it is also called immunoglobulin heavy chain binding protein (BiP) is an important endoplasmic reticulum molecular chaperone. , metastasis, and angiogenesis are critical. The full-length GRP78 protein consists of two functional domains, including a nucleotide-binding domain (NBD), which can bind ATP, and a substrate-binding domain (SBD), which can bind polypeptides/proteins . GRP78 is widely present in the cytoplasm, but under stress conditions such as hypoxia, glucose deficiency, and pH reduction in the tumor microenvironment, it will be transported from the cytoplasm to the membrane surface, that is, cell surface GRP78 (csGRP78). Studies have found that csGRP78 is highly expressed in a variety of high-grade malignant tumors (such as TNBC, glioblastoma, gastric cancer); csGRP78 mainly exists in the form of peripheral proteins on the plasma membrane, and interacts with other cell surface proteins (such as glycosylphosphatidyl phosphatidylase). Inositol-anchored protein) interacts to mediate signal transduction in tumor cells.
此外,GPRP78基因的表达谱显示,在不同的癌症类型中,高度恶性和侵袭性胶质母细胞瘤的csGRP78表达量最高,肺癌、乳腺癌、胃癌、结肠癌和肝癌以及血管生成的内皮细胞也有高表达的报道。这些发现证实了csGRP78可以同时存在于恶性肿瘤细胞和内皮细胞上,但在正常细胞上表达很少,这表明csGRP78作为内质网蛋白质稳态失调的产物,可以作为癌细胞特异性生物标记物、癌症成像和治疗的靶点,也是选择性药物递送的潜在工具。In addition, the expression profile of the GPRP78 gene showed that among different cancer types, highly malignant and aggressive glioblastomas have the highest expression of csGRP78, as well as lung, breast, gastric, colon and liver cancers and angiogenic endothelial cells. High-expressed reports. These findings confirm that csGRP78 can be present on both malignant and endothelial cells, but is rarely expressed on normal cells, suggesting that csGRP78, a product of dysregulated endoplasmic reticulum protein homeostasis, may serve as a cancer cell-specific biomarker, A target for cancer imaging and therapy, and a potential tool for selective drug delivery.
单克隆抗体分子量大、组织渗透性很差,大大限制了单克隆抗体在实体瘤中的有效性。在骆驼科体内发现的单链抗体(HCAb),其可变区(VHH)即为纳米抗体(Nb)。纳米抗体相对分子质量约为15 kDa,是传统抗体的1/10左右。纳米抗体稳定性强、可溶性好、可原核表达, 此外,纳米抗体基因序列与人VH 基因家族III 序列有80%的同源性,因此免疫原性较低。最后,相比单恋抗体scFv,纳米抗体仍保留了较好的亲和力和特异性。因此纳米抗体在新药开发和疾病诊断领域显示了独特的潜力。但是到目前为止,也未见与GRP78 蛋白结合性好、亲和力高的纳米抗体的相关报道。The high molecular weight and poor tissue penetration of monoclonal antibodies greatly limit the effectiveness of monoclonal antibodies in solid tumors. The variable region (VHH) of the single-chain antibody (HCAb) found in Camelidae is the nanobody (Nb). The relative molecular mass of nanobodies is about 15 kDa, which is about 1/10 of that of traditional antibodies. Nanobodies have strong stability, good solubility, and prokaryotic expression. In addition, the nanobody gene sequence has 80% homology with the human VH gene family III sequence, so the immunogenicity is low. Finally, compared with the unrequited antibody scFv, the nanobody still retains better affinity and specificity. Therefore, nanobodies show unique potential in the fields of new drug development and disease diagnosis. But so far, there has been no related report on the nanobody with good binding to GRP78 protein and high affinity.
发明内容SUMMARY OF THE INVENTION
针对以上技术问题,本发明公开了一种靶向葡萄糖调节蛋白78的纳米抗体及其应用,与葡萄糖调节蛋白78结合性好,而且亲和力高,可以用于特异性识别葡萄糖调节蛋白78中。In view of the above technical problems, the present invention discloses a nanobody targeting glucose regulatory protein 78 and its application.
对此,本发明采用的技术方案为:To this, the technical scheme adopted in the present invention is:
一种靶向葡萄糖调节蛋白78的纳米抗体,所述靶向葡萄糖调节蛋白78的纳米抗体的氨基酸序列的互补决定区为如SEQ ID NO:2所示的CDR1、如SEQ ID NO:4所示的CDR2、如SEQ ID NO:6所示的CDR3;具体来说,如SEQ ID NO:2所示的CDR1的序列为INTGNPALV,如SEQID NO:4所示的CDR2的序列为SISGNTN,如SEQ ID NO:4所示的CDR3的序列为KKLPFGS;A nanobody targeting glucose regulatory protein 78, the complementarity determining region of the amino acid sequence of the nanobody targeting glucose regulatory protein 78 is CDR1 as shown in SEQ ID NO:2, as shown in SEQ ID NO:4 CDR2, CDR3 as shown in SEQ ID NO:6; Specifically, the sequence of CDR1 as shown in SEQ ID NO:2 is INTGNPALV, and the sequence of CDR2 as shown in SEQ ID NO:4 is SISGNTN, as shown in SEQ ID The sequence of CDR3 shown in NO:4 is KKLPFGS;
或如SEQ ID NO:9所示的CDR1、如SEQ ID NO:11所示的CDR2、如SEQ ID NO:13所示的CDR3。具体来说,如SEQ ID NO:9所示的CDR1的序列为GFTLDYYAI,如SEQ ID NO:11所示的CDR2的序列为SSAGVLTN,如SEQ ID NO:13所示的CDR3为AAADARQLKVRQCLSSNAYTY。Or CDR1 as SEQ ID NO:9, CDR2 as SEQ ID NO:11, CDR3 as SEQ ID NO:13. Specifically, the sequence of CDR1 shown in SEQ ID NO: 9 is GFTLDYYAI, the sequence of CDR2 shown in SEQ ID NO: 11 is SSAGVLTN, and the sequence of CDR3 shown in SEQ ID NO: 13 is AAADARQLKVRQCLSSNAYTY.
作为本发明的进一步改进,所述靶向葡萄糖调节蛋白78的纳米抗体的氨基酸序列的框架区包括SEQ ID NO:1所示的FR1、如SEQ ID NO:3所示的FR2、如SEQ ID NO:5所示的FR3、如SEQ ID NO:7所示的FR4。As a further improvement of the present invention, the framework region of the amino acid sequence of the Nanobody targeting glucose regulatory protein 78 includes FR1 as shown in SEQ ID NO: 1, FR2 as shown in SEQ ID NO: 3, and FR2 as shown in SEQ ID NO: FR3 shown in SEQ ID NO:5, FR4 shown in SEQ ID NO:7.
作为本发明的进一步改进,所述靶向葡萄糖调节蛋白78的纳米抗体的氨基酸序列如SEQ ID NO:15所示。As a further improvement of the present invention, the amino acid sequence of the nanobody targeting glucose regulatory protein 78 is shown in SEQ ID NO: 15.
作为本发明的进一步改进,所述靶向葡萄糖调节蛋白78的纳米抗体的氨基酸序列的框架区包括SEQ ID NO:8所示的FR1、如SEQ ID NO:10所示的FR2、如SEQ ID NO:12所示的FR3、如SEQ ID NO:14所示的FR4。As a further improvement of the present invention, the framework region of the amino acid sequence of the Nanobody targeting glucose regulatory protein 78 includes FR1 shown in SEQ ID NO:8, FR2 shown in SEQ ID NO:10, and FR2 shown in SEQ ID NO:10. FR3 shown in SEQ ID NO:12, FR4 shown in SEQ ID NO:14.
作为本发明的进一步改进,所述靶向葡萄糖调节蛋白78的纳米抗体的氨基酸序列如SEQ ID NO:16所示。As a further improvement of the present invention, the amino acid sequence of the nanobody targeting glucose regulatory protein 78 is shown in SEQ ID NO: 16.
本发明技术方案的纳米抗体是特异性靶向葡萄糖调节蛋白78的抗体,能够结合靶向葡萄糖调节蛋白78,并且所述纳米抗体具有高抗原结合性、高亲和性、低免疫原性以及较强的组织穿透力。The nanobody of the technical solution of the present invention is an antibody that specifically targets glucose regulatory protein 78, can bind to target glucose regulatory protein 78, and the nanobody has high antigen binding, high affinity, low immunogenicity and relatively Strong tissue penetration.
本发明还公开了一种核酸,所述核酸为:编码如上任意一项所述的靶向葡萄糖调节蛋白78的纳米抗体的核酸或其互补序列。The present invention also discloses a nucleic acid, which is: a nucleic acid encoding the nanobody targeting glucose regulatory protein 78 according to any one of the above or its complementary sequence.
本发明还公开了一种表达载体,其包含如上所述的核酸。The present invention also discloses an expression vector comprising the nucleic acid as described above.
本发明还公开了一种宿主细胞,其包含如上所述的表达载体。The present invention also discloses a host cell comprising the above-mentioned expression vector.
本发明还公开了如上所述的靶向葡萄糖调节蛋白78的纳米抗体的应用,其用作靶向葡萄糖调节蛋白78的检测试剂、活体成像探针、嵌合型免疫细胞或治疗性抗体。The present invention also discloses the application of the above-mentioned nanobody targeting glucose regulatory protein 78, which is used as a detection reagent, in vivo imaging probe, chimeric immune cell or therapeutic antibody targeting glucose regulatory protein 78.
与现有技术相比,本发明的有益效果为:Compared with the prior art, the beneficial effects of the present invention are:
本发明的靶向葡萄糖调节蛋白78的纳米抗体,与葡萄糖调节蛋白78具有很好的结合活性,与葡萄糖调节蛋白78的亲和力均在纳摩尔水平,具有较高的亲和力,对葡萄糖调节蛋白78具有特异性识别能力。而且该纳米抗体具有较小的分子量,具有更好的组织穿透性,可以使用大肠杆菌系统进行表达纯化,制备成本低。The nanobody targeting glucose regulatory protein 78 of the present invention has good binding activity to glucose regulatory protein 78, and the affinity with glucose regulatory protein 78 is at the nanomolar level, and has a relatively high affinity. specific recognition ability. Moreover, the nanobody has a smaller molecular weight, better tissue penetration, can be expressed and purified by using the Escherichia coli system, and the preparation cost is low.
附图说明Description of drawings
图1是本发明实施例中的GRP78蛋白在癌细胞膜和肿瘤组织癌细胞膜的表达结果图,其中(a)为GRP78蛋白在乳腺癌肿瘤细胞4T1细胞膜的表达结果 ,(b)为在4T1小鼠肿瘤组织GRP78染色结果,(c)为在胃癌细胞MKN45小鼠肿瘤组织染色结果。Figure 1 is a graph showing the expression results of GRP78 protein in cancer cell membranes and tumor tissue cancer cell membranes in the example of the present invention, wherein (a) is the expression result of GRP78 protein in 4T1 cell membrane of breast cancer tumor cells, (b) is the expression result of GRP78 protein in 4T1 mice GRP78 staining results of tumor tissue, (c) is the staining results of tumor tissue in gastric cancer cells MKN45 mice.
图2是本发明实施例中GRP78蛋白纯化的分析图;其中(a)为GRP78全长蛋白的电泳图,(b)为GRP78全长蛋白的免疫印迹;(c)为GRP78 NBD结构域蛋白纯化的电泳图,(d)为GRP78 SBD结构域蛋白纯化的电泳图。Figure 2 is an analysis diagram of the purification of GRP78 protein in the embodiment of the present invention; wherein (a) is the electrophoresis image of the full-length GRP78 protein, (b) is the immunoblot of the full-length GRP78 protein; (c) is the purification of the NBD domain protein of GRP78 The electropherogram of , (d) is the electropherogram of the purification of GRP78 SBD domain protein.
图3是本发明实施例中ELISA验证的初步结果;其中(a)为全长蛋白噬菌体ELISA验证的初步结果,(b)NBD蛋白噬菌体ELISA验证的初步结果,(c)SBD蛋白噬菌体ELISA验证的初步结果。Figure 3 is the preliminary result of ELISA verification in the embodiment of the present invention; wherein (a) is the preliminary result of full-length protein phage ELISA verification, (b) is the preliminary result of NBD protein phage ELISA verification, (c) SBD protein phage ELISA verification Preliminary results.
图4是本发明实施例的GRP78三个蛋白筛选后文库的深度测序结果图,其中(a)是GRP78全长蛋白获得文库的深度测序序列频率分布图,(b)是GRP78 NBD结构域筛选后文库的深度测序序列频率分布图,(c)是GRP78 SBD结构域筛选后文库的深度测序序列频率分布图。Figure 4 is a diagram of the deep sequencing results of the library after screening of three GRP78 proteins according to the embodiment of the present invention, wherein (a) is the frequency distribution diagram of the deep sequencing sequence of the library obtained by the GRP78 full-length protein, (b) is the GRP78 NBD domain after screening. The frequency distribution of deep sequencing sequences of the library, (c) is the frequency distribution of deep sequencing sequences of the library after GRP78 SBD domain screening.
图5是本发明实施例的NBD1纳米抗体和SBD C5纳米抗体与对比纳米抗体的ELISA验证对比结果,其中(a)是NBD1纳米抗体,(b)是SBD C5纳米抗体,(c)是NBD C1纳米抗体,(d)是SBD2纳米抗体,(e)是NGS3纳米抗体。Figure 5 is the ELISA verification results of the NBD1 Nanobody and SBD C5 Nanobody of the embodiment of the present invention and the comparative Nanobody, wherein (a) is the NBD1 Nanobody, (b) is the SBD C5 Nanobody, (c) is the NBD C1 Nanobody Nanobodies, (d) are SBD2 Nanobodies, (e) are NGS3 Nanobodies.
图6是本发明实施例的表面等离子共振检测NBD1纳米抗体、SBD C5纳米抗体与全长GRP78的亲和力的结果分析图,其中(a)是NBD1纳米抗体,(b)是SBD C5纳米抗体。6 is an analysis diagram of the results of surface plasmon resonance detection of the affinity of NBD1 Nanobody, SBD C5 Nanobody and full-length GRP78 according to the embodiment of the present invention, wherein (a) is NBD1 Nanobody, (b) is SBD C5 Nanobody.
具体实施方式Detailed ways
下面对本发明的较优的实施例作进一步的详细说明。The preferred embodiments of the present invention will be further described in detail below.
1. 体外检测GRP78 膜表达1. In vitro detection of GRP78 membrane expression
将乳腺癌细胞4T-1按照10,000-20,000/孔的数量接种于高内涵96 微孔板上;细胞贴壁后用PBS 洗涤3 次,0.25%多聚甲醛固定10 min;5%BSA 封闭1 h;用PBST 稀释anti-GRP78 抗体(1:200),室温孵育1 h;PBST 洗涤3 次,用PBST 稀释荧光二抗(1:1000),室温孵育1 h;PBST 洗涤3 次,用含DAPI 的封片剂封片,高内涵细胞成像仪检测GRP78 的膜表达情况。
2. 体内检测GRP78 膜表达2. In vivo detection of GRP78 membrane expression
构建乳腺癌4T1、胃癌MKN45肿瘤模型,当肿瘤体积到达300 mm3 时收集肿瘤组织,制备10μm冰冻切片,免疫荧光检测GRP78 蛋白在肿瘤组织的膜表达情况。The tumor models of breast cancer 4T1 and gastric cancer MKN45 were constructed. When the tumor volume reached 300 mm 3 , the tumor tissues were collected, and 10 μm frozen sections were prepared. The expression of GRP78 protein in the membrane of tumor tissues was detected by immunofluorescence.
本实施例检测了GRP78在癌细胞和冰冻癌组织上的膜表达情况,使用低浓度多聚甲醛固定乳腺癌细胞4T1和4T1、MKN45小鼠肿瘤组织后,行GRP78蛋白染色,结果如图1所示。图1(a)中可见,乳腺癌肿瘤细胞4T1细胞膜高表达GRP78;图1(b)中可见,4T1小鼠肿瘤组织GRP78染色显示肿瘤细胞膜高表达GRP78;图1(c)中可见,胃癌细胞MKN45小鼠肿瘤组织染色GRP78也提示癌细胞膜高表达GRP78。总的来说,GRP78在癌细胞膜高表达,提示GRP78可以作为肿瘤的潜在治疗靶点。In this example, the membrane expression of GRP78 on cancer cells and frozen cancer tissues was detected. After fixation of breast cancer cells 4T1 and 4T1, and MKN45 mouse tumor tissues with low-concentration paraformaldehyde, GRP78 protein staining was performed. The results are shown in Figure 1. Show. As can be seen in Figure 1(a), the 4T1 cell membrane of breast cancer tumor cells highly expressed GRP78; as seen in Figure 1(b), GRP78 staining in the tumor tissue of 4T1 mice showed that the tumor cell membrane highly expressed GRP78; as seen in Figure 1(c), gastric cancer cells GRP78 staining in tumor tissue of MKN45 mice also indicated that GRP78 was highly expressed in the cancer cell membrane. Overall, GRP78 is highly expressed in cancer cell membranes, suggesting that GRP78 can be a potential therapeutic target for tumors.
3. GRP78 全长以及NBD、SBD 结构域的表达纯化3. Expression and purification of GRP78 full-length and NBD and SBD domains
将GRP78 全长、NBD 和SBD 基因序列克隆至原核表达载体PET-14b 中。表达纯化步骤如下:The full-length, NBD and SBD gene sequences of GRP78 were cloned into the prokaryotic expression vector PET-14b. The expression purification steps are as follows:
a)转化:将质粒加入到BL21 (DE3) 感受态细胞上,冰上放置20 min,热激90 s,加入LB 培养基摇1 h,将菌液涂到氨苄平板上,倒置培养;a) Transformation: Add the plasmid to BL21 (DE3) competent cells, place on ice for 20 min, heat shock for 90 s, add LB medium and shake for 1 h, spread the bacterial solution on an ampicillin plate, and invert culture;
b)大量诱导:挑单克隆扩增,加入一定浓度的异丙基-β-D-硫代半乳糖苷(IPTG)在16 ℃诱导过夜;b) Mass induction: pick a single clone for amplification, add a certain concentration of isopropyl-β-D-thiogalactoside (IPTG) to induce overnight at 16 °C;
c)离心收菌,高压破菌仪破菌;c) Collect bacteria by centrifugation and break bacteria by high pressure sterilizer;
d)12000 g,4 ℃离心1 h,取上清与Ni-NTA resin 于4 ℃孵育1 h;d) Centrifuge at 12000 g for 1 h at 4 °C, take the supernatant and incubate with Ni-NTA resin for 1 h at 4 °C;
e)Ni 柱纯化;f)分子筛(AKTA 纯化仪)进一步分离纯化;e) Ni column purification; f) Molecular sieve (AKTA purifier) for further separation and purification;
g)SDS-PAGE 电泳鉴定蛋白纯度。g) Identification of protein purity by SDS-PAGE electrophoresis.
GRP78包含两个结构域,NBD和SBD,如图2所示,本实施例表达和纯化了全长(如图2(a)、图2(b))、NBD结构域(图2(c))、SBD结构域(图2(d))三种蛋白,蛋白分子量分别约为80KD、45KD和35KD。GRP78 contains two domains, NBD and SBD, as shown in Figure 2. In this example, the full-length (Figure 2(a), Figure 2(b)) and NBD domains (Figure 2(c) were expressed and purified ), SBD domain (Fig. 2(d)) three proteins with molecular weights of about 80KD, 45KD and 35KD, respectively.
4. 纳米抗体文库筛选4. Nanobody library screening
使用由103 只羊驼外周血构建的天然噬菌体纳米抗体文库,噬菌体展示库容量为2×109。使用免疫管法进行筛选。筛选步骤如下:A natural phage nanobody library constructed from the peripheral blood of 103 alpaca was used, and the capacity of the phage display library was 2×10 9 . Screening using immunotube method. The filtering steps are as follows:
a)将目的蛋白按50 μg/mL 浓度包被在免疫管上,进行3 轮淘洗富集;a) Coat the target protein on the immunotube at a concentration of 50 μg/mL, and perform 3 rounds of panning enrichment;
b)使用第三轮噬菌体洗脱液铺板,随机挑取96 个单克隆进行ELISA 验证,以ELISA 读数大于BSA 读数3 倍且读数大于0.5 为阳性标准;b) The third round of phage eluate was used to plate, and 96 single clones were randomly selected for ELISA verification. The positive standard was ELISA readings greater than 3 times that of BSA and readings greater than 0.5;
c)经过2 次Phase-ELISA 鉴定的阳性单克隆送公司测序。c) The positive monoclonal identified by Phase-ELISA will be sent to the company for sequencing.
使用上述三个蛋白,采用免疫管法筛选由103个羊驼外周血构建的纳米抗体噬菌体文库,三轮筛选之后,从全长蛋白文库、NBD蛋白文库、SBD蛋白文库中分别挑取共96个克隆,进行噬菌体ELISA初步验证,结果如图3所示。如图3(a)可见全长蛋白噬菌体ELISA验证发现7条潜在阳性克隆但亲和力较低,如图3(b)和图3(c)可见,NBD和SBD的噬菌体ELISA分别获得一条潜在亲和力较好的克隆。Using the above three proteins, the nanobody phage library constructed from 103 alpaca peripheral blood was screened by immune tube method. After three rounds of screening, a total of 96 proteins were picked from the full-length protein library, the NBD protein library, and the SBD protein library. Cloning and preliminary verification by phage ELISA, the results are shown in Figure 3. As shown in Figure 3(a), the full-length protein phage ELISA verification found 7 potential positive clones with low affinity. As shown in Figure 3(b) and Figure 3(c), the phage ELISA of NBD and SBD respectively obtained one potential affinities. Good clone.
基于噬菌体ELISA的验证实验仅能对有限数量的克隆进行检测,无法反映整体筛选后文库中克隆序列的频率分布,故而本实施例对GRP78三个蛋白筛选所得的纳米文库进行了深度测序,对测序结果进行分析,总共获得超过两千万条独立的纳米抗体序列,对所得纳米抗体序列按照出现频率进行排序,如图4所示。选择频率较高的序列进行下一步的蛋白表达和纯化对比实验,其中,GRP78全长超过1% 频率的序列为五条,NBD结构域接近1%频率的序列为1条,SBD超出1%频率的序列为四条。The verification experiment based on phage ELISA can only detect a limited number of clones, and cannot reflect the frequency distribution of clone sequences in the library after the overall screening. The results were analyzed, and a total of more than 20 million independent Nanobody sequences were obtained, and the obtained Nanobody sequences were sorted according to the frequency of occurrence, as shown in FIG. 4 . Sequences with higher frequencies were selected for the next protein expression and purification comparison experiments. Among them, there were five sequences with a frequency of more than 1% of the full length of GRP78, one sequence with a frequency of nearly 1% of the NBD domain, and one with a frequency of SBD exceeding 1%. The sequence is four.
通过大量的实验,最后选择得到NBD1纳米抗体和SBD C5纳米抗体。Through a lot of experiments, NBD1 nanobody and SBD C5 nanobody were finally selected.
其中NBD1纳米抗体的氨基酸序列的框架区为SEQ ID NO:1所示的FR1、如SEQ IDNO:3所示的FR2、如SEQ ID NO:5所示的FR3、如SEQ ID NO:7所示的FR4;互补决定区为如SEQID NO:2所示的CDR1、如SEQ ID NO:4所示的CDR2、如SEQ ID NO:6所示的CDR3;该抗体的氨基酸序列如SEQ ID NO:15所示。也就是NBD1纳米抗体的序列为:MAVQLVESGGGSVQAGGSLTLSCAASINTGNPALVGWYRQAPGKQREMVAMISISGNTNYAPSVKGRFTISRDNANKTIFLQMNSLTPEDTAVYYCKKLPFGSWGQGTQVTVSS。The framework region of the amino acid sequence of the NBD1 Nanobody is FR1 shown in SEQ ID NO:1, FR2 shown in SEQ ID NO:3, FR3 shown in SEQ ID NO:5, shown in SEQ ID NO:7 FR4; the complementarity determining region is CDR1 as shown in SEQ ID NO:2, CDR2 as shown in SEQ ID NO:4, CDR3 as shown in SEQ ID NO:6; the amino acid sequence of the antibody is as shown in SEQ ID NO:15 shown. That is, the sequence of the NBD1 Nanobody is: MAVQLVESGGGSVQAGGSLTLSCAASINTGNPALVGWYRQAPGKQREMVAMISISGNTNYAPSVKGRFTISRDNANKTIFLQMNSLTPEDTAVYYCKKLPFGSWGQGTQVTVSS.
SBD C5纳米抗体的氨基酸序列的框架区为SEQ ID NO:8所示的FR1、如SEQ ID NO:10所示的FR2、如SEQ ID NO:12所示的FR3、如SEQ ID NO:14所示的FR4;互补决定区为如SEQID NO:9所示的CDR1、如SEQ ID NO:11所示的CDR2、如SEQ ID NO:13所示的CDR3;该抗体的氨基酸序列如SEQ ID NO:16所示。也就是SBD C5纳米抗体的序列为:MAVQLVESGGGLVQAGGSLRLSCAASGFTLDYYAIGWFRQAPGKEREGVSCISSAGVLTNYVDSVKGRFTISRDNAKGAVYLQMNDLKPEDAALYFCAAADARQLKVRQCLSSNAYTYWGQGTQVTVSS。The framework regions of the amino acid sequence of the SBD C5 Nanobody are FR1 shown in SEQ ID NO:8, FR2 shown in SEQ ID NO:10, FR3 shown in SEQ ID NO:12, and FR3 shown in SEQ ID NO:14 The FR4 shown; the complementarity determining region is the CDR1 shown in SEQ ID NO: 9, the CDR2 shown in SEQ ID NO: 11, the CDR3 shown in SEQ ID NO: 13; the amino acid sequence of the antibody is shown in SEQ ID NO: 16 shown. That is, the sequence of the SBD C5 Nanobody is: MAVQLVESGGGLVQAGGSLRLSCAASGFTLDYYAIGWFRQAPGKEREGVSCISSAGVLTNYVDSVKGRFTISRDNAKGAVYLQMNDLKPEDAALYFCAAADARQLKVRQCLSSNAYTYWGQGTQVTVSS.
5. 纳米抗体的表达与纯化:5. Nanobody expression and purification:
将测序得到的纳米抗体编码区序列构建到质粒(添加HA 标签和His标签)上,在大肠杆菌上进行表达和纯化。表达纯化步骤与抗原蛋白纯化步骤类似。并在纳米抗体序列中加入HA标签,以便后续实验的检测,所得纳米抗体大小约15KD到18KD左右,纯度超过90%。The sequence of the nanobody coding region obtained by sequencing was constructed into a plasmid (with HA tag and His tag added), and expressed and purified in E. coli. The expression purification steps are similar to the antigen protein purification steps. An HA tag was added to the nanobody sequence for the detection of subsequent experiments. The obtained nanobody was about 15KD to 18KD in size, and the purity was over 90%.
6. ELISA 亲和力检测6. ELISA Affinity Assay
使用人全长GRP78包被ELISA板同时将BSA蛋白作为对照抗原,不同浓度的纳米抗体与抗原进行孵育,之后使用HRP标记的HA二抗进行信号放大,观察显色,所述的纳米抗体包括NBD1纳米抗体和SBD C5纳米抗体,并还以NBD C1纳米抗体、SBD2纳米抗体、NGS3纳米抗体作为对比。具体步骤包括:The ELISA plate was coated with human full-length GRP78 and BSA protein was used as the control antigen. Nanobodies of different concentrations were incubated with the antigen, and then the HRP-labeled HA secondary antibody was used to amplify the signal and observe the color development. The nanobodies include NBD1 Nanobodies and SBD C5 Nanobodies, and also NBD C1 Nanobodies, SBD2 Nanobodies, NGS3 Nanobodies as comparisons. Specific steps include:
a)将GRP78 蛋白按10 μg/mL 浓度包被在Elisa 板上,4 ℃过夜;a) GRP78 protein was coated on Elisa plate at a concentration of 10 μg/mL, overnight at 4 °C;
b)5%BSA 室温封闭2 h;b) Block with 5% BSA at room temperature for 2 h;
c)PBST 洗涤两次,加入倍比稀释的纳米抗体溶液,室温孵育1 h;c) Wash twice with PBST, add doubling-diluted nanobody solution, and incubate at room temperature for 1 h;
d)PBST 洗涤三次,每孔加入anti-HA HRP(1:3000),室温孵育1 h;d) Wash three times with PBST, add anti-HA HRP (1:3000) to each well, and incubate at room temperature for 1 h;
e)PBST 洗涤三次,加入TMB 读物,观察颜色变化;e) Wash three times with PBST, add TMB reader, observe the color change;
f)及时加入1 M HCl 终止反应,用酶标仪在450 nm 处读取光吸收值。f) The reaction was terminated by adding 1 M HCl in time, and the light absorption value was read at 450 nm with a microplate reader.
使用人GRP78全长蛋白和牛血清白蛋白作为对照,对上述纳米抗体进行ELISA验证,结果如图3所示,可见SBD C5、NBD1、NBD C1 、SBD2、 NGS3纳米抗体均不同程度与GRP78结合,其中SBD C5和NBD1两条抗体蛋白结合活力最佳。Using human GRP78 full-length protein and bovine serum albumin as controls, the above nanobodies were verified by ELISA. The results are shown in Figure 3. It can be seen that SBD C5, NBD1, NBD C1, SBD2, and NGS3 nanobodies all bind to GRP78 to varying degrees, among which The two antibodies, SBD C5 and NBD1, had the best binding activity.
下面的实验将进一步使用表面等离子共振技术(SPR)检测NBD1纳米抗体、SBD C5纳米抗体与GRP78的蛋白亲和力。The following experiments will further use surface plasmon resonance (SPR) to detect the protein affinity of NBD1 Nanobody, SBD C5 Nanobody and GRP78.
7. 表面等离子共振(SPR) 鉴定纳米抗体与GRP78 的亲和常数7. Surface Plasmon Resonance (SPR) Identification of Affinity Constants of Nanobodies with GRP78
利用Biacore T200 系统,将GRP78 蛋白调节至1 mg/mL,将其溶于pH 为5.5 的醋酸钠缓冲液中,设置程序使蛋白溶液流经芯片,从而通过氨基羧基偶联的方法将其固定于带负电的芯片上。再将经过倍比稀释的纳米抗体溶液流经芯片,通过其响应值计算相互结合的亲和力,亲和力KD 由动力学常数ka 和kd 相除获得。Using a Biacore T200 system, the GRP78 protein was adjusted to 1 mg/mL, dissolved in sodium acetate buffer at pH 5.5, and programmed to flow the protein solution through the chip, thereby immobilizing it by aminocarboxy coupling. on a negatively charged chip. Then the doubling-diluted nanobody solution flows through the chip, and the mutual binding affinity is calculated from its response value. The affinity KD is obtained by dividing the kinetic constants ka and kd.
采用上述步骤,将NBD1纳米抗体和SBD C5纳米抗体通过表面等离子共振技术测定了其与GRP78全长蛋白的亲和力,结果如图4所示,NBD1纳米抗体与GRP78的亲和力为3.455nM,SBD C5纳米抗体与GRP78的亲和力为92.45 nM,均达到纳摩尔级别。Using the above steps, the affinity of NBD1 nanobody and SBD C5 nanobody to GRP78 full-length protein was determined by surface plasmon resonance technology. The affinity of the antibody to GRP78 was 92.45 nM, both reaching the nanomolar level.
本发明实施例还公开了一种核酸,所述核酸为:编码NBD1纳米抗体、SBD C5纳米抗体的核酸或其互补序列。The embodiment of the present invention also discloses a nucleic acid, which is: a nucleic acid encoding an NBD1 nanobody, an SBD C5 nanobody, or a complementary sequence thereof.
本发明实施例还公开了一种表达载体,其包含如上所述的核酸。The embodiment of the present invention also discloses an expression vector, which comprises the nucleic acid as described above.
本发明实施例还公开了一种宿主细胞,其包含如上所述的表达载体。The embodiment of the present invention also discloses a host cell comprising the above-mentioned expression vector.
本发明实施例还公开了如上所述的靶向葡萄糖调节蛋白78的纳米抗体的应用,其用作靶向葡萄糖调节蛋白78的检测试剂、活体成像探针、嵌合型免疫细胞或治疗性抗体。The embodiment of the present invention also discloses the application of the above-mentioned nanobody targeting glucose regulatory protein 78, which is used as a detection reagent, in vivo imaging probe, chimeric immune cell or therapeutic antibody targeting glucose regulatory protein 78 .
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,比如在NBD1纳米抗体和SBDC5纳米抗体原始序列上添加、减少或替换等改造的衍生抗体都应当视为属于本发明的保护范围。The above content is a further detailed description of the present invention in combination with specific preferred embodiments, and it cannot be considered that the specific implementation of the present invention is limited to these descriptions. For those of ordinary skill in the technical field of the present invention, without departing from the concept of the present invention, several simple deductions or substitutions can be made, such as adding, reducing or replacing the original sequences of NBD1 Nanobody and SBDC5 Nanobody Such modified derivative antibodies should be regarded as belonging to the protection scope of the present invention.
序列表sequence listing
<110> 深圳市人民医院<110> Shenzhen People's Hospital
<120> 靶向葡萄糖调节蛋白78的纳米抗体及其应用<120> Nanobody targeting glucose-regulated protein 78 and its application
<160> 16<160> 16
<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0
<210> 1<210> 1
<211> 26<211> 26
<212> PRT<212> PRT
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 1<400> 1
Met Ala Val Gln Leu Val Glu Ser Gly Gly Gly Ser Val Gln Ala GlyMet Ala Val Gln Leu Val Glu Ser Gly Gly Gly Ser Val Gln Ala Gly
1 5 10 151 5 10 15
Gly Ser Leu Thr Leu Ser Cys Ala Ala SerGly Ser Leu Thr Leu Ser Cys Ala Ala Ser
20 25 20 25
<210> 2<210> 2
<211> 9<211> 9
<212> PRT<212> PRT
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 2<400> 2
Ile Asn Thr Gly Asn Pro Ala Leu ValIle Asn Thr Gly Asn Pro Ala Leu Val
1 51 5
<210> 3<210> 3
<211> 17<211> 17
<212> PRT<212> PRT
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 3<400> 3
Gly Trp Tyr Arg Gln Ala Pro Gly Lys Gln Arg Glu Met Val Ala MetGly Trp Tyr Arg Gln Ala Pro Gly Lys Gln Arg Glu Met Val Ala Met
1 5 10 151 5 10 15
IleIle
<210> 4<210> 4
<211> 7<211> 7
<212> PRT<212> PRT
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 4<400> 4
Ser Ile Ser Gly Asn Thr AsnSer Ile Ser Gly Asn Thr Asn
1 51 5
<210> 5<210> 5
<211> 37<211> 37
<212> PRT<212> PRT
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 5<400> 5
Tyr Ala Pro Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn AlaTyr Ala Pro Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala
1 5 10 151 5 10 15
Asn Lys Thr Ile Phe Leu Gln Met Asn Ser Leu Thr Pro Glu Asp ThrAsn Lys Thr Ile Phe Leu Gln Met Asn Ser Leu Thr Pro Glu Asp Thr
20 25 30 20 25 30
Ala Val Tyr Tyr CysAla Val Tyr Tyr Cys
35 35
<210> 6<210> 6
<211> 7<211> 7
<212> PRT<212> PRT
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 6<400> 6
Lys Lys Leu Pro Phe Gly SerLys Lys Leu Pro Phe Gly Ser
1 51 5
<210> 7<210> 7
<211> 11<211> 11
<212> PRT<212> PRT
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 7<400> 7
Trp Gly Gln Gly Thr Gln Val Thr Val Ser SerTrp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
1 5 101 5 10
<210> 8<210> 8
<211> 26<211> 26
<212> PRT<212> PRT
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 8<400> 8
Met Ala Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala GlyMet Ala Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala Gly
1 5 10 151 5 10 15
Gly Ser Leu Arg Leu Ser Cys Ala Ala SerGly Ser Leu Arg Leu Ser Cys Ala Ala Ser
20 25 20 25
<210> 9<210> 9
<211> 9<211> 9
<212> PRT<212> PRT
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 9<400> 9
Gly Phe Thr Leu Asp Tyr Tyr Ala IleGly Phe Thr Leu Asp Tyr Tyr Ala Ile
1 51 5
<210> 10<210> 10
<211> 17<211> 17
<212> PRT<212> PRT
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 10<400> 10
Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Gly Val Ser CysGly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Gly Val Ser Cys
1 5 10 151 5 10 15
IleIle
<210> 11<210> 11
<211> 8<211> 8
<212> PRT<212> PRT
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 11<400> 11
Ser Ser Ala Gly Val Leu Thr AsnSer Ser Ala Gly Val Leu Thr Asn
1 51 5
<210> 12<210> 12
<211> 37<211> 37
<212> PRT<212> PRT
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 12<400> 12
Tyr Val Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn AlaTyr Val Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala
1 5 10 151 5 10 15
Lys Gly Ala Val Tyr Leu Gln Met Asn Asp Leu Lys Pro Glu Asp AlaLys Gly Ala Val Tyr Leu Gln Met Asn Asp Leu Lys Pro Glu Asp Ala
20 25 30 20 25 30
Ala Leu Tyr Phe CysAla Leu Tyr Phe Cys
35 35
<210> 13<210> 13
<211> 21<211> 21
<212> PRT<212> PRT
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 13<400> 13
Ala Ala Ala Asp Ala Arg Gln Leu Lys Val Arg Gln Cys Leu Ser SerAla Ala Ala Asp Ala Arg Gln Leu Lys Val Arg Gln Cys Leu Ser Ser
1 5 10 151 5 10 15
Asn Ala Tyr Thr TyrAsn Ala Tyr Thr Tyr
20 20
<210> 14<210> 14
<211> 11<211> 11
<212> PRT<212> PRT
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 14<400> 14
Trp Gly Gln Gly Thr Gln Val Thr Val Ser SerTrp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
1 5 101 5 10
<210> 15<210> 15
<211> 114<211> 114
<212> PRT<212> PRT
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 15<400> 15
Met Ala Val Gln Leu Val Glu Ser Gly Gly Gly Ser Val Gln Ala GlyMet Ala Val Gln Leu Val Glu Ser Gly Gly Gly Ser Val Gln Ala Gly
1 5 10 151 5 10 15
Gly Ser Leu Thr Leu Ser Cys Ala Ala Ser Ile Asn Thr Gly Asn ProGly Ser Leu Thr Leu Ser Cys Ala Ala Ser Ile Asn Thr Gly Asn Pro
20 25 30 20 25 30
Ala Leu Val Gly Trp Tyr Arg Gln Ala Pro Gly Lys Gln Arg Glu MetAla Leu Val Gly Trp Tyr Arg Gln Ala Pro Gly Lys Gln Arg Glu Met
35 40 45 35 40 45
Val Ala Met Ile Ser Ile Ser Gly Asn Thr Asn Tyr Ala Pro Ser ValVal Ala Met Ile Ser Ile Ser Gly Asn Thr Asn Tyr Ala Pro Ser Val
50 55 60 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Asn Lys Thr Ile PheLys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Asn Lys Thr Ile Phe
65 70 75 8065 70 75 80
Leu Gln Met Asn Ser Leu Thr Pro Glu Asp Thr Ala Val Tyr Tyr CysLeu Gln Met Asn Ser Leu Thr Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95 85 90 95
Lys Lys Leu Pro Phe Gly Ser Trp Gly Gln Gly Thr Gln Val Thr ValLys Lys Leu Pro Phe Gly Ser Trp Gly Gln Gly Thr Gln Val Thr Val
100 105 110 100 105 110
Ser SerSer Ser
<210> 16<210> 16
<211> 129<211> 129
<212> PRT<212> PRT
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 16<400> 16
Met Ala Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala GlyMet Ala Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala Gly
1 5 10 151 5 10 15
Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Leu Asp TyrGly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Leu Asp Tyr
20 25 30 20 25 30
Tyr Ala Ile Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu GlyTyr Ala Ile Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Gly
35 40 45 35 40 45
Val Ser Cys Ile Ser Ser Ala Gly Val Leu Thr Asn Tyr Val Asp SerVal Ser Cys Ile Ser Ser Ala Gly Val Leu Thr Asn Tyr Val Asp Ser
50 55 60 50 55 60
Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Gly Ala ValVal Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Gly Ala Val
65 70 75 8065 70 75 80
Tyr Leu Gln Met Asn Asp Leu Lys Pro Glu Asp Ala Ala Leu Tyr PheTyr Leu Gln Met Asn Asp Leu Lys Pro Glu Asp Ala Ala Leu Tyr Phe
85 90 95 85 90 95
Cys Ala Ala Ala Asp Ala Arg Gln Leu Lys Val Arg Gln Cys Leu SerCys Ala Ala Ala Asp Ala Arg Gln Leu Lys Val Arg Gln Cys Leu Ser
100 105 110 100 105 110
Ser Asn Ala Tyr Thr Tyr Trp Gly Gln Gly Thr Gln Val Thr Val SerSer Asn Ala Tyr Thr Tyr Trp Gly Gln Gly Thr Gln Val Thr Val Ser
115 120 125 115 120 125
SerSer
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111338662.6A CN114163526B (en) | 2021-11-12 | 2021-11-12 | A nanobody targeting glucose regulatory protein 78 and its application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111338662.6A CN114163526B (en) | 2021-11-12 | 2021-11-12 | A nanobody targeting glucose regulatory protein 78 and its application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114163526A CN114163526A (en) | 2022-03-11 |
CN114163526B true CN114163526B (en) | 2022-06-21 |
Family
ID=80479173
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111338662.6A Active CN114163526B (en) | 2021-11-12 | 2021-11-12 | A nanobody targeting glucose regulatory protein 78 and its application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114163526B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116178538B (en) * | 2023-01-05 | 2024-08-02 | 暨南大学 | Nanoantibodies targeting heat shock protein 70 and preparation methods and applications thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101951953A (en) * | 2007-02-27 | 2011-01-19 | 株式会社未来创药研究所 | Contain the pharmaceutical composition of anti-GRP78 antibody as effective ingredient |
GB2475466A (en) * | 2009-05-29 | 2011-05-25 | Weiming Xu | scFv antibody fragments against GRP78 used for cancer treatment |
CN105452292A (en) * | 2013-03-14 | 2016-03-30 | 帕卡什·吉尔 | Cancer therapy using antibodies that bind cell surface GRP78 |
-
2021
- 2021-11-12 CN CN202111338662.6A patent/CN114163526B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101951953A (en) * | 2007-02-27 | 2011-01-19 | 株式会社未来创药研究所 | Contain the pharmaceutical composition of anti-GRP78 antibody as effective ingredient |
GB2475466A (en) * | 2009-05-29 | 2011-05-25 | Weiming Xu | scFv antibody fragments against GRP78 used for cancer treatment |
CN105452292A (en) * | 2013-03-14 | 2016-03-30 | 帕卡什·吉尔 | Cancer therapy using antibodies that bind cell surface GRP78 |
Non-Patent Citations (2)
Title |
---|
Novel immunohistochemical monoclonal antibody against human glucose-regulated protein 78;Liu Yang等;《Hybridoma (Larchmt)》;20111231;第30卷(第6期);第559-562页 * |
葡萄糖调节蛋白78在肿瘤中作用的研究进展;王明珠等;《科技展望》;20161220(第35期);第220-222页 * |
Also Published As
Publication number | Publication date |
---|---|
CN114163526A (en) | 2022-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111303279A (en) | Single-domain antibody for novel coronavirus and application thereof | |
CN112457404B (en) | An anti-human EGFR nanobody and its application | |
CN105968204A (en) | Single-domain heavy chain antibody for anti-prostate specific membrane antigen | |
CN111825767B (en) | Single-domain antibody of human epidermal growth factor receptor 2, detection kit and application thereof | |
CN105968201A (en) | Single-domain heavy-chain antibody aiming at prostate specific membrane antigen | |
CN115772222A (en) | anti-CLL 1 single domain antibody and application thereof | |
Vostakolaei et al. | Isolation and characterization of a novel scFv antibody fragments specific for Hsp70 as a tumor biomarker | |
CN113444178B (en) | Anti-CD70 internalization antibody, antibody conjugate and application thereof | |
CN114163526B (en) | A nanobody targeting glucose regulatory protein 78 and its application | |
CN105968203A (en) | Single-domain heavy chain antibody for anti-prostate specific membrane antigen extracellular region | |
KR101473328B1 (en) | Cytokaratin 17-specific human antibody | |
CN114805559B (en) | Fully human anti-new coronavirus receptor binding domain single-chain antibody No4 and its application | |
CN105524170A (en) | Nanobodies capable of specifically binding to prostate-specific membrane antigen | |
CN110804096B (en) | CD123 single domain antibody, nucleotide sequence, expression vector and kit | |
CN103408667B (en) | Cystatin C nanobody and its coding sequence | |
CN106928360A (en) | A kind of CD105 nano antibodies Nb68 | |
CN106928355A (en) | A kind of CD105 nano antibodies Nb184 | |
CN114044823B (en) | Nano antibody targeting cadherin 17 and application thereof | |
CN114106188B (en) | Nanobodies targeting disulfide isomerase A3 and their applications | |
CN114316057B (en) | A nanobody targeting mitochondrial outer membrane translocation factor complex TOM20 subunit and its application | |
WO2021221136A1 (en) | Anti-sars-cov-2 antibody | |
WO2021221137A1 (en) | Medicine and test kit each using anti-sars-cov-2 antibody | |
CN105542009A (en) | Single domain heavy-chain antibody aiming at prostate specific membrane antigen | |
CN105622755B (en) | A nanobody against the extracellular domain of prostate-specific membrane antigen | |
CN104650224B (en) | It is a kind of for SEA nano antibody and its coded sequence and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |