CN114157135B - PWM-PFM seamless switching controller with hysteresis function and control method thereof - Google Patents
PWM-PFM seamless switching controller with hysteresis function and control method thereof Download PDFInfo
- Publication number
- CN114157135B CN114157135B CN202111476298.XA CN202111476298A CN114157135B CN 114157135 B CN114157135 B CN 114157135B CN 202111476298 A CN202111476298 A CN 202111476298A CN 114157135 B CN114157135 B CN 114157135B
- Authority
- CN
- China
- Prior art keywords
- controller
- pfm
- pwm
- switching
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
本发明提供一种具备迟滞功能的PWM‑PFM无缝切换控制器及其控制方法,涉及集成电路技术领域。系统中切换控制器包括电流检测装置,用于检测负载电流,产生启动请求和左右切换请求;左阈值切换控制器与右阈值切换控制器,用于检测切换请求和电路启动应答,产生实际切换信号;切换控制器,用于实现PWM/PFM的切换,获得控制信号,并产生PWM与PFM关闭请求;PWM与PFM控制器,用于产生PWM与PFM控制信号,并及时产生启动应答信号。本发明提出了利用切换点、左阈值和右阈值三个负载特征值来产生实际切换信号的方法,实现PWM与PFM的迟滞切换,避免PWM与PFM的反复切换,同时在切换前提取开启目标控制模式,避免因电路启动缓慢而产生较大的电压跌落,实现PWM/PFM的无缝切换。
The invention provides a PWM-PFM seamless switching controller with hysteresis function and a control method thereof, and relates to the technical field of integrated circuits. The switching controller in the system includes a current detection device, which is used to detect load current and generate start requests and left and right switching requests; the left threshold switching controller and the right threshold switching controller are used to detect switching requests and circuit start responses, and generate actual switching signals. ; Switching controller, used to implement PWM/PFM switching, obtain control signals, and generate PWM and PFM shutdown requests; PWM and PFM controller, used to generate PWM and PFM control signals, and generate start-up response signals in time. The present invention proposes a method of using three load characteristic values of switching point, left threshold and right threshold to generate actual switching signals, realizing hysteretic switching of PWM and PFM, avoiding repeated switching of PWM and PFM, and at the same time extracting the target control before switching. mode to avoid large voltage drops due to slow start-up of the circuit and achieve seamless switching of PWM/PFM.
Description
技术领域Technical field
本发明涉及集成电路技术领域,尤其涉及一种具备迟滞功能的PWM-PFM无缝切换控制器及其控制方法。The present invention relates to the field of integrated circuit technology, and in particular to a PWM-PFM seamless switching controller with hysteresis function and a control method thereof.
背景技术Background technique
在DC-DC开关电源中,脉冲宽度调制(PWM)与脉冲频率调制(PFM)是两种常用的调制模式,PWM固定开关频率,通过调整占空比来控制DC-DC系统中功率管的开启时间,进而调整输出电压,PFM固定开关时间,通过调整关断时间来控制功率管的开关频率,实现对输出电压的调整。In DC-DC switching power supplies, pulse width modulation (PWM) and pulse frequency modulation (PFM) are two commonly used modulation modes. PWM fixes the switching frequency and controls the opening of the power tube in the DC-DC system by adjusting the duty cycle. time, and then adjust the output voltage. PFM fixes the switching time, and controls the switching frequency of the power tube by adjusting the off time to adjust the output voltage.
PWM与PFM调制模式具有各自的优缺点,在轻载时,PFM由于开关频率可变,其转换效率更高,但其输出纹波与响应速度等其他系统性能在全负载范围内皆弱于PWM,PWM在重载时表现优良,但在轻载时,由于其较高的开关频率,导致开关损耗和导通损耗占据了较大的比重,其在轻载时的转换效率极低,限制了PWM控制的DC-DC开关电源在轻负载范围内的应用。PWM and PFM modulation modes have their own advantages and disadvantages. At light load, PFM has higher conversion efficiency due to variable switching frequency, but its output ripple and response speed and other system performance are weaker than PWM within the full load range. , PWM performs well at heavy load, but at light load, due to its higher switching frequency, switching loss and conduction loss account for a larger proportion, and its conversion efficiency at light load is extremely low, limiting Application of PWM controlled DC-DC switching power supply in light load range.
为解决PWM控制模式在轻载时转换效率极低的问题,采用PWM与PFM结合的双模控制DC-DC系统应运而生,在该模式下,轻载时系统由PFM控制,重载时系统由PWM控制,充分发挥了两种控制模式的优势,实现了系统在全负载范围内的高转换效率。为实现PWM与PFM的结合,PWM/PFM切换控制器必不可少,但现有的PWM/PFM切换控制器结构简单,且采用单一切换点实现PWM与PFM的切换,在切换时输出电压存在较大的波动,且系统工作在切换点附近时,PWM与PFM存在反复切换的可能,这给系统的稳定性带来了比较大的考验。In order to solve the problem of extremely low conversion efficiency of PWM control mode at light load, a dual-mode control DC-DC system using PWM and PFM came into being. In this mode, the system is controlled by PFM at light load and the system is controlled by PFM at heavy load. Controlled by PWM, the advantages of the two control modes are fully utilized to achieve high conversion efficiency of the system within the full load range. In order to realize the combination of PWM and PFM, a PWM/PFM switching controller is indispensable. However, the existing PWM/PFM switching controller has a simple structure and uses a single switching point to realize switching between PWM and PFM. The output voltage is relatively small during switching. There is a possibility of repeated switching between PWM and PFM due to large fluctuations and the system is working near the switching point, which brings a relatively large test to the stability of the system.
发明内容Contents of the invention
针对现有技术的不足,本发明提供一种具备迟滞功能的PWM-PFM无缝切换控制器及其控制方法。能够根据左阈值、切换中值和右阈值三个负载特征值输出对应的启动信号和左、右切换信号,实现PWM与PFM的迟滞切换,并保证切换过程中,输出电压不会产生大的电压波动。In view of the shortcomings of the existing technology, the present invention provides a PWM-PFM seamless switching controller with hysteresis function and a control method thereof. It can output the corresponding start signal and left and right switching signals according to the three load characteristic values of left threshold, switching middle value and right threshold, realize hysteretic switching of PWM and PFM, and ensure that the output voltage will not generate a large voltage during the switching process fluctuation.
一方面,一种具备迟滞功能的PWM-PFM无缝切换控制器,包括:电流检测装置,启动电路,左切换控制器,右切换控制器,PWM控制器,PFM控制器,以及切换控制器。On the one hand, a PWM-PFM seamless switching controller with hysteresis function includes: a current detection device, a starting circuit, a left switching controller, a right switching controller, a PWM controller, a PFM controller, and a switching controller.
所述电流检测装置的输出端口包括第一输出端口至第三输出端口,所述切换控制器的输入端口包括第一输入端口至第四输入端口,所述左切换控制器以及右切换控制器的输入端口包括第一输入端口以及第二输入端口;其中电流检测装置的第一输出端口与所述左切换控制器的第一输入端口相接,电流检测装置的第二输出端口与所述启动电路的输入端口相接,电流检测装置的第三输出端口与所述右切换控制器的第一输入端口相接;The output port of the current detection device includes a first output port to a third output port, the input port of the switching controller includes a first input port to a fourth input port, and the left switching controller and the right switching controller have The input port includes a first input port and a second input port; the first output port of the current detection device is connected to the first input port of the left switching controller, and the second output port of the current detection device is connected to the startup circuit. The input port is connected, and the third output port of the current detection device is connected with the first input port of the right switching controller;
所述启动电路的输出端口包括第一输出端口以及第二输出端口;其中启动电路的第一输出端口与所述PWM控制器的第一输入端口相接,启动电路的第二输出端口与所述PFM控制器的第一输入端口相接;The output port of the startup circuit includes a first output port and a second output port; wherein the first output port of the startup circuit is connected to the first input port of the PWM controller, and the second output port of the startup circuit is connected to the The first input port of the PFM controller is connected;
所述PWM控制器以及PFM控制器的输入端口包括第一输入端口以及第二输入端口,其输出端口包括第一输出端口以及第二输出端口;其中PWM控制器的第一输出端口与所述右切换控制器的第二输入端口相接,PWM控制器的第二输出端口与所述切换控制器的第一输入端口相接,PFM控制器的第一输出端口与所述左切换控制器的第二输入端口相接,所述PFM控制器的第二输出端口与切换控制器的第二输入端口相接;The input ports of the PWM controller and the PFM controller include a first input port and a second input port, and the output ports include a first output port and a second output port; wherein the first output port of the PWM controller and the right The second input port of the switching controller is connected, the second output port of the PWM controller is connected with the first input port of the switching controller, and the first output port of the PFM controller is connected with the third input port of the left switching controller. The two input ports are connected, and the second output port of the PFM controller is connected to the second input port of the switching controller;
所述右切换控制器的输出端口与切换控制器的第三输入端口相接,同时右切换控制器的输出端口与PFM控制器的第二输入端口相接,左切换控制器的输出端口与切换控制器的第四输入端口相接,同时左切换控制器的输出端口与PWM控制器的第二输入端口相接,切换控制器的输出端口即为控制信号;The output port of the right switching controller is connected to the third input port of the switching controller, while the output port of the right switching controller is connected to the second input port of the PFM controller, and the output port of the left switching controller is connected to the switching controller. The fourth input port of the controller is connected, and the output port of the left switching controller is connected to the second input port of the PWM controller. The output port of the switching controller is the control signal;
所述电流检测装置由第一比较器,第二比较器,第三比较器构成,第一比较器的同相端与左阈值电压VREFL相接,第一比较器的反相端与表征电流大小的电压信号VH相接,第一比较器的输出端为电流检测装置的第一输出端口。第二比较器的同相端与VH相接,第二比较器的反相端与切换阈值电压VREFM相接,第二比较器的输出端为电流检测装置的第二输出端口,第三比较器的同相端与VH相接,第三比较器的反相端与右阈值电压VREFR相接,第三比较器的输出端口为电流检测装置的第三输出端口。The current detection device is composed of a first comparator, a second comparator, and a third comparator. The non-inverting terminal of the first comparator is connected to the left threshold voltage VREFL, and the inverting terminal of the first comparator is connected to the voltage representing the current magnitude. The voltage signal VH is connected, and the output terminal of the first comparator is the first output port of the current detection device. The non-inverting terminal of the second comparator is connected to VH, the inverting terminal of the second comparator is connected to the switching threshold voltage VREFM, the output terminal of the second comparator is the second output port of the current detection device, and the third comparator The non-inverting terminal is connected to VH, the inverting terminal of the third comparator is connected to the right threshold voltage VREFR, and the output port of the third comparator is the third output port of the current detection device.
所述启动电路包括第一反相器,第一D触发器,第二D触发器,所述第一反相器的输入端口为启动电路的第一输入,第一反相器的输出端口与第二D触发器的时钟端口Clk端相接,第二D触发器的复位端口R与左切换控制器的输出端口的PFM关断信号相接,第二D触发器的数据端D与电源VDD相接,第二D触发器的输出端Q为启动电路的第二输出端口,第一D触发器的时钟端口Clk与第一反相器的输入端口相连,即为启动电路的第一输入,第一D触发器的数据D端与电源VDD相接,第一D触发器的复位端口R与右切换控制器输出端口的PWM关断信号相接,第一D触发器的输出端Q为启动电路的第一输出端口。The startup circuit includes a first inverter, a first D flip-flop, and a second D flip-flop. The input port of the first inverter is the first input of the startup circuit, and the output port of the first inverter is the same as the first inverter. The clock port Clk terminal of the second D flip-flop is connected, the reset port R of the second D flip-flop is connected with the PFM shutdown signal of the output port of the left switching controller, and the data terminal D of the second D flip-flop is connected with the power supply VDD. Connected, the output terminal Q of the second D flip-flop is the second output port of the startup circuit, and the clock port Clk of the first D flip-flop is connected to the input port of the first inverter, which is the first input of the startup circuit. The data D terminal of the first D flip-flop is connected to the power supply VDD, the reset port R of the first D flip-flop is connected to the PWM shutdown signal of the output port of the right switching controller, and the output terminal Q of the first D flip-flop is start The first output port of the circuit.
所述左切换控制器由与门构成,与门的第一输入端口为左切换控制器的第一输入,与门的第二输入为左切换控制器的第二输入,与门的输出为左切换控制器的输出端口,产生PFM关断信号;The left switching controller is composed of an AND gate. The first input port of the AND gate is the first input of the left switching controller. The second input of the AND gate is the second input of the left switching controller. The output of the AND gate is the left switching controller. Switch the output port of the controller to generate a PFM shutdown signal;
所述右切换控制器由与门构成,与门的第一输入端口为右切换控制器的第一输入,与门的第二输入为右切换控制器的第二输入,与门的输出为右切换控制器的输出端口,产生PWM关断信号。The right switching controller is composed of an AND gate, the first input port of the AND gate is the first input of the right switching controller, the second input of the AND gate is the second input of the right switching controller, and the output of the AND gate is the right switching controller. Switch the output port of the controller to generate a PWM shutdown signal.
所述切换控制器包括二选一数据选择器和RS触发器,所述RS触发器的R端为切换控制器的第三输入端口,RS触发器的S端为切换控制器的第四输入端口,RS触发器的Q端与二选一数据选择器的控制端口相接,二选一数据选择器的0端为切换控制器的第一输入端口,二选一数据选择器的1端为切换控制器的第二输端口入,二选一数据选择器的输出即为切换控制器的输出。The switching controller includes a two-choice data selector and an RS flip-flop. The R terminal of the RS flip-flop is the third input port of the switching controller, and the S terminal of the RS flip-flop is the fourth input port of the switching controller. , the Q terminal of the RS flip-flop is connected to the control port of the two-choice data selector, the 0-terminal of the two-choice data selector is the first input port of the switching controller, and the 1-terminal of the two-choice data selector is the switching The second input port of the controller is input, and the output of the two-choice data selector is the output of the switching controller.
另一方面,一种具备迟滞功能的PWM-PFM无缝切换控制方法,基于前述具备迟滞功能的PWM-PFM无缝切换控制器实现,包括以下步骤:On the other hand, a PWM-PFM seamless switching control method with hysteresis function is implemented based on the aforementioned PWM-PFM seamless switching controller with hysteresis function, including the following steps:
步骤1、电流检测装置开始工作,检测左切换阈值VREFL,切换中值VREFM,右切换阈值VREFR与表征负载电流大小的电压信号VH的关系,Step 1. The current detection device starts working and detects the relationship between the left switching threshold VREFL, the switching median VREFM, the right switching threshold VREFR and the voltage signal VH that represents the load current.
当VREFR>VH>VREFM时,电流检测装置的第二输出为高,此时启动PWM控制器;When VREFR>VH>VREFM, the second output of the current detection device is high, and the PWM controller is started at this time;
当VH>VREFR时,电流检测装置的第三输出为高,此时从PFM模式切换至PWM模式,即切换控制器内部的RS触发器输出Q端由1跳变至0,二选一数据选择器选择输出0端,即切换控制器第一输入端口信号,即输出PWM控制信号;When VH>VREFR, the third output of the current detection device is high. At this time, it switches from PFM mode to PWM mode, that is, the RS flip-flop output Q terminal inside the switching controller jumps from 1 to 0, and one of the two data is selected. The controller selects the output 0 terminal, that is, switches the first input port signal of the controller, that is, outputs the PWM control signal;
当VREFL<VH<VREFM时,电流检测装置的第二输出为低,此时启动PFM控制器;When VREFL<VH<VREFM, the second output of the current detection device is low, and the PFM controller is started at this time;
当VH<VREFL时,电流检测装置的第一输出为高,此时从PWM模式切换至PFM模式,即切换控制器内部的RS触发器输出Q端由0跳变至1,二选一数据选择器选择输出1端,即切换控制器第二输入端口信号,即输出PFM控制信号;When VH<VREFL, the first output of the current detection device is high. At this time, it switches from PWM mode to PFM mode, that is, the RS flip-flop output Q terminal inside the switching controller jumps from 0 to 1, and one of the two data is selected. The controller selects output 1 terminal, that is, switches the second input port signal of the controller, that is, outputs the PFM control signal;
步骤2、依据负载电流的变化对系统工作状态进行调整,实现PWM-PFM无缝切换控制方法;Step 2. Adjust the system working status according to changes in load current to achieve PWM-PFM seamless switching control method;
所述调整具体为:The adjustments mentioned are specifically:
当负载为轻载即VH<VREFL时,PFM控制器工作,PWM控制器关闭,二选一数据选择器选择1输入通道;When the load is light load, that is, VH<VREFL, the PFM controller works, the PWM controller is turned off, and the two-to-one data selector selects 1 input channel;
当负载为重载即VH>VREFR时,PFM控制器关闭,PWM控制器工作,数据选择器选择0输入通道;When the load is heavy load, that is, VH>VREFR, the PFM controller is turned off, the PWM controller works, and the data selector selects the 0 input channel;
当负载处于左切换阈值VREFL与右切换阈值VREFR之间时系统保留初始工作状态;When the load is between the left switching threshold VREFL and the right switching threshold VREFR, the system retains the initial working state;
当负载由轻载变化至重载,包括以下步骤:When the load changes from light load to heavy load, the following steps are included:
步骤S1、当负载逐渐增加使得VH大于VREFM时,电流检测装置第二输出为逻辑1,则负载电流已经大于切换中值,PWM控制器启动;Step S1: When the load gradually increases and VH is greater than VREFM, the second output of the current detection device is logic 1, then the load current is greater than the switching median value, and the PWM controller starts;
步骤S2、PWM控制器开始启动,启动完成后产生启动应答信号传输给右切换控制器,并输出PWM控制信号至切换控制器的0输入通道;Step S2: The PWM controller starts to start. After the startup is completed, a start response signal is generated and transmitted to the right switching controller, and the PWM control signal is output to the 0 input channel of the switching controller;
步骤S3、当负载逐渐增加使得VH大于VREFR时,右切换控制器输出为逻辑1,该信号同时为PFM关断信号,传输至PFM控制器使得PFM控制器关断;Step S3: When the load gradually increases and VH is greater than VREFR, the output of the right switching controller is logic 1. This signal is also a PFM shutdown signal and is transmitted to the PFM controller to turn off the PFM controller;
步骤S4、切换控制器的RS触发器接收到复位信号,产生的输出信号为逻辑0,即切换控制器中二选一数据选择器接收到的模式选择信号为逻辑0,选择0输入通道,输出PWM控制信号,完成PFM模式至PWM模式的转换;Step S4. The RS flip-flop of the switching controller receives the reset signal, and the output signal generated is logic 0. That is, the mode selection signal received by the two-select-one data selector in the switching controller is logic 0, and the 0 input channel is selected and the output PWM control signal to complete the conversion from PFM mode to PWM mode;
当负载由重载变化至轻载,包括以下步骤:When the load changes from heavy load to light load, the following steps are included:
步骤D1、当负载逐渐减小使得VH小于VREFM时,电流检测装置第二输出为逻辑0,则负载电流已经小于切换中值,PFM控制器启动;Step D1. When the load gradually decreases so that VH is less than VREFM, the second output of the current detection device is logic 0, then the load current is less than the switching median value, and the PFM controller starts;
步骤D2、PFM控制器开始启动,启动完成后产生启动应答信号传输给左切换控制器,并输出PFM控制信号至切换控制器的1输入通道;Step D2: The PFM controller starts to start. After the startup is completed, a start response signal is generated and transmitted to the left switching controller, and the PFM control signal is output to the 1 input channel of the switching controller;
步骤D3、当负载逐渐减小使得VH小于VREFL时,左切换控制器输出为逻辑1,该信号同时为PWM关断信号,传输至PWM控制器使得PWM控制器关断;Step D3. When the load gradually decreases and VH is less than VREFL, the output of the left switching controller is logic 1. This signal is also a PWM shutdown signal and is transmitted to the PWM controller to turn off the PWM controller;
步骤D4、切换控制器的RS触发器接收到置位信号,产生的输出信号为逻辑1,即切换控制器中二选一数据选择器接收到的模式选择信号为逻辑1,选择1输入通道,输出PFM控制信号,完成PWM模式至PFM模式的转换。Step D4. The RS flip-flop of the switching controller receives the setting signal, and the generated output signal is logic 1. That is, the mode selection signal received by the two-select-one data selector in the switching controller is logic 1, and the 1 input channel is selected. Output the PFM control signal to complete the conversion from PWM mode to PFM mode.
采用上述技术方案所产生的有益效果在于:The beneficial effects produced by adopting the above technical solutions are:
本发明提出了一种具备迟滞功能的PWM-PFM无缝切换控制器及其控制方法,在现有的PWM/PFM切换控制器中增设了左阈值,切换中值,右阈值和左、右切换控制器,当负载电流大于切换中值后,PWM控制器开始启动,但并不完成切换,当负载电流大于右阈值且PWM控制器产生启动应答后,完成PFM至PWM的切换,当负载电流小于切换中值后,PFM控制器开始启动,但并不完成切换,当负载电流小于左阈值且PFM控制器产生启动应答后,完成PWM至PFM的切换。而现有技术在接受到切换信号后立即完成切换,此时PWM/PFM控制器启动尚未完成,PWM/PFM控制器输出的控制信号并非预期控制信号,导致系统输出电压波动较大。本发明通过设立左、右切换阈值和PWM/PFM启动应答信号,延缓了模式的切换,给PWM/PFM控制器的启动预留了足够的时间,从而保证了系统控制信号的准确性,实现了PWM与PFM两种模式的无缝与迟滞切换。The present invention proposes a PWM-PFM seamless switching controller with hysteresis function and a control method thereof. In the existing PWM/PFM switching controller, a left threshold, switching median, right threshold and left and right switching are added. controller, when the load current is greater than the switching median value, the PWM controller starts to start, but does not complete the switching. When the load current is greater than the right threshold and the PWM controller generates a start response, the PFM to PWM switching is completed. When the load current is less than After switching the median value, the PFM controller starts to start, but does not complete the switching. When the load current is less than the left threshold and the PFM controller generates a start response, the switching from PWM to PFM is completed. However, the existing technology completes the switching immediately after receiving the switching signal. At this time, the startup of the PWM/PFM controller has not yet been completed. The control signal output by the PWM/PFM controller is not the expected control signal, resulting in large fluctuations in the system output voltage. By setting up the left and right switching thresholds and the PWM/PFM start response signal, the present invention delays the mode switching and reserves enough time for the start of the PWM/PFM controller, thereby ensuring the accuracy of the system control signal and realizing Seamless and hysteretic switching between PWM and PFM modes.
附图说明Description of the drawings
图1为本发明切换控制器整体结构示意图;Figure 1 is a schematic diagram of the overall structure of the switching controller of the present invention;
图2为本发明切换控制器整体电路图;Figure 2 is an overall circuit diagram of the switching controller of the present invention;
图3为本发明切换控制器工作流程图;Figure 3 is a working flow chart of the switching controller of the present invention;
图4为本发明实施例中切换控制器具体电路图。Figure 4 is a specific circuit diagram of the switching controller in the embodiment of the present invention.
具体实施方式Detailed ways
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。Specific implementations of the present invention will be described in further detail below with reference to the accompanying drawings and examples. The following examples are used to illustrate the invention but are not intended to limit the scope of the invention.
一方面,一种具备迟滞功能的PWM-PFM无缝切换控制器,如图1、图2所示,包括:电流检测装置,启动电路,左切换控制器,右切换控制器,PWM控制器,PFM控制器,以及切换控制器。On the one hand, a PWM-PFM seamless switching controller with hysteresis function, as shown in Figure 1 and Figure 2, includes: current detection device, starting circuit, left switching controller, right switching controller, PWM controller, PFM controller, and switching controller.
所述电流检测装置的输出端口包括第一输出端口至第三输出端口,所述切换控制器的输入端口包括第一输入端口至第四输入端口,所述左切换控制器以及右切换控制器的输入端口包括第一输入端口以及第二输入端口;其中电流检测装置的第一输出端口与所述左切换控制器的第一输入端口相接,电流检测装置的第二输出端口与所述启动电路的输入端口相接,电流检测装置的第三输出端口与所述右切换控制器的第一输入端口相接;The output port of the current detection device includes a first output port to a third output port, the input port of the switching controller includes a first input port to a fourth input port, and the left switching controller and the right switching controller have The input port includes a first input port and a second input port; the first output port of the current detection device is connected to the first input port of the left switching controller, and the second output port of the current detection device is connected to the startup circuit. The input port is connected, and the third output port of the current detection device is connected with the first input port of the right switching controller;
所述启动电路的输出端口包括第一输出端口以及第二输出端口;其中启动电路的第一输出端口与所述PWM控制器的第一输入端口相接,启动电路的第二输出端口与所述PFM控制器的第一输入端口相接;The output port of the startup circuit includes a first output port and a second output port; wherein the first output port of the startup circuit is connected to the first input port of the PWM controller, and the second output port of the startup circuit is connected to the The first input port of the PFM controller is connected;
所述PWM控制器以及PFM控制器的输入端口包括第一输入端口以及第二输入端口,其输出端口包括第一输出端口以及第二输出端口;其中PWM控制器的第一输出端口与所述右切换控制器的第二输入端口相接,PWM控制器的第二输出端口与所述切换控制器的第一输入端口相接,PFM控制器的第一输出端口与所述左切换控制器的第二输入端口相接,所述PFM控制器的第二输出端口与切换控制器的第二输入端口相接;The input ports of the PWM controller and the PFM controller include a first input port and a second input port, and the output ports include a first output port and a second output port; wherein the first output port of the PWM controller and the right The second input port of the switching controller is connected, the second output port of the PWM controller is connected with the first input port of the switching controller, and the first output port of the PFM controller is connected with the third input port of the left switching controller. The two input ports are connected, and the second output port of the PFM controller is connected to the second input port of the switching controller;
所述右切换控制器的输出端口与切换控制器的第三输入端口相接,同时右切换控制器的输出端口与PFM控制器的第二输入端口相接,左切换控制器的输出端口与切换控制器的第四输入端口相接,同时左切换控制器的输出端口与PWM控制器的第二输入端口相接,切换控制器的输出端口即为控制信号;The output port of the right switching controller is connected to the third input port of the switching controller, while the output port of the right switching controller is connected to the second input port of the PFM controller, and the output port of the left switching controller is connected to the switching controller. The fourth input port of the controller is connected, and the output port of the left switching controller is connected to the second input port of the PWM controller. The output port of the switching controller is the control signal;
所述电流检测装置由第一比较器,第二比较器,第三比较器构成,第一比较器的同相端与左阈值电压VREFL相接,第一比较器的反相端与表征电流大小的电压信号VH相接,第一比较器的输出端为电流检测装置的第一输出端口。第二比较器的同相端与VH相接,第二比较器的反相端与切换阈值电压VREFM相接,第二比较器的输出端为电流检测装置的第二输出端口,第三比较器的同相端与VH相接,第三比较器的反相端与右阈值电压VREFR相接,第三比较器的输出端口为电流检测装置的第三输出端口。The current detection device is composed of a first comparator, a second comparator, and a third comparator. The non-inverting terminal of the first comparator is connected to the left threshold voltage VREFL, and the inverting terminal of the first comparator is connected to the voltage representing the current magnitude. The voltage signal VH is connected, and the output terminal of the first comparator is the first output port of the current detection device. The non-inverting terminal of the second comparator is connected to VH, the inverting terminal of the second comparator is connected to the switching threshold voltage VREFM, the output terminal of the second comparator is the second output port of the current detection device, and the third comparator The non-inverting terminal is connected to VH, the inverting terminal of the third comparator is connected to the right threshold voltage VREFR, and the output port of the third comparator is the third output port of the current detection device.
所述启动电路包括第一反相器,第一D触发器,第二D触发器,所述第一反相器的输入端口为启动电路的第一输入,第一反相器的输出端口与第二D触发器的时钟端口Clk端相接,第二D触发器的复位端口R与左切换控制器的输出端口的PFM关断信号相接,第二D触发器的数据端D与电源VDD相接,第二D触发器的输出端Q为启动电路的第二输出端口,第一D触发器的时钟端口Clk与第一反相器的输入端口相连,即为启动电路的第一输入,第一D触发器的数据D端与电源VDD相接,第一D触发器的复位端口R与右切换控制器输出端口的PWM关断信号相接,第一D触发器的输出端Q为启动电路的第一输出端口。The startup circuit includes a first inverter, a first D flip-flop, and a second D flip-flop. The input port of the first inverter is the first input of the startup circuit, and the output port of the first inverter is the same as the first inverter. The clock port Clk terminal of the second D flip-flop is connected, the reset port R of the second D flip-flop is connected with the PFM shutdown signal of the output port of the left switching controller, and the data terminal D of the second D flip-flop is connected with the power supply VDD. Connected, the output terminal Q of the second D flip-flop is the second output port of the startup circuit, and the clock port Clk of the first D flip-flop is connected to the input port of the first inverter, which is the first input of the startup circuit. The data D terminal of the first D flip-flop is connected to the power supply VDD, the reset port R of the first D flip-flop is connected to the PWM shutdown signal of the output port of the right switching controller, and the output terminal Q of the first D flip-flop is start The first output port of the circuit.
所述左切换控制器由与门构成,与门的第一输入端口为左切换控制器的第一输入,与门的第二输入为左切换控制器的第二输入,与门的输出为左切换控制器的输出端口,产生PFM关断信号;The left switching controller is composed of an AND gate. The first input port of the AND gate is the first input of the left switching controller. The second input of the AND gate is the second input of the left switching controller. The output of the AND gate is the left switching controller. Switch the output port of the controller to generate a PFM shutdown signal;
所述右切换控制器由与门构成,与门的第一输入端口为右切换控制器的第一输入,与门的第二输入为右切换控制器的第二输入,与门的输出为右切换控制器的输出端口,产生PWM关断信号。The right switching controller is composed of an AND gate, the first input port of the AND gate is the first input of the right switching controller, the second input of the AND gate is the second input of the right switching controller, and the output of the AND gate is the right switching controller. Switch the output port of the controller to generate a PWM shutdown signal.
所述切换控制器包括二选一数据选择器和RS触发器,所述RS触发器的R端为切换控制器的第三输入端口,RS触发器的S端为切换控制器的第四输入端口,RS触发器的Q端与二选一数据选择器的控制端口相接,二选一数据选择器的0端为切换控制器的第一输入端口,二选一数据选择器的1端为切换控制器的第二输端口入,二选一数据选择器的输出即为切换控制器的输出。The switching controller includes a two-choice data selector and an RS flip-flop. The R terminal of the RS flip-flop is the third input port of the switching controller, and the S terminal of the RS flip-flop is the fourth input port of the switching controller. , the Q terminal of the RS flip-flop is connected to the control port of the two-choice data selector, the 0-terminal of the two-choice data selector is the first input port of the switching controller, and the 1-terminal of the two-choice data selector is the switching The second input port of the controller is input, and the output of the two-choice data selector is the output of the switching controller.
另一方面,一种具备迟滞功能的PWM-PFM无缝切换控制方法,基于前述具备迟滞功能的PWM-PFM无缝切换控制器实现,如图3所示,包括以下步骤:On the other hand, a PWM-PFM seamless switching control method with hysteresis function is implemented based on the aforementioned PWM-PFM seamless switching controller with hysteresis function, as shown in Figure 3, including the following steps:
步骤1、电流检测装置开始工作,检测左切换阈值VREFL,切换中值VREFM,右切换阈值VREFR与表征负载电流大小的电压信号VH的关系,Step 1. The current detection device starts working and detects the relationship between the left switching threshold VREFL, the switching median VREFM, the right switching threshold VREFR and the voltage signal VH that represents the load current.
当VREFR>VH>VREFM时,电流检测装置的第二输出为高,此时启动PWM控制器;When VREFR>VH>VREFM, the second output of the current detection device is high, and the PWM controller is started at this time;
当VH>VREFR时,电流检测装置的第三输出为高,此时从PFM模式切换至PWM模式,即切换控制器内部的RS触发器输出Q端由1跳变至0,二选一数据选择器选择输出0端,即切换控制器第一输入端口信号,即输出PWM控制信号;When VH>VREFR, the third output of the current detection device is high. At this time, it switches from PFM mode to PWM mode, that is, the RS flip-flop output Q terminal inside the switching controller jumps from 1 to 0, and one of the two data is selected. The controller selects the output 0 terminal, that is, switches the first input port signal of the controller, that is, outputs the PWM control signal;
当VREFL<VH<VREFM时,电流检测装置的第二输出为低,此时启动PFM控制器;When VREFL<VH<VREFM, the second output of the current detection device is low, and the PFM controller is started at this time;
当VH<VREFL时,电流检测装置的第一输出为高,此时从PWM模式切换至PFM模式,即切换控制器内部的RS触发器输出Q端由0跳变至1,二选一数据选择器选择输出1端,即切换控制器第二输入端口信号,即输出PFM控制信号;When VH<VREFL, the first output of the current detection device is high. At this time, it switches from PWM mode to PFM mode, that is, the RS flip-flop output Q terminal inside the switching controller jumps from 0 to 1, and one of the two data is selected. The controller selects output 1 terminal, that is, switches the second input port signal of the controller, that is, outputs the PFM control signal;
步骤2、依据负载电流的变化对系统工作状态进行调整,实现PWM-PFM无缝切换控制方法;Step 2. Adjust the system working status according to changes in load current to achieve PWM-PFM seamless switching control method;
所述调整具体为:The adjustments mentioned are specifically:
当负载为轻载即VH<VREFL时,PFM控制器工作,PWM控制器关闭,二选一数据选择器选择1输入通道;When the load is light load, that is, VH<VREFL, the PFM controller works, the PWM controller is turned off, and the two-to-one data selector selects 1 input channel;
当负载为重载即VH>VREFR时,PFM控制器关闭,PWM控制器工作,数据选择器选择0输入通道;When the load is heavy load, that is, VH>VREFR, the PFM controller is turned off, the PWM controller works, and the data selector selects the 0 input channel;
当负载处于左切换阈值VREFL与右切换阈值VREFR之间时系统保留初始工作状态;When the load is between the left switching threshold VREFL and the right switching threshold VREFR, the system retains the initial working state;
当负载由轻载变化至重载,包括以下步骤:When the load changes from light load to heavy load, the following steps are included:
步骤S1、当负载逐渐增加使得VH大于VREFM时,电流检测装置第二输出为逻辑1,则负载电流已经大于切换中值,PWM控制器启动;Step S1: When the load gradually increases and VH is greater than VREFM, the second output of the current detection device is logic 1, then the load current is greater than the switching median value, and the PWM controller starts;
步骤S2、PWM控制器开始启动,启动完成后产生启动应答信号传输给右切换控制器,并输出PWM控制信号至切换控制器的0输入通道;Step S2: The PWM controller starts to start. After the startup is completed, a start response signal is generated and transmitted to the right switching controller, and the PWM control signal is output to the 0 input channel of the switching controller;
步骤S3、当负载逐渐增加使得VH大于VREFR时,右切换控制器输出为逻辑1,该信号同时为PFM关断信号,传输至PFM控制器使得PFM控制器关断;Step S3: When the load gradually increases and VH is greater than VREFR, the output of the right switching controller is logic 1. This signal is also a PFM shutdown signal and is transmitted to the PFM controller to turn off the PFM controller;
步骤S4、切换控制器的RS触发器接收到复位信号,产生的输出信号为逻辑0,即切换控制器中二选一数据选择器接收到的模式选择信号为逻辑0,选择0输入通道,输出PWM控制信号,完成PFM模式至PWM模式的转换;Step S4. The RS flip-flop of the switching controller receives the reset signal, and the output signal generated is logic 0. That is, the mode selection signal received by the two-select-one data selector in the switching controller is logic 0, and the 0 input channel is selected and the output PWM control signal to complete the conversion from PFM mode to PWM mode;
当负载由重载变化至轻载,包括以下步骤:When the load changes from heavy load to light load, the following steps are included:
步骤D1、当负载逐渐减小使得VH小于VREFM时,电流检测装置第二输出为逻辑0,则负载电流已经小于切换中值,PFM控制器启动;Step D1. When the load gradually decreases so that VH is less than VREFM, the second output of the current detection device is logic 0, then the load current is less than the switching median value, and the PFM controller starts;
步骤D2、PFM控制器开始启动,启动完成后产生启动应答信号传输给左切换控制器,并输出PFM控制信号至切换控制器的1输入通道;Step D2: The PFM controller starts to start. After the startup is completed, a start response signal is generated and transmitted to the left switching controller, and the PFM control signal is output to the 1 input channel of the switching controller;
步骤D3、当负载逐渐减小使得VH小于VREFL时,左切换控制器输出为逻辑1,该信号同时为PWM关断信号,传输至PWM控制器使得PWM控制器关断;Step D3. When the load gradually decreases and VH is less than VREFL, the output of the left switching controller is logic 1. This signal is also a PWM shutdown signal and is transmitted to the PWM controller to turn off the PWM controller;
步骤D4、切换控制器的RS触发器接收到置位信号,产生的输出信号为逻辑1,即切换控制器中二选一数据选择器接收到的模式选择信号为逻辑1,选择1输入通道,输出PFM控制信号,完成PWM模式至PFM模式的转换。Step D4. The RS flip-flop of the switching controller receives the setting signal, and the generated output signal is logic 1. That is, the mode selection signal received by the two-select-one data selector in the switching controller is logic 1, and the 1 input channel is selected. Output the PFM control signal to complete the conversion from PWM mode to PFM mode.
如图4所示为本发明具体实施例,包括电流检测装置,启动电路,左切换控制器,右切换控制器,PWM控制器,PFM控制器,切换控制器。Figure 4 shows a specific embodiment of the present invention, including a current detection device, a starting circuit, a left switching controller, a right switching controller, a PWM controller, a PFM controller, and a switching controller.
所述电流检测装置用来判断参考电压左切换阈值VREFL,右切换阈值VREFR,切换中值VREFM与表征负载电流大小的电压值VH的关系,并依据电压的大小关系改变输出电压的状态,从而决定系统的后续工作状态。若VH>VREFM,电流检测装置第二输出为高,启动PWM控制器;若VH>VREFR,电流检测装置第三输出为高,调制模式由PFM模式切换至PWM模式;若VH<VREFM,电流检测装置第二输出为低,启动PFM控制器;若VH<VREFL,电流检测装置第一输出为高调制模式由PWM模式切换至PFM模式。The current detection device is used to determine the relationship between the reference voltage left switching threshold VREFL, the right switching threshold VREFR, the switching median VREFM and the voltage value VH that represents the load current, and change the state of the output voltage according to the relationship between the voltages, thereby determining The subsequent working status of the system. If VH>VREFM, the second output of the current detection device is high, starting the PWM controller; if VH>VREFR, the third output of the current detection device is high, and the modulation mode switches from PFM mode to PWM mode; if VH<VREFM, the current detection device The second output of the device is low, starting the PFM controller; if VH<VREFL, the first output of the current detection device is high, and the modulation mode switches from PWM mode to PFM mode.
所述启动电路用于接收电流检测的第二输出,并依据其状态产生相应的PWM控制器与PFM控制器的启动信号。若电流检测装置的第二输出为高,则产生PWM控制器启动信号,若电流检测装置的第二输出状态为低,则产生PFM控制器启动信号。同时,启动电路接收PFM关断信号与PWM关断信号并及时产生PWM与PFM控制器的关断信号。The startup circuit is used to receive the second output of the current detection and generate corresponding startup signals of the PWM controller and the PFM controller according to its status. If the second output state of the current detection device is high, a PWM controller start signal is generated. If the second output state of the current detection device is low, a PFM controller start signal is generated. At the same time, the startup circuit receives the PFM shutdown signal and the PWM shutdown signal and generates the shutdown signals of the PWM and PFM controllers in time.
所述左切换控制器与右切换控制器分别接收电流检测装置的第一输出与第二输出,并依据其状态产生实际的PWM与PFM的切换信号。并在完成切换后及时产生PWM关断信号与PFM关断信号。The left switching controller and the right switching controller receive the first output and the second output of the current detection device respectively, and generate actual PWM and PFM switching signals according to their states. And after completing the switching, the PWM turn-off signal and the PFM turn-off signal are generated in time.
所述切换控制器用于接收PWM与PFM的切换信号,并依据该切换信号选择PWM控制信号与PFM信号,完成两种调制模式的实际切换。The switching controller is used to receive the PWM and PFM switching signals, and select the PWM control signal and the PFM signal according to the switching signal to complete the actual switching of the two modulation modes.
所述PWM控制器用于产生PWM控制信号,包括误差放大器,电压比较器,第一反相器,第二反相器,误差放大器的同相端与参考电压VREF相连接,误差放大器的反相端与反馈信号相连接,误差放大器的输出与电压比较器的同相端相连接,同时误差放大器的输出与第一反相器的输入端相连,第一反向器的输出与第二反向器的输入相连,第二反相器的输出即为PWM控制器的第一输出,即PWM启动完成信号。电压比较器的反相端与三角波调制信号VM连接,电压比较器的输出即为PWM控制器的第二输出,即PWM信号。The PWM controller is used to generate a PWM control signal, including an error amplifier, a voltage comparator, a first inverter, and a second inverter. The non-inverting end of the error amplifier is connected to the reference voltage VREF, and the inverting end of the error amplifier is connected to the reference voltage VREF. The feedback signal is connected, the output of the error amplifier is connected to the non-inverting terminal of the voltage comparator, at the same time, the output of the error amplifier is connected to the input terminal of the first inverter, and the output of the first inverter is connected to the input of the second inverter. Connected, the output of the second inverter is the first output of the PWM controller, that is, the PWM start completion signal. The inverting end of the voltage comparator is connected to the triangle wave modulation signal VM, and the output of the voltage comparator is the second output of the PWM controller, that is, the PWM signal.
所述PFM控制器用于产生PFM信号,包括电压比较器,D触发器,与门。电压比较器的同相端与参考电压VREF相连接,电压比较器的反相端与反馈信号连接,电压比较器的输出端与D触发器的数据输入D端连接,电压比较器的输出即为PFM控制器的第一输出,即PFM启动完成信号,D触发器的时钟端与时钟信号连接,D触发器的输出Q端和与门的第一输入连接,与门的第二输入与时钟信号连接,与门的输出即为PFM控制器的第二输出,即PFM信号。The PFM controller is used to generate PFM signals, including a voltage comparator, a D flip-flop, and an AND gate. The non-inverting end of the voltage comparator is connected to the reference voltage VREF, the inverting end of the voltage comparator is connected to the feedback signal, the output end of the voltage comparator is connected to the data input D end of the D flip-flop, and the output of the voltage comparator is PFM. The first output of the controller is the PFM startup completion signal. The clock terminal of the D flip-flop is connected to the clock signal. The output Q terminal of the D flip-flop is connected to the first input of the AND gate. The second input of the AND gate is connected to the clock signal. , the output of the AND gate is the second output of the PFM controller, which is the PFM signal.
电路上电后的工作流程如下:The working process after the circuit is powered on is as follows:
电路上电后,电路首先获取表征电流大小的电压信号VH,判断VH与VREFM的关系,若VH>VREFM,电流检测装置的第二输出为高,启动电路产生PWM启动信号,PWM控制器开始启动,但此时系统并不完成PWM与PFM的切换。PWM控制器启动完成后将输出PWM启动完成信号,若VH>VREFR,且PWM启动完成信号为高,右切换控制器产生PWM切换信号,切换控制器接收到信号后选择输出PWM信号,完成PFM和PWM的切换。After the circuit is powered on, it first obtains the voltage signal VH that represents the current size, and determines the relationship between VH and VREFM. If VH>VREFM, the second output of the current detection device is high, the startup circuit generates a PWM startup signal, and the PWM controller starts. , but the system does not complete the switching between PWM and PFM at this time. After the PWM controller starts, it will output the PWM start completion signal. If VH>VREFR, and the PWM start completion signal is high, the right switching controller generates the PWM switching signal. After receiving the signal, the switching controller selects to output the PWM signal to complete the PFM and PWM switching.
若VH<VREFM,电流检测装置的第二输出为低,启动电路产生PFM启动信号,PFM控制器开始启动,但此时系统并不完成PWM与PFM的切换。PFM控制器启动完成后将输出PFM启动完成信号,若VH<VREFL,且PFM启动完成信号为高,左切换控制器产生PFM切换信号,切换控制器接收到信号后选择输出PFM信号,完成两种模式的切换。If VH<VREFM, the second output of the current detection device is low, the startup circuit generates a PFM startup signal, and the PFM controller starts to startup, but at this time the system does not complete the switching between PWM and PFM. After the PFM controller is started, it will output the PFM start completion signal. If VH < VREFL, and the PFM start completion signal is high, the left switching controller generates the PFM switching signal. After receiving the signal, the switching controller selects to output the PFM signal, completing two Mode switching.
借助三比较阈值产生迟滞切换后,系统在切换区间内(VREFL与VREFR之间)的调制模式由进入切换区间前系统的调制模式决定,若负载由轻载变为重载,系统在切换区间内的调制模式为PFM调制模式,若负载由重载变为轻载,系统在切换区间内的调制模式为PWM调制模式。迟滞区间的引入解决了两种模式在单一切换点附近频繁切换的问题,使得双模控制的系统更加稳定。After hysteresis switching is generated with the help of three comparison thresholds, the modulation mode of the system in the switching interval (between VREFL and VREFR) is determined by the modulation mode of the system before entering the switching interval. If the load changes from light load to heavy load, the system is in the switching interval. The modulation mode is PFM modulation mode. If the load changes from heavy load to light load, the modulation mode of the system in the switching interval is PWM modulation mode. The introduction of the hysteresis interval solves the problem of frequent switching between the two modes near a single switching point, making the dual-mode control system more stable.
以上描述仅为本公开的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本公开的实施例中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本公开的实施例中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。The above description is only a description of the preferred embodiments of the present disclosure and the technical principles applied. Persons skilled in the art should understand that the scope of the invention involved in the embodiments of the present disclosure is not limited to technical solutions composed of specific combinations of the above technical features, and should also cover the above-mentioned technical solutions without departing from the above-mentioned inventive concept. Other technical solutions formed by any combination of technical features or their equivalent features. For example, a technical solution is formed by replacing the above features with technical features with similar functions disclosed in the embodiments of the present disclosure (but not limited to).
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111476298.XA CN114157135B (en) | 2021-12-06 | 2021-12-06 | PWM-PFM seamless switching controller with hysteresis function and control method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111476298.XA CN114157135B (en) | 2021-12-06 | 2021-12-06 | PWM-PFM seamless switching controller with hysteresis function and control method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114157135A CN114157135A (en) | 2022-03-08 |
CN114157135B true CN114157135B (en) | 2023-11-07 |
Family
ID=80452874
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111476298.XA Active CN114157135B (en) | 2021-12-06 | 2021-12-06 | PWM-PFM seamless switching controller with hysteresis function and control method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114157135B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115407180A (en) * | 2022-11-02 | 2022-11-29 | 上海阿米芯光半导体有限责任公司 | Signal intensity detection circuit with adjustable threshold value, threshold voltage adjusting method and hysteresis adjusting method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1691481A (en) * | 2004-04-27 | 2005-11-02 | 株式会社理光 | Switching regulator and method for changing output voltages thereof |
CN101111811A (en) * | 2004-12-08 | 2008-01-23 | 基亚维福里斯特有限责任公司 | Adaptive digital voltage regulator with bresenham sequence generator |
CN103973082A (en) * | 2013-02-05 | 2014-08-06 | 辉达公司 | Current-parking Switching Regulator Downstream Controller Pre-driver |
CN104426364A (en) * | 2013-08-27 | 2015-03-18 | 英特希尔美国公司 | Pwm/pfm controller for use with switched-mode power supply |
CN106292276A (en) * | 2015-06-24 | 2017-01-04 | 英飞凌科技股份有限公司 | For controlling the system and method for the dutycycle of switched-mode power supply |
CN111509974A (en) * | 2019-01-31 | 2020-08-07 | 炬芯(珠海)科技有限公司 | Method and circuit for controlling stability of PWM loop and DC-DC converter |
CN113131737A (en) * | 2021-04-15 | 2021-07-16 | 东北大学 | PWM/PFM seamless switching controller suitable for switching power supply and control method thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101388612B (en) * | 2007-09-14 | 2011-08-31 | 力博特公司 | Soft switch circuit controlling method in switch power source |
US8787039B2 (en) * | 2012-07-18 | 2014-07-22 | Dialog Semiconductor Inc. | Hybrid adaptive power factor correction schemes for switching power converters |
US10554136B1 (en) * | 2018-08-03 | 2020-02-04 | Power Integrations, Inc. | Control of secondary switches based on secondary winding voltage in a power converter |
-
2021
- 2021-12-06 CN CN202111476298.XA patent/CN114157135B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1691481A (en) * | 2004-04-27 | 2005-11-02 | 株式会社理光 | Switching regulator and method for changing output voltages thereof |
CN101111811A (en) * | 2004-12-08 | 2008-01-23 | 基亚维福里斯特有限责任公司 | Adaptive digital voltage regulator with bresenham sequence generator |
CN103973082A (en) * | 2013-02-05 | 2014-08-06 | 辉达公司 | Current-parking Switching Regulator Downstream Controller Pre-driver |
CN104426364A (en) * | 2013-08-27 | 2015-03-18 | 英特希尔美国公司 | Pwm/pfm controller for use with switched-mode power supply |
CN106292276A (en) * | 2015-06-24 | 2017-01-04 | 英飞凌科技股份有限公司 | For controlling the system and method for the dutycycle of switched-mode power supply |
CN111509974A (en) * | 2019-01-31 | 2020-08-07 | 炬芯(珠海)科技有限公司 | Method and circuit for controlling stability of PWM loop and DC-DC converter |
CN113131737A (en) * | 2021-04-15 | 2021-07-16 | 东北大学 | PWM/PFM seamless switching controller suitable for switching power supply and control method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN114157135A (en) | 2022-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7944715B2 (en) | Controller for use in a resonant direct current/direct current converter | |
US20150002115A1 (en) | Series-capacitor buck converter multiphase controller | |
US20230246548A1 (en) | Switched capacitor voltage converter circuit and switched capacitor voltage conversion method | |
WO2007130533A2 (en) | Method and apparatus for improving light load efficiency in switching power supplies | |
EP2144356A1 (en) | Buck converter threshold detection for automatic pulse skipping mode | |
CN102761273A (en) | No-load control system of original-side feedback AC-DC switching power supply | |
CN101212173A (en) | Control circuit and control method of multimode switching type buck-boost rectifier | |
CN102480228B (en) | Switching power control system and method thereof | |
KR20190089611A (en) | Low power dc-dc converter and operating method thereof | |
CN114157135B (en) | PWM-PFM seamless switching controller with hysteresis function and control method thereof | |
CN101977042B (en) | PWM or PSM dual-mode modulation control circuit used for switch voltage-stabilized supply | |
JP2006149067A (en) | DC-DC converter | |
CN104362839A (en) | Four-tube converter control circuit, four-tube converter and light load control method of four-tube converter | |
CN115498861A (en) | Power supply control circuit based on peak-valley current mode | |
CN104319984A (en) | PWM control circuit capable of intelligently adjusting maximum duty ratio | |
CN113131737B (en) | PWM/PFM seamless switching controller suitable for switching power supply and control method thereof | |
CN102280908A (en) | Frequency Generation Mode with Heterodyne Slope for Light-to-Heavy Load Switching of Power Supplies | |
KR20180093729A (en) | Apparatus and method for changing mode of buck converter | |
CN115459565B (en) | State switching control device | |
CN101272136A (en) | Switching circuit and method for pulse frequency modulation and pulse width modulation | |
JP2009303347A (en) | Control circuit of dc-dc converter | |
CN115549461A (en) | DC-DC converter and control method thereof | |
CN118249646A (en) | Control circuit and control method of converter and terminal equipment | |
CN211508907U (en) | Control circuit of switching power supply conversion device | |
KR20160016190A (en) | Buck converter for using variable pulse |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |