CN114149576A - Fluorine-containing polycarbonate diol and preparation method thereof - Google Patents
Fluorine-containing polycarbonate diol and preparation method thereof Download PDFInfo
- Publication number
- CN114149576A CN114149576A CN202111424110.7A CN202111424110A CN114149576A CN 114149576 A CN114149576 A CN 114149576A CN 202111424110 A CN202111424110 A CN 202111424110A CN 114149576 A CN114149576 A CN 114149576A
- Authority
- CN
- China
- Prior art keywords
- diol
- fluorine
- polycarbonate diol
- catalyst
- containing polycarbonate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 150000002009 diols Chemical class 0.000 title claims abstract description 79
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 title claims abstract description 71
- 229910052731 fluorine Inorganic materials 0.000 title claims abstract description 71
- 239000011737 fluorine Substances 0.000 title claims abstract description 71
- 229920000515 polycarbonate Polymers 0.000 title claims abstract description 59
- 239000004417 polycarbonate Substances 0.000 title claims abstract description 59
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- 239000003054 catalyst Substances 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims abstract description 31
- -1 alkyl diol Chemical class 0.000 claims abstract description 28
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 claims abstract description 23
- 150000002148 esters Chemical group 0.000 claims abstract description 22
- 238000006068 polycondensation reaction Methods 0.000 claims abstract description 22
- 239000002994 raw material Substances 0.000 claims abstract description 5
- 230000009471 action Effects 0.000 claims abstract description 4
- 238000006243 chemical reaction Methods 0.000 claims description 35
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 21
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 claims description 20
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 18
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 16
- 239000006227 byproduct Substances 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 12
- FPCJKVGGYOAWIZ-UHFFFAOYSA-N butan-1-ol;titanium Chemical compound [Ti].CCCCO.CCCCO.CCCCO.CCCCO FPCJKVGGYOAWIZ-UHFFFAOYSA-N 0.000 claims description 10
- CDZXJJOGDCLNKX-UHFFFAOYSA-N 2,2,3,3-tetrafluorobutane-1,4-diol Chemical compound OCC(F)(F)C(F)(F)CO CDZXJJOGDCLNKX-UHFFFAOYSA-N 0.000 claims description 9
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 8
- 239000012298 atmosphere Substances 0.000 claims description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims description 8
- 229910052719 titanium Inorganic materials 0.000 claims description 8
- 239000010936 titanium Substances 0.000 claims description 8
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 claims description 7
- IELVMUPSWDZWSD-UHFFFAOYSA-N 2,2,3,3,4,4-hexafluoropentane-1,5-diol Chemical compound OCC(F)(F)C(F)(F)C(F)(F)CO IELVMUPSWDZWSD-UHFFFAOYSA-N 0.000 claims description 7
- TXUICONDJPYNPY-UHFFFAOYSA-N (1,10,13-trimethyl-3-oxo-4,5,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-17-yl) heptanoate Chemical compound C1CC2CC(=O)C=C(C)C2(C)C2C1C1CCC(OC(=O)CCCCCC)C1(C)CC2 TXUICONDJPYNPY-UHFFFAOYSA-N 0.000 claims description 6
- 229940043375 1,5-pentanediol Drugs 0.000 claims description 6
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 claims description 6
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 6
- 229910021626 Tin(II) chloride Inorganic materials 0.000 claims description 6
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 claims description 6
- ZFVMWEVVKGLCIJ-UHFFFAOYSA-N bisphenol AF Chemical compound C1=CC(O)=CC=C1C(C(F)(F)F)(C(F)(F)F)C1=CC=C(O)C=C1 ZFVMWEVVKGLCIJ-UHFFFAOYSA-N 0.000 claims description 6
- 239000012975 dibutyltin dilaurate Substances 0.000 claims description 6
- 238000007599 discharging Methods 0.000 claims description 6
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 claims description 6
- 239000011261 inert gas Substances 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 239000000376 reactant Substances 0.000 claims description 6
- 235000011150 stannous chloride Nutrition 0.000 claims description 6
- 239000001119 stannous chloride Substances 0.000 claims description 6
- KSBAEPSJVUENNK-UHFFFAOYSA-L tin(ii) 2-ethylhexanoate Chemical compound [Sn+2].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O KSBAEPSJVUENNK-UHFFFAOYSA-L 0.000 claims description 6
- ZWYDDDAMNQQZHD-UHFFFAOYSA-L titanium(ii) chloride Chemical compound [Cl-].[Cl-].[Ti+2] ZWYDDDAMNQQZHD-UHFFFAOYSA-L 0.000 claims description 6
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 claims description 5
- 229940035437 1,3-propanediol Drugs 0.000 claims description 5
- 229920000166 polytrimethylene carbonate Polymers 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 2
- 239000012974 tin catalyst Substances 0.000 claims 2
- 230000015572 biosynthetic process Effects 0.000 abstract description 3
- 125000001153 fluoro group Chemical group F* 0.000 abstract description 3
- 229920001225 polyester resin Polymers 0.000 abstract description 3
- 229920005749 polyurethane resin Polymers 0.000 abstract description 3
- 238000003786 synthesis reaction Methods 0.000 abstract description 3
- 238000006116 polymerization reaction Methods 0.000 description 6
- 239000000047 product Substances 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 229920002635 polyurethane Polymers 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 125000004185 ester group Chemical group 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 1
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 125000005587 carbonate group Chemical group 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000005676 cyclic carbonates Chemical class 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 150000002118 epoxides Chemical class 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920005906 polyester polyol Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G64/00—Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
- C08G64/02—Aliphatic polycarbonates
- C08G64/0208—Aliphatic polycarbonates saturated
- C08G64/0225—Aliphatic polycarbonates saturated containing atoms other than carbon, hydrogen or oxygen
- C08G64/0233—Aliphatic polycarbonates saturated containing atoms other than carbon, hydrogen or oxygen containing halogens
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G64/00—Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
- C08G64/20—General preparatory processes
- C08G64/30—General preparatory processes using carbonates
- C08G64/305—General preparatory processes using carbonates and alcohols
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polyesters Or Polycarbonates (AREA)
Abstract
The invention relates to a fluorine-containing polycarbonate diol and a preparation method thereof. The fluorine-containing polycarbonate diol is prepared by the following method: diethyl carbonate, alkyl diol and fluorine-containing diol are used as raw materials, and the fluorine-containing polycarbonate diol is obtained by a two-step ester exchange polycondensation method under the action of a catalyst. The fluorine-containing polycarbonate diol obtained by the invention has good stability, due to the introduction of fluorine atoms, the polycarbonate diol has excellent hydrophobicity and good heat resistance, and the synthesis of the fluorine-containing polycarbonate diol is carried out in two steps of ester exchange and polycondensation, so that the experiment is simple and controllable, the preparation of polyester and polyurethane resins with excellent heat resistance and hydrophobicity is facilitated, and the industrial application prospect is good.
Description
Technical Field
The invention relates to a preparation method of polyester polyol, in particular to fluorine-containing polycarbonate diol and a preparation method thereof.
Background
Polycarbonate diol (PCDL) refers to an aliphatic diol having terminal hydroxyl groups at both ends and a molecular main chain containing repeating units of aliphatic alkylene groups and carbonate groups, and has a molecular weight of from several hundreds to several thousands. The melting point and the glass transition temperature of PCDL are lower, and compared with the traditional polyether type polyurethane and polyester type polyurethane, the novel polycarbonate type polyurethane synthesized by using the PCDL as the raw material has better low-temperature flexibility, oil resistance, wear resistance, oxidation resistance and biocompatibility, so that the PCDL is widely applied to the fields of novel environment-friendly coatings, biomedical devices, optical materials and the like.
The preparation method of the polycarbonate diol mainly comprises a phosgene method, an ester exchange method, a ring-opening polymerization method of cyclic carbonate and a regulation polymerization method of carbon dioxide and epoxide. Wherein the ester exchange method is a general method for synthesizing aliphatic polycarbonate dihydric alcohol. The small molecular carbonate ester exchange method is the most suitable and mature method for preparing the polycarbonate polyol at present. The method is carried out by carrying out ester exchange reaction on micromolecular dihydric alcohol and micromolecular carbonic ester, and polycarbonate dihydric alcohol with various structures can be synthesized by adjusting the types of the dihydric alcohol.
Thermoplastic resins containing fluorine atoms in their molecular structure. Has the characteristics of excellent high and low temperature resistance, dielectric property, chemical stability, weather resistance, incombustibility, inadhesion, low friction coefficient and the like, and is an indispensable important material for various departments of national economy, particularly advanced scientific and technical and national defense industry.
However, the preparation and application of the fluorine-containing polycarbonate diol have not been reported yet.
Disclosure of Invention
In order to overcome the defects of the prior art, the invention aims to provide a fluorine-containing polycarbonate diol and a preparation method thereof.
On the basis of synthesizing the polycarbonate diol by adopting a two-step ester exchange polymerization method, the invention introduces the fluorine-containing molecular chain into the main chain of the polycarbonate diol, so that the polycarbonate diol has excellent hydrophobicity and good heat resistance, is simple and controllable in synthesis, is beneficial to preparing polyester and polyurethane resins with excellent heat resistance and hydrophobicity, and has good industrial application prospect.
It is a first object of the present invention to provide a novel fluorine-containing polycarbonate diol.
In order to solve the first technical problem of the present invention, the fluorine-containing polycarbonate diol is prepared by the following method:
diethyl carbonate, alkyl diol and fluorine-containing diol are used as raw materials, and the fluorine-containing polycarbonate diol is obtained by a two-step ester exchange polycondensation method under the action of a catalyst.
In one specific embodiment, the molar ratio of the diethyl carbonate to the ester alcohol of the diol (including the alkyl diol and the fluorine-containing diol) is 1 to 1.5:1, and the molar ratio of the alkyl diol to the fluorine-containing diol is 1 to 10: 1.
The molar ratio of ester alcohol refers to the molar ratio of ester groups to hydroxyl groups.
In one embodiment, the fluorine-containing polycarbonate diol is prepared by the following method:
a. ester exchange: mixing diethyl carbonate, alkyl diol and fluorine-containing diol with a catalyst, heating to 120-160 ℃ in the atmosphere of high-purity nitrogen or other inert gases, reacting for 4-6 h, and discharging reaction byproducts out of a reaction system;
b. and (3) reduced pressure polycondensation: and c, after the reaction in the step a is finished, heating to 180-220 ℃, starting to perform reduced pressure polycondensation, reducing the pressure to 0.5-1.5 KPa, and reacting for 1-3 h to obtain the fluorine-containing polycarbonate diol.
Preferably, the method also comprises the step b after the mixture of the ethanol and the diethyl carbonate which are byproducts generated in the reaction in the step a is discharged out of the reaction system.
In one embodiment, the catalyst is a tin-based catalyst including stannous chloride, stannous octoate, and dibutyltin dilaurate; the titanium catalyst includes butyl titanate, propyl titanate and titanium dichloride. One or more of them can be used.
In a specific embodiment, the amount of the catalyst is 0.05 to 0.5wt% of the total mass of the reactants.
In one embodiment, the alkyl diol is one of ethylene glycol, 1, 3-propanediol, 1, 4-butanediol, 1, 5-pentanediol, and 1, 6-hexanediol.
In one embodiment, the fluorine-containing diol is one of 2,2,3, 3-tetrafluoro-1, 4-butane diol, 2,3,3,4, 4-hexafluoro-1, 5-pentane diol, 2,3,3,4,4,5, 5-octafluoro-1, 6-hexane diol, 1H, 8H-dodecafluoro-1, 8-octanediol, 1H, 10H-perfluoro-1, 10-decane diol, 1H, 12H-perfluoro-1, 12-dodecanediol, and hexafluorobisphenol a.
A fluorine-containing polycarbonate diol having the following structural formula:
the second technical problem to be solved by the present invention is to provide a method for producing a fluorine-containing polycarbonate diol.
In order to solve the second technical problem of the present invention, the fluorine-containing polycarbonate diol is prepared by the following method:
a. ester exchange: mixing diethyl carbonate, alkyl diol and fluorine-containing diol with a catalyst, heating to 120-160 ℃ in the atmosphere of high-purity nitrogen or other inert gases, reacting for 4-6 h, and discharging reaction byproducts out of a reaction system;
b. and (3) reduced pressure polycondensation: and c, after the reaction in the step a is finished, heating to 180-220 ℃, starting to perform reduced pressure polycondensation, reducing the pressure to 0.5-1.5 KPa, and reacting for 1-3 h to obtain the fluorine-containing polycarbonate diol.
Preferably, the method also comprises the step b after the mixture of the ethanol and the diethyl carbonate which are byproducts generated in the reaction in the step a is discharged out of the reaction system.
In one embodiment, the catalyst is a tin-based catalyst including stannous chloride, stannous octoate, and dibutyltin dilaurate; the titanium catalyst includes butyl titanate, propyl titanate and titanium dichloride. One or more of them can be used.
In a specific embodiment, the amount of the catalyst is 0.05 to 0.5wt% of the total mass of the reactants.
In one embodiment, the alkyl diol is one of ethylene glycol, 1, 3-propanediol, 1, 4-butanediol, 1, 5-pentanediol, and 1, 6-hexanediol.
In one embodiment, the fluorine-containing diol is one of 2,2,3, 3-tetrafluoro-1, 4-butane diol, 2,3,3,4, 4-hexafluoro-1, 5-pentane diol, 2,3,3,4,4,5, 5-octafluoro-1, 6-hexane diol, 1H, 8H-dodecafluoro-1, 8-octanediol, 1H, 10H-perfluoro-1, 10-decane diol, 1H, 12H-perfluoro-1, 12-dodecanediol, and hexafluorobisphenol a.
The invention has the beneficial effects that:
the fluorine-containing polycarbonate diol obtained by the method has good stability, due to the introduction of fluorine atoms, the polycarbonate diol has excellent hydrophobicity and good heat resistance, and the synthesis of the fluorine-containing polycarbonate diol is carried out by two steps of ester exchange and polycondensation, so that the process is simple and controllable, the preparation of polyester and polyurethane resins with excellent heat resistance and hydrophobicity is facilitated, and the industrial application prospect is good.
Drawings
FIG. 1 is a nuclear magnetic hydrogen spectrum of a fluorine-containing polycarbonate diol of examples 1,3 and 4.
FIG. 2 is a nuclear magnetic hydrogen spectrum of the fluorine-containing polycarbonate diol of example 2.
Detailed Description
The invention is further illustrated below with reference to the figures and examples.
In order to solve the first technical problem of the present invention, the fluorine-containing polycarbonate diol is prepared by the following method:
diethyl carbonate, alkyl diol and fluorine-containing diol are used as raw materials, and the fluorine-containing polycarbonate diol is obtained by a two-step ester exchange polycondensation method under the action of a catalyst.
In one specific embodiment, the molar ratio of the diethyl carbonate to the ester alcohol of the diol (including the alkyl diol and the fluorine-containing diol) is 1 to 1.5:1, and the molar ratio of the alkyl diol to the fluorine-containing diol is 1 to 10: 1.
The molar ratio of ester alcohol refers to the molar ratio of ester groups to hydroxyl groups.
In one embodiment, the fluorine-containing polycarbonate diol is prepared by the following method:
a. ester exchange: mixing diethyl carbonate, alkyl diol and fluorine-containing diol with a catalyst, heating to 120-160 ℃ in the atmosphere of high-purity nitrogen or other inert gases, reacting for 4-6 h, and discharging reaction byproducts out of a reaction system;
b. and (3) reduced pressure polycondensation: and c, after the reaction in the step a is finished, heating to 180-220 ℃, starting to perform reduced pressure polycondensation, reducing the pressure to 0.5-1.5 KPa, and reacting for 1-3 h to obtain the fluorine-containing polycarbonate diol.
Preferably, the method also comprises the step b after the mixture of the ethanol and the diethyl carbonate which are byproducts generated in the reaction in the step a is discharged out of the reaction system.
In one embodiment, the catalyst is a tin-based catalyst including stannous chloride, stannous octoate, and dibutyltin dilaurate; the titanium catalyst includes butyl titanate, propyl titanate and titanium dichloride. One or more of them can be used.
In a specific embodiment, the amount of the catalyst is 0.05 to 0.5wt% of the total mass of the reactants.
In one embodiment, the alkyl diol is one of ethylene glycol, 1, 3-propanediol, 1, 4-butanediol, 1, 5-pentanediol, and 1, 6-hexanediol.
In one embodiment, the fluorine-containing diol is one of 2,2,3, 3-tetrafluoro-1, 4-butane diol, 2,3,3,4, 4-hexafluoro-1, 5-pentane diol, 2,3,3,4,4,5, 5-octafluoro-1, 6-hexane diol, 1H, 8H-dodecafluoro-1, 8-octanediol, 1H, 10H-perfluoro-1, 10-decane diol, 1H, 12H-perfluoro-1, 12-dodecanediol, and hexafluorobisphenol a.
The second technical problem to be solved by the present invention is to provide a method for producing a fluorine-containing polycarbonate diol.
In order to solve the second technical problem of the present invention, the fluorine-containing polycarbonate diol is prepared by the following method:
a. ester exchange: mixing diethyl carbonate, alkyl diol and fluorine-containing diol with a catalyst, heating to 120-160 ℃ in the atmosphere of high-purity nitrogen or other inert gases, reacting for 4-6 h, and discharging reaction byproducts out of a reaction system;
b. and (3) reduced pressure polycondensation: and c, after the reaction in the step a is finished, heating to 180-220 ℃, starting to perform reduced pressure polycondensation, reducing the pressure to 0.5-1.5 KPa, and reacting for 1-3 h to obtain the fluorine-containing polycarbonate diol.
Preferably, the method also comprises the step b after the mixture of the ethanol and the diethyl carbonate which are byproducts generated in the reaction in the step a is discharged out of the reaction system.
In one embodiment, the catalyst is a tin-based catalyst including stannous chloride, stannous octoate, and dibutyltin dilaurate; the titanium catalyst includes butyl titanate, propyl titanate and titanium dichloride. One or more of them can be used.
In a specific embodiment, the amount of the catalyst is 0.05 to 0.5wt% of the total mass of the reactants.
In one embodiment, the alkyl diol is one of ethylene glycol, 1, 3-propanediol, 1, 4-butanediol, 1, 5-pentanediol, and 1, 6-hexanediol.
In one embodiment, the fluorine-containing diol is one of 2,2,3, 3-tetrafluoro-1, 4-butane diol, 2,3,3,4, 4-hexafluoro-1, 5-pentane diol, 2,3,3,4,4,5, 5-octafluoro-1, 6-hexane diol, 1H, 8H-dodecafluoro-1, 8-octanediol, 1H, 10H-perfluoro-1, 10-decane diol, 1H, 12H-perfluoro-1, 12-dodecanediol, and hexafluorobisphenol a.
The following examples are provided to further illustrate the embodiments of the present invention and are not intended to limit the scope of the present invention.
Example 1
Under a high-purity nitrogen atmosphere, 129.95g of diethyl carbonate, 45.61g of 1, 4-butanediol, 81.04g of 2,2,3, 3-tetrafluoro-1, 4-butanediol and 1.29g (0.5%) of butyl titanate are added into a 500mL three-neck flask provided with a stirrer and a normal-pressure rectifying device, polymerization reaction is carried out for 4 hours at 130 ℃, the temperature is increased to 180 ℃, the system pressure is reduced to 1Kpa, reduced-pressure polycondensation reaction is started, the time is 1-3 hours, the reaction is stopped when the product reaches an ideal viscosity, and the fluorine-containing polycarbonate diol is obtained after the system is cooled to room temperature.
Example 2
Under the atmosphere of high-purity nitrogen, 129.95g of diethyl carbonate, 45.61g of 1, 4-butanediol, 106.5g of 2,2,3,3,4, 4-hexafluoro-1, 5-pentanediol and 1.29g (0.5%) of butyl titanate are added into a 500mL three-neck flask provided with a stirrer and a normal-pressure rectifying device, polymerization reaction is carried out for 4 hours at 130 ℃, then the temperature is increased to 180 ℃, the system pressure is reduced to 1Kpa, reduced-pressure polycondensation reaction is started, the time is 1-3 hours, the reaction is stopped when the product reaches the ideal viscosity, and the fluorine-containing polycarbonate diol is obtained after the system is cooled to room temperature.
Example 3
Under a high-purity nitrogen atmosphere, 153.57g of diethyl carbonate, 45.61g of 1, 4-butanediol, 81.04g of 2,2,3, 3-tetrafluoro-1, 4-butanediol and 1.29g (0.5%) of butyl titanate are added into a 500mL three-neck flask provided with a stirrer and a normal-pressure rectifying device, polymerization reaction is carried out for 4 hours at 130 ℃, the temperature is increased to 180 ℃, the system pressure is reduced to 1Kpa, reduced-pressure polycondensation reaction is started, the time is 1-3 hours, the reaction is stopped when the product reaches an ideal viscosity, and the fluorine-containing polycarbonate diol is obtained after the system is cooled to room temperature.
Example 4
Under the atmosphere of high-purity nitrogen, 153.57g of diethyl carbonate, 45.61g of 1, 4-butanediol, 81.04g of 2,2,3, 3-tetrafluoro-1, 4-butanediol and 1.29g (0.5%) of butyl titanate are added into a 500mL three-neck flask provided with a stirrer and a normal-pressure rectifying device, polymerization reaction is carried out for 4 hours at 160 ℃, then the temperature is increased to 200 ℃, the system pressure is reduced to 1Kpa, reduced-pressure polycondensation reaction is started, the time is 1-3 hours, the reaction is stopped when the product reaches the ideal viscosity, and the fluorine-containing polycarbonate diol is obtained after the system is cooled to room temperature.
FIG. 1 is a nuclear magnetic hydrogen spectrum diagram of the fluorine-containing polycarbonate diols in examples 1,3 and 4.
FIG. 2 is a nuclear magnetic hydrogen spectrum of the fluorine-containing polycarbonate diol of example 2.
The performance parameters of the fluorine-containing polycarbonate diols prepared according to the embodiments of examples 1 to 4 are shown in the following table:
examples | Example 1 | Example 2 | Example 3 | Example 4 |
Average molecular weight/Mn | 1100 | 1600 | 2000 | 2200 |
Hydroxyl number (mg KOH/g) | 102 | 70 | 56.1 | 51 |
Purity of the product | 98.3% | 98.8% | 99% | 97.6% |
Acid value (mg KOH/g) | 0.06 | 0.05 | 0.02 | 0.08 |
The embodiments in the above description can be further combined or replaced, and the embodiments are only described as preferred examples of the present invention, and do not limit the concept and scope of the present invention, and various changes and modifications made to the technical solution of the present invention by those skilled in the art without departing from the design concept of the present invention belong to the protection scope of the present invention. The scope of the invention is given by the appended claims and any equivalents thereof.
Claims (10)
1. A fluorine-containing polycarbonate diol which is characterized by being prepared by the following method:
diethyl carbonate, alkyl diol and fluorine-containing diol are used as raw materials, and the fluorine-containing polycarbonate diol is obtained by a two-step ester exchange polycondensation method under the action of a catalyst.
2. The fluorine-containing polycarbonate diol according to claim 1, wherein the molar ratio of diethyl carbonate to the ester alcohol comprising an alkyl diol and a fluorine-containing diol is 1.1 to 1.5:1, and the molar ratio of the alkyl diol to the fluorine-containing diol is 1 to 10: 1.
3. The fluorine-containing polycarbonate diol according to claim 1, wherein the method comprises:
a. ester exchange: mixing diethyl carbonate, alkyl diol and fluorine-containing diol with a catalyst, heating to 120-160 ℃ in the atmosphere of high-purity nitrogen or other inert gases, reacting for 4-6 h, and discharging reaction byproducts out of a reaction system;
b. and (3) reduced pressure polycondensation: after the reaction in the step a is finished, heating to 180-220 ℃, starting to perform reduced pressure polycondensation, reducing the pressure to 0.5-1.5 KPa, and reacting for 1-3 h to obtain the fluorine-containing polycarbonate diol;
preferably, the method also comprises the step b after the mixture of the ethanol and the diethyl carbonate which are byproducts generated in the reaction in the step a is discharged out of the reaction system.
4. The fluorine-containing polycarbonate diol according to claim 3, wherein the catalyst comprises tin-based and titanium-based catalysts; the tin catalyst comprises stannous chloride, stannous octoate and dibutyltin dilaurate; the titanium catalyst comprises butyl titanate, propyl titanate and titanium dichloride; the catalyst can be one or more of the above.
5. The fluorine-containing polycarbonate diol according to claim 4, wherein the amount of the catalyst is 0.05 to 0.5wt% based on the total mass of the reactants.
6. The fluorine-containing polycarbonate diol according to any one of claims 1 to 5, wherein the alkyl diol is one of ethylene glycol, 1, 3-propanediol, 1, 4-butanediol, 1, 5-pentanediol, and 1, 6-hexanediol.
7. The fluorine-containing polycarbonate diol according to any one of claims 1 to 5, wherein the fluorine-containing diol is one of 2,2,3, 3-tetrafluoro-1, 4-butanediol, 2,3,3,4, 4-hexafluoro-1, 5-pentanediol, 2,3,3,4,4,5, 5-octafluoro-1, 6-hexanediol, 1H,8H, 8H-dodecafluoro-1, 8-octanediol, 1H,10H, 10H-perfluoro-1, 10-decanediol, 1H,12H, 12H-perfluoro-1, 12-dodecanediol, and hexafluorobisphenol A.
8. A process for producing a fluorine-containing polycarbonate diol according to claim 1,
a. ester exchange: mixing diethyl carbonate, alkyl diol and fluorine-containing diol with a catalyst, heating to 120-160 ℃ in the atmosphere of high-purity nitrogen or other inert gases, reacting for 4-6 h, and discharging reaction byproducts out of a reaction system;
b. and (3) reduced pressure polycondensation: after the reaction in the step a is finished, heating to 180-220 ℃, starting to perform reduced pressure polycondensation, reducing the pressure to 0.5-1.5 KPa, and reacting for 1-3 h to obtain the fluorine-containing polycarbonate diol;
preferably, the method also comprises the step b after the mixture of the ethanol and the diethyl carbonate which are byproducts generated in the reaction in the step a is discharged out of the reaction system.
9. The production method according to claim 8, wherein the catalyst includes tin-based and titanium-based catalysts; the tin catalyst comprises stannous chloride, stannous octoate and dibutyltin dilaurate; the titanium catalyst comprises butyl titanate, propyl titanate and titanium dichloride; the catalyst can be one or more of the above.
10. The preparation method according to claim 8 or 9, wherein the amount of the catalyst is 0.05 to 0.5wt% of the total mass of the reactants;
the alkyl diol is one of ethylene glycol, 1, 3-propylene glycol, 1, 4-butanediol, 1, 5-pentanediol and 1, 6-hexanediol;
the fluorine-containing diol is one of 2,2,3, 3-tetrafluoro-1, 4-butane diol, 2,3,3,4, 4-hexafluoro-1, 5-pentane diol, 2,3,3,4,4,5, 5-octafluoro-1, 6-hexane diol, 1H,8H, 8H-dodecafluoro-1, 8-octanediol, 1H,10H, 10H-perfluoro-1, 10-decane diol, 1H,12H, 12H-perfluoro-1, 12-dodecane diol and hexafluorobisphenol A.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111424110.7A CN114149576A (en) | 2021-11-26 | 2021-11-26 | Fluorine-containing polycarbonate diol and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111424110.7A CN114149576A (en) | 2021-11-26 | 2021-11-26 | Fluorine-containing polycarbonate diol and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114149576A true CN114149576A (en) | 2022-03-08 |
Family
ID=80458339
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111424110.7A Pending CN114149576A (en) | 2021-11-26 | 2021-11-26 | Fluorine-containing polycarbonate diol and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114149576A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115304903A (en) * | 2022-09-02 | 2022-11-08 | 四川龙华光电薄膜股份有限公司 | TPU modified resin and application |
CN115353728A (en) * | 2022-09-02 | 2022-11-18 | 四川龙华光电薄膜股份有限公司 | Modified PC and TPU composite material and preparation method and application thereof |
CN115536827A (en) * | 2022-09-23 | 2022-12-30 | 濮阳市盛通聚源新材料有限公司 | Bio-based fluorine-containing polycarbonate and preparation method thereof |
TWI876508B (en) | 2022-09-02 | 2025-03-11 | 大陸商四川龍華光電薄膜股份有限公司 | Tpu modified resin and application thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101701062A (en) * | 2009-11-17 | 2010-05-05 | 常州化学研究所 | Method for synthesizing aliphatic polycarbonate polyols |
KR101136951B1 (en) * | 2011-11-16 | 2012-04-26 | (주)삼일물산 | Fluorinated polycarbonate diol, its preparation and method for preparing fluorinated polyurethane using the same |
US20160032046A1 (en) * | 2013-04-16 | 2016-02-04 | Asahi Glass Company, Limited | Polycarbonate manufacturing method and polycarbonate |
CN110551366A (en) * | 2018-05-30 | 2019-12-10 | 中国石油化工股份有限公司 | Preparation method of super-hydrophobic polyester film |
CN113402702A (en) * | 2021-07-14 | 2021-09-17 | 四川轻化工大学 | Flame-retardant degradable PBS and preparation method thereof |
-
2021
- 2021-11-26 CN CN202111424110.7A patent/CN114149576A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101701062A (en) * | 2009-11-17 | 2010-05-05 | 常州化学研究所 | Method for synthesizing aliphatic polycarbonate polyols |
KR101136951B1 (en) * | 2011-11-16 | 2012-04-26 | (주)삼일물산 | Fluorinated polycarbonate diol, its preparation and method for preparing fluorinated polyurethane using the same |
US20160032046A1 (en) * | 2013-04-16 | 2016-02-04 | Asahi Glass Company, Limited | Polycarbonate manufacturing method and polycarbonate |
CN110551366A (en) * | 2018-05-30 | 2019-12-10 | 中国石油化工股份有限公司 | Preparation method of super-hydrophobic polyester film |
CN113402702A (en) * | 2021-07-14 | 2021-09-17 | 四川轻化工大学 | Flame-retardant degradable PBS and preparation method thereof |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115304903A (en) * | 2022-09-02 | 2022-11-08 | 四川龙华光电薄膜股份有限公司 | TPU modified resin and application |
CN115353728A (en) * | 2022-09-02 | 2022-11-18 | 四川龙华光电薄膜股份有限公司 | Modified PC and TPU composite material and preparation method and application thereof |
TWI876508B (en) | 2022-09-02 | 2025-03-11 | 大陸商四川龍華光電薄膜股份有限公司 | Tpu modified resin and application thereof |
CN115536827A (en) * | 2022-09-23 | 2022-12-30 | 濮阳市盛通聚源新材料有限公司 | Bio-based fluorine-containing polycarbonate and preparation method thereof |
CN115536827B (en) * | 2022-09-23 | 2023-12-19 | 濮阳市盛通聚源新材料有限公司 | Bio-based fluorine-containing polycarbonate and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114149576A (en) | Fluorine-containing polycarbonate diol and preparation method thereof | |
JP2831292B2 (en) | Vinyl ether-terminated ester resin from bis (hydroxyalkyl) cycloalkane | |
CN103102490B (en) | Phosphorus-containing polyol, its preparation method and comprise its flame retardant polyurethane | |
EP2976348B1 (en) | Method of preparing poly(alkylene carbonate) via copolymerization of carbon dioxide/epoxide in the presence of novel complex | |
KR101908777B1 (en) | Polycarbonate diol and thermoplastic polyurethane made from the same | |
CN111909367B (en) | Preparation method of hydrophilic polycarbonate dihydric alcohol | |
CN114316239B (en) | Polycarbonate polyol with side chain containing phosphorus as well as preparation method and application thereof | |
US20160177027A1 (en) | Aliphatic polycarbonate macropolyol and aliphatic polycarbonate-co-aromatic polyester macropolyol | |
EP4132989B1 (en) | Thermoplastic polyurethanes derived from lignin monomers | |
CN115785431B (en) | Polyether polyol containing carbamate structure and synthetic method and application thereof | |
CN116102725B (en) | A method for preparing flame retardant polycarbonate polyol | |
CN111533895B (en) | Silicon-containing polyester polyol and preparation method thereof | |
EP2215144B1 (en) | Copolymers comprising a trimethylene carbonate and poly(trimethylene ether) glycols | |
CN102924679B (en) | Epoxy resin modified waterborne hyperbranched polyurethane and preparation method thereof | |
CN109021196B (en) | Organic silicon type polyurethane damping material and preparation method thereof | |
CN111234193B (en) | A kind of method for catalyzing synthesis of polyetherester by titanium-based composite catalytic system | |
US20060004176A1 (en) | Oligocarbonate polyols having terminal secondary hydroxyl groups | |
KR102552242B1 (en) | Method of preparing eco-friendly polyester and eco-friendly polyester prepared by the method | |
CN111269404B (en) | Composite catalyst suitable for synthesizing polytrimethylene terephthalate and preparation method of polytrimethylene terephthalate | |
CN110256662B (en) | Preparation method of low-molecular-weight aliphatic polycarbonate polyol | |
TWI837844B (en) | Method for producing liquid polycarbonate compound, and polyurethane | |
CN119176932B (en) | Synthesis method of polyester polyol for solvent-resistant rubber roller | |
CN109400861B (en) | Branched polycarbonate polyol, preparation method and application thereof | |
JP2024144017A (en) | Carbamic acid ester compounds | |
JP3700648B2 (en) | Liquid polyether carbonate diol |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |