CN114134054A - Construction of an Aspergillus oryzae chassis strain with high terpenoid production and an automated high-throughput mining platform for terpenoid natural products - Google Patents
Construction of an Aspergillus oryzae chassis strain with high terpenoid production and an automated high-throughput mining platform for terpenoid natural products Download PDFInfo
- Publication number
- CN114134054A CN114134054A CN202111283704.0A CN202111283704A CN114134054A CN 114134054 A CN114134054 A CN 114134054A CN 202111283704 A CN202111283704 A CN 202111283704A CN 114134054 A CN114134054 A CN 114134054A
- Authority
- CN
- China
- Prior art keywords
- gene
- aspergillus oryzae
- seq
- plasmid
- nucleotide sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1025—Acyltransferases (2.3)
- C12N9/1029—Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C13/00—Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
- C07C13/28—Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
- C07C13/32—Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
- C07C13/47—Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with a bicyclo ring system containing ten carbon atoms
- C07C13/52—Azulenes; Completely or partially hydrogenated azulenes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/02—Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen
- C07C69/12—Acetic acid esters
- C07C69/16—Acetic acid esters of dihydroxylic compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D303/00—Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
- C07D303/02—Compounds containing oxirane rings
- C07D303/04—Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/37—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
- C07K14/38—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from Aspergillus
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/80—Vectors or expression systems specially adapted for eukaryotic hosts for fungi
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/90—Stable introduction of foreign DNA into chromosome
- C12N15/902—Stable introduction of foreign DNA into chromosome using homologous recombination
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0071—Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
- C12N9/0077—Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with a reduced iron-sulfur protein as one donor (1.14.15)
- C12N9/0081—Cholesterol monooxygenase (cytochrome P 450scc)(1.14.15.6)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1025—Acyltransferases (2.3)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1048—Glycosyltransferases (2.4)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/12—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
- C12N9/1205—Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/12—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
- C12N9/1229—Phosphotransferases with a phosphate group as acceptor (2.7.4)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/88—Lyases (4.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/90—Isomerases (5.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P17/00—Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
- C12P17/02—Oxygen as only ring hetero atoms
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P5/00—Preparation of hydrocarbons or halogenated hydrocarbons
- C12P5/002—Preparation of hydrocarbons or halogenated hydrocarbons cyclic
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/62—Carboxylic acid esters
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y114/00—Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
- C12Y114/15—Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with reduced iron-sulfur protein as one donor, and incorporation of one atom of oxygen (1.14.15)
- C12Y114/15006—Cholesterol monooxygenase (side-chain-cleaving) (1.14.15.6), i.e. cytochrome P450scc
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y203/00—Acyltransferases (2.3)
- C12Y203/01—Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
- C12Y203/01009—Acetyl-CoA C-acetyltransferase (2.3.1.9)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y203/00—Acyltransferases (2.3)
- C12Y203/03—Acyl groups converted into alkyl on transfer (2.3.3)
- C12Y203/0301—Hydroxymethylglutaryl-CoA synthase (2.3.3.10)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y207/00—Transferases transferring phosphorus-containing groups (2.7)
- C12Y207/01—Phosphotransferases with an alcohol group as acceptor (2.7.1)
- C12Y207/01036—Mevalonate kinase (2.7.1.36)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y207/00—Transferases transferring phosphorus-containing groups (2.7)
- C12Y207/04—Phosphotransferases with a phosphate group as acceptor (2.7.4)
- C12Y207/04002—Phosphomevalonate kinase (2.7.4.2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y401/00—Carbon-carbon lyases (4.1)
- C12Y401/01—Carboxy-lyases (4.1.1)
- C12Y401/01033—Diphosphomevalonate decarboxylase (4.1.1.33), i.e. mevalonate-pyrophosphate decarboxylase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y503/00—Intramolecular oxidoreductases (5.3)
- C12Y503/03—Intramolecular oxidoreductases (5.3) transposing C=C bonds (5.3.3)
- C12Y503/03002—Isopentenyl-diphosphate DELTA-isomerase (5.3.3.2)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2602/00—Systems containing two condensed rings
- C07C2602/02—Systems containing two condensed rings the rings having only two atoms in common
- C07C2602/14—All rings being cycloaliphatic
- C07C2602/26—All rings being cycloaliphatic the ring system containing ten carbon atoms
- C07C2602/30—Azulenes; Hydrogenated azulenes
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Medicinal Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mycology (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Pharmacology & Pharmacy (AREA)
- Pain & Pain Management (AREA)
- Rheumatology (AREA)
- Gastroenterology & Hepatology (AREA)
- Veterinary Medicine (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
The invention discloses an aspergillus oryzae chassis for high yield of terpenes and a method for automatically excavating a terpene biosynthesis gene cluster FgJ02895 in high flux, which aim at high yield of terpene products, high flux heterologous reconstruction of the terpene biosynthesis gene cluster and activity-oriented compound screening. The invention is based on CRISPR/Cas9 technology mediated gene homologous recombination, integrates over-expresses endogenous MVA pathway genes at gene high expression sites in a genome, establishes an Aspergillus oryzae chassis cell for high-yield terpenoids, and realizes 41-fold and 111-fold increase of mangicine and mangicil J yield. The high-throughput excavation strategy comprising PCR amplification, plasmid library and strain library construction established in the chassis realizes the excavation of related products of the gene cluster FgJ02895 and obtains a product library of the gene cluster. And meanwhile, the anti-inflammatory activity of the compounds produced in the strain bank can be evaluated.
Description
Technical Field
The invention relates to the technical field of natural product biosynthesis, in particular to construction of a aspergillus oryzae high-yield terpene chassis and construction of an automatic high-flux terpene natural product excavating platform based on a chassis strain.
Background
Fungal natural products are one of the important sources of natural drugs, and the traditional excavation strategy has helped researchers find various active natural products from microorganisms, such as the potent antibiotics penicillin, the hypolipidemic agent lovastatin, the immunosuppressant cyclosporine and the like. However, as more and more natural products are discovered, the difficulty and challenge of being able to mine into new natural products is increasing. With the development of bioinformatics and sequencing technologies, the information of biosynthetic gene clusters of a large number of fungal natural products, particularly silent gene clusters, has been revealed to hold a great potential for synthesizing novel natural products. To fully release the synthetic potential of these natural product biosynthetic gene clusters, researchers developed a variety of strategies, such as homologous global or specific pathway regulation, exogenous activator activation, CRISPR/Cas strategy gene editing expression of silenced gene clusters, and the development of compelling heterologous reconstitution strategies, etc., unlocking the synthetic mechanisms of a series of novel natural products. In addition, the development of genome mining and artificial chromosome technology based on bioinformatics and computer network model predictive analysis technology in recent years further promotes the research progress in the field of natural product biosynthesis. Although the development of the above strategy greatly enriches natural product libraries, there are still problems to be solved in the implementation process, such as low throughput, low yield, etc.
Terpenoids are a generic term for compounds containing isoprene units. It is widely found in nature, and up to now, more than 12 tens of thousands of terpenoids are found in animals, plants and microorganisms. The compounds have a plurality of physiological activities and are widely applied to the industries of food, cosmetics and medicines. The invention takes the fungus terpene product as a research target, takes a well-known strain Aspergillus oryzae (Aspergillus oryzae) with biological safety as a heterologous expression host, creates an Aspergillus oryzae chassis for high-yield terpene, establishes a filamentous fungus terpene high-yield chassis for improving the yield of the terpene natural product, establishes a set of complete fungus terpene product genome automatic high-flux excavation research scheme, improves the flux of the research of the terpene natural product gene cluster, and solves the problem of low product yield.
Disclosure of Invention
Aiming at the defects of the prior art, the invention provides an Aspergillus oryzae chassis for high yield of terpenes and an automatic high-flux excavation platform for terpene natural products, and particularly relates to the transformation of the Aspergillus oryzae chassis for high yield of terpenes and the efficient synthesis of sesterterpene compound mangicol J with anti-inflammatory activity, and simultaneously relates to the high-flux heterologous reconstruction of a natural product biosynthesis gene cluster FgJ02895, the PCR amplification of functional elements of the natural product biosynthesis gene cluster, the construction of a plasmid library, the construction of a strain library and the screening of compounds with anti-inflammatory activity as a guide.
In order to achieve the purpose, the technical scheme of the invention is as follows:
in a first aspect of the invention, there is provided a microbial underpan cell comprising a gene that enhances the ability of the underpan cell to produce terpenoids, said gene being that of an aspergillus oryzae derived MVA pathway gene module; the genes are ERG10, ERG13, tHMG1, ERG12, ERG8, MVD1 and IDI genes from Aspergillus oryzae. Preferably, the nucleotide sequence of the ERG10 gene is shown in SEQ ID NO: 10 is shown in the figure; the nucleotide sequence of the ERG13 gene is shown as SEQ ID NO: 11 is shown in the figure; the nucleotide sequence of the tHMG1 gene is shown as SEQ ID NO: 12 is shown in the specification; the nucleotide sequence of the ERG12 gene is shown as SEQ ID NO: 13 is shown in the figure; the nucleotide sequence of the ERG8 gene is shown as SEQ ID NO: 14 is shown in the figure; the nucleotide sequence of the MVD1 gene is shown as SEQ ID NO: 15 is shown in the figure; the nucleotide sequence of IDI gene is shown as SEQ ID NO: shown at 16.
In one or more embodiments of the invention, the microbial underpan cell is a eukaryotic cell or a prokaryotic cell; preferably, the microbial underpan cell is aspergillus oryzae, escherichia coli, saccharomyces cerevisiae, pichia pastoris, bacillus, aspergillus nidulans, aspergillus niger, neurospora crassa, alternaria alternata or fusarium; more preferably, the underpan cells are aspergillus oryzae.
In one or more embodiments of the invention, the terpenoid is selected from one or more of a hemiterpene, a monoterpene, a sesquiterpene, a diterpene, a triterpenoid, a tetraterpenoid, and a polyterpene. In one or more embodiments of the present invention, the gene tmgb 1 is a rate-limiting enzyme gene, and preferably, the rate-limiting enzyme expressed by gene tmgb 1 is overexpressed in the underpan cells; more preferably, the rate-limiting enzyme expressed by said gene tmgb 1 is overexpressed in 4 copies.
In a second aspect of the invention, the invention provides the use of genes ERG10, ERG13, HMG1, ERG12, ERG8, MVD1 and IDI genes from aspergillus oryzae for increasing the ability of Chassis cells to produce terpenoids.
In a third aspect of the present invention, there is provided a method for preparing the microbial underpan cells according to the first aspect of the present invention, comprising the steps of:
step 1): establishing a microbial chassis strain promoter library: screening promoters from different sources, and characterizing the strength of the promoter suitable for aspergillus oryzae by regulating and controlling the expression of GUS genes;
step 2): selecting mevalonate pathway synthases ERG10, ERG13, tHMG1, ERG12, ERG8, MVD1 and IDI from Aspergillus oryzae original sources from a fungal genome database by sequence homology comparison analysis by taking a saccharomyces cerevisiae derived mevalonate pathway as a reference;
step 3): constructing 7 mevalonate pathway synthetases of the mevalonate pathway from the aspergillus oryzae source screened in the step 2) on different plasmids respectively under the control of promoters with different intensities characterized in the step 1), and increasing the copy number of the rate-limiting enzyme expressed by the rate-limiting enzyme gene tHMG1 to obtain the chassis cell.
In other embodiments of the present invention, the preparation method of the underpan cell according to the first aspect of the present invention comprises integrating ERG10, ERG13, tmhmg 1, ERG12, ERG8, MVD1 and IDI genes derived from aspergillus oryzae into the high expression site of aspergillus oryzae genome respectively by using CRISPR/Cas9 strategy, and increasing the copy number of the rate-limiting enzyme expressed by the rate-limiting enzyme gene tmhmg 1 to obtain the microbial underpan cell.
In the fourth aspect of the invention, the invention provides a bacterial strain with high terpene yield, wherein the Chassis cells in the third aspect of the invention are used as starting bacterial strains to respectively over-express a sesterterpene synthase gene mgcD, co-express a sesterterpene synthase gene mgcD and a cytochrome P450 enzyme gene mgcE, and the bacterial strain with high terpene yield is obtained. Preferably, the nucleotide sequence of gene mgcD is as shown in SEQ ID NO: 17 is shown; the nucleotide sequence of gene mgcE is shown as SEQ ID NO: 18, respectively.
In a fifth aspect of the present invention, the present invention provides a high throughput automated mining method for terpene biosynthetic gene cluster, comprising the following steps:
1) PCR amplification; 2) constructing a plasmid library; 3) constructing a microbial strain library; 4) activity-directed compound screening.
In one or more embodiments of the present invention, the step 2) includes the steps of:
a. respectively designing 40bp overlapping sequences at the 5 '-end and the 3' -end of each functional gene, promoter and terminator sequence in the terpene biosynthesis gene cluster, preparing a DNA polymerase system by an automatic workstation, and performing PCR amplification to obtain each fragment;
b. assembling each fragment by automated yeast (figure 2) to obtain a recombinant plasmid;
c. the recombinant plasmid was transformed into E.coli (FIG. 4), and the plasmid library was obtained by enrichment.
In one or more embodiments of the present invention, the step 3) includes the steps of: transforming the plasmid library obtained in step 2) into the microbial underpan cells according to the first aspect of the invention (fig. 6) based on an automated platform according to a rational combination of different functional elements (fig. 5) comprising terpene synthases, cytochrome P450 enzymes, acyltransferases, glycosyltransferases to obtain a strain library.
In one or more embodiments of the present invention, the step 4) includes the steps of: acting the fermentation product of the microbial strain library obtained in the step 3) on mouse macrophage RAW264.7 induced by lipopolysaccharide, and screening terpenoid compounds (figure 7) with anti-inflammatory activity, such as mangicols sesterterpene compounds, by taking the generation of Nitric Oxide (NO) as a detection index.
In a sixth aspect of the invention, the invention provides a sesquiterpene compound of novel structure, the structure of which is selected from one of the following structures (fig. 9):
17 (as characterized in fig. 10-16),
20 (as characterized in FIGS. 17-23),
28 (characterization as in figures 24-30).
In a seventh aspect, the present invention provides a use of the sesquiterpene compound of the sixth aspect of the present invention in the preparation of an anti-inflammatory agent.
In an eighth aspect of the invention, the invention provides a sesquiterpene synthesis gene cluster BGC6-FgJ02895 for synthesizing a sesquiterpene compound according to the sixth aspect of the invention. The sesquiterpene synthesis gene cluster BGC6-FgJ02895 comprises FgJ02892 gene, FgJ02895 gene, FgJ02896 gene, FgJ02897 gene, FgJ02898 gene, FgJ02899 gene, FgJ02900 gene, FgJ02901 gene and FgJ02902 gene, which respectively encode decarboxylase, terpene synthase, transcription factor, cytochrome P450 enzyme, acetyl transferase, Tf, cytochrome P450 enzyme, monooxygenase and copper ion dependent ATPase (as shown in figure 8).
Preferably, the nucleotide sequence of the FgJ02892 gene is shown in SEQ ID NO: 23 is shown; the nucleotide sequence of the FgJ02895 gene is shown as SEQ ID NO: shown at 24; the nucleotide sequence of the FgJ02896 gene is shown as SEQ ID NO: 25 is shown; the nucleotide sequence of the FgJ02897 gene is shown as SEQ ID NO: 26 is shown; the nucleotide sequence of the FgJ02898 gene is shown as SEQ ID NO: 27 is shown; the nucleotide sequence of the FgJ02899 gene is shown as SEQ ID NO: 28 is shown; the nucleotide sequence of the FgJ02900 gene is shown as SEQ ID NO: 29 is shown; the nucleotide sequence of the FgJ02901 gene is shown as SEQ ID NO: 30 is shown in the figure; the nucleotide sequence of the FgJ02902 gene is shown as SEQ ID NO: shown at 31.
In a ninth aspect of the invention, the invention provides a vector or vector mixture comprising a gene as described in the first and/or eighth aspect of the invention.
Compared with the prior art, the invention has the following advantages and beneficial effects:
1. the invention provides a microbial underpan cell which is modified to have the capacity of highly producing terpenoids.
2. The invention provides a preparation method of the microbial underpan cell, which takes aspergillus oryzae as a dominant expression host, overexpresses the whole MVA (multi-domain mosaic Virus) pathway in vivo based on a multi-step and screening marker-reusable genetic transformation strategy in the aspergillus oryzae host mediated by a CRISPR/Cas9 technology through rational design, adds 4 copies of tHMG1 gene, establishes the aspergillus oryzae underpan cell with high terpenoid yield, and provides a new solution for solving the problem of low yield in the biosynthesis process of natural products.
3. The invention provides a strain with high terpene yield, which is obtained by modifying the underpan cells.
4. The invention provides a method for producing terpenoid by using the strain with high terpenoid yield.
5. The invention provides application of ERG10, ERG13, HMG1, ERG12, ERG8, MVD1 and IDI genes derived from aspergillus oryzae in improving the high yield of terpenoids in Chassis cells.
6. In the invention, preferably, the constructed rice koji microbial chassis cells are taken as dominant expression hosts, and the terpene natural product biosynthesis gene cluster BGC-FgJ02895 is efficiently and heterologously reconstructed in vivo on the basis of the constructed automatic high-throughput platform through rational design, so that PCR amplification and plasmid library construction to strain library construction can be completed, and a solution is provided for solving the problem of low throughput in the natural product biosynthesis process.
7. The invention provides a sesquiterpene compound with a new structure, which is characterized in that: having the structure shown in compounds 17, 20 and 28.
8. The invention provides a sesquiterpene synthesis gene cluster BGC6-FgJ02895, which is characterized in that: encoding and synthesizing the three sesquiterpene compounds with the new structure.
Additional aspects and advantages of the invention will be set forth in part in the description which follows and, in part, will be obvious from the description, or may be learned by practice of the invention.
Drawings
FIG. 1 is a schematic diagram of a terpene high-yield chassis construction process and partial experimental results according to an embodiment of the invention.
FIG. 1a is a schematic diagram of a process for preparing an Aspergillus oryzae mutant strain of the present invention; FIG. 1b is a schematic diagram showing the results of comparison of the yields of mangicriene from the starting strain AO-Y51, the mutant AO-S96 and the mutant AO-S84; FIG. 1c is a schematic diagram of the transformation of Aspergillus oryzae mutants AO-S84, AO-S94, AO-S96, AO-S98; FIG. 1d is a graph showing the comparison of the yield of Mangicol J of the starting strain AO-Y52, mutant AO-S98 and mutant AO-S94.
FIG. 2 is a schematic diagram of the process of constructing plasmid library by assembling high-throughput yeast according to an embodiment of the present invention.
FIG. 3 is a schematic diagram of a high throughput plasmid extraction process according to one embodiment of the present invention.
FIG. 4 is a schematic diagram of a high-throughput E.coli transformation procedure according to an embodiment of the present invention.
FIG. 5 is a schematic diagram showing the principle of construction of a high-throughput A.oryzae mutant strain according to an embodiment of the present invention.
FIG. 6 is a schematic diagram of the construction process of the high-throughput Aspergillus oryzae mutant library according to one embodiment of the present invention.
FIG. 7 is a schematic view of the flow chart of the anti-inflammatory activity assay in the example of the present invention.
FIG. 8a is a diagram showing the result of bioinformatics analysis of gene cluster BGC6-FgJ 02895; FIG. 8b is a schematic diagram of heterologous reconstitution of BGC6-FgJ02895 gene cluster.
FIG. 9 is a GC/MS and HR-LC/MS detection map of gene cluster BGC6-FgJ 02895.
FIG. 10 is a schematic structural diagram of Compound (17) according to one embodiment of the present invention;
FIG. 11 shows a compound of the present invention (17)1H NMR spectrum;
FIG. 12 shows a compound of the present invention (17)13C NMR spectrum;
FIG. 13 shows a compound of the present invention (17)1H-1H COSY spectrogram;
FIG. 14 shows HSQC spectra of compound (17) of the present invention;
FIG. 15 shows a HMBC spectrum of the compound (17) of the present invention;
FIG. 16 is a ROESY spectrum of the compound (17) of the present invention.
FIG. 17 is a schematic structural diagram of Compound (20) according to one embodiment of the present invention;
FIG. 18 shows a scheme for preparing a compound (20) of the present invention1H NMR spectrum;
FIG. 19 shows a scheme for preparing a compound (20) of the present invention13C NMR spectrum;
FIG. 20 shows a scheme for preparing a compound (20) of the present invention1H-1H COSY spectrogram;
FIG. 21 is an HSQC spectrum of compound (20) of the present invention;
FIG. 22 is an HMBC spectrum of compound (20) of the present invention;
FIG. 23 is a ROESY spectrum of the compound (20) of the present invention.
FIG. 24 is a schematic structural diagram of compound (28) according to one embodiment of the present invention;
FIG. 25 is a drawing showing a scheme for preparing a compound (28) of the present invention1H NMR spectrum;
FIG. 26 shows a scheme for preparing a compound (28) of the present invention13C NMR spectrum;
FIG. 27 is a photograph of Compound (28) of the present invention1H-1H COSY spectrogram;
FIG. 28 is an HSQC spectrum of compound (28) of the present invention;
FIG. 29 is an HMBC spectrum of compound (28) of the present invention;
FIG. 30 is a ROESY spectrum of the compound (28) of the present invention.
Detailed Description
The scheme of the invention will be explained with reference to the examples. It will be appreciated by those skilled in the art that the following examples are illustrative of the invention only and should not be taken as limiting the scope of the invention. The examples, where specific techniques or conditions are not indicated, are to be construed according to the techniques or conditions described in the literature in the art or according to the product specifications. The methods used are conventional methods known in the art unless otherwise specified, and the consumables and reagents used are commercially available unless otherwise specified. Unless otherwise defined, technical and scientific terms used herein have the same meaning as is familiar to those skilled in the art. In addition, any methods or materials similar or equivalent to those described herein can also be used in the present invention. Wherein "-" represents gene linkage, for example hlyA (nucleotide sequence shown in SEQ ID NO: 9) -tHMG1 (nucleotide sequence shown in SEQ ID NO: 12) NOs (nucleotide sequence shown in SEQ ID NO: 22) represents a nucleotide sequence shown in SEQ ID NO: 9, the nucleotide sequence of the gene hlyA is shown as SEQ ID NO: 12, and a nucleotide sequence of the gene tHMG1 shown in SEQ ID NO: 22 are linked in sequence.
Example 1 determination of mevalonate pathway synthase in Aspergillus oryzae
The mevalonate pathway synthases ERG10, ERG13, HMG1, ERG12, ERG8, MVD1 and IDI originally derived from Aspergillus oryzae were screened from the fungal genome database by sequence homology alignment analysis with reference to the mevalonate pathway (MVA) derived from Saccharomyces cerevisiae.
Example 2 construction of expression vector
All genes were obtained by PCR amplification using primers as shown in sequence table 1:
table 1 primer sequences used in the examples
The plasmid construction mainly adopts four methods, enzyme digestion and enzyme ligation, golden gate assembly, and Gibson method and Yeast assembly method. The specific construction method comprises the following steps:
construction of the pSC11 plasmid: using Aspergillus oryzae genome as template, wA up and wA down were amplified with primers 11-2F/11-2R, 11-7F/11-7R, respectively (DOI:10.1038/nature 04300). pGB123(DOI:10.1002/ biot.201600697) As a template, the promoter alcA (nucleotide sequence shown as SEQ ID NO: 1) are shown. GUS was amplified using pCAMBIA1301 as a template and a primer set 11-4F/11-4R. The reaction was performed with pAdeA (DOI:10.1021/ ja3116636) As a template, TamyB and AdeA were amplified with primers 11-5F/11-5R, 11-6F/11-6R, respectively. The dna fragment was expressed as pRS426(DOI:10.1016/j.biortech.2012.08.104) As a template, the vector sequence was amplified with primers 11-1F/11-1R. The 7 amplified fragments were assembled by the Yeast assembly method to obtain the plasmid pSC 11. Construction of plasmid pSC12-pSC 19: the genes identified as pGB99, pGB98, pGB93, pGB96, pGB92 and rice koji genome (DOI:10.1002/biot.201600697) As a template, the promoter agdA (nucleotide sequence shown in SEQ ID NO: 2), glaA (nucleotide sequence shown in SEQ ID NO: 3), gpdA (nucleotide sequence shown in SEQ ID NO: 4), and oliC (nucleotide sequence shown in SEQ ID NO: 5), trpC (nucleotide sequence shown in SEQ ID NO: shown at 6). Using Aspergillus oryzae genome as template, primers 17-1F/17-1R, 18-1F/18-1R, 19-1F/19-1R were used to amplify amyB (nucleotide sequence shown in SEQ ID NO: 7), enoA (nucleotide sequence shown in SEQ ID NO: 8), hlyA (nucleotide sequence shown in SEQ ID NO: 9). Using pCAMBIA1301 as a template, GUS (DOI:10.1016/j.synbio.2016.07.002). The pSC12-pSC19 plasmids were constructed by ligating together the 8 promoter fragments with the corresponding GUS fragments by overlap extension PCR (OE-PCR), cleaved with PacI/MreI, and then inserted into the PacI/MreI cleaved pSC11 plasmid.
Based on a promoter with stronger promoter capacity in a fungal host reported in the literature, the promoter strength suitable for Aspergillus oryzae is characterized by regulating the expression of a GUS reporter gene, and in order to characterize the promoter strength of a series of promoters in an Aspergillus oryzae host, the plasmid pSC11-pSC19 is transformed into Aspergillus oryzae to obtain strains AO-S11 to AO-S19 containing the corresponding promoters. Finally obtaining the promoter suitable for Aspergillus oryzae, wherein the sequence is hlyA > oliC > amyB > glaA > enoA > gpdA > agdA > trpC > alcA.
Construction of the pSC59 plasmid: using pSC11 plasmid as a template, the vector fragment was amplified with primers 44-1F/44-1R. A homologous arm fragment ku80-up and ku80-down (DOI:10.1038/nature04300) was amplified using Aspergillus oryzae genomic DNA as a template and primers 44-2F/44-2R, 44-13F/44-13R. Using Aspergillus oryzae cDNA as template, the fragments ERG10 (nucleotide sequence shown in SEQ ID NO: 10), ERG13 (nucleotide sequence shown in SEQ ID NO: 11) and tHMG1 (nucleotide sequence shown in SEQ ID NO: 12) were amplified with primers 44-4F/44-4R,44-7F/44-7R, and 44-10F/44-10R, respectively. pGB96 and Aspergillus oryzae genomic DNA were used as templates to amplify promoter fragments oliC (nucleotide sequence shown in SEQ ID NO: 5), amyB (nucleotide sequence shown in SEQ ID NO: 7) and hlyA (nucleotide sequence shown in SEQ ID NO: 9) with primers 44-3F/44-3R, 44-6F/44-6R and 44-9F/44-9R, respectively. Terminator fragment niaD (nucleotide sequence shown in SEQ ID NO: 20), amyB (nucleotide sequence shown in SEQ ID NO: 19) and NOs (nucleotide sequence shown in SEQ ID NO: 22) were amplified using A.nidulans FGSC A4, Aspergillus oryzae genome and pGB96 as templates and primers 44-5F/44-5R, 44-8F/44-8R and 44-11F/44-11R, respectively. Plasmid pAdeA (DOI:10.1021/ja3116636) As a template, the fragment AdeA was amplified with primers 44-12F/44-12R. The fragments of similar size were subjected to overlap extension PCR (OE-PCR) and finally yeast assembly to give plasmid pSC 44. Using pSC44 as a template, a fragment hlyA (nucleotide sequence shown in SEQ ID NO: 9) -tHMG1 (nucleotide sequence shown in SEQ ID NO: 12) -NOs (nucleotide sequence shown in SEQ ID NO: 22) was amplified with primers 59-1F/59-1R, digested with SacI, and inserted into the SacI-digested pSC44 plasmid to construct a pSC59 plasmid.
Construction of the pSC71 plasmid: the vector fragment was amplified with primers 71-1F/71-1R using pSC11 plasmid as a template. A homologous arm fragment ku70-up and ku70-down (DOI:10.1038/nature04300) were amplified using Aspergillus oryzae genomic DNA as a template and primers 71-2F/71-2R and 71-11F/71-11R, respectively. Using Aspergillus oryzae cDNA as template, primers 71-5F/71-5R, 71-8F/71-8R were used to amplify fragments MVD1 (nucleotide sequence shown in SEQ ID NO: 15) and IDI (nucleotide sequence shown in SEQ ID NO: 16). Using pSC44 as a template, a fragment hlyA (nucleotide sequence shown in SEQ ID NO: 9) -tHMG1 (nucleotide sequence shown in SEQ ID NO: 12) -NOs (nucleotide sequence shown in SEQ ID NO: 22) was amplified with primers 71-3F/71-3R. The promoters oliC (nucleotide sequence shown in SEQ ID NO: 5) and glaA (nucleotide sequence shown in SEQ ID NO: 3) were amplified using Aspergillus oryzae genome and pGB98 as templates and primers 71-4F/71-4R, 71-7F/71-7R. Using pYJ152 as a template, a fragment argB-PamyB-mgcD (nucleotide sequence shown in SEQ ID NO: 17) -TamyB was amplified with primers 71-10F/71-10R. Terminator agdA (nucleotide sequence shown in SEQ ID NO: 21) and niaD (nucleotide sequence shown in SEQ ID NO: 20) were amplified using Aspergillus oryzae genomic DNA and A. nidulans FGSC A4 as templates and primers 71-6F/71-6R, 71-9F/71-9R. The fragments of similar size were subjected to overlap extension PCR (OE-PCR) and finally yeast assembly to give plasmid pSC 71.
Construction of the pSC73 plasmid: using the pSC11 plasmid as a template, the vector fragment was amplified with primers 73-1F/73-1R. A homologous arm fragment ku70-up and ku70-down (DOI:10.1038/nature04300) were amplified using Aspergillus oryzae genomic DNA as a template and primers 73-2F/73-2R, 73-11F/73-11R, respectively. The Aspergillus oryzae cDNA was used as template, and primers 73-4F/73-4R, 73-7F/73-7R were used to amplify fragments ERG12 (nucleotide sequence shown in SEQ ID NO: 13) and ERG8 (nucleotide sequence shown in SEQ ID NO: 14). Using pSC44 as a template, a fragment hlyA (nucleotide sequence shown in SEQ ID NO: 9) -tHMG1 (nucleotide sequence shown in SEQ ID NO: 12) -niaD (nucleotide sequence shown in SEQ ID NO: 20) was amplified with primers 73-9F/73-9R. The promoter glaA (nucleotide sequence shown as SEQ ID NO: 3) and enoA (nucleotide sequence shown as SEQ ID NO: 8) were amplified using pGB98 and Aspergillus oryzae genomic DNA as templates and primers 73-3F/73-3R and 73-6F/73-6R. The terminator NOs (nucleotide sequence shown in SEQ ID NO: 22) and amyB (nucleotide sequence shown in SEQ ID NO: 19) were amplified using pGB96 and the Aspergillus oryzae genome as templates with primers 73-5F/73-5R and 73-8F/73-8R. sC was amplified using pUSA as template and primers 73-10F/73-10R. The fragments of similar size were subjected to overlap extension PCR (OE-PCR) and finally yeast assembly to give plasmid pSC 73.
Construction of pSC111 plasmid: the terminator NOs (nucleotide sequence shown in SEQ ID NO: 22) was amplified using the primer 111-1F/111-1R with pGB98 as a template. The vector fragment was amplified using the primer 111-3F/111-3R, using the pSC11 plasmid as a template. A homologous arm fragment koj-down and koj-up (DOI:10.1038/nature04300) were amplified using Aspergillus oryzae genomic DNA as a template and primers 111-2F/111-2R, respectively. Using Aspergillus oryzae genome DNA as a template, a ptrA (DOI:10.1007/s10529-015-2015-x). Using Aspergillus oryzae genome DNA as template, hlyA (nucleotide sequence shown in SEQ ID NO: 9) was amplified with primers 111-6F/111-6R. Using pYJ153 as a template, mgcE (nucleotide sequence shown in SEQ ID NO: 18) was amplified using primers 111-7F/111-7R. The fragments with similar sizes were subjected to overlap extension PCR (OE-PCR), and finally yeast assembly was performed to obtain plasmid pSC 111.
Construction of the pSC112 plasmid: a terminator agdA (nucleotide sequence shown in SEQ ID NO: 21) was amplified using Aspergillus oryzae genomic DNA as a template and primers 112-1F/112-1R. Using pSC111 as a template, hlyA (nucleotide sequence shown in SEQ ID NO: 9) -mgcE (nucleotide sequence shown in SEQ ID NO: 18) was amplified using primers 112-2F/112-2R. The two fragments were subjected to overlap extension PCR (OE-PCR), digested with NotI/HpaI, and inserted into NotI/HpaI-digested pSC111 plasmid to construct pSC112 plasmid.
Construction of pSC253 plasmid: vector sequences were amplified using primers 251-1F/251-1R, using pSC11 as a template. The dna fragment was identified with pAdeA-Cas9(DOI:10.1007/s10529-015-2015-x) As a template, PamyB-Cas9-TamyB was amplified with primers 251-2F/251-2R. hAMA1(DOI:10.1006/fgbi.1997.0980) was amplified with primer 251-3F/251-3R using A.nidulans FGSC A4 as template. Using pSC111 as a template, ptrA (DOI:10.1271/ bbb.64.1416). The yeast was assembled to give plasmid pSC 251. Using pSC11 as a template, the fragment CEN was amplified using primers 78-1F/78-1R. The plasmid pSC78 was constructed by XhoI/BamHI digestion and insertion into the XhoI/BamHI digested pET28 plasmid. Using Aspergillus oryzae genome DNA as template, and using primers 251-1F/251-1R, 251-2F/251-2R, 251-3F/251-3R, 251-4F/251-4R, 251-5F/251-5R, 251-6F[ 251-6 ] R amplification of PU6-1,TU6-1,PU6-2,TU6-2,PU6-3,TU6-3. Will PU6-1 and TU6-1,PU6-2 and TU6-2,PU6-3 and TU6-3 overlap extension PCR (OE-PCR) was performed and the three fragments were assembled with pSC78 by GoldeGate to construct the pSC252 plasmid. A fragment containing 3 sgrnas of pSC252 digested with NotI/PacI was inserted into pSC251 digested with NotI/PacI to construct pSC253 plasmid.
Construction of the pSC184 plasmid: argB and vector sequences were amplified using pSC71 as template and primers 87-1F/87-1R. The reaction was performed with pAdeA (DOI:10.1021/ja3116636) As a template, PamyB-Cas9-TamyB was amplified with primers 87-2F/87-2R. hAMA1 was amplified with primer 87-3F/87-3R using A.nidulans FGSC A4 as template. PyrG was amplified using A.fumigagatus as template with primers 87-4F/87-4R. Four-fragment yeast assembly to construct pSC 87. Amplification of P with 98-1F/98-1R,98-2F/98-2R, 98-3F/98-3R, 98-4F/98-4R, 98-5F/98-5R, 98-6F/98-6RU6-1,TU6-1,PU6-2,TU6-2,PU6-3,TU6-3. Will PU6-1 and TU6-1,PU6-2 and TU6-2,PU6-3 and TU6-3 overlap extension PCR (OE-PCR) was performed and the three fragments were assembled with pSC78 by GoldeGate to construct the pSC98 plasmid. The NotI/SmaI digested fragment of pSC98 containing 3 sgRNAs was inserted into NotI/SmaI digested pSC87 to construct the pSC184 plasmid.
Construction of plasmid pSC 249: a. nidulans FGSC A4 was used as a template, and primers 134-1F/134-1R, 134-2F/134-2R were used to amplify the AMA1 sequence split into two fragments. PyrG was amplified using pSC87 as a template and primers 134-3F/134-3R. Vector sequences and PamyB-Cas9-TamyB were amplified using pSC251 as template and primers 134-4F/134-4R, 134-5F/134-5R. Four-fragment USER Cloning pSC134 was constructed. P amplification with the Aspergillus oryzae genome as template and primers 249-1F/249-1R, 249-2F/249-2RU6,TU6The plasmid pSC249 was constructed by overlap extension PCR (OE-PCR), NotI/PacI cleavage, and insertion of NotI/PacI cleaved pSC 134.
Construction of the pSC246 plasmid: vector sequences were amplified using primers 246-1F/246-1R, using pSC11 as a template. HS401 up and HS401 down (DOI:10.1038/nature04300) were amplified using Aspergillus oryzae genome as template with primers 246-2F/246-2R, 246-5F/246-5R. Using pSC44 as a template, PhlyA-tHMG1-Tnos was amplified using primers 246-3F/246-3R. PoliC-MVD-TagdA-PamyB-IDI-TniaD was amplified using primer 246-4F/246-4R with pSC71 as template. The 5 fragments were assembled in yeast to construct the pSC246 plasmid.
Construction of plasmid pSC 247: plasmid pSC247 was constructed by amplifying Tnos-tHMG1-PhlyA, MreI/SalI digested, using pSC246 as a template, with primers 247-1F/247-1R, and inserting MreI/SalI digested pSC 246.
Construction of pSC263 plasmid: p amplification with primer 263-1F/263-1R, 263-2F/263-2R using Aspergillus oryzae genome as templateU6,TU6The plasmid pSC263 was constructed by overlap extension PCR (OE-PCR), NotI/PacI cleavage, and insertion of NotI/PacI cleaved pSC 134.
Construction of pSC260 plasmid: vector sequences were amplified using pSC11 as a template and primers 260-1F/260-1R. Using Aspergillus oryzae genome as template, primers 260-2F/260-2R, 260-4F/260-4R were used to amplify HS201 up and HS201 down (DOI:10.1038/nature 04300). PoliC-ERG10-TniaD-PamyB-ERG13-TamyB and PhlyA-tHMG1-Tnos were amplified with primers 260-3F/260-3R using pSC44 as a template. The 4 fragments were assembled in yeast to construct the pSC260 plasmid.
Construction of the pSC248 plasmid: p amplification with the Aspergillus oryzae genome as template and the primers 248-1F/248-1R, 248-2F/248-2RU6,TU6The plasmid pSC248 was constructed by overlap extension PCR (OE-PCR), NotI/PacI cleavage, and insertion of NotI/PacI cleaved pSC 134.
Construction of the pSC262 plasmid: vector sequences were amplified using primers 262-1F/262-1R using pSC11 as a template. Using Aspergillus oryzae genome as template, using primers 262-2F/262-2R, 262-4F/262-4R to amplify HS601 up and HS601 down (DOI:10.1038/nature04300) and using pSC73 as template, using primers 262-3F/262-3R to amplify PglaA-ERG12-Tnos-PenoA-ERG8-TamyB and PhlyA-tHMG 1-TniaD. The 4 fragments were assembled in yeast to construct the pSC262 plasmid.
Construction of the pSC24 plasmid: using Aspergillus oryzae genome as template, and primer 24-1F/24-1R, 24-2F/24-2R amplification of PU6,TU6The plasmid pSC24 was constructed by overlap extension PCR (OE-PCR), NotI/PacI cleavage, and insertion of NotI/PacI cleaved pSC 134.
Construction of the pSC162 plasmid: vector sequences were amplified using primer 162-1F/162-1R with pSC11 as template. Using Aspergillus oryzae genome as template, HS801 up and HS801 down (DOI:10.1038/nature04300) were amplified using primers 162-2F/162-2R, 162-4F/162-4R. Using pSC71 as a template, PhlyA-mgcD-Tnos was amplified using primers 162-3F/162-3R. The 4 fragments were assembled in yeast to construct the pSC162 plasmid.
Construction of the pSC27 plasmid: vector sequences were amplified using primers 25-1F/25-1R using pSC11 as a template. Using Aspergillus oryzae genome as template, HS801 up and HS801 down (DOI:10.1038/nature04300) were amplified with primers 25-2F/25-2R, 25-4F/25-4R. The primer 25-3F/25-3R is used for amplifying the PamyB-mgcD-TamyB by taking pYJ152 as a template. The 4 fragments were assembled in yeast to construct the pSC25 plasmid. Using pSC111 as a template, PhlyA-mgcE-Tnos was amplified using primers 27-1F/27-1R. NotI/PacI digested was inserted into NotI/PacI digested pSC25 to construct pSC27 plasmid.
Construction of the pSC28 plasmid: using pSC111 as a template, PhlyA-mgcE-Tnos was amplified using primers 28-1F/28-1R. The plasmid pSC28 was constructed by PacI digestion and insertion of PacI digested pSC 27.
EXAMPLE 3 Aspergillus oryzae mutant Strain construction strategy for high yield of terpenoids
In order to highly produce target terpenoid, the invention rationally designs and constructs a series of Aspergillus oryzae mutant strains. In the construction of the strains, plasmids containing different genes are transformed into Aspergillus oryzae by protoplast transformation. After the transformants grow out, 3-4 transformants are selected to extract the genome, and PCR verification is carried out on the target gene. And (4) carrying out subculture expansion on the strains with positive PCR results for subsequent seed preservation and fermentation experiments.
In order to realize the yield increase of a sesterterpene skeleton compound mangicidine, the invention co-transforms plasmids pSC59, pSC71 and pSC73 into Aspergillus oryzae to obtain a mutant strain AO-S84. In order to achieve an increased yield of the compound mangicol J with anti-inflammatory activity, the present invention transformed plasmids pSC111 and pSC112 into the A.oryzae mutant strain AO-S84 by increasing the copy number of mgcE (2 copies) to obtain mutants AO-S93 and AO-S94. In order to obtain a free plasmid Aspergillus oryzae chassis strain with high terpene yield, the invention transforms plasmid pSC253 into Aspergillus oryzae mutant strain AO-S84 to obtain mutant strain AO-S85.
EXAMPLE 4 construction of Aspergillus oryzae mutants with high yield of terpenoids
To obtain an A.oryzae strain containing a pyrG-deficient plasmid, the present invention transformed the pSC184 plasmid into A.oryzae NSAR1 to obtain the mutant strain AO-S184. In order to obtain a high expression site integration aspergillus oryzae chassis strain with high terpene yield, the pSC249 and pSC246 plasmids are co-transformed into the strain AO-S184. The mutant strain having the gene fragment of pSC246 plasmid integrated at the HS401 site was cultured for 2-3 generations on a plate without selection pressure, and spores of the strain were collected (10)4Spores/5 μ L) were plated on a medium containing uracil and 5-fluoroorotic acid, and a strain in which homologous recombination had occurred and the pSC249 plasmid had been lost was selected as a starting strain for the next round of gene editing (fig. 1). Meanwhile, the plasmids used for the second and third rounds of gene editing were pSC263 and pSC260, pSC248 and pSC262, respectively, resulting in an integrated aspergillus oryzae chassis AO-S95 that over-expresses the entire MVA pathway and an additional 3 copies of thgl 1 of high-yielding terpenes. In order to realize the yield increase of a sesterterpene skeleton compound mangicidine, the invention co-transforms plasmids pSC24 and pSC162 into Aspergillus oryzae to obtain a mutant strain AO-S96. In order to achieve an increased yield of the compound mangicol J with anti-inflammatory activity, the present invention co-transformed plasmids pSC24 and pSC27, pSC24 and pSC28 into Aspergillus oryzae mutant strain AO-S95, respectively, to obtain mutants AO-S97 and AO-S98, by increasing the copy number (2 copies) of mgcE.
EXAMPLE 5 enrichment and purification of terpenoids
In order to obtain sufficient product for compound yield calibration, the present invention performs a number of fermentations of Aspergillus oryzae mutants AO-S84 and AO-S98. Placing the rice culture medium (5-10kg) with thallus into 30 deg.C incubator, and standing for 20-25 d. Crushing the cultured thallus with a stirrer, adding n-hexane or ethyl acetate with the same volume for extraction for 3-4 times, combining the extracted organic layers, and concentrating with a rotary evaporator to obtain crude extracts A and B. And (3) purifying the crude extract A by multi-time semi-preparative HPLC, eluting by using pure acetonitrile and ultrapure water as mobile phases according to the volume ratio of 75:25 and 90:10, and collecting fractions to obtain the sesterterpene compound of mangicidine. And (3) purifying the crude extract B by multi-time semi-preparative HPLC, eluting by using pure acetonitrile and ultrapure water as mobile phases according to the volume ratio of 75:25 and 90:10, and collecting fractions to obtain the sesterterpene compound of the Mangicol J.
Example 6 Synthesis and detection of terpenoids
For detecting target terpenoid, 2mL of the constructed mutant strain containing 2.5X10 was amplified on a screening plate7The spore suspension of (2) was inoculated into 200mL of DPY liquid medium, and 1% each of maltose and glucose was added to induce expression. Culturing at 140rpm and 30 ℃ for 7 days. Filtering cultured thallus with nylon cloth, discarding culture medium, mincing thallus with stirrer, adding equal volume of n-hexane or ethyl acetate, extracting for three times, and mixing the upper organic layers. Spin-drying with rotary evaporator, adding chromatographic grade ethyl acetate or methanol, re-dissolving the sample, high speed centrifuging, collecting supernatant, and detecting with GCMS or HR-LCMS.
The invention respectively carries out 3 parallel fermentation culture on three mutant strains of AO-S84, AO-S96 and AO-Y51. And (4) re-dissolving the fermentation product by using normal hexane, and detecting by GCMS. The results showed that mangicriene yields of 87.84mg/L and 27.38mg/L were detected for AO-S84 and AO-S96, respectively, which were 133 and 41 fold higher than the control strain AO-Y51(0.66mg/L), respectively. The invention respectively carries out 3 parallel fermentation culture on three mutant strains of AO-S93, AO-S94, AO-S97, AO-S98 and AO-Y52. And (4) after re-dissolving the fermentation product by ethyl acetate, and detecting by GCMS. The results showed that the yields of Mangicol J detected by AO-S93 and AO-S97 were 9.14mg/L and 7.26mg/L, respectively. After increasing the mgcE copy, the yields of Mangicol J detected by AO-S94 and AO-S98 were 12.09mg/L and 8.93mg/L, respectively, which were improved by 151 and 111 times, respectively, compared to the original strain AO-Y52(0.08 mg/L).
Example 7 high throughput amplification of recombinant fragments
DNA fragments required for constructing the gene cluster BGC-FgJ02895 recombinant plasmid library are obtained by PCR amplification. Phusion high fidelity DNA polymerase required for amplification was purchased from NEB (New England Biolabs, NEB) and Prime STAR GXL DNA polymerase from TaKaRa (TaKaRa Bio, Inc., Shiga, Japan). PCR primers were purchased from Kinry Biotechnology Ltd (Table 2 below). Magnetic beads for PCR purification of amplified fragments were purchased from Novozam Biotechnology Ltd (N411-01, Vazyme).
TABLE 2 PCR primers
The 5 '-end and the 3' -end of all functional genes, promoters, terminators and vector sequences all contain overlapping fragments of 40bp bases, so that the plasmid library can be obtained by utilizing the inherent recombination capability of saccharomyces cerevisiae in the following assembly. Preparation of PCR System by automated pipetting station (Biomek FX)PLaboratory Automation Workstation, Beckman Coulter). PCR amplification adopts a 40 mu L amplification system, required primers are synthesized and dissolved and then are loaded in a 96-well plate, a DNA polymerase system (containing buffer, dNTPs and DNA polymerase) is prepared according to the required amount (589 fragment amplification amounts), then the obtained product is evenly distributed in the 96-well plate (34 mu L/hole), and a template is diluted and then loaded in the 96-well plate (25 ng/mu L). And respectively and sequentially adding 2 mu L of front primer, 2 mu L of rear primer and 2 mu L of template into the DNA polymerase system, uniformly mixing by blowing and sucking, transferring into a PCR instrument, and setting a program for PCR amplification. The amplification procedure used in this example was as follows:
example 8 construction of recombinant plasmids by Yeast Assembly
The construction of recombinant plasmids related to the gene cluster BGC-FgJ02895 mainly adopts a Yeast assembly (Yeast assembly) method. Saccharomyces cerevisiae CEN. PK2-1D, EUROSCARF) (genotype MATaurara 3-52trp1-289leu 2-3112 his3 Δ 1MAL2-8C SUC2) was used as an experimental strain for homologous recombination, and an optimized lithium acetate/polyethylene glycol (LiAc/PEG) chemical transformation method was used to construct recombinant plasmids. The experimental operations (e.g. "pipetting", "shaking", "plate transfer", "pipetting", etc.) involved in the examples were carried out by automated pipetting stations (Biomek FX)PLaboratory Automation Workstation, Beckman Coulter), and the liquid dispensing operation is performed by an automatic liquid dispenser (Thermo Scientific)TMMultidrop comb SMART Dispenser), the cell monoclonal picking is performed by a Qpix 460 monoclonal picking system (Molecular Device Qpix 460), "centrifugation" is performed by a centrifuge provided in an automated workstation, and "cell culture" is performed in an incubator provided in the automated workstation. Plasmid extraction beads were purchased from magenta Bio (Magpure Plasmid LQ Kit) and a Plasmid miniprep Kit was purchased from Axygen (Cat. No. AP-MN-P-250). The specific construction method is described in detail below.
The coding sequence, promoter, terminator and linear vector fragments required for construction of each recombinant plasmid related to gene cluster BGC-FgJ02895 obtained in example 7 were taken at 300ng each and mixed until use (total volume 10. mu.L). And transferring the 10 mu L of DNA mixed solution into a 96-hole deep-hole plate (100 mu L/hole) containing saccharomyces cerevisiae competent cells by using an MP 20096-Tip mechanical arm in an automatic liquid transfer workstation, sequentially adding boiled milt DNA (20 mu L/hole) and LiAc/TE/40% PEG4000 solution (700 mu L/hole), setting an "asparate" program, uniformly blowing and sucking, and incubating in an incubator at 30 ℃ for 30 min. Taking out the culture plate, adding DMSO (88 mu L/hole), blowing and sucking uniformly, transferring the culture plate to a 42 ℃ incubator for heat shock for 8min, centrifuging at 1500rpm for 5min, discarding the supernatant, adding 1mL YPD culture medium for resuspending thallus, transferring the culture plate to a 30 ℃ incubator, and incubating for 60 min. Taking out the culture plate, centrifuging at 1500rpm for 5min, removing the supernatant, adding 1mL of TE solution to wash the thallus once, centrifuging at 1500rpm for 5min, removing part of the supernatant, remaining about 100 mu L of TE solution to resuspend the thallus, sucking the bacteria liquid, adding the bacteria liquid into a 96-hole deep-hole plate containing 1mL of uracil-deficient solid culture medium (SC-Ura), transferring the culture plate to a shaking module, setting a shake program for 30s, and uniformly coating the bacteria liquid on the solid culture medium. The plates were transferred to a 30 ℃ incubator for 3 days. The specific operation flow is shown in fig. 2.
Example 9 extraction of plasmids by the paramagnetic particle method
A uracil-deficient liquid medium (SC-Ura) (200. mu.L/well) was added to the cell culture plate, and the cells were dissolved by aspiration to obtain a bacterial solution. The bacterial suspension was transferred to a 96-well deep-well plate containing 1.5mL of SC-Ura liquid medium and cultured overnight on a horizontal shaker at 30 ℃. Centrifuging at 3500rpm for 8min, discarding supernatant, and extracting yeast plasmid by optimized magnetic bead method. Lysozyme (500U/mL, Sigma-Aldrich,20210108) and plasmid miniprep buffer S1 solution were added sequentially to the well plate and the plate was transferred to a 25 ℃ incubator for 2h incubation. The plate was removed from the well, buffer S2 solution was added, and the plate was transferred to the "shake" module, 700rpm, shake for 45S. Buffer S3 was added, 700rpm, shaking for 45S. Subsequently, the mixture was centrifuged at 3500rpm for 10min, the supernatant was aspirated into a new 96-well deep-well plate, 400. mu.L of magnetic bead solution was added thereto, and the mixture was stirred and allowed to stand for 5 min. Transferring the pore plate to a magnetic frame, and adsorbing for 5 min. Discarding the supernatant, sequentially adding buffer W1 and buffer W2, washing, discarding the supernatant, standing for 5min to volatilize the solution, adding 100 μ L sterile water, transferring the well plate to a magnetic rack, standing for 5min, and dissolving plasmid DNA. The plasmid solution was pipetted into a new 96-well PCR plate to obtain a recombinant plasmid library related to the gene cluster BGC-FgJ 02895. The specific operation flow is shown in fig. 3.
Example 10 enrichment of recombinant plasmids in E.coli
Using CaCl2Coli (Escherichia coli DH10B) competent cells were prepared chemically. Competent cells were dispensed into 96-well deep-well plates at 70. mu.L/well by an automatic aliquotter. Add 10. mu.L of plasmid DNA solution to E.coli DH10B competent cells and incubate at 4 ℃ for 30 min. Subsequently, the plate containing the cells was transferred to a preheated 42 ℃ incubator, incubated for 3min, and 800. mu.L of LB medium was added to each well, and incubated at 37 ℃ for 45min to resuscitate the cells. Subsequently, the plate was transferred to a centrifuge, centrifuged at 1500g for 8min, and the cells were collected. The partial supernatant was discarded, and about 50. mu.L of the culture medium was used to resuspend the cells, spread on Ampicillin (Ampicillin, Amp) -resistant LA solid medium, and cultured overnight at 37 ℃. The strain is picked up to LB culture medium by Qpix 460 instrument, and enlarged culture is carried out to enrich plasmid. The obtained plasmid related to the gene cluster BGC-FgJ02895 is verified by restriction enzyme digestion. The specific operation flow is shown in fig. 3.
Specifically, the method comprises the following construction of plasmids (FgJ genome, namely genome of fusarium graminearum J1-012(Fusarium graminearum J1-012)):
construction of pYJ182 plasmid: the FgJ genome and pYJ152 are respectively used as templates, a primer pair HQD02895gDNA-Tamy GR (182)/HQD02895-Pamy GF (182) and a primer pair HQD02895gDNA GR (182)/Pamy-HQD02895gDNA GF (182) are respectively used for amplifying fragments pYJ182-F1 and pYJ182-F2, and the 2 fragments are subjected to yeast assembly to obtain the plasmid pYJ 182.
Construction of pYJ183 plasmid: FgJ genome and pYJ153 are respectively used as templates, a primer pair HQD2897gDNA-Tamy GR (183)/HQD2897gDNA-Pamy GF (183) and a primer pair HQD2897gDNA GR (183)/Pamy-HQD2897gDNA GF (183) are respectively used for amplifying fragments pYJ183-F1 and pYJ183-F2, and the 2 fragments are subjected to yeast assembly to obtain the plasmid pYJ 183.
Construction of pYJ184 plasmid: fragments pYJ184-F1 and pYJ184-F2 were amplified from HQD2900g DNA-Tamy GR (184)/HQD2900g DNA-Pamy GF (184) and Tamy-HQD2900g DNA GR (184)/Pamy-HQD2900g DNA GF (184) using FgJ genome and pYJ174 as templates, respectively, and these 2 fragments were yeast-assembled to give plasmid pYJ 184.
Construction of pYJ185 plasmid: fragments pYJ185-F1 and pYJ185-F2 were amplified from HQD2901gDNA-Tamy GR (185)/HQD2901gDNA-Pamy GF (185) and Tamy-HQD2901gDNA GR (185)/Pamy-HQD2901gDNA GF (185) respectively using FgJ genome and pYJ174 as templates, respectively, and these 2 fragments were yeast-assembled to obtain plasmid pYJ 185.
Construction of pYJ199 plasmid: pGB98, FgJ genome, pGB127 and pYJ184 are respectively used as templates, and the fragments pYJ199-F1, pYJ199-F2, pYJ199-F3 and pYJ199-F4 are respectively amplified by using primer pairs PglaA-7577gDNA GF (175-) -176)/PglaA-HQD02901gDNA GR (199), HQD02901-TniaD GR (199), TniaD-HQD02901 GF (199)/TniaD-Tamy GR (175-) -176), Tamy-TniaD GF (175-) -176)/AdeA-PglaAGR (175-) -176, and the 4 fragments are respectively used for yeast assembly to obtain the pYJ 199.
Construction of pYJ200 plasmid: pGB127, FgJ genome, pYJ177, pGB98, FgJ genome, pGB127 and pYJ184 are taken as templates respectively, the plasmid was assembled by using primers TagdA-AdeAGF (177)/TagdA-HQD02898 GR (200), HQD02898-TagdA GR (200)/HQD02898-PhlyA GF (200), PhlyA-HQD02898 GR (200)/PhlyA-PglaAGF (177), PglaA-PhlyA GF (177)/PglaA-HQD02901gDNA GR (199), HQD02901-PglaA GF (199)/HQD02901-TniaD GR (199), TniaD-HQD 901 GF (199)/TniaD-Tamy GR (175-176), Tamy-TniaD (175-176)/AdeA-TagdA GR (177) to amplify pYJ 200-F0254, pYJ 200-1, pYJ200-F2, pYJ 200-3, yeast-200-pF 5, yeast-200-YF 3957, and more than 200 pYJ 46F 29.
Construction of pYJ201 plasmid: pGB98, FgJ genome, pGB127 and pYJ183 are respectively used as templates, and the plasmids pYJ201 are obtained by respectively amplifying the fragments pYJ201-F1, pYJ201-F2, pYJ201-F3 and pYJ201-F4 by using primer pairs PglaA-HQD07575GF (178)/PglaA-HQD02896 GR (201), HQD02896-PglaA GF (201)/HQD02896-TniaD GR (201), TniaD-HQD02896GF (201)/TniaD-Tamy GR (175-.
Construction of pYJ202 plasmid: pGB127, FgJ genome, pYJ177, pGB98, FgJ genome, pGB127 and pYJ183 as templates, the plasmid fragments pYJ202-F1, pYJ202-F2, pYJ202-F3, pYJ 202-F202-34, yeast 202-202, and pYJ 202-5929 were assembled by using primers such as TagdA-sC GR (180)/TagdA-HQD02899 GF (202), HQD02899 GR (202)/PhlyA-PglaA GF (177), PglaA-HQD02896 GR (201), HQD02896-PglaA GF (201)/HQD02896-TniaD GR (201), TniaD-HQD 96GF (201)/TniaD 02896-Tamy (175 GR 176), Tamy-TniaD GF (175-.
Construction of pYJ203 plasmid: the plasmid pYJ203-F1, pYJ203-F2, pYJ203-F3 and pYJ203-F4 were respectively amplified from pGB98, FgJ genome, pGB127 and pYJ182 as templates and PglaA-Pamy GF (203)/PglaA GF (203)/HQD02902-TniaD GR (203), TniaD-HQD02902GF (203)/TniaD-ArgB GR (203) and ArgB-TniaD GF (203)/Pamy-PglaA GR (203), respectively, by using primer pairs PglaA-Pamy GF (203)/PglaA GF-HQD 02902 GR (203)/TglaD-203/HQD-203, and pYJ203-F4 as templates, and these 4 fragments were yeast-assembled to obtain pYJ 203.
Construction of pYJ204 plasmid: pGB98, FgJ genome, pGB127, FgJ genome, pYJ177 and pYJ182 are respectively used as templates, the fragments PglaA-Pamy GF (203)/PglaA-HQD02902 GR (203), HQD02902-PglaA GF (203)/HQD02902-TniaD GR (203), TniaD-HQD02902GF (203)/TniaD-TagdA GR (204), TagdA-TniaD GR (204)/TagdA-Hqd02892 GF (204), HQD02892-TagdA GR (204)/HQD02892-PhlyA GF (204), PhlyA-HQD02892 GR (204)/PhlyA-ArgB GF (204), ArgB-PhlyAGF (204)/Pamy-PglaA GR (203) were amplified with primer pairs to obtain pYJ204-F1, pYJ204-F2, pYJ 204-3, pYJ 204-PyF 39204-39204, pYJ-PyF 5, yeast 3957, and yeast strain No. 204-PyJ-593, and more than PyJ 3975.
EXAMPLE 11 Aspergillus oryzae mutant library construction for the Synthesis of terpenoids
Through bioinformatics analysis, the terpene biosynthetic gene cluster can be divided into 3 synthesis modules, which are respectively: 1) upstream terpene synthase module: contains Terpene Synthase (TS), and catalytic precursor (such as FPP, GGPP, GFPP) for synthesizing terpene skeleton compound; 2) a mid-stream oxidation module: contains cytochrome P450 enzyme (CYP 450) which catalyzes a core skeleton to synthesize double bonds, carbonyl or hydroxyl functional groups; 3) downstream post-modification module: contains optional post-modification catalytic enzymes such as Acyltransferase (ACT) and Glycosylase (GE) to catalyze the intermediate compound synthesized in the step 2), thereby synthesizing terpenoids with diverse structures and potential activity. Therefore, in order to reconstruct the terpenoid gene cluster in high flux, obtain intermediates and final terpenoid and analyze the biosynthesis pathway of the terpenoid gene cluster, the invention rationally designs the combined transformation of recombinant plasmids according to the inherent sequential catalytic properties of the terpenoid gene cluster synthesis, and constructs an aspergillus oryzae mutant strain screening library related to the gene cluster BGC-FgJ02895 (as shown in figure 5). The strain construction adopts a protoplast transformation method, and plasmids containing different genes are transformed into Aspergillus oryzae based on an automatic liquid transfer workstation. The method comprises the following specific steps:
before the experiment, the automatic liquid transfer workstation was subjected to UV sterilization. Culturing Aspergillus oryzae on DPY solid plate for about 3 days, scraping spore and mycelium, transferring to 100mL DPY liquid culture medium, culturing at 30 deg.C for 2 days, and collecting thallus. An optimized enzyme cracking method is adopted to prepare the aspergillus oryzae protoplast. The protoplast solution was dispensed into 96-well deep-well plates in an amount of 100. mu.L/well by an automatic dispenser. The plasmid DNA mixture to be transformed was added to the protoplast solution, the plate was transferred to an incubator and incubated at 30 ℃ for 1 hour. Subsequently, 1.25ml of PEG6000 solution was added and incubated at room temperature for 30 min. The plate was transferred to a centrifuge, centrifuged at 420g for 25min and a portion of the solution was discarded. To the remaining 200. mu.L of the solution, 800. mu.L of STC solution was added, and 420g was centrifuged for 25min, and part of the solution was discarded. Approximately 100. mu.L of the solution was retained to resuspend the cells, and the cells were transferred from a 96-well deep-well plate to a plate containing three defects (sC) using a flexible 8-channel robotic arm-,ΔargB,adeA-) Solid screening media in 24-well deep-well plates. The 24-well deep-well plate was then transferred to a shaking module, and after shaking to coat the cells, the plate was transferred to an incubator and incubated at 30 ℃ for 2-5 days (as shown in FIG. 6). After the transformant grows out, extracting a genome and carrying out PCR verification on a target gene. In the invention, BGC-FgJ02895 is taken as an example, and a strain library containing 11 mutant strains is finally constructed.
Specifically, the construction of the following Aspergillus oryzae mutant strains is included:
AO-Y23 co-transformed plasmid pGB366/pUSA/pAdeA, containing terpene synthase FgJ 02895; AO-Y24 co-transformed plasmid pGB366/pYJ183/pAdeA, containing terpene synthase FgJ02895, cytochrome P450 enzyme FgJ 02897; AO-Y25 co-transformed plasmid pGB366/pUSA/pYJ184, containing terpene synthase FgJ02895, cytochrome P450 enzyme FgJ 02900; AO-Y26 co-transformed plasmid pGB366/pUSA/pYJ185, containing terpene synthase FgJ02895, monooxygenase FgJ 02901; AO-Y27 co-transformed plasmid pGB366/pYJ183/pYJ184 containing terpene synthase FgJ02895, cytochrome P450 enzyme FgJ02897, cytochrome P450 enzyme FgJ 02900; AO-Y28 co-transformed plasmid pGB366/pYJ183/pYJ199 comprising terpene synthase FgJ02895, cytochrome P450 enzyme FgJ02897, cytochrome P450 enzyme FgJ02900, monooxygenase FgJ 02901; AO-Y29 co-transformed plasmid pGB366/pYJ183/pYJ200, comprising terpene synthase FgJ02895, cytochrome P450 enzyme FgJ02897, cytochrome P450 enzyme FgJ02900, monooxygenase FgJ02901, acetyltransferase FgJ 02898; AO-Y30 co-transformed plasmid pGB366/pYJ201/pYJ200, comprising terpene synthase FgJ02895, cytochrome P450 enzyme FgJ02897, transcription factor FgJ02896, cytochrome P450 enzyme FgJ02900, monooxygenase FgJ02901, acetyltransferase FgJ 02898; AO-Y31 co-transformed plasmid pGB366/pYJ202/pYJ200, comprising terpene synthase FgJ02895, cytochrome P450 enzyme FgJ02897, transcription factor FgJ02896, TfgJ 02899, cytochrome P450 enzyme FgJ02900, monooxygenase FgJ02901, acetyltransferase FgJ 02898; AO-Y32 co-transformed plasmid pYJ203/pYJ202/pYJ200 comprising terpene synthase FgJ02895, Cu2+ -ATPaseFgJ02902, cytochrome P450 enzyme FgJ02897, transcription factor FgJ02896, TfgJ 02899, cytochrome P450 enzyme FgJ02900, monooxygenase FgJ02901, acetyltransferase FgJ 02898; AO-Y33 co-transformed plasmid pYJ204/pYJ202/pYJ200, comprising terpene synthase FgJ02895, Cu2+ -ATPaseFgJ02902, decarboxylase FgJ02892 (nucleotide sequence shown in SEQ ID NO: 25), cytochrome P450 enzyme FgJ02897 (nucleotide sequence shown in SEQ ID NO: 30), transcription factor FgJ02896 (nucleotide sequence shown in SEQ ID NO: 29), Tf FgJ02899 (nucleotide sequence shown in SEQ ID NO: 32), cytochrome P450 enzyme FgJ02900 (nucleotide sequence shown in SEQ ID NO: 33), monooxygenase FgJ02901 (nucleotide sequence shown in SEQ ID NO: 34), acetyltransferase FgJ02898 (nucleotide sequence shown in SEQ ID NO: 31).
Example 12 Synthesis and detection of terpenoids
And transferring the Aspergillus oryzae strain with positive PCR (polymerase chain reaction) verification result to a 24-hole deep-hole plate containing a rice solid culture medium for culture, transferring 6 multiple holes (each hole contains 1g of rice and 1.5mL of deionized water), and performing fermentation culture for 2 weeks at 30 ℃. Acetone (5 mL/well) was added to the cultured 24-well plates and soaked at room temperature for 2 h. The supernatant was transferred to a new 24-well deep-well plate, and ethyl acetate (5 mL/well) was added to the cells, followed by immersion at room temperature for 2 hours. The acetone and ethyl acetate extract phases were combined, the 24-well plate was transferred to a fume hood and allowed to evaporate naturally to obtain a crude extract. The generation of terpenoid products in the mutant was detected by GC/MS and HR-LC/MS.
In the invention, 3 terpenoids (17, 20 and 28) with new structures are separated and purified, and the structures of the terpenoids are analyzed by nuclear magnetic resonance spectroscopy, and the results are as follows:
compound 17: C15H24,1H-NMR and13C-NMR data are shown in tables 3 and 4 and FIGS. 10 to 16; HR-ESI-MS [ M + H ] in positive ion mode]+m/z 205.1948(calculated value 205.1951)。
Compound 20: C15H24O,-80.5(c 0.1,MeOH),UV(MeOH)λmax(logε):196(3.81);IR(KBr)vmax3362,2955,2921,1710,1637,1460,1378,1270,1114,1064,907cm–1;1H-NMR and13C-NMR data are shown in tables 1 and 2 and FIGS. 17 to 23; HR-ESI-MS [ M + H ] in positive ion mode]+m/z 221.1908(calculated value 221.1900)。
Compound 28: C17H28O3,-38.5(c 0.12,MeOH),UV(MeOH)λmax(logε):196(3.45);IR(KBr)vmax3432,2963,2928,1737,1632,1454,1384,1243,1045cm–1;1H-NMR and13C-NMR data are shown in tables 1 and 2 and FIGS. 24 to 30; HR-ESI-MS [ M + H ] in positive ion mode]+m/z 281.2117(calculated value 281.2111)。
TABLE 3 preparation of compounds 17, 20 and 281And attributing H-NMR data.
a Recorded at 500MHz,and the assignments were based on DEPT,HSQC,COSY,HMBC,and ROESY experiments.
TABLE 4 preparation of compounds 17, 20 and 2813C-NMR data attribution.
a Recorded at 500MHz,and the assignments were based on DEPT,HSQC,COSY,HMBC,and ROESY experiments.
Example 13 high throughput screening of terpenoid anti-inflammatory Activity
1) In vitro cytotoxicity assessment
To exclude the effect of compound-induced cytotoxicity on anti-inflammatory activity screening, the toxic effect of the compound to be screened on the cells was first assessed prior to the activity screening assay. In this example, mouse macrophage RAW264.7 was used as a study subject. Cells were plated at 2.0X 104Cells/well were seeded in 24-well plates at 37 ℃ with 5% CO2After 24h of incubation in an incubator, the crude extract to be screened (final concentration 500. mu.g/mL) was added at 37 ℃ with 5% CO2Incubate for 24 h. To each well was added 100. mu.L of CCK-8 diluted solution (10. mu.L of CCK-8 solution added to 90. mu.L of medium), 37 ℃ 5% CO2After incubation in the incubator for 1h, the plates were transferred to a microplate reader and absorbance was measured at a wavelength of 450nm (as shown in FIG. 7).
2) In vitro anti-inflammatory Activity screening
In this example, Lipopolysaccharide (LPS) -induced mouse macrophage RAW264.7 was used as an in vitro inflammatory cell model. RAW264.7 mouse macrophages are scaled up to 3.0X 105Cells/well were seeded in 24-well plates at 37 ℃ with 5% CO2After 24 hours of culture in an incubator, LPS (1. mu.g/mL) was allowed to act on macrophages of RAW264.7 mice, and molding was performed to obtain inflammatory cells. And (3) respectively acting the crude extract (with the final concentration of 500 mu g/mL) on model cells, taking supernatant after 16h, detecting the level of NO in the supernatant by a Griess reagent color development method, and evaluating the anti-inflammatory activity of the compound by taking the capability of the tested drug for inhibiting NO release as a screening index. After the cells are treated by the drug, a flexible 8-channel machine is adoptedThe arm transfers the supernatant from the 24-well plate to a 96-well plate, followed by sequential addition of Griess I and Griess II reagents. The plate was transferred to a microplate reader and the UV absorbance was measured at 540nm wavelength (as shown in FIG. 7).
Although the embodiments of the present invention have been shown and described, it is understood that the above embodiments are illustrative and not restrictive, and that those skilled in the art may change, modify, replace and modify the above embodiments within the scope of the present invention and that they should be included in the protection scope of the present invention.
Sequence listing
<110> Wuhan university
<120> construction of Aspergillus oryzae chassis strain for high yield of terpenoid and automatic high-flux excavation platform for terpenoid natural products
<160> 31
<170> SIPOSequenceListing 1.0
<210> 1
<211> 246
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 1
cgggatagtt ccgacctagg attggatgca tgcggaaccg cacgagggcg gggcggaaat 60
tgacacacca ctcctctcca cgcaccgttc aagaggtacg cgtatagagc cgtatagagc 120
agagacggag cactttctgg tactgtccgc acgggatgtc cgcacggaga gccacaaacg 180
agcggggccc cgtacgtgct ctcctacccc aggatcgcat ccccgcatag ctgaacatct 240
atataa 246
<210> 2
<211> 720
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 2
gccatcggat gctcccgtca tggcaccact agagatggcg tggaaaaccc tcaccggcac 60
accggagggg tttaggcacc ttggaatatg aggtggggaa cgatgtattt gccagtattg 120
actctggtga atggatctct cgagaaatac taccttttca gggctcaagc gtcgtgtcgg 180
gcatttatcg ggggatggac caatcagcgt agggatatca gatgatcgcc agcattggtc 240
aggaacgttt ccaatttccg gacacggaag tactgtaact gctcccaaga atcaacacac 300
tcttttccgg tctcgtcctt tgctcggcag agattcatct cccatcgtcg gcttaaccgg 360
tactctttcg tcacgttcca aaaggcttga tcatgctgtc cccactccgt gcgggtgaag 420
ccacctcatt gctgcgtagg acctataccc ttcaactagc gtgacttctt cccctctcat 480
ggtcgagaga ttgcaggcaa tgcccctcgg acgtttgacg gggaatgttt tgccttcacg 540
gcaggtagca caaatcgatg ggaacgggac gggccatcaa ttgtgaggga tttcccgtgg 600
acacctggtt cgtcaagaca tatacatcta gctacaattc cggttcggag acggcagagg 660
ggtccgtttc ttaaaagaac aactacaaca cggtccggaa tcaacttggc ggaccacgac 720
<210> 3
<211> 745
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 3
ggatccgaac tccaaccggg gggagtatat tgagtggccg cagtggaagg aatcgcggca 60
gttgatgaat ttcggagcga acgacgccag tctccttacg gatgatttcc gcaacgggac 120
atatgagttc atcctgcaga ataccgcggc gttccacatc tgatgccatt ggcggagggg 180
tccggacggt caggaactta gccttatgag attaatgatg gacgtgtctg gcctcggaaa 240
aggatatatg gggatcataa tagtactagc catattaatg aagggtatat accacgcgtt 300
ggacctgcgt tatagcttcc cgttagttat agtaccatcg ttataccagc caatcaagtc 360
accacgcacg accggggacg gcgaatcccc gggaattgaa agaaattgca tcccaggcca 420
gtgaggccag cgattggcca catctccaag gcacagggcc attctgcagc gctggtggat 480
tcatcgcaat ttcccccggc ccggcccgac accgctatag gctggttctc ccacaccatc 540
ggagattcgt cgcctaatgt ctcgtccgtt cacaagctga agagcttgaa gtggcgagat 600
gcctctgcag gaattcaagc tagatgctaa gcgatattgc atggcaattt gtgttgatgc 660
atgtgcttct tccttcagct tcccctcgtg cagatgaggt ttggctataa attgaagtgg 720
ttggtcgggg ttccgtgagg ggctg 745
<210> 4
<211> 708
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 4
acagtgaccg gtgactcttt ctggcatgcg gagagacgga cggacgcaga gagaagggct 60
gagtaataag cgccactgcg ccagacagct ctggcggctc tgaggtgcag tggatgatta 120
ttaatccggg accggccgcc cctccgcccc gaagtggaaa ggctggtgtg cccctcgttg 180
accaagaatc tattgcatca tcggagaata tggagcttca tcgaatcacc ggcagtaagc 240
gaaggagaat gtgaagccag gggtgtatag ccgtcggcga aatagcatgc cattaaccta 300
ggtacagaag tccaattgct tccgatctgg taaaagattc acgagatagt accttctccg 360
aagtaggtag agcgagtacc cggcgcgtaa gctccctaat tggcccatcc ggcatctgta 420
gggcgtccaa atatcgtgcc tctcctgctt tgcccggtgt atgaaaccgg aaaggccgct 480
caggagctgg ccagcggcgc agaccgggaa cacaagctgg cagtcgaccc atccggtgct 540
ctgcactcga cctgctgagg tccctcagtc cctggtaggc agctttgccc cgtctgtccg 600
cccggtgtgt cggcggggtt gacaaggtcg ttgcgtcagt ccaacatttg ttgccatatt 660
ttcctgctct ccccaccagc tgctcttttc ttttctcttt cttttccc 708
<210> 5
<211> 844
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 5
ctgcagctgt ggagccgcat tcccgattcg ggccggattg gtcaagattt gcgtccgagg 60
tgccgtctat cattctagct tgcggtcctg ggcttgtgac tggtcgcgag ctgccactaa 120
gtggggcagt accattttat cggacccatc cagctatggg acccactcgc aaatttttac 180
atcattttct ttttgctcag taacggccac cttttgtaaa gcgtaaccag caaacaaatt 240
gcaattggcc cgtagcaagg tagtcagggc ttatcgtgat ggaggagaag gctatatcag 300
cctcaaaaat atgttgccag ctggcggaag cccggaaggt aagtggattc ttcgccgtgg 360
ctggagcaac cggtggattc cagcgtctcc gacttggact gagcaattca gcgtcacgga 420
ttcacgatag acagctcaga ccgctccacg gctggcggca ttattggtta acccggaaac 480
tcagtctcct tggccccgtc ccgaagggac ccgacttacc aggctgggaa agccagggat 540
agaatacact gtacgggctt cgtacgggag gttcggcgta gggttgttcc caagttttac 600
acacccccca agacagctag cgcacgaaag acgcggaggg tttggtgaaa aaagggcgaa 660
aattaagcgg gagacgtatt taggtgctag ggccggtttc ctccccattt ttcttcggtt 720
ccctttctct cctggaagac tttctctctc tctcttcttc tcttcttcca tcctcagtcc 780
atcttccttt cccatcatcc atctcctcac ctccatctca actccatcac atcacaatcg 840
atcc 844
<210> 6
<211> 359
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 6
cagaagatga tattgaagga gcactttttg ggcttggctg gagctagtgg aggtcaacaa 60
tgaatgccta ttttggttta gtcgtccagg cggtgagcac aaaatttgtg tcgtttgaca 120
agatggttca tttaggcaac tggtcagatc agccccactt gtagcagtag cggcggcgct 180
cgaagtgtga ctcttattag cagacaggaa cgaggacatt attatcatct gctgcttggt 240
gcacgataac ttggtgcgtt tgtcaagcaa ggtaagtgaa cgacccggtc ataccttctt 300
aagttcgccc ttcctccctt tatttcagat tcaatctgac ttacctattc tacccaagc 359
<210> 7
<211> 604
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 7
tcatggtgtt ttgatcattt taaattttta tatggcgggt ggtgggcaac tcgcttgcgc 60
gggcaactcg cttaccgatt acgttagggc tgatatttac gtaaaaatcg tcaagggatg 120
caagaccaaa gtagtaaaac cccggagtca acagcatcca agcccaagtc cttcacggag 180
aaaccccagc gtccacatca cgagcgaagg accacytcta ggcatcggac gcaccatcca 240
attagaagca gcaaagcgaa acagcccaag aaaaaggtcg gcccgtcggc cttttctgca 300
acgctgatca cgggcagcga tccaaccaac accctccaga gtgactaggg gcggaaattt 360
aaagggatta atttccactc aaccacaaat cacagtcgtc cccggtattg tcctgcagaa 420
tgcaatttaa actcttctgc gaatcgcttg gattccccgc ccctggccgt agagcttaaa 480
gtatgtccct tgtcgatgcg atgtatcaca acatataaat actagcaagg gatgccatgc 540
ttggaggata gcaaccgaca acatcacatc aagctctccc ttctctgaac aataaacccc 600
acag 604
<210> 8
<211> 737
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 8
cagccagcga gagtcacaga agactgatga gccccaccat ttcattggaa agattcggga 60
ggacgaggtc gagagctttt gccggggtag aggacgagga tggtacaaga actagacctt 120
tccaacttta attgttgaca cctatttaat tctctccttc ttctttattt tatttttcat 180
ttctccaacg acgactgtct cattactagt ctactagtaa ctctgtctta tcgtcatctc 240
ccataggtga gtttggttgt tttgtttcca ctgagatcat gacctcctcc taccccacca 300
tcccactatt tttgttacgg tagccatgac ccctccatgg caaagagaga ggaggacgag 360
gacgatcagg aaactgtgtc tcgccgtcat accacaatcg tgttatcctg attgacatct 420
tcttaaatat cgttgtaact gttcctgact ctcggtcaac tgaaattgga tctccccacc 480
actgcctcta ccttgtactc cgtgactgaa ccatccgatc attctttttg ggtcgtcggt 540
gaacacaacc cccgctgcta gtctccttcc aacaccgatc cagaattgtt ttgattttcc 600
attcccttcg tttatatctg tcgtctctcc tccctttccg tctcttttct tccgtcctcc 660
aagttagtcg actgaccaat tccgcagctc gtcaaaatgc ctatcaccaa gatccacgcc 720
cgctctgttt acgactc 737
<210> 9
<211> 1499
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 9
tgagtgaagt tccggtcgga gcaatcaggg tcggttggag tatatcagaa atgtatatct 60
ttggaaaggg tagttataat atgtcgaata tgaatttagg taagagtatt tgaaacaaca 120
agtatgagga tggttcactg gatggcttgc cctaacatcc acaccatcgc atccggccac 180
ctcaggaaca atcactcctc ctcacaaggt atatcccgcc attgaccaac gacaatccag 240
agtatgagat acttgcagaa cgccgagtgg cgttatcaac cgcgtgacct attcagtacc 300
tttgcctcac gccaagcaaa tttccccaca caaaagcaac cataaatgtc gttggccacc 360
gaagctcaaa ctttcggagt cgctctcagt ggttacttta ctgctggtgc ccacgggatc 420
gtaaatggac cttgaccaat tcgagtagtt ccgcagacga tcgctcatcg ctcgatttgg 480
tcgcgtgtcc agagtgttgc tacagcatgg tctggattcc aatccacgca gcagatatct 540
cttttacgca gtaactattc gatagccatt tccgttcaga tcagccgtcg gatccgagga 600
gcgacgacat caatgcgtgt tattagtcaa attttggagg ggttgcgtgc ccactgcagg 660
cagatgtagc cgtggcacca caacaccggc cagccctgga ttgggtggtg gaaccaagat 720
atgagaacca gtatctattg gcacggaggc gtttccggag cctgccgcgt gtgatacgtg 780
cagagtcaat tcctacggac tgtctggggt aggatcacaa ctaatcagtt gcagcgatgg 840
tttgacaaca ggggtcgatc aaagtttccg aagaatagga agcgaggaca gcaccaaggc 900
cgctgaacca caggaaacaa aggaaggaaa aacacaacaa aaccaaagac agacacatag 960
gaaatgacat acttaccaga gataagatga aaagcaccat ggggagggag ggtatggatg 1020
gggaagttga tcaacagtct gaaacccgcc cgaaatgaat gcatgacgcg acgattccat 1080
ctccacctaa gcttcatccc gtcaacctct aacaacgcgc tcggaggaga aaaagagggg 1140
gatcaacagc aatctaggtt gttgttcccc caggatttct ccgcaaagaa tgtttagggt 1200
tccgtggatc gggtgaccga atcggccaac cgcattgtct gatcgtctcg tcatatgatc 1260
cagtgcatga cgtcttccat caatccatca ccccagactg aatcctcaca ttaatttaac 1320
aattgtcgct cggggaaatc aataaatacc cgctcgtctc ctccctccct cgtgctggtt 1380
cagttgattg ttcactcatc gactttatca atcttccatt gaccattcca ggcttgtcgc 1440
ccactcatat aatcttcttt ccccggtctc acatcaatca cccttcacac cacaacacc 1499
<210> 10
<211> 1200
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 10
atgtcttctc ttccgccggt ctatattgtt tcctctgccc gcaccccagt cggctctttc 60
ttggggtcgc tctcaagtct cactgccccg cagttaggct ctcatgctat taaagctgcg 120
ctcagcaaag cggatggaat caagccgtct gatatccagg aggtcttctt tggcaatgtc 180
atctccgcaa acgttggaca aaatcctgct agacagtgtg ctctcggcgc tggtctcaat 240
gaatcaactg tctgtactac ggttaataag gtgtgcgcgt ctggcttgaa agcggttatt 300
ctcggtgcac agaccatcat gactggcaat gcggatattg tcgtagcagg cggtgctgaa 360
tccatgtcta acgcccctca ttaccttcca aaccttcgcg tcggtgcgaa atacggcaac 420
cagagtctgg tggacggtat tatgaaggat ggcttgacag acgcaggaaa gcaggaactc 480
atgggcttgc aagccgagga gtgtgctcag gatcatggct ttagcaggga acaacaggat 540
gattatgcca ttcgcactta cgaaaaagca caggcggctc aaaaggctgg cctttttgac 600
gaagaaattg cgcctattga acttcctggc tttaggggca agccaggtgt gactgtgtca 660
caagacgaag aaccaaagaa tcttaacccg gataagcttc gagctatcaa gcctgcattt 720
atccccggat ccggcacggt cacagccccg aattcctcac ctcttaacga cggtgctgct 780
gctgttatcc tcgtctcaga agctaaactg aaagagctta acctaaagcc tgttgcaaag 840
attcttggct ggggagatgc cgcccagcag ccaagcaaat tcacaactgc cccagctcta 900
gcaattccca aggccctcag ccatgcaggt gtggctcagg atgctgttga tgcgttcgag 960
attaacgaag cgttcagcgt agttgctctg gccaatatga aactcctggg gttggctgaa 1020
gataaagtca acatccatgg tggtgcagtg gctatcggtc atcctatcgg cgccagcggt 1080
gctcgtatct tgactacatt gctcggtgta ttgaaagcga gaaagggtaa gattggttgt 1140
gccgggattt gtaatggagg aggtggtgct agcgctattg ttgtcgaatc tctcgtctga 1200
<210> 11
<211> 1383
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 11
atgtctgctc gtcctcagaa cattggtgtc aaggccattg aggtctattt tcctaagcaa 60
tgtgtcgaac aaaccgagct ggagaagttc gacggtgtca gtgagggcaa gtacacaatc 120
ggtctgggac agacaaaaat gagcttctgt gatgaccgtg aggatatcta ctctgtcgcc 180
ctgaccactc tctcctccct ctttcgcaaa tacaacgtcg accccaagtc cgttggtcgt 240
ctcgaagtcg gtactgagac tctcctggac aaatccaagt ccgtcaagtc cgttctgatg 300
cagctctttg ccgagagcgg aaacttcaac gttgagggtg ttgataacgt caacgcttgc 360
tatggaggta ccaacgctgt cttcaacagc atcaactggc ttgagtcttc cgcctgggat 420
ggaagagatg ccgttgttgt ctgcggtgac attgctctgt atgccgaggg acctgctcgc 480
cctactggtg gtgctggctg tgttgccctc ctcattggtc ctgatgcccc tattgtcttt 540
gagcccggtc ttcgtggctc ttacgtcacc cacacctacg atttctacaa gcctgatctc 600
accagcgaat accccgttgt tgacggtcag cactcccttc agtgctacac tgaggctgtt 660
gatgcttgct acaaggccta cgccgctcgc gagaagacgc tgaaggaaaa gactcagaac 720
ggaaccaacg gtgtggccca tgatgaatcc aagactcctt tggaccgctt tgactatatc 780
cttttccact cccctacctg caagttggtc cagaagtcgt acggccgtat gctttacaac 840
gatttcctcg agaaccccac ccaccccgct ttcgctgaag tcgctcctga gctgcgcgat 900
ctggactaca gcaagtctct cactgacaag aacgtcgaga agactttcat gggtctgacc 960
aagaagcgct tcgctgagcg tgtgaagccc agccttgatg ttgccactct ctgtggtaac 1020
atgtacaccg ccaccgtcta cgccggcctg gccagcttgc tcagcaacgt caccttcgac 1080
cccagccagc ctaagcgcat tggccttttc tcctacggca gtggtctcgc tgcttccatg 1140
ttcagcgcga agattgttgg tgacgtgtct tacatggctg agaagcttga tcttcacaac 1200
cgcctcaatg ctagggatgt cttggccccc caggcctatg ttgagatgtg tgctctgcgt 1260
aagcaagctc acttgaagaa gaacttcaag ccctccggta acacggagac gcttttcccc 1320
aacacctact acctcactga ggtggacgac atgttccgcc gcaagtacga ggtcaaggca 1380
tga 1383
<210> 12
<211> 2497
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 12
atggaaaagc cgattatcct tactcgggct gtgctcaatg cttcggctga caacaagcgc 60
cgaggtggtg ctggtccttc cagccaatcg agcccgacca ctgcgaagtc catccaagac 120
tcgatccaga ccgcaatcag ggaacagggc tttgagatcg tccgggatta ctgtattgag 180
atcgctatcc ttgttgctgg cgcggcttcg ggggtgcaag gcggcctgaa acagttctgt 240
ttcctggctg cttggattct gttcttcgac tgcctcctgc tatttacctt ctacacgact 300
attctttgca tcaagcttga aatcactcgc attaagcgtc acattgcgct ccgtaaagct 360
ttggaagagg atggtattac gcaccgtgtc gccgaaaatg tggcctcaaa caatgattgg 420
cctcaggatg gctcggaaaa cagtgacacc agcatcttcg gaaggaaaat caagtcaagc 480
aatgtgcgtc gtttcaagat tctcatggtt ggaggtttcg tcttgattaa tgtggtgaac 540
ttgtctgcca ttcctttccg gaattccgct ctgggccctg ttccgttact ctcccgggta 600
tccaatgtgc tcgcgcctac tccaattgac cctttcaagg tcgctgaaaa cggtcttgat 660
tcgatctacg tgactgcgaa gagccagatg accgaaactg ttgtgactgt cattccacca 720
atcaagtaca agctcgagta tccttcagtc cattatgctg cgccaggaga tagccaatcc 780
tttgacattg aatacactga tcaactcttg gatgctgttg gtggacgcgt gattgaaagt 840
ttgctgaaga gcgtcgagga cccggtcatc agcaaatgga ttattgctgc gctcaccctg 900
agcatcgtat tgaatggtta ccttttcaac gcggcacggt ggagtatcaa ggaacccgag 960
gctgcccctg cacccaaggc cgtcgagccg aaggtttacc ccaaggtgga tttgaatgca 1020
gacagctcga agagaagtgc agaggaatgt gaagtattcc tgaaggaaaa gcgggcgccc 1080
tatttgtcgg acgaggatct gattgagctt tgcttgcgag gcaagattcc agggtatgct 1140
ttggagaaga ccatggaaaa tgaagacctt atgagccgcg ttgatgcctt cacgagggca 1200
gtcaagatca gaagggctgt ggtatctagg accaaggcta cgtctgccgt tacaagctct 1260
ttggaggcct cgaaactccc ttacaaggac tacaactata cgttggttca cggtgcatgc 1320
tgtgagaacg ttattggata tttgcctctg ccccttggag ttgctggacc tcttactatc 1380
gatggccaaa gctactttat tcccatggct accactgagg gtgtattggt agcaagtgcc 1440
agccgtggtg ccaaggctat caatgcaggt ggtggtgcag tgactgtcct caccggcgat 1500
ggtatgactc gtggtccctg tgttggtttc cctaccctgg cacgcgctgc cgctgcaaaa 1560
gtttggattg actctgagga gggtcagagt atcatgaagg ccgcgttcaa ctctaccagc 1620
cgctttgctc gtctccagac tatgaaaacc gctcttgctg gtacatacct gtatattcgt 1680
ttcaagacaa cgaccggcga tgctatgggt atgaacatga tctccaaggg cgttgagaag 1740
gcgcttcatg tgatgtctac agaatgtgga tttgatgaca tggccaccat caccatctct 1800
ggtaatttct gtacagacaa gaagtctgct gctcttaact ggatcgatgg acgtggcaag 1860
tcagttgtag cagaggccat cattcctggt gatgttgtca agagtgtgct caagagtaac 1920
gttgacgcgc tggtcgaatt gaacaccagc aagaacttga tcggaagtgc aatggctgga 1980
agcttgggtg gcttcaacgc gcacgcatcg aacattgtta ctgccatttt cttggcaact 2040
ggtcaggacc ctgcgcagaa tgtggaaagc agtagctgca tcactactat gagaaagtaa 2100
gttacaggtt gccaatgttc acgattcaca tcagtgtact aattgtcatg ctcccagtct 2160
caacggtgac cttcagatct ccgtgtcaat gccctcaatc gaggtcggaa ccattggtgg 2220
tggtacgatt cttgaaggac agtccgctat gcttgaccta ctcggtgtgc gcggttccca 2280
ccccaccaac cctggcgaca acgcccgtca acttgcacgg attgttgccg ccgctacgct 2340
tgcaggcgaa ctgagcttgt gctctgcact tgctgccggc catcttgtcc gtgcgcacat 2400
ggcgcacaat cgcagtagcg ctcctacacg gtcatcaact cccgtctcgg ccgctgttgg 2460
cgctgctcgg ggattgacta tgacgagttc gaaatga 2497
<210> 13
<211> 1605
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 13
atgcacaacg gccgtggacg ccgaaagaac ggcagtgtta aagctccaaa gaatcgtcag 60
cgccctacta tgtcacactt aatctcggaa caatcccttc ccacccgctc aaaatcctcg 120
gtcgctagcg acgatagcgt agacacctcc gacgacacct cagccgctcc ctccttcagc 180
agtagtccgc cgagcacgaa gtctatcacc aacggtgttc acagaccagc tatggctcga 240
aaggcttctt ctccaatggc acccgccttc atggtgtccg ccccgggcaa ggtcattgtc 300
tttggtgagc atgccgtcgt gcatggtaaa gccgccatgg cggcagccat ctccctacga 360
tcctacctcc ttgttacaac cttgaccaaa tcgcaacgca ccatcacctt aaacttcaga 420
gatattggat tgaatcacac ctggagcatc gacgagctgc cgtgggactt gtttcaccaa 480
ccgaccaaga agaagtacta ttacgacctg gtcacctcga ttgaccccga acttctggac 540
gcgatcttgc ctctcgtgga gcgcatctcc ccagacctac ccgaagacaa gcgaaaacat 600
cagcgtggcg ctgcgactgc gttcctctat cttttctgtg cgttgggttc cccgcaacac 660
cctggagcga tctataccct tcggtcgacg atcccaactg gcgcggggtt gggcagcagt 720
gctagtatat gcgtttgtat cagtgctgca ctccttcttc agattcgtac tctagctgga 780
ccgcaccccg accaaccgcc cgacgaggcg gaggtgcaga tcgagcgcat caaccgatgg 840
gcattcgttg gtgagatgtg cattcacgga aatcccagcg gagtggataa cacggtcgcc 900
gcaggcggca aggccgtgat tttcagaaga ggcgattatt ccaaaccacc ggccgttagc 960
tcactcccca atttccccga gctacctcta ctgctcgtgg acactcgaca atcccgttcc 1020
acggcggttg aagtagcaaa ggtcggtcag ctgaaagaag aacaaccact agtgacggag 1080
gcgatccttg ataccatcga gaaggtgaat gcttccgctc aggagattat acgggaaacg 1140
gattcgtcag gtatttccaa ggatacgctc gagcgcattg gagcgcttat ccgcatcaac 1200
cacggcttgt tggtctcgct gggagtctct caccctcgac tcgagcgcat tcgtgagctt 1260
gtagattttg cgaacattgg ttggacgaaa ctcaccggcg ctggtggagg aggatgcgcg 1320
atcaccctcc tacgtccgga tgccgacccg agtgctatcc gccaattgga ggaaaagctg 1380
gacgaagaag gattcgcgaa gtacgagact actctgggag gagatggtgt cggtgtcctg 1440
tggcccgccg tggtccgcaa tggaaccgac gaagaaggtg gtgaggagat tgaccagcag 1500
aagttcgaaa atgcagatgg ccccgaaggc atcgagcgtc tcgtcggtgt gggcacacag 1560
gaaaagagag agggctggaa gttttggaaa cgagcaatgc attaa 1605
<210> 14
<211> 1452
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 14
atgtcttatc cgccatccgg gagcaccgcc ttgtccgccc cgggcaaggt ccttcttacc 60
ggtggttacc tcgttttaga ccgcaattac acggggacag tgatcgcact cgatgctagg 120
atccacgtta tcgttcaaca attgaaaaga ggccatcgac gtggtgcatc attcagctca 180
gtgaaggggg gtcccgatac ggagacagtc gaggacggaa gtgctgtgga cgacaaggaa 240
aaagaagacg tcgtggttgt acgctcgccg caatttgtca atgcaatttg ggagtacggt 300
atacagcgtt gtgagaatgg aggtggaatc aaagtgattc aaaggaacga cgggcgttcc 360
aatccgttcg tcgaaacttc cctcaactac gctctcacct atatcagcta tgtggccgac 420
tcgaaggact ttgggtccct ctccgtgacc atcctggccg acactgatta ctactctgag 480
actgccttct ctagggtttc tgagtcccct ggaagattcg tgaacttcgg tgttcctctt 540
cacgaggccc acaagacagg actaggttcc tctgcggctc tagtaactgc cctagtatca 600
tccctcgtta ttcaccgtac cctgcagcct gacgaccttg gagcttctcg tgacaagctt 660
cataacttgg cacaggctgc ccactgtgct gctcaaggta aagtgggatc cgggtttgat 720
gtggctgctg ctatctacgg ctcttgccta tatcgccgat tctccccaag cattttggaa 780
tccgtcggcg acgccggttc acctgggttt gaagagcggc tgtttgcagt cgtggaggac 840
gccgacccta agcatccgtg ggatacagag tgcttggatt tcggcatgcg acttcctcga 900
ggcatgcaga tggtcctgtg cgatgttgag tgcggctcaa attccccttc gatggtcaag 960
aaagtgctcg aatggcgaaa acaaaaccag caggaagccg atcttctttg ggctgccctc 1020
cagtcaaaca atgaaaggct ctgtcttcag ctcaagcagc tagcccagag ccctgaccaa 1080
gaatcgcccg aagatttcaa tgatgtccgc aacctcatcc agcgctcacg caatcacctt 1140
cgcagcatga cccgcaaggc gggagtcccc attgagccgc gggtacagac agaactgctt 1200
gatgccgtgt cagccgttga cggagtgatt ggtggtgtgg ttcctggtgc gggagggtat 1260
gatgcgattg ctgtcttgat ccgcgatgac caggaggtgc ttaaaaagtt aactgagctc 1320
tttaagaact gggaaagtaa ggtggaggac gatttcggtg gcaagatcgg aactgtccgg 1380
ctcctcggtg tgcgtcacgg ctcagatgga gtcaaaaatg aggttctcga ccaatatgcc 1440
ggttggcttt aa 1452
<210> 15
<211> 1215
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 15
atggctgctc cttctgacag tacggtcttt cgggccacca ccacagcccc agtcaatatc 60
gctgttatca aatactgggg taaaagggac gccactctga acttgcctac gaactcctcc 120
ctctctgtaa ccctctcgca gcgttctttg cgcaccctca ccactgcctc atgctctgcc 180
aagtacccga ctgccgacga gcttatcctc aatggcaaac ctcaagatat ccagtcctcc 240
aagcgcaccc ttgcttgcct ttcgaatctg cgctccctcc gccaggaact tgaagctgcc 300
gactcttctc tgccgagact gtctaccctt cccctacgga tcgtttccga gaacaacttc 360
cccaccgccg ctggcctcgc cagttccgcc gccggtttcg cagcgctcgt ccgtgccgtc 420
gccgaccttt accagcttcc ccagtccccc cgagacctca gccgcatcgc tcgtcaggga 480
tctggttccg cttgtcggtc tctgatgggc ggatatgtgg cctggcgcgc cggaaatctt 540
gccgatggta gcgacagctt ggctgaggag gttgctcccg agtcacactg gcctgagatg 600
cgtgcgctca tcctggtcgt cagcgctgaa aagaaggatg tgcccagtac ggagggtatg 660
caaaccaccg ttgctacttc caacctcttc gcgacccgcg cggaatctgt tgtacccgag 720
cggatggcgg ctattgagac tgccattcag aaccgagatt tccctgcctt cgccgagatt 780
accatgcggg actccaatgg cttccacgcc acctgtctcg actcctggcc tcccatcttc 840
tatatgaacg atgtctctcg cgccgctgtt aggctcgtcc acgatattaa ccgtgccgtc 900
ggtcgtacgg tttgcgctta cacttttgat gctggtccga acgcggtcat ctactacctt 960
gagaaggatt ctgaactcgt tgccggtacc gtcaaggcta tcctgggcgc cagcagtgag 1020
ggctgggacg gtccgttcta cgaacctctt aagagcttca ccgctccggg tgtggcattg 1080
gataaggtgg actctagggc tgttgatgtg ctcaaggatg gtgtcagtcg tgtgatctta 1140
accggcgtcg gtgagggtcc tgtcagtgtc aacgaccacc tcgtcagtga gacaggtgac 1200
attctctcca actaa 1215
<210> 16
<211> 819
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 16
atgagcgtaa ctactacaac caccgagccc cctagaatca cggcggagaa tgtcgccact 60
ctcttcccag aggtcgatac ttctttggct cgtgaagtcc tcccaaaagc cgatggcaat 120
ccctccgcag ctagcagcaa cgagctggcg ggttatgacg acgaacaggt ccgtctaatg 180
gatgaagtat gcatcgttct ggatgatgat gacaagccta ttggaagtgc cagcaagaag 240
acctgccacc tcatgaccaa cattgaccgc ggccttctcc accgtgcctt ttccgtgttc 300
ctcttcgatt ccaacaagcg cttgcttctc caacagcgcg ccactgagaa gattacattc 360
ccagatatgt ggacaaacac ttgctgctct caccctcttg gaattgctgg cgagaccggt 420
tctgagctgg atgccgctat cttgggcgtg aagcgggctg cgcagcggaa gttggaacat 480
gagcttggaa ttaagccgga gcaagtaccc ctggataagt tcgatttctt cacgagaata 540
cattacaagg ctcctagtga tgggaagtgg ggagagcatg agatcgacta tattctcttc 600
atccaggcag atgtagagct gaagcctagc ccgaatgagg ttcgagacac gaagtacgtc 660
tcggctgacg aattgaagac gatgtttgag cagccggggt tgaaattcac gccttggttc 720
aaacttatct gcaattcgat gttgttcgaa tggtggagcc atctcggctc tccaaccctg 780
gagaagtaca agggcgagaa aggtatccgg cgtatgtga 819
<210> 17
<211> 2268
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 17
atggacttca cataccgcta ttcgttcgag cctacggact atgacactga cggtctctgt 60
gatggtgttc cggtccgtat gcacaagggt gcagacttgg acgaggttgc catcttcaaa 120
gctcagtatg actgggagaa gcatgttggt cctaagctgc cctttcgggg tgcattgggg 180
ccaagacaca acttcatctg tcttactctg ccagagtgct tgcctgagag actagagatt 240
gtgtcttacg ccaatgagtt tgccttcctt cacgatgata ttactgatgt cgagtcagct 300
gagacggttg ccgctgagaa cgatgagttc cttgatgccc ttcaacaagg tgttagagaa 360
ggtgacatcc agagccgtga gtccggaaag cgtcatctcc aggcttggat cttcaagtcc 420
atggtggcca ttgaccgtga tagagctgtg gccgctatga acgcttgggc cacctttatc 480
aacacaggtg caggatgcgc tcacgataca aacttcaagt cacttgatga gtatcttcac 540
tacagggcta cagatgtcgg ctacatgttc tggcacgctc ttatcatctt cggatgcgcc 600
atcaccattc ctgaacatga gattgagcta tgccatcaac tcgctcttcc agccatcatg 660
tccgtgactt tgacaaacga catctggtca tatggcaaag aagcagaggc agctgagaaa 720
tccggcaagc ccggagattt tgtcaacgct ctcgttgttc tgatgagaga gcacaactgc 780
tccattgaag aagccgagcg tctctgcaga gcgcgaaaca aaatcgaggt agccaagtgt 840
cttcaagtca caaaagagac acgagagcga aaagatgttt cacaagatct caaagattac 900
ctctaccata tgctgtttgg tgtcagtgga aatgcgatct ggagcactca gtgccgaaga 960
tatgacatga cagcgcctta caacgaaaga cagcaggcca gactcaagca gaccaagggt 1020
gagcttactt ccacatatga tcctgttcag gctgccaagg aggccatgat ggagtctact 1080
cgtcctgaga tccacagact gcctactccc gatagtccca ggaaggagag ctttgctgtt 1140
cgtcctttgg tgaatggcag tggacaatac aatggcaaca atcacatcaa tggagtctcc 1200
aatgaagttg acgtgcgtcc ttctattgag agacatgcct caaccaagcg agctacttca 1260
gctgatgaca tcgactggac ggcacataag aaggttgata gtggggctga ccacaagaag 1320
accctgtccg atatcatgct gcaagagttg cctcctatgg aagacgatgt cgtcatggaa 1380
ccataccgat atctgtgttc tcttccctca aagggagtta gaaacaagac tattgacgct 1440
cttaacttct ggctcaaggt tcctattgaa aatgcaaaca ccatcaaggc catcactgaa 1500
agccttcacg gatcatcact catgcttgat gatatcgagg accattcaca actgcgacgt 1560
ggcaagcctt cggcccacgc tgtttttggt gaggcacaga ccatcaactc tgcaacattc 1620
cagtacattc agtctgttag cctgattagc cagcttagaa gccctaaggc tttgaacatc 1680
tttgttgatg agattcgaca acttttcatc ggtcaggctt acgagctcca gtggacctct 1740
aacatgattt gcccaccttt ggaggagtat ttgcgaatgg ttgacggaaa aactggcggg 1800
ttattccgcc ttctcactcg tctcatggct gctgagtcca ctactgaggt agatgttgac 1860
tttagccgtc tgtgccagct ttttggtcgc tacttccaga tccgagacga ttacgccaac 1920
ctcaagctcg cagactacac cgaacaaaag ggtttctgtg aagacctcga cgagggcaag 1980
ttctcactcc ctctcatcat tgccttcaac gagaacaaca aggcccccaa agccgtagct 2040
caactgcgcg gcctcatgat gcagcgctgt gtcaacggcg gcctcacctt tgaacagaag 2100
gtgctagcac tgaatctcat tgaggaggct ggtggaattt cgggcacgga gaaggtgctg 2160
cactcacttt atggtgagat ggaggctgag ctggaaaggt tggctggtgt ctttggggcg 2220
gagaatcatc agcttgagct tattctggag atgctgcgta tagattag 2268
<210> 18
<211> 1858
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 18
atggaaaggc tcaagatgga tagcctcaac atcaacatca atgactggtt cgagaaagac 60
ctgccagcca ctgcagactg gaagctcttt gctctagcca gtgttgtctt tgttgttcta 120
cgatttactt gcattgtcat ctatcgtatc tacttttctc ccctttccaa gttccctggt 180
cccaagctcg ctgctgcgac gcatctttat gagtcttact atgacttttg gaagaaaggg 240
cagtactaca aagtgattca gcgtatgcac gaggtctacg gaccgcttgt tcgtgtcacg 300
cctgatgaac tttcgatcaa cgaccctgac tattacgaca ctgtctatgt caacggtaat 360
gttcgacgta ctgagtcctt cggccattcc tttggtggcg gacttggtat tgaagacacc 420
ttcttcgcct ctcaggacca tgacctccac cgcaagagaa gaaaacccat cgagccttac 480
ttctctcgca atggtgtctt gaagctcgag aatcttatcg gtgaacgtgt tgagaaactg 540
ttccacaagt tccacgagct gtctggtact ggtgttgttg cccgtcttga ctatgccttt 600
gaggccttca ctggcgatgt catgcagcat atttgcattg agaagcctga atcactactc 660
aacagcgatg acttttcttc tgagtggttt gagatgcttc gcaatgtctc cttgtccgta 720
cctcttatgg gaatgatccc ttggcttgtc cacgtactga agttcatccc cgagagtgtc 780
atcatgtggc tcgcgccctc agctgcccac ttccagacct tccgtgttca agctggtcgt 840
cagattgagc aagccaagca cgagaaagtg gagaatgatc gcaaaggtat cactactgtc 900
ggcggcaagc ccaccctctt ccgcttcctt gtccacgaga gtggtctcgc accggaagac 960
ctgagcaccg agagactcca gaaggaggca atggttctac ttggcggtgg cactacaact 1020
actgcgcgta ctgcgaccat gacttgcttc tggatgctca gcatgcctga gaagggccaa 1080
cgtcttcgcg acgagctcaa ggacatcatg gccgagtacc ccaagaagaa gccttctttg 1140
accgagcttg agaagctgcc ttatttggga gctgtgatcc aagagagttt gagaatggcg 1200
tacggatcca tgcgtcgact tcctcgcact tctcccgatg tagctctgca gttcaaagat 1260
tgggtgatcc ctcctgggac tcctgttggc atgaatgctt attatcttca cactgatcct 1320
aatgcgttcc ccgagccatt tgagtacaag cccgaacgat ggcttggaaa tgtcacaccc 1380
gcgatgaagc gtagttttgt gcccttttcg cgcggttcgc gccgatgccc cggatctagc 1440
ttggctcttg ccgatctcca tttcgttctt gcagcattgt tcggaccaac tggacccaaa 1500
tttgagttgt tcgaatcgga caggtctgac gtggatgcca ttcatgacta cctgatgccg 1560
ctgcctcggt tggattccaa gggtgttcgc gtcactgtca agtaggatcg ttcaaacatt 1620
tggcaataaa gtttcttaag attgaatcct gttgccggtc ttgcgatgat tatcatataa 1680
tttctgttga attacgttaa gcatgtaata attaacatgt aatgcatgac gttatttatg 1740
agatgggttt ttatgattag agtcccgcaa ttatacattt aatacgcgat agaaaacaaa 1800
atatagcgcg caaactagga taaattatcg cgcgcggtgt catctatgtt actagatc 1858
<210> 19
<211> 182
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 19
gatctgtagt agctcgtgaa gggtggagag tatatgatgg tactgctatt caatctggca 60
ttggacagtg agtttgagtt tgatgtacag ttggagtcgt tactgctgtc atccccttat 120
actcttcgat tgtttttcga accctaacgc caagcacgct agtctattat aggaaaggat 180
cc 182
<210> 20
<211> 269
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 20
actagacggg ttcgcatagg tttggggttg tatcttggcg ttgggacgga ctgggtatgg 60
tgtttctttt ggatatatga catgatatgt acacggccgt gaatctttaa ctttatatca 120
ttatagaaat gcacttgcac atttcaacac gctgcgagca gaatctcgaa gattgttccg 180
caagtattag atcatgagag cattttcatt tcctttcagg cagtgggagt aggccatcct 240
gaaaacaagg cggccactgt agactagag 269
<210> 21
<211> 567
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 21
ttgtattggt attaccagaa cgtcacgaga ccgcctgccg caatgttctc atcctttctt 60
tgctactagc aagttttttc gcaatttctc gaagctttag atggtctttt cttttccagt 120
cgaaagctac tagccggtct tttctgtcct attcagctta ggcagttata ggatatcttc 180
aagattcagg tactctttga ctacacacaa tgccctatga tatgaagggt aaatgtgtgg 240
gtatcattca ttggatctta agtaaggcac agcccgcgga gcagaaatga agctccttgt 300
atgacatcac caaatggtca cttaatgcaa tttcgaaccc tttccatccg agctcaagtt 360
cgagagctca gttcccattt tactcatctt ttttacttag aagagggata taatctaata 420
acaaactgat ttaaatgaac acagagctat tactttcaaa tttggcttaa tgtccacttc 480
tcgccaccca acggtcctat ggggtagtgg ttatcccacc ggattttgat gaacaatata 540
catgtcctgt atatgtgtag gaagatc 567
<210> 22
<211> 253
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 22
gatcgttcaa acatttggca ataaagtttc ttaagattga atcctgttgc cggtcttgcg 60
atgattatca tataatttct gttgaattac gttaagcatg taataattaa catgtaatgc 120
atgacgttat ttatgagatg ggtttttatg attagagtcc cgcaattata catttaatac 180
gcgatagaaa acaaaatata gcgcgcaaac taggataaat tatcgcgcgc ggtgtcatct 240
atgttactag atc 253
<210> 23
<211> 741
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 23
atggttaacg gaaccttctc catccaagac gacaaggccc ttcctgtgtt tgcaccccca 60
tacacttccc aggagccctt ccactttagc ggcatgactt ctgtctctat catgtaccgc 120
gtccgtgcct cccagatcca gcaccttgtg ccgcgtgaac tagaaatgga ggacgaaccg 180
atcatgactt ccttcttcgt tcattacggc acctctaccg tcggcgagta caacgaatac 240
ggcaacgctg tccaggtcaa gtataatggc aagacgttcg actattactt ggttcttgtc 300
ctcgacaacg acggcgccat ctttgctggt agagaaatat ttggatatcc caaaatcttc 360
ggcaaaacca acttccaccc gtcagctggg tccaaggtca tgacgggaaa cgtggagcgt 420
cccgcaggac gatctctgat cgagtttgag ttcgctccca aggcgcctct tgaattgtcg 480
gcagaaccca cgatttccaa ggcgctgaac ttgcgtgtta ttcccagtac ggacccgaca 540
aagcctgcca ttaaggagtt tgtcgctgta gatatgcaag tcgaattcag cgagaaatgg 600
agcggagaag gaagtctcaa gttcaacaaa ggattcgcat cggttccatg ggccaacata 660
gacgtagtct cgtacgtcgg gtctttcatg ggaaagagca aggccattct caccaatgag 720
gtagagcgtt tccctctcta a 741
<210> 24
<211> 1273
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 24
tcacagcgcc gccaaactct ttggtatcaa caactctcgc gttttcctaa cccgagcacc 60
atcctcctta ctcttgaaat accgacccgt cttgtagctc cagagcagac taccaagagc 120
atggttcttt tcaacttcaa gaaagccaag gagtgcacgg tcagcctctt caccgaagca 180
tgggagcttc gatagtgctc tgtaatagcg tctatagcag ttgttgatca taactccgac 240
ctcgtttatg gcctgctggg ttgagtgccc cttggctttg agaagtcgga ccatgttgtg 300
gtctaccccg agacgaaggt ctttctcgta agacaggatg tcgttgacta ataggatctg 360
gtcgctgatg atgaccatga tttcgaatac ggaaggatga tcagctacct cctctggcaa 420
gtcaattccg taacaccact cgttattaac aagggctgga taagcaccga gagaacctcg 480
acgcatagcc atgtattcct ctgggcgacg tgtgtaggac cggccctcca cattagtccg 540
aacctggtcg accagtccct gccagtaaag ctcatgtgcc cacatccagc gcttatagaa 600
acgatctgat gatggctttc caatgaagaa accctctggg ctttgcttta tgcgatcaca 660
caatgtctgg aacacatagc gaatggggtg ttctgagtcg gcggtatacc gaggggcggt 720
accctccatg atctcgcgcg tcctggcaat ctcgctgatg gcgccttcta gatcattgca 780
caaatggccc tcgtcaaact ggtcatcgaa gagaaaggcc cacgagttcc aatcagctga 840
cgtacgtaag gcaaaggcac tgcagtcagg tgcccagatg ttggcaagat aggtaaagtc 900
aacccgcttg tttctgttgg tccagtctgc atctgctttg atcacgcttt ataagttgtt 960
agtagacgat gattcttttg gtctgtgtca tacgtagggg gttaactcac gaggaaatcc 1020
aatcatctgc ttctgctttg acgctagcat agtttgggtt ctcacgggct gggaccgaca 1080
tgagtgagct gaagaggtca ggaagtatga gaacctccat ctcatcacgg ccctggaact 1140
gatcatgttt gggttcgttg tagactccgt taccgttctt catcttgagt ttgacctcat 1200
gtttggtgtc gatatagacc tcatccccgg ttgtcatctc tgactcggaa ctactgctgt 1260
cgaatttgac cat 1273
<210> 25
<211> 1692
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 25
atgtttagta ctctacggca aacgtctggc gatggagacc gtctcctcag cgtggagatt 60
gctccaccct ttgacaagga caggatgtca atgcggaccg cgtgtgagag atgccgcata 120
cagaaggtag gtagtatcga agccattcac attgtgtcac gtcggagagt ctttctagat 180
aaaccctaga cgtcgttcct attctcactt gataattatg aaactaattg actgcattag 240
tccaagtgtg tcagtggcga gaatggctgt atgctgtgtg ttgccaagaa ccagaaatgc 300
gagtacctgg ttgtgtcgag gccacgacgg cgcaagtcca acattgctgg cggtggccca 360
aagtcccgcg acgataacga tgatgaggac ggcgacaaca cagtcgtcaa tcagcaaaag 420
cagtcaaatc aggctaggat gcaaaaacga tggtctcgaa tgcagacaat acgacagtca 480
tcgccattat cagggccatc atctccaccc actgatcaag tgagggtttc agcgaagccc 540
tcgattcaag atgacaacag taacataata gggccagacc tgggcctaga agatgcacat 600
caaataatat tcaacggtgg tctcttcccg gactcccttg gacaaatccc ggctctcttt 660
ccacacctcg agcccgcagc cattaaagac ttctttagca atatgcctat agctgcggag 720
aatacccatg caggccgtgg tgttaccgca gaagcattga ctgctcgagg agacagtggc 780
gggctaaaca gtcacacctc tgtatactca acctcatcag cagatagcct gtttgacttt 840
ggagttgatc agatggactt tctgatggac gagtcacaca tcactgctat agctcccaga 900
agtaccagta gcagcaataa agttgcaaga gacgttcgtg ctcctgccac tcattcttca 960
acaccatcag aatcaaactc tacatccatt tctacatctt cttcttgcag ttgtatgatg 1020
acagctgtgg gtatctatga ggctttgcaa gttgagctga actggggcga tccaattgct 1080
ggcccatcgg ctacatcaag tcccaaatcc tcatcggcgg gctcttcata ctcgtctggg 1140
ccgccatcgt ggtcagactc aggttcgata acaaaccatt caacaacact gatgacccag 1200
caaacgatct tgaaacgcca aaagacggtg ctactccgtt gtgactccct cacccggtgt 1260
ggcacctgct ggtcccgccc ggactttgtt atgctaatca ttaccatatg tgatcgcata 1320
ttgactagtc tggaggcggt tgagcgtttt gtctgtaaca agaaagacga tgacataaat 1380
agaatcagtt ccaacggctc taccactgcc gtagatatcc aggccgcacg cacggagcta 1440
gactcatccc tgtccaccac ttcccaggga ctacaatctg gggttggtgc atggcagatt 1500
gatgacgagg atgagcagga aatggttatt agcttgatca agtcccgcgt tacaagactc 1560
ggcaatctga tcaacatagc tgaggggaca attagcgcaa acgggtggcc ttggcatgag 1620
aggctggctc aggctctacg gaggaggtct aacaagcttg ccatatcctt gtcatttcgc 1680
ggttttccgt aa 1692
<210> 26
<211> 1934
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 26
atggcatatc ctatcatcct catcggcgtt attggccttc ccattacaat cctgctccgc 60
tggctcctga catacacgcg caccgtcctc aaggtccgcc gtaatggcca tcctgcaatt 120
cacagtggtg tcatgatctt tgagtccgtc gtgcgttcat ggtatcctcg aatccccttt 180
ctggtaccta tggagaagtt caccctgaag gatcccttca agaagttcgc cgatgcgcgc 240
tctgacatga tcgttataac tgaggctgta agctacccta ccctttttgc aaaaagaatg 300
accactgacg tgtgagaagt cgtcacctaa tggtatcgcc tacctcttcg gatcaccaaa 360
gatcttccgt gaaattggcc gcaacggcga catcttcctc aagccgcttg agaagattcg 420
ctatcgcatg ctcaatacct ttggactcca gctcgcctca acacagaatg gcacccagca 480
tgagagacac aagcgcgttg tcaaagcagt attcaataat gagcttatgg agaacgggtg 540
gcaaaacatg cgcaacatgt ggcgaagcct cctccgcgaa gagggcgtct atccaacagc 600
tgccaactca gacgctgctc ccattgtacg agacatgaag tcgacgatgc tgaaagtcac 660
acttggtgcc attggtgcct cgtggtttga cattgacatt ccctggaatc cggctaagga 720
gacgcaacgc caaaatgacg agttgatgcc attcgccgag acactgaaag ttgtttggga 780
ttcaccattt gtgcagacta ttctaccact gtggttcatg gaatggagcc cttcgttgca 840
tcttcgtcgc gctgcttggg cacagcgatc ccttgttacc cacatcaaga atgcgcaggc 900
tgagacaaga cgaagaatcg aggatagcaa ggataaagct caggttcaag gccggatgcg 960
aaagtacagg aacctcatcg atgcgctggt ggattctcag aatgacgtgg agatggctga 1020
gaaggccgag aagggatatt tggcccccaa tgtcggcctg tcagacaaag aagtccaagg 1080
caacattttc tctttcatgg tgtaagttca aaggcacttg atgttgaact acagaatact 1140
aataaatggt taatttagaa ctggtcatga aacatcctca cacaccctga cttgggtctt 1200
gtcactgctc gccaagaaca ccgactggca agaaaggctc tatgctgaag tcagcaaggt 1260
caacactctc cccttgaacg aggccgaaag cgcgaacggc gcaaagccac tgaagtgcct 1320
tggttatgaa gaaatggcaa acttccctct gatccttgcg gctactgtcg aaacactccg 1380
catgcgtgat ttggctatgc agatgacgcg tgtggcctct cgcaacacca cgctcagtta 1440
cacaacatgg gatggtgacg caactaaccc atccgaggcc aaggttcagc aacacacgat 1500
tacaattcct gctggcacac gtgtgcacct cgatacagcg gcctttgggg ttaacccgtt 1560
caagtgggaa gacccagaga catataaccc agaacgtcac cttcgcgaga ctgaggatat 1620
gaatggcaac aaaaaggtga cggtacgttt atctcatctt tctatttaaa ggaataaccc 1680
tgtactaaca ttcgatacag atctcatatg aggatttcat cggctactca tccggttccc 1740
gtcagtgcat tggtaaacgt tttgccgagg tgacaatggt gtgtttcctg gcacatatga 1800
ttctgaacta tcgatgggag gtcgtgcctg aggcgggcga gacacaggag caagctaaag 1860
tgagggcgtc tactggttcg gaacagttca tgttgacacc accggcgtac gatctgcgct 1920
tcatcagacg ctaa 1934
<210> 27
<211> 3949
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 27
atggctatcg gtagaaccaa gcgaggaaag atcggaaaca ggttgattcc acagattttg 60
gacgatctcg ccgctacgga gcctgatcgc atcatttact cctgggccaa gtcctcggac 120
ttgtcacagg gtttccgcca tgtatctgct cgtgccttta cgagagcagt cgataagacg 180
gcgtggttac ttcagcgaga actaggagag acctcagaga tccgcgctgt gggttatatt 240
gggcctcgtt agttaagctg tccaagagcg tcgcactcgg gccatttgac taacgacacg 300
gcatctagac gatcttcgac agatcttgtt gacattcgcc tgtatcaaag ccaactacac 360
cgtgagtttc tccttaacct caacgtgtac ctaacgactt gactctgttt gtttaacctc 420
tttttacaca ggctttattc ctctctccaa agaacagtat tgagggagct ttagccgttc 480
tcgatgcggc agattgtaac atctgggtca accccgctgg cgagaggcca gcaccactcg 540
tggatgactt cgtgcagcaa cgtgccatgc acgtgatgca cctgccgctg ttgagcgagc 600
ttcttcctga agacgagagc gagatggagg acgtgaagcc gtttccttac acaaagtgct 660
gggaagatgc gataaacgac acattctgca ttcttcatac ctcgggctcg actggcctgt 720
caaagcccat caagtggaca cacgggttga ttggtactgt ggatgctgtc cgactgcttc 780
cccctcatga aggtatggag ccctgggcga aagggtggga tgatggtgat acgctgtact 840
cgacattccc gatgagccat gtaagcattc cagtcccagt ctcaatgaaa aaatcagcat 900
gatgctaacc atgtatcaag ggagcgggga tcttgatgga cgtcgttata gcgccactat 960
ttggcctgca ctgcgtcctt gggcctcgag acgtgatacc caatttggaa ctcatatcgt 1020
ctctggcaga ccacatcgaa attgacatct ggagcatgat tccttcgctc agtgacgaac 1080
ttggcgaagc acctgacatc ttgccaaaac ttagccggtc gaaatttatt tgtgcttcag 1140
gaggtaagac agttgtcctc atgccttcca ctcccagacg tttgctgata tatataatta 1200
ccttacaggg cccgtgagca gtgttttggg ctccaaggtg aacgagttca ttcgtgtctt 1260
gaatctgacc ggcacatcag aaggtctatt catcggcaac ctgtgggtgg acagaaaaga 1320
ctggcactgg tttgccttcc acccttggtc tggctttgac tttaagatgg tcgagcctgg 1380
tctttatgaa cagtggatcc atcgtaacga acatgcagac cttttccagg gtctctttca 1440
aacctttcaa gatgtggaga gtttcaactt caaggacctg tatgttccgc acccgactaa 1500
gccgggcctc tgggcatctc acggtcgcag cgatgatgtt gtggtccttt cgaacggata 1560
caagatctcg cctcttgata cagaggccct tgtcgcatct cacccggccg ttgatgggtg 1620
tttgatggta agtccagaat ccctcaagag gttgaagaag aatgctgatt gaagtgtacc 1680
acagatcgga tcaggtaagc cacaagctgg tctactcatc gagctgaaag atccaacaat 1740
aaagaaggac gacgacaacg ctgaagcgct cttcaacagc atctgggccg tggttgagag 1800
ggccaactcc ctgtctctgc acaagaacca gctgcaccgg gactatgtcg ccttttctga 1860
agcggacaag ccatttatcc gtaccgataa gcgcaccatc aaacgtcggg ctactatggc 1920
actgtatgaa gattacatac agcgcttcta ccagtcaaga acagaggatg atagcggaga 1980
tggagctgcg gctatcgggt tcatcacagt cgacacatca tccttggact cgactactcg 2040
cgcagttcga catgtgctgg cttcgattgt gcctgtggta aaagattccc ccgcggacgc 2100
tgatatgttt actcttgggt tcgactcact tctcgtcttc cgcgctacca agacgattgc 2160
ggcagttaca gatcttggtg ggaaattctc accgaggaac ttctatgctg gcccgacgat 2220
tgaagcgatc gtcgcaactg tcatgcgact agcttctgag cgcagagcca tgataataga 2280
tggcaccgtt gcctcatcgc cgaccgaaca gcatcaacaa gacccaaagg aagtaatgat 2340
gagtacactc ataaaacgac acaaggctgt tctatcctcc aagctgggcc caatggacct 2400
ttttggaggg aacatgtacg agggtattaa cgtcttcata cctctctgtc cagatgtgcc 2460
gtttaagcag gcgtataaag tgctccagcg aggtcttgtt cgtgcgatgg agatcgtgcc 2520
ggatctcgca ggtaaagtta taccctgttc ggagcacgag attggataca agaagggaga 2580
tcttcgtctc agtcttcctc cactgccctc tactgtcttg gggatgactg ccccggagga 2640
gccacgacaa ctgcgcttca atgacctgtc gtccgtcctg ccatcctacg ctgagcagaa 2700
agtttctgga ttcttgacgt cagcttaccc cgacgagctt ctgactacgt gtccggcttt 2760
tccttcactg cctgcggacg tgtgtaatat ccaggccaat ttcatcgagg gtggttgtgt 2820
gctggccttc aatgttcatc atcacgctct tgatggtgtc ggattgttga tagcacttac 2880
ggtttgggca gaatgctgtc gattcgtcca gggtgatcag tctgcgactt gcacgtggct 2940
gcacccagag agcctcaatc gtgatatgct atctgtcttg tacgagttgg agggcttcgc 3000
gaagccggca agtgaaatcg accccaaggt ttggggtttc ctaccatacg ccgatccggc 3060
gctgaacgcc aaggacgcaa ctgcagccaa cggacatggg actgagccaa gaaccgagaa 3120
ggctcctttg tctcgcaatc tgcctgaacc gcctcgtcta cctccatgcg agcactggcc 3180
acccaaagct cgattggatg gtcgcacact ggcagcgtcg accttcctta tctcggccga 3240
gaagctgaag agactccaag agagtgtaga gcttgctgaa gctactgatc cagaacgtca 3300
aagcctcagc aacgagtcag tgtcactatc cctcggcgat gtactccaag ccttcttctg 3360
gcgcgccgcc gtccgggctc gtcgtcgccc tgagaacacc tcggccgatg acacatccat 3420
catcgagatg cccaccgacg tccgacccta cttcagcgcg cacctaccgc caacgtacat 3480
ggccaacagc gtcatcatga atcgacagca cgtgtccgtc tcgaagctct gctcatccga 3540
gacaaccatt tacgaaattg ctcaaatctg tcgcgaggcg cgcactcgaa ttgatcaaga 3600
gcttgtccac gatgcatttg gtctgcttca tacgatccaa gacaacagtc caggaaacca 3660
caccacagct ttcctgggcc agggtatcca ggacggtcca cactcgctct tcaacaacat 3720
gatgctattc cacgcaaagg atattggggc atttggcgga aacatctttg atgcgcctga 3780
tgctgtgagg gtccaaatgg attggctaaa caaagccttc aggagtctgt ttattctgcc 3840
gataagagat gatggcggtg tcgagttgct tctcgggacg tttcctgagg aactggatgc 3900
tatgagaaat gatgaggagt ttatgcagtt tgccgagttt ctgggatag 3949
<210> 28
<211> 1495
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 28
atggatatcg tggacgacgt caagataatg accgacacta tcgttctaac ctaccccgaa 60
cctactacca tcatgaacaa tacctcaaca gaccatggca tcgtctttga tgacggagtc 120
tcgaagctca agacaccggc tatcaccata gcttcatcag acgtctcgtt tgacgacaca 180
atgtcaacca gatcctccaa ctccagtctc ggtactgaga tgacgggtcc tccagccaca 240
gatgacaaaa tggaagtctc caacgaaacc aaagtctctg agatatccga gagaatttta 300
gacgtcattc tgaaatactc tctcaacaag ttcgaaagca cctccgagct ccacagcaaa 360
ggcagaccca agtttcttgc cgtcatctca cgctttgtcc aagagcaaca gaaagtggtt 420
atgtgtctgc cagcattccc attcaagtct gcgaacaagg ttgaaaaggt gctgggcagt 480
cttcccgaca aggccgagga agtatcactc gccagattaa actccatgtg taccaccatc 540
ggacagtttt atgagccggg agctcagttg accatcatct cggacggtct ggtttacaat 600
ggttcgttca cctcttttat ttctgcctca aattaatgaa gtatttcatg gctgctggca 660
catcacttac atttcttctt cgtcatatag acttgctagg catttcagac ctcgagacct 720
ggcgttacgg ctccgcgcta cgagccatgg ccgagcgcaa ggcctttact aacctatcat 780
tttcccgtct tcaagacttg gtcgcagcca agggcttgcc caatgacctc aatgagctga 840
catatgttgc caacgccacc aacttccgtc gaaccctgtt caacaagtac ggacgggacg 900
acgatctcga cattgatcac gaaatcgcca caaacgcaga cacactcggg acgtataagg 960
ggtactgccg tttcctcaag tcagatctgc aacacatcta cggcccagcc aagagttctg 1020
ccaagtacag gaaggacgtc aagtatcttg ctaagcaact gctgatccgg ggatatgtaa 1080
gtttcgagct cactagtcca accagttatt gaatactgta tcgactcctt acagctaacg 1140
caatctcaag gcctttgctg gagctgtcaa agcgcgcttc ccagaccatt tgcgtctcag 1200
tatccaccaa tcgaccgggg agcacaagat ttcaattagc cttctcaaca ccaaaagcgg 1260
cttcacaacg ccatggcatt gcagcgtggc attgatggaa gatggcgaat ggcttagcgg 1320
ccttacgatc gacttcaaag ccgatcggtt gctggaactt gtccaagagg agggacggcc 1380
gagttacttc aaagaggtcg cccgtcagcg gccatacctg acggagagcg ctaagccacg 1440
cgttgttgtt aagcaggaac cacaggccca tagacctagg atacgcgcat cttaa 1495
<210> 29
<211> 1875
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 29
tcaagatatt ttgatgcgag tcgaaatatg tcccttcttc gtctgtagca caaccagatc 60
gtggtcatac gtgaggtctt caatcgtagt ctcgaagagt tccgatttag gaatgactcg 120
aaacgccatc agggcagcca tgatgtagat ctcacacagc gcaagactac aagatacaac 180
tgttagaatg aaaacttcaa cttgaacatg taccgtagtg gacagtagga tgtaagtaag 240
actcaccttt caccaacgca aactctagat ccctttgaaa acgagataag gaatttctga 300
agagtgtaat caggctttcc gtcgggtagc agccatcgat cagggttaaa ggaatcaggg 360
tcgggaaaca gccgcgtgtc ccagtggtta atcatggctg tcatgctcac aggcgtgcct 420
cgcgggatca tgaattgtgt cttgccatct tgactcttat agaagagatc ttcctcacgg 480
gcgatacgag cagatcgacc ggctgcgcca ggttggtgcc gcagagactc ttgaacaagg 540
gcccagaggt agggtctctg ttcgagttgc gcccatttga gatttttagg atcaattcct 600
tcaaggtctt tcataagacg agcgtagacc ttgggttgat gaagcatttg gaacgtcatg 660
acagtaagga tagcctgtgc cgggttagct gtgaaaatta taattgtctg tcatggatcg 720
cgaactaaca gcagtggttt ccgttccagc gaggagaaag acaaatccct cacccgaaag 780
acgaaacatg gttttctcct cttcaggtag gacgttggag tttagaatct cgttaaagac 840
acggccgccg tccgggttgg ccaaggctgt cttgatgtag gctggaatga catgattcat 900
ctggtgcatg atcctcttga catcctcccc catatagtca gcgaagatgg gtaggatatc 960
agctagccgc ctagccaaag cattgtggcg cactggttgc tatccgttag caaaattgtc 1020
aagtcaaagt atttgaaagt tcaatgcaaa aacgtactca tgtaagtggt tttcaagaag 1080
gatgacgtcc aggtgccaaa gttgggctcc cagccctctt gctcaataaa gcccatgggc 1140
tctccaaatg catactgcga gaagacgtcg gcagtgtagc aattgaaggc gcccttgact 1200
tcaaaggctt cttttccagt ccagcgcagc attttctgga tgaagagctc ggcgaatttt 1260
agtacttcat cttcgagctt aagaacttgt ccacgtgaga agaagcgtgc atgggcagcc 1320
ctgcgcttgc gatgcaactc atggggccca gctgtgccgg ttgcctgtga ggctgggcca 1380
gcacctgcta tcttgaggtg gtgctgccat ttgtcgcgga ctagaagatg atagacgtga 1440
gcgacagagt cccatcgaga caataatgtt gcgactaaat aaacttactt cgacctggct 1500
ttcctgtgta gatctcgtcg gcaaagtagg gatcgctgca gtggagttca tcagggctca 1560
cgcgcacgat gggaccttga aaggctgtta gtggtcactg acgatccatc cggaatcatt 1620
caagcactta ccatactgct catgcatctt ttctatcctc ctgccatagc ggccttgaag 1680
gatccagtca tagtaagcct catagacata cgaggcagcg gcaatcttcg gtccagggaa 1740
cttggagagt gggtggaaag gagagatgtt gtaaagcgcg agagcgacac ggtaaccaag 1800
ccaaagacca gcgagtccaa gcagcgctga tggactcaca aaacgcttga gggcgatgat 1860
attgaagtca tccat 1875
<210> 30
<211> 1771
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 30
ctatgacctg cgcttgacct ccaattggac tcccggatcg gcaaacagct caaaaccaaa 60
cggcatcagc ttgggtgtat aaccctcagc caaccgcaca tcgtaatcga gcaagatggt 120
agcaatagct gtcttcacct ctgcgacagc gaagaatctt cctgggcaga taggtttgcc 180
aataccaaat acaaaatgat cctcacttgt agaagtagca gaactagcgt acgtccactt 240
gccgccctga gcacgaagct tcgcatatcg atatgcgtca aaggtgtctg ggttctcgta 300
cacctcaggg tttcggagac gagacatgta aattgagaga gcggttcctt tggggagata 360
ctggccgttg ggaagggtga cgggtgatag gacctggcgg tcgagattga ctttaatcta 420
ttagtacatt gttgtataat gatgaagtaa tcgtcttatt gacttaccaa taacagcgga 480
attcatcctc tgtgtctctt tgatgacgct atcgagcaat cgcatatttg taagcgcagc 540
gggtgaccat ccatgctcgt gaaccacggc ttcaatctct tctcggagag gtgtgatcag 600
atcatgcgag caaatctcaa tgaccgtctg cttcagcaac tccgaagtag tcacaacagc 660
agccatagac attccaagct gagcggcgac aggatcatag ctcttgcccg ccgcaatttc 720
actgaaccaa gtgatagagt catcgtgctc tttgccttca gccgctctct tggccaaatt 780
cttttccaag acttcgcgtg cacgcttaac ttctgctctg caactcttac aagcggggag 840
gaaccattga ataagaggtc tcagccatcg cggccattgt cgcaacgcgc gagccgcgag 900
gaacacagtc attccgtagt tggtactgac ttgttgccat gtctcgtcgt gtgacagctc 960
ctcgccaaca aagacggatg cggacattcg gctgatgagg ttaagaccgt ccttggccca 1020
gtcgactgct ttccaagcta ttctgggtgt cagtcaatac tcacgatggg agaatgctca 1080
atacgtaccg ccacatcctt ccggccaagc tgcaaggatg tctctctgca catttttgtg 1140
cagtttgctg acatctggaa agaaactagt cagtgggatg acgccaaggg tatggtggcg 1200
gtggacttac gagggttttg aacaagcttc ttcttgataa cattggccaa cagtttggaa 1260
gggtcagaga tggctgccgt gccattgaaa ccagggtagc ccgcaaagaa atcctaaaga 1320
gacaatttag taagttattg ataggactat ctagaaagca agggttttac cttgcgaaca 1380
agcggctggt gatcaagttg aggaccatga cgcctgatcc attcaaaatg gtcttcaggg 1440
aggatcaatc tatctcccac caatgtgatc atgcggaaag ggttttggaa ctgatttagt 1500
tattagtgtc tagttgtctg gataactatc attcgcgtac cttggcaaac ccctgtttga 1560
tgaggccatc ggcattagtg acgaaggcta tttgggcctt gatggagaac caatcattgg 1620
gatatttgtt gatgactggg attttttctt ttggcgagac aagtactaga agtgataaaa 1680
cgaggatgat ggcaccggca gcgacgaggc cagcaccctc gggagtatag tcccccacac 1740
ctagcgtagt ggtgttttga ctgaaatcca t 1771
<210> 31
<211> 3320
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 31
atgcgcctgc cagaagatgg cgatggtaca gctggcagac tttccgtgtc tggtagcgca 60
catcttgcaa caaccacgct gcaggtcggc ggcatgacgt gagtcaccac ctgttaacat 120
tttgctcttt tagtactcat aactaacgtt gtagcaataa tagatgcggt gcttgcacat 180
cagccgttga gtccggtttc aaaggcgttg acggtatcgg aacagtctct atcagtctcg 240
taatggagcg cgccgtagtc acacatgacc cacggatcat acccgccgag aagatacatg 300
agatcatcga ggatcgcggg tttgatgcag aggttctctc gacagatatt cccaacgctg 360
gggctactcg gaccaacaac cacttcaacg agagcactgc catcaatggc gaaactacaa 420
ccactgcgac aacaactttc gccatcgagg gaatgacatg tggtgcctgc acatcagcag 480
ttgagggcag ctttaagggc gtggacagta tcctcaagtt taacattagc cttttggctg 540
agcgcgccgt tattacgtac gatgaaacca agatttcccc cgaggagata gccgagatta 600
tcgaggatcg cggattcgat gctaccattc tatccacaca acgcgacatg gcctgccagg 660
gacgagacac cacatctgcc caattcaaag tctttgggtg caaagatgca acgacggccc 720
aagctctgga ggaaggcctc attgcgatcc aaggcatcca atcagtatct ctcagcctca 780
gtacggatcg tcttacagtt gtttatcaac ccatgaccat aggacttcgt ggcattgtcg 840
aagccataga ggcgcagggc ttgaatgccc tagttgcaag cggagaagat aacaacgcgc 900
aacttgaatc gttggcaaaa acgcgtgaaa tcactgagtg gaggagagca ttcaagatct 960
cactcgcctt tgcgattcct gtccttctaa ttggaatgat cattcctatg gccttccctg 1020
cgatagacat tgggagtttc gaactcattc ctggtctatt cttgggtgac attgtgtgtc 1080
tcattatcac attacctgtc cagttcggca ttggcaagag attctatatt tctggttaca 1140
agtctctcaa gcatggatca ccgacaatgg atgttctggt cgttcttggc acaacgtgtg 1200
cttttctctt tagcgtcttc tcgatgctgg tctcagttct tcttgagccg cattccaaac 1260
cttccaccat cttcgataca agtactatgc tcattacttt cataacacta tctcgatggc 1320
tcgaaaatcg cgccaagggc aagacctcca aggcattatc tcgccttatg tccctagctc 1380
cgtcaacagc agccatctat gctgatccga tcgccgtgga aaaagcagcc gagaactggg 1440
caaagtcttt tgacgagccg tcaacgccaa ggacacctgg taaccaaact ggcggatccg 1500
cttgggagga aaaggtcatc ccaacagagc tacttgaggt tgacgatatc gtggtcatcc 1560
ggccaggtga caagattcca gcagatggtg tcctggtccg gggtacaaca ttcgttgatg 1620
aaagcatggt tacaggagaa gctatgcctg tccacaagcg tataggtgat aacatgatcg 1680
ccggtactat caatggtgac ggacgtgttg atcttcgtgt tactcgagct ggccatgcta 1740
cccaattaag ccaaatcgtc aagttggttc aagatgcgca aacggcccgc gccccaatcc 1800
aggagctcgc tgataagctg gccggctact ttgttcccat gattctcatt cttggtctta 1860
gcacattcct tgtatggatg gtcctttgtc acgttttatc tcaccctcct gagatcttcc 1920
ttgaagacaa cagcggtggt aaaatcgtgg tatgtgtcaa gttgtgcatt tccgtcatcg 1980
tctttgcctg tccatgtgcc cttgggcttg ctacgcccac ggcagtcatg gtcggtacag 2040
gagttggggc cgagaacgga attctcatca aaggaggcgc tgccttggag cgtataacca 2100
aggtcacgca tatcatcctt gataaaactg gcacaattac gtacggaaaa atgagcgttg 2160
ccagcacaga tctcatctcg cagtgggcca gaagcgatgt caacaaacga ctgtggtggt 2220
ccatcgtggg tctggccgag atggggagcg aacaccccgt tggcaaggct atcctgggcg 2280
ctgcaaagga agaactgggc atggatcccg agggaaccat tgatggcact gtcggtgact 2340
tcaaagctgt tgtaggcaag ggtgtcagtg tgactgtgga gccagctacc tcgagccgta 2400
cacgatacct cgttcaagtt ggaaatctcg tctttttgca agataatggt gttgatgtcc 2460
ccgaggatgc tgtccaggct gcagagaaga tcaacttgtc ggctgacgta ggtaaatcga 2520
cggtcaagag cagcggcgct ggaaccacca acatctttgt ggccatcgat ggcgtttaca 2580
caggctatgt atgtctgtct gataagatca aggaggacgc tgctgcggct atctcggttc 2640
tgcaccgcat gggcatcaaa acctcgatag taacaggcga tcaacggtct accgcactcg 2700
ctgtcgcttc tgtcgtgggt attgatgccg ataatgtcta cgctggcgtt agtcccgatc 2760
aaaagcaagc catcgtacaa gagatccaac agtctggtga agttgtcggc atggttggtg 2820
acggcattaa tgactctcca gcccttgcga cagcagacgt tggcatcgcc atggcaagcg 2880
gcacggatgt agcgatggaa gcagcagatg tcgttcttat gagaccgaca gagctcatga 2940
ttatacctgc tgctttgact cttacacaca ctattttccg tcgaatcaag ttaaaccttg 3000
gatgggcttg tctatataac gccattggtc tcccgatcgc aatgggcttt tttcttccgc 3060
tgggtctgag cgtacaccct atcatggcga gtcttgcgat ggcgtttagc agtgtcacgg 3120
tggtggttag tagtctcatg cttaactcat ggaaaaggcc tacttggatg aatgaaatag 3180
ctatgaacga tgacaagacg cccaaggcgg agaggtgggc atttggaagg ggcatcgttg 3240
gctgggtgag ggaaatgatg ggacgtaggg gaaaggtgga ggaaattggg tatttgccgt 3300
tacagaacat ggagggctga 3320
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111283704.0A CN114134054B (en) | 2021-11-01 | 2021-11-01 | Aspergillus oryzae chassis strain for high yield of terpenoid and construction of terpene natural product automatic high-flux excavation platform |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111283704.0A CN114134054B (en) | 2021-11-01 | 2021-11-01 | Aspergillus oryzae chassis strain for high yield of terpenoid and construction of terpene natural product automatic high-flux excavation platform |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114134054A true CN114134054A (en) | 2022-03-04 |
CN114134054B CN114134054B (en) | 2024-06-18 |
Family
ID=80392038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111283704.0A Active CN114134054B (en) | 2021-11-01 | 2021-11-01 | Aspergillus oryzae chassis strain for high yield of terpenoid and construction of terpene natural product automatic high-flux excavation platform |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114134054B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114921465A (en) * | 2022-04-11 | 2022-08-19 | 中国农业科学院生物技术研究所 | Regulatory element CsiZ and application thereof in improving terpenoid synthesis yield |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070141574A1 (en) * | 2003-09-29 | 2007-06-21 | Keasling Jay D | Method for identifying a biosynthetic pathway gene product |
US20100112672A1 (en) * | 2006-09-26 | 2010-05-06 | Keasling Jay D | Production of isoprenoids and isoprenoid precursors |
CN108239631A (en) * | 2016-12-27 | 2018-07-03 | 武汉臻智生物科技有限公司 | A kind of Terpene synthase and application thereof |
CN112280698A (en) * | 2019-07-12 | 2021-01-29 | 暨南大学 | Saccharomyces cerevisiae engineering bacteria with high yield of saccharin-type sesquiterpenes and its construction method and application |
-
2021
- 2021-11-01 CN CN202111283704.0A patent/CN114134054B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070141574A1 (en) * | 2003-09-29 | 2007-06-21 | Keasling Jay D | Method for identifying a biosynthetic pathway gene product |
US20100112672A1 (en) * | 2006-09-26 | 2010-05-06 | Keasling Jay D | Production of isoprenoids and isoprenoid precursors |
CN108239631A (en) * | 2016-12-27 | 2018-07-03 | 武汉臻智生物科技有限公司 | A kind of Terpene synthase and application thereof |
CN112280698A (en) * | 2019-07-12 | 2021-01-29 | 暨南大学 | Saccharomyces cerevisiae engineering bacteria with high yield of saccharin-type sesquiterpenes and its construction method and application |
Non-Patent Citations (3)
Title |
---|
GUANGKAI BIAN ET AL.: "In Vivo Platforms for Terpenoid Overproduction and the Generation of Chemical Diversity", 《METHODS ENZYMOL》, 31 December 2018 (2018-12-31), pages 97 - 129 * |
卞光凯: "萜类化合物生物合成元件的挖掘与产物的高效合成", 《中国博士学位论文全文数据库工程科技Ⅰ辑》, no. 06 * |
程术;邓子新;卞光凯;刘天罡;: "萜类高效合成平台的搭建与萜类产物批量挖掘", 生命科学, no. 05, pages 449 - 457 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114921465A (en) * | 2022-04-11 | 2022-08-19 | 中国农业科学院生物技术研究所 | Regulatory element CsiZ and application thereof in improving terpenoid synthesis yield |
CN114921465B (en) * | 2022-04-11 | 2023-12-01 | 中国农业科学院生物技术研究所 | Regulatory element CsiZ and application thereof in improvement of synthetic yield of terpenoid |
Also Published As
Publication number | Publication date |
---|---|
CN114134054B (en) | 2024-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Baker et al. | Two polyketide synthase-encoding genes are required for biosynthesis of the polyketide virulence factor, T-toxin, by Cochliobolus heterostrophus | |
CN107058446B (en) | A group of glycosyltransferases and their applications | |
Tsunematsu et al. | Yeast-based genome mining, production and mechanistic studies of the biosynthesis of fungal polyketide and peptide natural products | |
CN111205993B (en) | Recombinant yeast producing ursolic acid and oleanolic acid and its construction method and application | |
Jørgensen et al. | Fusarium graminearum PKS14 is involved in orsellinic acid and orcinol synthesis | |
CN104357418B (en) | The application of a kind of glycosyl transferase and its mutant in ginseng saponin Rh 2 is synthesized | |
EP3541936A2 (en) | Systems and methods for identifying and expressing gene clusters | |
Kuhnert et al. | Enfumafungin synthase represents a novel lineage of fungal triterpene cyclases | |
CN109943493B (en) | Mutant strain for realizing diversity of general enzyme catalytic functions and construction method thereof | |
Zhang et al. | Activation of an unconventional meroterpenoid gene cluster in Neosartorya glabra leads to the production of new berkeleyacetals | |
CN111088254B (en) | Endogenous carried exogenous gene efficient controllable expression system | |
CN114107078A (en) | High-yield valencene genetic engineering bacterium and construction method and application thereof | |
Yuan et al. | Customized optimization of metabolic pathways by combinatorial transcriptional engineering | |
CN114134054B (en) | Aspergillus oryzae chassis strain for high yield of terpenoid and construction of terpene natural product automatic high-flux excavation platform | |
CN114058525A (en) | High-yield squalene genetic engineering bacterium and construction method and application thereof | |
Nützmann et al. | Regulatory cross talk and microbial induction of fungal secondary metabolite gene clusters | |
CN113402357B (en) | 5-12-5 Tricyclic diterpene skeleton compound and preparation thereof | |
CN111235044A (en) | Synthesis of delta-tocotrienol recombinant Saccharomyces cerevisiae strain and construction method and use | |
CN107119001A (en) | The production method of genetically engineered hydrogenlike silicon ion and preparation method thereof and farnesol | |
CN109136119B (en) | Microorganisms and uses thereof | |
CN113969288A (en) | High-yield farnesol gene engineering bacterium and construction method and application thereof | |
CN112608936A (en) | Promoter for regulating and controlling expression of yeast exogenous gene, regulation and control method and application thereof | |
CN118272337A (en) | Three UDP-glycosyltransferases and their applications in the synthesis of oleanolic acid glycosides | |
CN114085784B (en) | Recombinant yeast for high expression of cytochrome P450 and application thereof | |
Hakim et al. | Phylogenomics and metabolic engineering reveal a conserved gene cluster in Solanaceae plants for withanolide biosynthesis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20220525 Address after: 430075 room d102, building B5, building b4-b8, Wuhan National Biological Industry (Jiufeng innovation) base, No. 666, Gaoxin Avenue, East Lake New Technology Development Zone, Wuhan, Hubei Applicant after: Wuhan Hesheng Technology Co.,Ltd. Address before: 430072 Hubei Province, Wuhan city Wuchang District of Wuhan University Luojiashan Applicant before: WUHAN University |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant |