CN114146186B - Polypeptide drug conjugate based on sulfonium salt stabilized target HDAC and application thereof - Google Patents
Polypeptide drug conjugate based on sulfonium salt stabilized target HDAC and application thereof Download PDFInfo
- Publication number
- CN114146186B CN114146186B CN202111298180.2A CN202111298180A CN114146186B CN 114146186 B CN114146186 B CN 114146186B CN 202111298180 A CN202111298180 A CN 202111298180A CN 114146186 B CN114146186 B CN 114146186B
- Authority
- CN
- China
- Prior art keywords
- polypeptide
- hdac
- sulfonium salt
- drug conjugate
- tumor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 108090000765 processed proteins & peptides Proteins 0.000 title claims abstract description 113
- 102000004196 processed proteins & peptides Human genes 0.000 title claims abstract description 82
- 229920001184 polypeptide Polymers 0.000 title claims abstract description 71
- 239000003814 drug Substances 0.000 title claims abstract description 64
- 229940079593 drug Drugs 0.000 title claims abstract description 63
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 title claims abstract description 20
- 102000003964 Histone deacetylase Human genes 0.000 title claims description 42
- 108090000353 Histone deacetylase Proteins 0.000 title claims description 42
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 28
- 239000003276 histone deacetylase inhibitor Substances 0.000 claims abstract description 22
- 231100000419 toxicity Toxicity 0.000 claims abstract description 22
- 230000001988 toxicity Effects 0.000 claims abstract description 22
- 230000006907 apoptotic process Effects 0.000 claims abstract description 17
- 201000007270 liver cancer Diseases 0.000 claims abstract description 16
- 208000014018 liver neoplasm Diseases 0.000 claims abstract description 16
- 229940121372 histone deacetylase inhibitor Drugs 0.000 claims abstract description 13
- 230000008878 coupling Effects 0.000 claims abstract description 3
- 238000010168 coupling process Methods 0.000 claims abstract description 3
- 238000005859 coupling reaction Methods 0.000 claims abstract description 3
- 230000006641 stabilisation Effects 0.000 claims abstract description 3
- 238000011105 stabilization Methods 0.000 claims abstract description 3
- 230000008685 targeting Effects 0.000 claims description 14
- 230000002401 inhibitory effect Effects 0.000 claims description 11
- 206010009944 Colon cancer Diseases 0.000 claims description 7
- NEAQRZUHTPSBBM-UHFFFAOYSA-N 2-hydroxy-3,3-dimethyl-7-nitro-4h-isoquinolin-1-one Chemical group C1=C([N+]([O-])=O)C=C2C(=O)N(O)C(C)(C)CC2=C1 NEAQRZUHTPSBBM-UHFFFAOYSA-N 0.000 claims description 6
- 239000002253 acid Substances 0.000 claims description 6
- 208000029742 colonic neoplasm Diseases 0.000 claims description 6
- 238000002360 preparation method Methods 0.000 claims description 4
- 210000004027 cell Anatomy 0.000 abstract description 36
- 230000001640 apoptogenic effect Effects 0.000 abstract description 19
- 210000004881 tumor cell Anatomy 0.000 abstract description 17
- 238000002474 experimental method Methods 0.000 abstract description 12
- 230000000259 anti-tumor effect Effects 0.000 abstract description 11
- 230000025084 cell cycle arrest Effects 0.000 abstract description 4
- 230000035755 proliferation Effects 0.000 abstract description 4
- 230000004663 cell proliferation Effects 0.000 abstract description 2
- 108091005804 Peptidases Proteins 0.000 abstract 1
- 239000004365 Protease Substances 0.000 abstract 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 abstract 1
- 231100001231 less toxic Toxicity 0.000 abstract 1
- 230000003211 malignant effect Effects 0.000 abstract 1
- 230000001568 sexual effect Effects 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 18
- 239000011347 resin Substances 0.000 description 13
- 229920005989 resin Polymers 0.000 description 13
- 201000011510 cancer Diseases 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- CBPJQFCAFFNICX-IBGZPJMESA-N (2s)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-4-methylpentanoic acid Chemical compound C1=CC=C2C(COC(=O)N[C@@H](CC(C)C)C(O)=O)C3=CC=CC=C3C2=C1 CBPJQFCAFFNICX-IBGZPJMESA-N 0.000 description 7
- 230000019491 signal transduction Effects 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- 108010069514 Cyclic Peptides Proteins 0.000 description 6
- 102000001189 Cyclic Peptides Human genes 0.000 description 6
- 230000021736 acetylation Effects 0.000 description 6
- 238000006640 acetylation reaction Methods 0.000 description 6
- DVBUCBXGDWWXNY-SFHVURJKSA-N (2s)-5-(diaminomethylideneamino)-2-(9h-fluoren-9-ylmethoxycarbonylamino)pentanoic acid Chemical compound C1=CC=C2C(COC(=O)N[C@@H](CCCN=C(N)N)C(O)=O)C3=CC=CC=C3C2=C1 DVBUCBXGDWWXNY-SFHVURJKSA-N 0.000 description 5
- 206010018910 Haemolysis Diseases 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 210000003743 erythrocyte Anatomy 0.000 description 5
- 230000008588 hemolysis Effects 0.000 description 5
- 239000003112 inhibitor Substances 0.000 description 5
- 239000013642 negative control Substances 0.000 description 5
- RWSOTUBLDIXVET-UHFFFAOYSA-O sulfonium Chemical class [SH3+] RWSOTUBLDIXVET-UHFFFAOYSA-O 0.000 description 5
- 238000001262 western blot Methods 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 4
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 230000014509 gene expression Effects 0.000 description 4
- 230000002147 killing effect Effects 0.000 description 4
- 108090000623 proteins and genes Proteins 0.000 description 4
- 210000002966 serum Anatomy 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 206010006187 Breast cancer Diseases 0.000 description 3
- 208000026310 Breast neoplasm Diseases 0.000 description 3
- 206010059866 Drug resistance Diseases 0.000 description 3
- 241000282414 Homo sapiens Species 0.000 description 3
- 101000600434 Homo sapiens Putative uncharacterized protein encoded by MIR7-3HG Proteins 0.000 description 3
- 102100037401 Putative uncharacterized protein encoded by MIR7-3HG Human genes 0.000 description 3
- 230000022131 cell cycle Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000001973 epigenetic effect Effects 0.000 description 3
- 230000002949 hemolytic effect Effects 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000012163 sequencing technique Methods 0.000 description 3
- BUBGAUHBELNDEW-SFHVURJKSA-N (2s)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-4-methylsulfanylbutanoic acid Chemical compound C1=CC=C2C(COC(=O)N[C@@H](CCSC)C(O)=O)C3=CC=CC=C3C2=C1 BUBGAUHBELNDEW-SFHVURJKSA-N 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- 102400000888 Cholecystokinin-8 Human genes 0.000 description 2
- 101800005151 Cholecystokinin-8 Proteins 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 206010025323 Lymphomas Diseases 0.000 description 2
- 206010027476 Metastases Diseases 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- 208000027190 Peripheral T-cell lymphomas Diseases 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 208000031672 T-Cell Peripheral Lymphoma Diseases 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 239000002246 antineoplastic agent Substances 0.000 description 2
- 229940041181 antineoplastic drug Drugs 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- -1 belistat Chemical compound 0.000 description 2
- 230000001588 bifunctional effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000002512 chemotherapy Methods 0.000 description 2
- 229940044683 chemotherapy drug Drugs 0.000 description 2
- 229950009221 chidamide Drugs 0.000 description 2
- 231100000135 cytotoxicity Toxicity 0.000 description 2
- 230000003013 cytotoxicity Effects 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 231100000517 death Toxicity 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000000684 flow cytometry Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 208000020968 mature T-cell and NK-cell non-Hodgkin lymphoma Diseases 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000009401 metastasis Effects 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- BQJCRHHNABKAKU-KBQPJGBKSA-N morphine Chemical compound O([C@H]1[C@H](C=C[C@H]23)O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O BQJCRHHNABKAKU-KBQPJGBKSA-N 0.000 description 2
- WXHHICFWKXDFOW-BJMVGYQFSA-N n-(2-amino-5-fluorophenyl)-4-[[[(e)-3-pyridin-3-ylprop-2-enoyl]amino]methyl]benzamide Chemical compound NC1=CC=C(F)C=C1NC(=O)C(C=C1)=CC=C1CNC(=O)\C=C\C1=CC=CN=C1 WXHHICFWKXDFOW-BJMVGYQFSA-N 0.000 description 2
- 125000006239 protecting group Chemical group 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- IZTQOLKUZKXIRV-YRVFCXMDSA-N sincalide Chemical compound C([C@@H](C(=O)N[C@@H](CCSC)C(=O)NCC(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](N)CC(O)=O)C1=CC=C(OS(O)(=O)=O)C=C1 IZTQOLKUZKXIRV-YRVFCXMDSA-N 0.000 description 2
- 238000010532 solid phase synthesis reaction Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- ZGYICYBLPGRURT-UHFFFAOYSA-N tri(propan-2-yl)silicon Chemical compound CC(C)[Si](C(C)C)C(C)C ZGYICYBLPGRURT-UHFFFAOYSA-N 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- FPCPONSZWYDXRD-UHFFFAOYSA-N 6-(9h-fluoren-9-ylmethoxycarbonylamino)hexanoic acid Chemical compound C1=CC=C2C(COC(=O)NCCCCCC(=O)O)C3=CC=CC=C3C2=C1 FPCPONSZWYDXRD-UHFFFAOYSA-N 0.000 description 1
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 1
- 230000033616 DNA repair Effects 0.000 description 1
- 230000004543 DNA replication Effects 0.000 description 1
- 108010040476 FITC-annexin A5 Proteins 0.000 description 1
- 230000010190 G1 phase Effects 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- 108010033040 Histones Proteins 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 238000003559 RNA-seq method Methods 0.000 description 1
- 208000005718 Stomach Neoplasms Diseases 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 125000000637 arginyl group Chemical group N[C@@H](CCCNC(N)=N)C(=O)* 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 238000002784 cytotoxicity assay Methods 0.000 description 1
- 231100000263 cytotoxicity test Toxicity 0.000 description 1
- 238000010511 deprotection reaction Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000012154 double-distilled water Substances 0.000 description 1
- 238000002330 electrospray ionisation mass spectrometry Methods 0.000 description 1
- 230000007159 enucleation Effects 0.000 description 1
- 238000009162 epigenetic therapy Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000011354 first-line chemotherapy Methods 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 206010017758 gastric cancer Diseases 0.000 description 1
- 102000034356 gene-regulatory proteins Human genes 0.000 description 1
- 108091006104 gene-regulatory proteins Proteins 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 201000005787 hematologic cancer Diseases 0.000 description 1
- 208000024200 hematopoietic and lymphoid system neoplasm Diseases 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- ZFGMDIBRIDKWMY-PASTXAENSA-N heparin Chemical compound CC(O)=N[C@@H]1[C@@H](O)[C@H](O)[C@@H](COS(O)(=O)=O)O[C@@H]1O[C@@H]1[C@@H](C(O)=O)O[C@@H](O[C@H]2[C@@H]([C@@H](OS(O)(=O)=O)[C@@H](O[C@@H]3[C@@H](OC(O)[C@H](OS(O)(=O)=O)[C@H]3O)C(O)=O)O[C@@H]2O)CS(O)(=O)=O)[C@H](O)[C@H]1O ZFGMDIBRIDKWMY-PASTXAENSA-N 0.000 description 1
- 229960001008 heparin sodium Drugs 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000003119 immunoblot Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 238000010208 microarray analysis Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229960005181 morphine Drugs 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000009437 off-target effect Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 229960005184 panobinostat Drugs 0.000 description 1
- FWZRWHZDXBDTFK-ZHACJKMWSA-N panobinostat Chemical compound CC1=NC2=CC=C[CH]C2=C1CCNCC1=CC=C(\C=C\C(=O)NO)C=C1 FWZRWHZDXBDTFK-ZHACJKMWSA-N 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000007903 penetration ability Effects 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 230000000861 pro-apoptotic effect Effects 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- OHRURASPPZQGQM-GCCNXGTGSA-N romidepsin Chemical compound O1C(=O)[C@H](C(C)C)NC(=O)C(=C/C)/NC(=O)[C@H]2CSSCC\C=C\[C@@H]1CC(=O)N[C@H](C(C)C)C(=O)N2 OHRURASPPZQGQM-GCCNXGTGSA-N 0.000 description 1
- 229960003452 romidepsin Drugs 0.000 description 1
- 108010091666 romidepsin Proteins 0.000 description 1
- OHRURASPPZQGQM-UHFFFAOYSA-N romidepsin Natural products O1C(=O)C(C(C)C)NC(=O)C(=CC)NC(=O)C2CSSCCC=CC1CC(=O)NC(C(C)C)C(=O)N2 OHRURASPPZQGQM-UHFFFAOYSA-N 0.000 description 1
- 229940126586 small molecule drug Drugs 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000013112 stability test Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 201000011549 stomach cancer Diseases 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229940126585 therapeutic drug Drugs 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 231100000440 toxicity profile Toxicity 0.000 description 1
- 231100000820 toxicity test Toxicity 0.000 description 1
- 230000001875 tumorinhibitory effect Effects 0.000 description 1
- WAEXFXRVDQXREF-UHFFFAOYSA-N vorinostat Chemical compound ONC(=O)CCCCCCC(=O)NC1=CC=CC=C1 WAEXFXRVDQXREF-UHFFFAOYSA-N 0.000 description 1
- 229960000237 vorinostat Drugs 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/62—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
- A61K47/64—Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/16—Amides, e.g. hydroxamic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/10—Peptides having 12 to 20 amino acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Gastroenterology & Hepatology (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicinal Preparation (AREA)
- Peptides Or Proteins (AREA)
Abstract
本发明涉及一种基于锍盐稳定的靶向HDAC的多肽药物偶联体及其应用,利用锍盐稳定的促凋亡多肽偶联HDAC抑制剂,形成具有肿瘤选择性毒性的稳定多肽HDAC抑制剂,经锍盐化学稳定后的凋亡多肽,非特异性毒性显著降低,蛋白酶的稳定性更强,当偶联HDAC抑制剂形成多肽药物偶联体后,该多肽药物可以显著提高对肿瘤细胞的选择性毒性,而对正常细胞的毒性较弱。通过细胞增殖、细胞凋亡、细胞周期阻滞实验证明本发明的多肽可以有效抑制恶性肝癌的增殖,而且具有相对更好的生物安全性,具有潜在的抗肿瘤临床应用前景。
The present invention relates to a HDAC-targeted HDAC-stabilized polypeptide drug conjugate based on sulfonium salt stabilization and its application. The HDAC inhibitor is coupled to a pro-apoptosis polypeptide stabilized by sulfonium salt to form a stable polypeptide HDAC inhibitor with tumor selective toxicity. , the apoptotic polypeptide chemically stabilized by sulfonium salts, the non-specific toxicity is significantly reduced, and the stability of the protease is stronger. When the polypeptide drug conjugate is formed by coupling HDAC inhibitors, the polypeptide drug can significantly improve the selection of tumor cells Sexual toxicity, but less toxic to normal cells. Cell proliferation, cell apoptosis, and cell cycle arrest experiments prove that the polypeptide of the present invention can effectively inhibit the proliferation of malignant liver cancer, has relatively better biological safety, and has potential anti-tumor clinical application prospects.
Description
技术领域technical field
本发明属于生物工程领域,涉及一种多肽药物偶联体,具体是一种基于锍盐稳定的靶向HDAC的多肽药物偶联体及其应用。The invention belongs to the field of bioengineering and relates to a polypeptide drug conjugate, in particular to a sulfonium salt-based HDAC-targeted polypeptide drug conjugate and an application thereof.
背景技术Background technique
癌症是世界范围内一个主要的公共卫生问题。世卫组织公布2020年全球癌症数据显示,2020年中国新发癌症病例457万例,死亡病例300多万例,中国新发癌症人数位居全球第一。肺癌、结直肠癌,肝癌、胃癌、乳腺癌等都是死亡人数排名前十的癌症。肿瘤类型和肿瘤致病原因在不同的性别以及年龄中会不同,肿瘤疾病的复杂性为人类攻克该疾病带来了挑战。传统的肿瘤治疗方法包括手术、放疗和化疗,但是肿瘤的复发、转移和耐药让肿瘤的治疗迎来巨大的挑战。随着生物技术的高速发展,人类对肿瘤发病机制的认识越来越深入,因此研发的抗肿瘤治疗药物层出不穷,这些研究成果为人类彻底治愈肿瘤带来了巨大的信心。过去十几年来对人类癌症基因组的综合分析显示,在许多癌症中参与基因表达、DNA修复和DNA复制的表观遗传调控蛋白都出现了突变。进一步的研究表明,表观遗传学的异常参与肿瘤的转移、耐药等机制,因此联合表观遗传学疗法成为抗肿瘤治疗的重要手段之一。组蛋白去乙酰化酶(HDAC),作为表观遗传学重要调控因子,在很多恶性肿瘤(比如淋巴癌,乳腺癌,肝癌,结肠癌等)的发生发展及耐药中发挥重要的作用。因此,靶向HDAC的药物研发一直受到药物化学家的青睐。截止日前,全球上市的HDAC药物有5种,分别是伏立诺他、罗米地辛、贝利司他、帕比司他以及西达本胺,主要用于外周T细胞淋巴瘤和外周T细胞淋巴瘤,其中西达本胺是唯一获批用于实体瘤乳腺癌治疗的HDAC抑制剂。目前,仍有很多HDAC药物处于临床前或者临床研究用于实体瘤或者血液癌的治疗。因此,靶向HDAC的药物对于治疗肿瘤具有较好的前景。Cancer is a major public health problem worldwide. According to the 2020 global cancer data published by the World Health Organization, there will be 4.57 million new cancer cases and more than 3 million deaths in China in 2020. The number of new cancer cases in China ranks first in the world. Lung cancer, colorectal cancer, liver cancer, gastric cancer, and breast cancer are among the top ten cancers in terms of death toll. The types of tumors and the causes of tumors are different in different genders and ages. The complexity of tumor diseases has brought challenges to human beings to overcome this disease. Traditional tumor treatment methods include surgery, radiotherapy and chemotherapy, but tumor recurrence, metastasis and drug resistance pose great challenges to tumor treatment. With the rapid development of biotechnology, human beings have a deeper and deeper understanding of the pathogenesis of tumors. Therefore, anti-tumor therapeutic drugs have been developed in an endless stream. These research results have brought great confidence to humans in completely curing tumors. Comprehensive analyzes of human cancer genomes over the past decade have revealed that epigenetic regulatory proteins involved in gene expression, DNA repair, and DNA replication are mutated in many cancers. Further studies have shown that epigenetic abnormalities are involved in tumor metastasis, drug resistance and other mechanisms, so combined epigenetic therapy has become one of the important means of anti-tumor therapy. Histone deacetylase (HDAC), as an important epigenetic regulator, plays an important role in the development and drug resistance of many malignant tumors (such as lymphoma, breast cancer, liver cancer, colon cancer, etc.). Therefore, the development of drugs targeting HDACs has been favored by medicinal chemists. As of the deadline, there are 5 HDAC drugs on the global market, namely vorinostat, romidepsin, belistat, panobinostat and chidamide, which are mainly used for peripheral T-cell lymphoma and peripheral T-cell lymphoma. cell lymphoma, among which chidamide is the only HDAC inhibitor approved for the treatment of solid tumor breast cancer. At present, there are still many HDAC drugs in preclinical or clinical research for the treatment of solid tumors or blood cancers. Therefore, drugs targeting HDACs have good prospects for the treatment of tumors.
由于癌症的异质性和复杂性,癌症的治疗采用联合治疗的方案,比如靶向药与化疗药的联合,双靶点抑制剂、多功能抑制剂等等。凋亡多肽可通过诱导细胞的凋亡而抑制肿瘤的增殖,具有广谱抗肿瘤的效果。同时,凋亡多肽与一线化疗药物的抗肿瘤机制不同,对于治疗化疗耐药的肿瘤细胞也有潜在的应用前景。与生物大分子类似,多肽类分子对于靶点也有较高的结合力与选择性,相对于小分子类药物具有更小的脱靶效应。而多肽在体内的代谢产物为氨基酸,最大限度地降低了毒性。但是线性多肽往往很难维持原有的二级结构,因而具有较差的靶点亲和性、血清稳定性和细胞穿膜能力。化学稳定的多肽可以有效克服这些弱点,因此近十几年,化学稳定的多肽被用于各种蛋白靶点抑制剂的研发,且在细胞和动物水平展现出较好的抑瘤效果。Due to the heterogeneity and complexity of cancer, cancer treatment adopts combination therapy, such as the combination of targeted drugs and chemotherapy drugs, dual-target inhibitors, multifunctional inhibitors, etc. The apoptotic polypeptide can inhibit tumor proliferation by inducing cell apoptosis, and has a broad-spectrum anti-tumor effect. At the same time, the anti-tumor mechanism of apoptotic polypeptide is different from that of first-line chemotherapy drugs, and it also has potential application prospects in the treatment of chemotherapy-resistant tumor cells. Similar to biomacromolecules, polypeptide molecules also have higher binding force and selectivity for targets, and have smaller off-target effects than small molecule drugs. The metabolites of polypeptides in the body are amino acids, which minimizes toxicity. However, linear peptides are often difficult to maintain the original secondary structure, so they have poor target affinity, serum stability and cell membrane penetration ability. Chemically stable peptides can effectively overcome these weaknesses. Therefore, in the past ten years, chemically stable peptides have been used in the research and development of various protein target inhibitors, and have shown good tumor inhibitory effects at the cell and animal levels.
虽然HDAC抑制剂和凋亡多肽可用于多种肿瘤的治疗,但是它们各自存在一些缺点,比如HDAC抑制剂在临床应用中具有较多的毒副作用,凋亡多肽在早期的研究中发现,由于其具有较强的疏水性,使其对正常细胞和肿瘤细胞均具有抑制增殖的作用,因此生物安全性较差。前期开发的HDAC多肽抑制剂具有较强的肿瘤干细胞选择性抑制活性,而对正常细胞在大于10倍浓度下仍没有毒性,说明多肽的引入可以显著降低HDAC小分子抑制剂的毒性。前期也有报道,改变凋亡多肽的亲疏水性,可显著影响多肽对细胞的毒性。因此,将HDAC药物偶联多肽,并通过化学手段改变多肽的结构和疏水性,有望能改善多肽药物的选择性毒性。Although HDAC inhibitors and apoptotic polypeptides can be used in the treatment of various tumors, they each have some shortcomings. It has strong hydrophobicity, which makes it inhibit the proliferation of both normal cells and tumor cells, so its biological safety is poor. The previously developed HDAC peptide inhibitors have strong selective inhibitory activity on tumor stem cells, but are not toxic to normal cells at a concentration greater than 10 times, indicating that the introduction of peptides can significantly reduce the toxicity of HDAC small molecule inhibitors. It was also reported earlier that changing the hydrophilicity and hydrophobicity of the apoptotic polypeptide can significantly affect the toxicity of the polypeptide to cells. Therefore, coupling HDAC drugs to peptides and changing the structure and hydrophobicity of peptides by chemical means is expected to improve the selective toxicity of peptide drugs.
发明内容Contents of the invention
本发明所要解决的技术问题是针对上述问题,提供一种基于锍盐稳定的靶向HDAC的多肽药物偶联体及其应用,本发明解决上述技术问题的技术方案如下:The technical problem to be solved in the present invention is to provide a HDAC-targeted polypeptide drug conjugate based on sulfonium salt stabilization and its application. The technical solution for solving the above technical problem in the present invention is as follows:
基于锍盐稳定的靶向HDAC的多肽药物偶联体,利用锍盐稳定的促凋亡多肽偶联HDAC抑制剂,形成具有肿瘤选择性毒性的稳定多肽HDAC抑制剂,多肽序列为:精氨酸-亮氨酸-亮氨酸-精氨酸-亮氨酸-甲硫氨酸-精氨酸-亮氨酸-精氨酸-亮氨酸-精氨酸-甲硫氨酸-亮氨酸-亮氨酸-精氨酸-亮氨酸,HDAC抑制剂为羟肟酸结构。Based on sulfonium salt-stabilized peptide-drug conjugates targeting HDAC, sulfonium salt-stabilized pro-apoptotic peptides are coupled to HDAC inhibitors to form stable peptide HDAC inhibitors with tumor-selective toxicity. The peptide sequence is: arginine -leucine-leucine-arginine-leucine-methionine-arginine-leucine-arginine-leucine-arginine-methionine-leucine -Leucine-Arginine-Leucine, HDAC inhibitors have a hydroxamic acid structure.
进一步的,偶联子的结构为5个以上碳的饱和脂肪链。Further, the structure of the coupler is a saturated aliphatic chain with more than 5 carbons.
基于锍盐稳定的靶向HDAC的多肽药物偶联体在制备抑制HDAC家族酶活活性的药物中的应用。Application of HDAC-targeting HDAC-stabilized polypeptide drug conjugates based on sulfonium salts in the preparation of drugs for inhibiting HDAC family enzyme activity.
基于锍盐稳定的靶向HDAC的多肽药物偶联体在制备抑制HDAC高表达的肿瘤细胞的药物中的应用。Application of HDAC-targeting HDAC-stabilized polypeptide drug conjugates based on sulfonium salts in the preparation of drugs for inhibiting tumor cells with high HDAC expression.
本发明中,我们基于报道的凋亡多肽“RLL”序列设计的锍盐化学稳定的环肽,通过锍盐的亲水性改变凋亡多肽的疏水性,从而降低其非特异性的毒性。同时,为了进一步提高其对肿瘤的杀伤效果,我们将多肽的碳端引入了HDAC抑制剂羟肟酸,从而实现双功能多肽抗肿瘤的目的。本发明设计的新颖的多肽药物偶联体在细胞水平具有较好的选择性毒性,对肝癌细胞Huh7和结肠癌细胞HCT116和HT29等具有较好的毒性,但是对正常细胞293T的细胞毒性较弱。充分说明,我们设计的多肽药物能在保持抗肿瘤效果的同时,具有较好的生物安全性。In the present invention, we designed a sulfonium salt chemically stable cyclic peptide based on the reported sequence of the apoptotic polypeptide "RLL", and changed the hydrophobicity of the apoptotic polypeptide through the hydrophilicity of the sulfonium salt, thereby reducing its non-specific toxicity. At the same time, in order to further improve its killing effect on tumors, we introduced the HDAC inhibitor hydroxamic acid into the carbon-terminus of the polypeptide, so as to realize the anti-tumor purpose of the bifunctional polypeptide. The novel polypeptide drug conjugate designed by the present invention has better selective toxicity at the cellular level, and has better toxicity to liver cancer cells Huh7 and colon cancer cells HCT116 and HT29, but has weaker cytotoxicity to
本发明通过HDAC酶活抑制实验、细胞凋亡、细胞周期、免疫印迹分析、转录组测序等实验,证实该多肽药物偶联体可以显著影响HDAC相关的信号通路。同时,我们采用溶血实验进一步验证,该多肽药物具有较好的生物相容性,在合适的浓度范围内不会引起红细胞破碎。本发明有益于解决传统HDAC抑制剂的毒副作用,增加其临床使用的治疗窗口。Through HDAC enzyme activity inhibition experiments, cell apoptosis, cell cycle, western blot analysis, transcriptome sequencing and other experiments, the present invention proves that the polypeptide drug conjugate can significantly affect HDAC-related signaling pathways. At the same time, we used hemolysis experiments to further verify that the peptide drug has good biocompatibility and will not cause red blood cell fragmentation in an appropriate concentration range. The invention is beneficial to solving the toxic and side effects of traditional HDAC inhibitors and increasing the therapeutic window of its clinical use.
本发明采用了锍盐稳定多肽的方法形成凋亡环肽。通过固相合成的方法将HDAC抑制剂羟肟酸结构引入该多肽序列的碳端,通过免疫印迹分析证明该多肽偶联体可以有效抑制HDAC胞内的生物活性。通过细胞凋亡、细胞周期实验以及对肿瘤细胞的总RNA测序实验证明该多肽可以抑制HDAC相关的信号通路。The invention adopts the method of stabilizing the polypeptide with sulfonium salt to form the apoptosis cyclic peptide. The HDAC inhibitor hydroxamic acid structure was introduced into the carbon-terminus of the polypeptide sequence by solid-phase synthesis, and Western blot analysis proved that the polypeptide conjugate could effectively inhibit the biological activity of HDAC in cells. The polypeptide can inhibit HDAC-related signaling pathways through cell apoptosis, cell cycle experiments and total RNA sequencing experiments on tumor cells.
本发明和已有技术相比,其技术进步是显著的。本发明将改造后的凋亡多肽与HDAC抑制剂偶联,既达到了双功能抗肿瘤的活性,又减低了其非特异性毒性,该项目有望成为一种高效、低毒的抗肿瘤药物。项目首先通过一系列的酶活抑制实验证明我们的多肽偶联体可以有效抑制HDAC蛋白,属于广谱类HDAC抑制剂。通过细胞增殖、细胞凋亡、细胞周期阻滞实验证明我们的多肽药物偶联体可以有效抑制多种肿瘤细胞的增殖、诱导其凋亡。通过转录组测序和免疫印迹实验证明本发明的多肽可以抑制HDAC相关信号通路。溶血实验说明该多肽药物偶联体具有较好的生物相容新,血清稳定性实验证明环肽比线性多肽具有更好的血清稳定性。该研究成果为未来开发新颖的、更广安全治疗窗口的多功能HDAC抑制剂治疗恶性实体瘤提供一种思路。Compared with the prior art, the technical progress of the present invention is remarkable. The invention couples the modified apoptotic polypeptide with HDAC inhibitor, which not only achieves bifunctional anti-tumor activity, but also reduces its non-specific toxicity. This project is expected to become an anti-tumor drug with high efficiency and low toxicity. The project firstly proved through a series of enzyme activity inhibition experiments that our polypeptide conjugate can effectively inhibit HDAC protein, which belongs to broad-spectrum HDAC inhibitor. Experiments on cell proliferation, apoptosis, and cell cycle arrest prove that our peptide drug conjugates can effectively inhibit the proliferation and induce apoptosis of various tumor cells. Transcriptome sequencing and immunoblotting experiments prove that the polypeptide of the present invention can inhibit HDAC-related signaling pathways. The hemolysis test shows that the peptide-drug conjugate has better biocompatibility, and the serum stability test proves that the cyclic peptide has better serum stability than the linear peptide. The research results provide an idea for the future development of novel, multifunctional HDAC inhibitors with a wider and safer therapeutic window for the treatment of malignant solid tumors.
附图说明Description of drawings
图1为:靶向HDAC的稳定多肽药物偶联体的设计图;Figure 1 is a design diagram of a stable peptide-drug conjugate targeting HDAC;
图2为:靶向HDAC的稳定多肽药物偶联体的合成路线图;Figure 2 is a synthetic route diagram of a stable peptide-drug conjugate targeting HDAC;
图3为:本发明的不同的多肽药物在各种肿瘤细胞及正常细胞的毒性图谱;Fig. 3 is: the toxicity profile of different polypeptide drugs of the present invention in various tumor cells and normal cells;
图4为:本发明的不同的多肽药物对血细胞的溶血毒性图;Fig. 4 is: the hemolytic toxicity diagram of different polypeptide drugs of the present invention to blood cells;
图5为:本发明的不同的多肽药物引起huh7肝癌细胞凋亡的结果图;Fig. 5 is a graph showing the results of apoptosis of huh7 liver cancer cells caused by different polypeptide drugs of the present invention;
图6为:本发明的不同的多肽药物引起huh7肝癌细胞周期阻滞结果图;Fig. 6 is a graph showing the results of cycle arrest of huh7 liver cancer cells caused by different polypeptide drugs of the present invention;
图7为:本发明的不同的多肽药物对肝癌细胞和结肠癌细胞HCT116细胞中HDAC底物乙酰化水平的影响图;Fig. 7 is a graph showing the influence of different polypeptide drugs of the present invention on the acetylation level of HDAC substrates in liver cancer cells and colon cancer cells HCT116 cells;
图8为:本发明的靶向HDAC的稳定多肽物相比线性凋亡肽对肝癌细胞huh7转录组的影响图。Fig. 8 is a graph showing the influence of the HDAC-targeting stable polypeptide of the present invention on the transcriptome of liver cancer cell huh7 compared with the linear apoptotic peptide.
具体实施方式Detailed ways
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。The principles and features of the present invention are described below in conjunction with the accompanying drawings, and the examples given are only used to explain the present invention, and are not intended to limit the scope of the present invention.
实施例1:靶向HDAC的多肽药物偶联体的设计Example 1: Design of HDAC-targeted polypeptide drug conjugates
本发明采用锍盐稳定的凋亡多肽偶联HDAC抑制剂的方式设计靶向HDAC多肽药物偶联体,如图1所示,我们选择前期报道的凋亡多肽为切入点(原始凋亡多肽序列:RLLRLLRLRRLLRL,R为精氨酸,L为亮氨酸),采用锍盐稳定的多肽方法学对该多肽进行稳定,试图提高该多肽的稳定性,并依靠锍盐的亲水性改变整体凋亡肽的亲疏水性,试图降低对正常细胞的毒性。为了进一步提高多肽的抗肿瘤活性,我们将多肽的碳端引入HDAC抑制剂羟肟酸结构,该结构对HDAC家族的蛋白具有广谱的抑制活性,如图1所示。The present invention adopts the mode of sulfonium salt-stabilized apoptotic polypeptide coupled with HDAC inhibitors to design HDAC-targeting polypeptide drug conjugates, as shown in Figure 1, we choose the apoptotic polypeptide reported earlier as the entry point (the original apoptotic polypeptide sequence : RLLRLRLLRLRLLRL, R is arginine, L is leucine), the polypeptide is stabilized by using the sulfonium salt-stabilized polypeptide methodology, trying to improve the stability of the polypeptide, and relying on the hydrophilicity of the sulfonium salt to change the overall apoptosis Hydrophilic and hydrophobic properties of the peptide in an attempt to reduce toxicity to normal cells. In order to further improve the anti-tumor activity of the polypeptide, we introduced the carbon-terminal of the polypeptide into the HDAC inhibitor hydroxamic acid structure, which has a broad-spectrum inhibitory activity on HDAC family proteins, as shown in Figure 1.
为了进一步说明靶向HDAC的稳定多肽药物偶联体的选择性抗肿瘤效果,我们设计了另外三条负对照多肽,如下表所示,分别为线性凋亡多肽偶联HDAC抑制剂(WP2),线性凋亡多肽(WP3)和锍盐稳定的凋亡环肽(WP4)。这三个负对照多肽说明,锍盐稳定的凋亡环肽比线性多肽具有更低的正常细胞毒性;凋亡环肽偶联HDAC抑制剂后显著提高了多肽的抗肿瘤活性,但是其对正常细胞的毒性没有显著提高,从而验证了我们的猜想,锍盐稳定的凋亡多肽偶联HDAC抑制剂可提高肿瘤细胞的选择性毒性,降低其对正常细胞的毒性,为临床开发高效低毒的抗肿瘤药物提供思路。In order to further illustrate the selective anti-tumor effect of HDAC-targeting stable peptide-drug conjugates, we designed three other negative control peptides, as shown in the table below, which are linear apoptosis peptide-coupled HDAC inhibitor (WP2), linear Apoptotic polypeptide (WP3) and sulfonium salt stabilized apoptotic cyclic peptide (WP4). These three negative control peptides show that the apoptotic cyclic peptide stabilized by sulfonium salts has lower normal cytotoxicity than the linear peptide; the apoptotic cyclic peptide coupled with HDAC inhibitors significantly improves the anti-tumor activity of the peptide, but its effect on normal The toxicity of the cells was not significantly improved, thus verifying our conjecture that the sulfonium salt-stabilized apoptotic peptide-coupled HDAC inhibitor can increase the selective toxicity of tumor cells and reduce its toxicity to normal cells. Anticancer drugs provide ideas.
实施例2:靶向HDAC的稳定多肽药物偶联体的合成制备Example 2: Synthesis and preparation of stable peptide drug conjugates targeting HDAC
(1)树脂溶胀和脱保护:(1) Resin swelling and deprotection:
固相多肽合成的具体操作如图2路线图所示:带羟肟酸的多肽固相合成用特殊的2-Chlorotityl-N-Fmoc-hydroxylamine树脂(负载度:0.54mmol/g)。操作如下:将2-Chlorotityl-N-Fmoc-hydroxylamine树脂用DCM溶胀15分钟。用50%的吗啡(溶于DMF)脱去Fmoc保护基30分钟每次,共两次,然后分别用DMF/DCM交替各洗3遍。The specific operation of solid-phase peptide synthesis is shown in the roadmap in Figure 2: the solid-phase synthesis of peptides with hydroxamic acid uses a special 2-Chlorotityl-N-Fmoc-hydroxylamine resin (loading degree: 0.54mmol/g). The procedure was as follows: 2-Chlorotityl-N-Fmoc-hydroxylamine resin was swollen with DCM for 15 minutes. Use 50% morphine (dissolved in DMF) to remove the Fmoc protecting group for 30 minutes each time, twice in total, and then wash with DMF/DCM alternately for 3 times.
(2)树脂多肽的合成:(2) Synthesis of resin polypeptide:
将上述已脱保护的树脂,将配好的⑴Fmoc-6-氨基-己酸(5eq,0.4M,DMF)溶液,1H-苯并三唑-1-基氧三吡咯烷基六氟磷酸盐(PyBOP)(5eq,0.4M,DMF)溶液,N,N-二异丙基乙胺(DIPEA)(10eq)混匀后加入树脂中鼓氮气1h。抽掉反应液,按上述方法洗树脂后接下一个氨基酸,即抽掉反应液,按上述方法洗树脂后进行下一步操作,即在用吗啡啉脱掉树脂上Fmoc保护基团之后,将配制好(2)Fmoc-Leu-OH或者(3)Fmoc-Arg(pdf)-OH或(4)Fmoc-Leu-OH或者(5)Fmoc-Leu-OH或者(6)Fmoc-Met-OH或者(7)Fmoc-Arg(pdf)-OH或者(8)Fmoc-Leu-OH或者(9)Fmoc-Arg(pdf)-OH或者(10)Fmoc-Met-OH或者(11)Fmoc-Leu-OH或者(12)Fmoc-Arg(pdf)-OH或者(13)Fmoc-Leu-OH或者(14)Fmoc-Leu-OH或者(15)Fmoc-Arg(pdf)-OH,PyBOP和DIPEA溶液混匀后加入树脂中鼓氮气2h;抽掉反应液,按上述方法洗涤树脂后进行下一步操作。将合成好的树脂肽N末端Fmoc脱掉进行乙酰化,即配制乙酰化试剂DCM:DIEA:AC2O=8:1:0.5。用三氟乙酸(TFA),三异丙基硅烷(TIPS)和H2O(v:v:v=9.5:0.25:0.25)剪切液将多肽从树脂上切下来,除去剪切液。将粉末状的多肽粗品溶解在70%乙腈/ddH2O(v:v)中,加入甲酸使其终浓度为1%,随后将1,3-间苯二溴(2.0eq)溶解在少许DMF后,加入多肽混合物中,反应24小时。将ddH20加至反应液中,使其乙腈浓度达到50%,过滤反应液,将澄清的滤液用高效液相色谱分离,ESI质谱鉴定多肽分子量。The above-mentioned deprotected resin, the prepared (1) Fmoc-6-amino-caproic acid (5eq, 0.4M, DMF) solution, 1H-benzotriazol-1-yloxytripyrrolidinyl hexafluorophosphate ( PyBOP) (5eq, 0.4M, DMF) solution and N,N-diisopropylethylamine (DIPEA) (10eq) were mixed well, then added to the resin and blown with nitrogen for 1h. Take out the reaction solution, wash the resin according to the above method and then connect the next amino acid, that is, take off the reaction solution, wash the resin according to the above method, and then proceed to the next step, that is, after removing the Fmoc protecting group on the resin with morpholine, the prepared Well (2) Fmoc-Leu-OH or (3) Fmoc-Arg(pdf)-OH or (4) Fmoc-Leu-OH or (5) Fmoc-Leu-OH or (6) Fmoc-Met-OH or ( 7) Fmoc-Arg(pdf)-OH or (8) Fmoc-Leu-OH or (9) Fmoc-Arg(pdf)-OH or (10) Fmoc-Met-OH or (11) Fmoc-Leu-OH or (12) Fmoc-Arg(pdf)-OH or (13) Fmoc-Leu-OH or (14) Fmoc-Leu-OH or (15) Fmoc-Arg(pdf)-OH, mix PyBOP and DIPEA solution and add Nitrogen gas was blown in the resin for 2 hours; the reaction solution was removed, and the resin was washed by the above method before proceeding to the next step. Remove the N-terminal Fmoc of the synthesized resin peptide for acetylation, that is, prepare the acetylation reagent DCM: DIEA:AC2O=8:1:0.5. Cut the polypeptide from the resin with trifluoroacetic acid (TFA), triisopropylsilane (TIPS) and H2O (v:v:v=9.5:0.25:0.25) shear fluid, and remove the shear fluid. Dissolve the powdered crude peptide in 70% acetonitrile/ddH2O (v:v), add formic acid to make the
实施例3:靶向HDAC的稳定多肽药物偶联体的酶活抑制效果Example 3: Enzyme Activity Inhibition Effect of Stable Polypeptide Drug Conjugate Targeting HDAC
HDAC酶活抑制效果的鉴定,用商业购买的HDAC酶活检测试剂盒进行操作,每次操作至少重复三遍,HDAC酶来自多篇文献报道的HeLa核提取物,该酶活结果根据商业化试剂盒的操作执行,最后用酶标仪测量多肽药物偶联体对HDAC蛋白的抑制活性,如表1所示:The identification of the inhibitory effect of HDAC enzyme activity was carried out with a commercially purchased HDAC enzyme activity detection kit, and each operation was repeated at least three times. HDAC enzymes came from HeLa nuclear extracts reported in many literatures. The enzyme activity results were based on commercial reagents. The operation of the box is carried out, and finally the inhibitory activity of the peptide drug conjugate on the HDAC protein is measured with a microplate reader, as shown in Table 1:
表1本发明设计的不同多肽药物对HDAC的酶活抑制效果图Table 1 Different polypeptide drugs designed by the present invention are to HDAC enzyme activity inhibitory effect figure
实施例4:靶向HDAC的稳定多肽药物偶联体对不同细胞杀伤作用的评价Example 4: Evaluation of the Killing Effects of Stable Polypeptide Drug Conjugates Targeting HDAC on Different Cells
靶向HDAC的稳定多肽药物偶联体对肿瘤细胞比如肝癌细胞Huh7,结肠癌细胞HT29、HCT116等具有明显的杀伤作用,而对正常细胞293T抑制效果比较微弱。但是线性凋亡多肽对正常细胞、肿瘤细胞都有较强的抑制效果,如图3所示。细胞活力通过CCK8细胞毒性实验测定。细胞在96孔板中以4×103接种,用溶于培养基(5%血清)的多肽药物偶联体处理24h或者48小时,将CCK8加入培养基孵育1h。采用酶标仪在450nm测定吸光度。其中未处理的细胞存活率为100%。The stable peptide drug conjugate targeting HDAC has obvious killing effect on tumor cells such as liver cancer cells Huh7, colon cancer cells HT29, HCT116, etc., but has a weak inhibitory effect on
结果表明,靶向HDAC的稳定多肽药物偶联体对肿瘤细胞比如肝癌细胞Huh7、结肠癌细胞HT29、HCT116等具有明显的杀伤作用,而对正常细胞293T抑制效果比较微弱。The results showed that the stable peptide drug conjugate targeting HDAC had obvious killing effect on tumor cells such as liver cancer cells Huh7, colon cancer cells HT29, HCT116, etc., but had a weak inhibitory effect on
实施例5:多肽药物偶联体的溶血毒性研究Example 5: Study on hemolytic toxicity of polypeptide drug conjugates
为了评价多肽药物偶联体对红细胞的非特异性毒性,我们采用小鼠溶血毒性实验。新鲜的小鼠红细胞用眼球摘除法取得并置于含有抗凝剂的EP管中(1ml的血液加10μL浓度为10mg/ml的肝素钠),8600rpm/min快速离心10s,并用0.9%生理盐水洗涤至上清澄清。将得到的红细胞稀释至108/mL,取一系列不同浓度的多肽与红细胞在37℃下共孵育1小时。快速离心后用Nano Drop 2000c测定上清中释放的血红素,测定吸收波长为570nm。0.1%Triton X-100和0.9%生理盐水分别作为正负对照。溶血百分比根据已报道公式计算得到%溶血性=[(样品570nm吸收-负对照570nm吸收)/(正对照570nm吸收–负对照570nm吸收)]×100。通过溶血实验我们发现,经过锍盐稳定的多肽药物偶联体比线性凋亡多肽具有更低的毒性,如图4。由此可以证实,锍盐稳定的多肽药物偶联体,可以显著降低多肽的非特异性毒性。In order to evaluate the non-specific toxicity of the peptide drug conjugate to red blood cells, we used the mouse hemolytic toxicity experiment. Fresh mouse erythrocytes were obtained by enucleation and placed in EP tubes containing anticoagulants (1ml of blood plus 10μL of heparin sodium with a concentration of 10mg/ml), centrifuged at 8600rpm/min for 10s, and washed with 0.9% saline Supernatant clarified. The obtained erythrocytes were diluted to 108/mL, and a series of polypeptides with different concentrations were incubated with erythrocytes at 37°C for 1 hour. After rapid centrifugation, Nano Drop 2000c was used to measure the hemoglobin released in the supernatant, and the measured absorption wavelength was 570nm. 0.1% Triton X-100 and 0.9% normal saline were used as positive and negative controls respectively. The percentage of hemolysis was calculated according to the reported formula: % hemolysis=[(absorption at 570 nm of the sample-absorption at 570 nm of the negative control)/(absorption at 570 nm of the positive control-absorption at 570 nm of the negative control)]×100. Through hemolysis experiments, we found that the peptide-drug conjugates stabilized by sulfonium salts have lower toxicity than linear apoptotic peptides, as shown in Figure 4. Thus, it can be confirmed that the polypeptide-drug conjugate stabilized by sulfonium salt can significantly reduce the non-specific toxicity of the polypeptide.
实施例6:靶向HDAC的稳定多肽偶联体对肝癌细胞凋亡和细胞周期阻滞的影响。Example 6: Effects of HDAC-targeted stable polypeptide conjugates on apoptosis and cell cycle arrest of liver cancer cells.
为了评价该多肽药物是否引起肿瘤细胞凋亡,我们采用Annexin V-FITC细胞凋亡检测试剂盒,通过流式细胞仪检测多肽药物引起细胞凋亡的情况。如图5所示,该多肽药物确实可以明显引起肿瘤细胞的凋亡。In order to evaluate whether the peptide drug induces tumor cell apoptosis, we use the Annexin V-FITC cell apoptosis detection kit to detect the apoptosis caused by the peptide drug by flow cytometry. As shown in Figure 5, the peptide drug can indeed significantly induce tumor cell apoptosis.
对于细胞周期实验,将药物处理24小时的细胞收集,先用70%冰乙醇,在-20℃孵育过夜,PI染色,再用流式细胞仪分析。结果表明多肽药物可以明显引起肿瘤细胞发生G1期的细胞周期阻滞,如图6所示。For cell cycle experiments, the cells treated with drugs for 24 hours were collected, incubated with 70% ice ethanol at -20°C overnight, stained with PI, and then analyzed by flow cytometry. The results show that the peptide drug can obviously cause cell cycle arrest in the G1 phase of tumor cells, as shown in FIG. 6 .
实施例7:多肽药物偶联体能显著提高HDAC的底物乙酰化水平Example 7: The polypeptide drug conjugate can significantly increase the acetylation level of HDAC substrates
采用免疫印迹实验(WB)研究不同多肽在不同的给药浓度处理肿瘤细胞后,对HDAC底物乙酰化水平的影响。经过反复多次的WB实验发现,我们设计的靶向HDAC的稳定多肽药物WP1可以明显引起HDAC组蛋白底物乙酰化水平的上调,如图7所示,揭示我们的药物可以明显抑制肿瘤细胞HDAC的活性。Western blotting (WB) was used to study the effect of different polypeptides on the acetylation level of HDAC substrates after treating tumor cells with different concentrations. After repeated WB experiments, we found that our designed stable peptide drug WP1 targeting HDAC can significantly increase the acetylation level of HDAC histone substrates, as shown in Figure 7, revealing that our drug can significantly inhibit tumor cell HDAC activity.
实施例8:多肽药物偶联体对肝癌细胞HDAC相关信号通路的影响Example 8: Effects of polypeptide drug conjugates on HDAC-related signaling pathways in liver cancer cells
为了进一步验证多肽药物偶联体对肝癌细胞的整个信号通路的影响,我们进行转录组测序,检测了多肽药物对肿瘤细胞整个基因表达的影响,发现该多肽药物对肝癌细胞的多个信号通路都有影响(图8A是RNA微阵列分析加药组与不加药组的总基因表达的差异性,图8B是汇总的加药组和不加药组总上调基因和下调基因的个数,图8C是全基因组分析多肽药物在肝癌细胞中影响的不同生物功能的信号通路。In order to further verify the effect of the peptide drug conjugate on the entire signaling pathway of liver cancer cells, we performed transcriptome sequencing to detect the effect of the peptide drug on the entire gene expression of tumor cells, and found that the peptide drug had significant effects on multiple signaling pathways of liver cancer cells. Influenced (Fig. 8A is the difference of the total gene expression of the RNA microarray analysis drug-dosing group and no drug-dosing group, Fig. 8B is the number of total up-regulated genes and down-regulated genes of the drug-dosed group and no drug-dosed group, Fig. 8C is a genome-wide analysis of the signaling pathways of different biological functions affected by polypeptide drugs in liver cancer cells.
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection of the present invention. within range.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111298180.2A CN114146186B (en) | 2021-11-04 | 2021-11-04 | Polypeptide drug conjugate based on sulfonium salt stabilized target HDAC and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111298180.2A CN114146186B (en) | 2021-11-04 | 2021-11-04 | Polypeptide drug conjugate based on sulfonium salt stabilized target HDAC and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114146186A CN114146186A (en) | 2022-03-08 |
CN114146186B true CN114146186B (en) | 2023-05-12 |
Family
ID=80459250
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111298180.2A Active CN114146186B (en) | 2021-11-04 | 2021-11-04 | Polypeptide drug conjugate based on sulfonium salt stabilized target HDAC and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114146186B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109912686B (en) * | 2019-03-13 | 2022-07-05 | 北京大学深圳研究生院 | Stable polypeptide inhibitor targeting HDAC (Histone deacetylase) and application thereof |
CN114848837B (en) * | 2022-04-12 | 2023-04-11 | 华中科技大学同济医学院附属协和医院 | Polypeptide drug conjugate and nucleic acid drug self-assembly nanoparticle and application thereof |
CN117547600B (en) * | 2023-11-15 | 2024-04-30 | 华中科技大学同济医学院附属协和医院 | Preparation and application of liposome vaccine targeting HDAC |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109912686A (en) * | 2019-03-13 | 2019-06-21 | 北京大学深圳研究生院 | A stable polypeptide inhibitor targeting HDAC and use thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA3100726A1 (en) * | 2018-05-17 | 2019-11-21 | The General Hospital Corporation | Ccctc-binding factor variants |
-
2021
- 2021-11-04 CN CN202111298180.2A patent/CN114146186B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109912686A (en) * | 2019-03-13 | 2019-06-21 | 北京大学深圳研究生院 | A stable polypeptide inhibitor targeting HDAC and use thereof |
Non-Patent Citations (1)
Title |
---|
Development of sulfonium tethered peptides conjugated with HDAC inhibitor to improve selective toxicity for cancer cells;Li Du等;《Bioorg. Med.Chem》;第1-8页 * |
Also Published As
Publication number | Publication date |
---|---|
CN114146186A (en) | 2022-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114146186B (en) | Polypeptide drug conjugate based on sulfonium salt stabilized target HDAC and application thereof | |
CN113735937B (en) | Stable polypeptide protein covalent inhibitor of papain-like protease PLpro of targeted 2019 novel coronavirus | |
CN109912686B (en) | Stable polypeptide inhibitor targeting HDAC (Histone deacetylase) and application thereof | |
CN104530199B (en) | A kind of tumor protein p53 and its preparation method and application | |
JP6974874B2 (en) | Peptides with high affinity for human PD-L1 protein and their use | |
CN105524159B (en) | Polypeptide molecules with selective killing and migration inhibition of cancer cells and their uses | |
WO2021043341A2 (en) | Novel micropeptide hmmw and application thereof | |
Gholibeikian et al. | Structure-activity relationship studies of Longicalcynin A analogues, as anticancer cyclopeptides | |
CN109608519B (en) | Cell-penetrating peptide and application thereof | |
CN112794880B (en) | A kind of stable polypeptide protein targeting inhibitor and use thereof | |
CN107226847B (en) | Anti-tumor polypeptide molecule with dual targeting and selectivity and its application | |
Li et al. | SOS1-inspired hydrocarbon-stapled peptide as a pan-Ras inhibitor | |
CN114045335A (en) | Application of circSpred1 gene as a marker in the diagnosis and drug preparation of fibrotic liver and liver cancer | |
CN113185573B (en) | Preparation method and anti-tumor application of conformational locking melittin Anoplin derivative | |
Shen et al. | Benzyl stapled modification and anticancer activity of antimicrobial peptide A4K14-Citropin 1.1 | |
CN109666064B (en) | SALL4-RBBp4 compound blocking polypeptide and derivative antitumor polypeptide and application thereof | |
CN106466484B (en) | Multi-target ligand-drug conjugate with function of cell endocytosis mediation | |
CN114213546B (en) | VEGFR-targeted cleavage peptide conjugate and application thereof | |
CN112111003B (en) | A new class of platelet aggregation-inhibiting and antithrombotic oligopeptides containing ME sequences | |
CN107033239A (en) | A kind of natineoplaston and its application from hemocyanin in shrimp Litopenaeus vannamei | |
CN114848837B (en) | Polypeptide drug conjugate and nucleic acid drug self-assembly nanoparticle and application thereof | |
CN111944034A (en) | A stable polypeptide inhibitor derived from LSD1 substrate SNAIL1 and use thereof | |
CN114989245B (en) | Polypeptide KVP-C specifically combined with SARS-CoV-2 spike protein and its preparing method and use | |
CN114989264B (en) | Polypeptide composition specifically binding to SARS-CoV-2 spike protein and its preparation method and application | |
CN114605517B (en) | Polypeptide LXP-7 with broad-spectrum anticancer effect and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |