[go: up one dir, main page]

CN114124297B - Text coding method based on RS-LDPC cascade codes - Google Patents

Text coding method based on RS-LDPC cascade codes Download PDF

Info

Publication number
CN114124297B
CN114124297B CN202111288235.1A CN202111288235A CN114124297B CN 114124297 B CN114124297 B CN 114124297B CN 202111288235 A CN202111288235 A CN 202111288235A CN 114124297 B CN114124297 B CN 114124297B
Authority
CN
China
Prior art keywords
subframe
frame
bits
domain
code
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111288235.1A
Other languages
Chinese (zh)
Other versions
CN114124297A (en
Inventor
克兢
卢晓春
王雪
唐升
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Time Service Center of CAS
Original Assignee
National Time Service Center of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Time Service Center of CAS filed Critical National Time Service Center of CAS
Priority to CN202111288235.1A priority Critical patent/CN114124297B/en
Publication of CN114124297A publication Critical patent/CN114124297A/en
Application granted granted Critical
Publication of CN114124297B publication Critical patent/CN114124297B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0064Concatenated codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • H03M13/15Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes
    • H03M13/151Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes using error location or error correction polynomials
    • H03M13/1515Reed-Solomon codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Algebra (AREA)
  • General Physics & Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Error Detection And Correction (AREA)

Abstract

The invention discloses a text encoding method based on RS-LDPC cascade codes, which takes a Beidou satellite navigation system B-CNAV1 text as an application object, adopts an RS code as an outer code and adopts a binary LDPC code as an inner code, and comprises the following steps: 1) The original 64-system LDPC codes of the electronic sub-frame 2 and the sub-frame 3 of the Beidou satellite navigation system B-CNAV1 are replaced by the binary LDPC codes, so that the algorithm complexity is reduced; meanwhile, an RS outer code is added before binary LDPC code encoding to resist burst errors caused by fading channels; 2) And defining a new page type 5 for storing check bits of subframe 2 and subframe 3 after RS coding in the previous frame by using the reserved page type of the B-CNAV1 message for subframe 3. The method has the advantages of greatly reducing the complexity of the decoding algorithm, effectively shortening the operation time, and furthest reducing the modification of internal and external interfaces of the telegram caused by the upgrading of the telegram code, thereby reducing the update cost of software and hardware caused by the upgrading of the telegram code.

Description

基于RS-LDPC级联码的电文编码方法Message encoding method based on RS-LDPC concatenated code

技术领域Technical field

本发明属于通信技术领域,涉及一种编码方法,特别是一种基于RS-LDPC级联码的电文编码方法,可用于卫星导航系统电文编码。The invention belongs to the field of communication technology and relates to a coding method, in particular a message coding method based on RS-LDPC concatenated code, which can be used for satellite navigation system message coding.

背景技术Background technique

卫星导航电文是调制在导航信号上的有用信息,包括卫星广播星历、卫星钟差等参数。卫星导航信号在从卫星发射至地面的过程中,经过电离层、对流层等空间环境的长距离传输后,信号功率严重衰减,极易受到各类噪声和干扰的影响。为提高地面接收终端获取正确电文信息的概率,卫星导航系统通过对电文进行差错控制编码以抵抗由信道噪声、干扰及衰落引起的数据传输错误。Satellite navigation messages are useful information modulated on navigation signals, including satellite broadcast ephemeris, satellite clock offset and other parameters. During the process of satellite navigation signals being transmitted from satellites to the ground, after long-distance transmission in space environments such as the ionosphere and troposphere, the signal power is severely attenuated and is extremely susceptible to various types of noise and interference. In order to improve the probability that the ground receiving terminal obtains correct message information, the satellite navigation system performs error control coding on the message to resist data transmission errors caused by channel noise, interference and fading.

卫星导航系统设计之初的目标应用场景为室外开阔环境,卫星和接收终端间没有障碍物的阻挡,信号以视距方式传播,信道状态平稳,因此,早期卫星导航电文编码较为简单,如汉明码、BCH码等。为了提升室内、城市等复杂接收环境下的电文数据解调性能,卫星导航电文编码方法不断升级,GPS系统在电文现代化进程中首先将卷积码引入CNAV电文,随后又将二进制LDPC码应用到CNAV2电文中以提高低信噪比条件下的电文解调性能。北斗卫星导航系统B-CNAV1、B-CNAV2、B-CNAV3等电文采用了64进制LDPC码以提高电文对衰落信道的适应能力。以B-CNAV1电文为例,子帧2编码前600比特,经64进制LDPC(200,100)编码后,长度为1200个比特。子帧3编码前264比特,经64进制LDPC(88,44)编码后,长度为528个比特。编码后的子帧2与子帧3进行36×48的块交织以提高电文抗突发错误的能力。The target application scenario at the beginning of the design of the satellite navigation system was an outdoor open environment. There were no obstacles between the satellite and the receiving terminal. The signal propagated in a line-of-sight manner and the channel state was stable. Therefore, the early satellite navigation message encoding was relatively simple, such as Hamming code. , BCH code, etc. In order to improve the demodulation performance of message data in complex receiving environments such as indoors and cities, satellite navigation message encoding methods are constantly upgraded. In the process of message modernization, the GPS system first introduced convolutional codes into CNAV messages, and then applied binary LDPC codes to CNAV2 in the message to improve the message demodulation performance under low signal-to-noise ratio conditions. Beidou satellite navigation system B-CNAV1, B-CNAV2, B-CNAV3 and other messages use 64-base LDPC codes to improve the adaptability of the messages to fading channels. Taking the B-CNAV1 message as an example, the first 600 bits of subframe 2 are encoded. After encoding with hexadecimal LDPC (200, 100), the length is 1200 bits. The first 264 bits of subframe 3 are encoded, and after hexadecimal LDPC (88,44) encoding, the length is 528 bits. The encoded subframe 2 and subframe 3 are interleaved with 36×48 blocks to improve the message's ability to withstand burst errors.

多进制LDPC码在抗信道衰落方面较二进制LDPC码具有更优的性能,但存在译码算法复杂度过高的问题,由此造成大众应用场景下接收终端成本和功耗的大幅增加。Polyary LDPC codes have better performance than binary LDPC codes in terms of resisting channel fading, but there is a problem that the decoding algorithm is too complex, which results in a significant increase in the cost and power consumption of receiving terminals in mass application scenarios.

发明内容Contents of the invention

针对现有技术中卫星导航系统使用多进制LDPC码引起的算法复杂度过高的技术问题,本发明的目的在于,提供一种基于RS-LDPC级联码的电文编码方法。In view of the technical problem of excessive algorithm complexity caused by the use of multi-ary LDPC codes in satellite navigation systems in the prior art, the purpose of the present invention is to provide a message encoding method based on RS-LDPC concatenated codes.

为了实现上述任务,本发明采取如下的技术解决方案:In order to achieve the above tasks, the present invention adopts the following technical solutions:

一种基于RS-LDPC级联码的电文编码方法,其特征在于,该方法以北斗卫星导航系统B-CNAV1电文为应用对象,外码采用RS码、内码采用二进制LDPC码的电文级联编码方式,包括:A message encoding method based on RS-LDPC concatenated code, which is characterized in that the method takes the Beidou Satellite Navigation System B-CNAV1 message as the application object, the outer code adopts the RS code, and the inner code adopts the message concatenated coding of the binary LDPC code methods, including:

1)用二进制LDPC码替换北斗卫星导航系统B-CNAV1电文子帧2和子帧3原有的64进制LDPC码,用以降低算法复杂度;同时,在二进制LDPC码编码前增加RS外码,用以对抗衰落信道引起的突发错误;1) Use binary LDPC codes to replace the original 64-digit LDPC codes in subframe 2 and subframe 3 of the B-CNAV1 message of the Beidou Satellite Navigation System to reduce the complexity of the algorithm; at the same time, add the RS outer code before the binary LDPC code encoding, To combat burst errors caused by fading channels;

2)利用B-CNAV1电文为子帧3预留的页面类型,定义一个新的页面类型5用于存放前一帧中子帧2和子帧3经RS编码后的校验位。2) Use the page type reserved for subframe 3 in the B-CNAV1 message to define a new page type 5 to store the RS-encoded check bits of subframe 2 and subframe 3 in the previous frame.

具体实现步骤如下:The specific implementation steps are as follows:

令B-CNAV1电文当前帧为第i帧,下一帧为第i+1帧,i为自然数;Let the current frame of the B-CNAV1 message be the i-th frame, the next frame be the i+1-th frame, and i is a natural number;

步骤1,分别将第i帧子帧2和子帧3的GF(2)域二进制比特数据转换为GF(28)域元素,即每8比特二进制数据对应一个GF(28)域元素,GF(28)域的本原多项式为x8+x4+x3+x2+1:Step 1: Convert the GF(2) domain binary bit data of subframe 2 and subframe 3 of the i-th frame into GF(2 8 ) domain elements, that is, every 8 bits of binary data corresponds to a GF(2 8 ) domain element, GF The primitive polynomial of the (2 8 ) domain is x 8 +x 4 +x 3 +x 2 +1:

(1)子帧2的600比特二进制数据转换为75个GF(28)域元素;(1) The 600-bit binary data of subframe 2 is converted into 75 GF(2 8 ) domain elements;

(2)子帧3的264比特二进制数据转换为33个GF(28)域元素;(2) The 264-bit binary data of subframe 3 is converted into 33 GF (2 8 ) field elements;

步骤2,对步骤1转换为GF(28)域的第i帧子帧2和子帧3数据分别进行RS系统编码:Step 2: Perform RS system coding on the subframe 2 and subframe 3 data of the i-th frame converted into the GF(2 8 ) domain in step 1:

(3)对子帧2进行RS(95,75)编码的过程为:(3) The process of RS(95,75) encoding for subframe 2 is:

首先在子帧2的75个GF(28)域信息位符号前补160个GF(28)域符号0,然后对信息位补足为235个GF(28)域符号的子帧2进行RS(255,235)编码,最后将RS(255,235)编码后的前160个GF(28)域符号删除,只保留后95个GF(28)域编码符号;First, 160 GF(2 8 ) domain symbols 0 are added in front of the 75 GF(2 8 ) domain information bit symbols in subframe 2, and then the information bits are supplemented to 235 GF(2 8 ) domain symbols in subframe 2. RS (255, 235) encoding, finally delete the first 160 GF (2 8 ) domain symbols after RS (255, 235) encoding, and only retain the last 95 GF (2 8 ) domain encoding symbols;

(4)对子帧3进行RS(41,33)的编码过程为:(4) The encoding process of RS(41,33) for subframe 3 is:

首先在子帧3的33个GF(28)域信息位符号前补214个GF(28)域符号0,然后对信息位补足为247个GF(28)域符号的子帧3进行RS(255,247)编码,最后将RS(255,247)编码后的前214个GF(28)域符号删除,只保留后41个GF(28)域编码符号;First, 214 GF(2 8 ) domain symbols 0 are added in front of the 33 GF(2 8 ) domain information bit symbols in subframe 3, and then the information bits are supplemented to 247 GF(2 8 ) domain symbols in subframe 3. RS (255, 247) encoding, and finally the first 214 GF (2 8 ) domain symbols after RS (255, 247) encoding are deleted, leaving only the last 41 GF (2 8 ) domain encoding symbols;

步骤3,将步骤2得到的第i帧子帧2和子帧3的GF(28)域RS编码符号分别转换为二进制比特:Step 3: Convert the GF (2 8 ) domain RS coding symbols of subframe 2 and subframe 3 of the i-th frame obtained in step 2 into binary bits respectively:

(1)子帧2的95位GF(28)域RS编码符号转换为由600比特信息位和160比特校验位构成的760比特;(1) The 95-bit GF(2 8 ) domain RS coded symbol of subframe 2 is converted into 760 bits consisting of 600 bits of information bits and 160 bits of check bits;

(2)子帧3的41位GF(28)域RS编码符号转换为由264比特信息位和64比特校验位构成的328比特;(2) The 41-bit GF(2 8 ) domain RS coded symbol of subframe 3 is converted into 328 bits consisting of 264 bits of information bits and 64 bits of parity bits;

步骤4,对步骤3得到的第i帧子帧2的600比特信息位和子帧3的264比特信息位分别进行二进制LDPC编码;子帧2和子帧3的二进制LDPC校验矩阵为近似下三角矩阵,由6个稀疏的子矩阵A、B、C、D、T和E组成,其中T为下三角矩阵;Step 4: Perform binary LDPC coding on the 600-bit information bits of subframe 2 and the 264-bit information bits of subframe 3 of the i-th frame obtained in step 3 respectively; the binary LDPC check matrices of subframe 2 and subframe 3 are approximate lower triangular matrices. , composed of 6 sparse sub-matrices A, B, C, D, T and E, where T is a lower triangular matrix;

令s为子帧2或子帧3的信息位比特向量,校验位比特向量p1和p2可通过下式计算:Let s be the information bit vector of subframe 2 or subframe 3, and the parity bit vectors p 1 and p 2 can be calculated by the following formula:

式中,φ=-E·T-1·B+D,[]T表示转置。编码后的码字向量为(s;p1;p2)。In the formula, φ=-E·T -1 ·B+D, [] T represents transposition. The encoded codeword vector is (s; p 1 ; p 2 ).

(1)对子帧2进行二进制LDPC(1200,600)编码,编码后为1200比特;子帧2的校验矩阵六个子矩阵A、B、T、C、D、E的维数分别为599×600、599×1、599×599、1×600、1×1、1×599;(1) Binary LDPC (1200, 600) encoding is performed on subframe 2, and the encoding is 1200 bits; the dimensions of the six sub-matrices A, B, T, C, D, and E of the check matrix of subframe 2 are 599 respectively. ×600, 599×1, 599×599, 1×600, 1×1, 1×599;

(2)子帧3进行二进制LDPC(528,264)编码,编码后为528比特;子帧3的校验矩阵六个子矩阵A、B、T、C、D、E的维度分别为263×264、263×1、263×263、1×264、1×1、1×263;(2) Subframe 3 is binary LDPC (528, 264) encoded, and the encoding is 528 bits; the dimensions of the six sub-matrices A, B, T, C, D, and E of the check matrix of subframe 3 are 263×264 respectively. , 263×1, 263×263, 1×264, 1×1, 1×263;

对得到的编码后的子帧2和子帧3进行交织,采用B-CNAV1电文原有38×46大小的块交织器;Interleave the obtained encoded subframe 2 and subframe 3, using the original 38×46 size block interleaver of the B-CNAV1 message;

步骤5,新建一个子帧3页面类型5,将第i帧子帧2经RS编码并转换至GF(2)域的160个校验位和子帧3经RS编码后并转换至GF(2)域的64个校验位放入第i+1帧子帧3的页面类型5中,共计224比特,剩余10比特为预留位;第i+1帧的级联编码过程与第i帧相同。Step 5, create a new subframe 3 page type 5, encode the 160 check bits of subframe 2 of the i-th frame and convert it to the GF(2) domain, and encode the 160 check bits of subframe 3 and convert it to GF(2). The 64 check bits of the domain are put into page type 5 of subframe 3 of the i+1th frame, totaling 224 bits, and the remaining 10 bits are reserved bits; the concatenated encoding process of the i+1th frame is the same as that of the ith frame .

本发明的基于RS-LDPC级联码的电文编码方法,具有与B-CNAV1电文原有64进制LDPC码相近的纠错性能,同时能大幅降低计算复杂度。与64进制LDPC码相比有以下优点:The message encoding method based on the RS-LDPC concatenated code of the present invention has error correction performance similar to the original 64-base LDPC code of the B-CNAV1 message, and at the same time can greatly reduce the computational complexity. Compared with hexadecimal LDPC code, it has the following advantages:

第一,译码算法复杂度大幅降低,有效缩短了运算时间,并且两种编码算法在陆地移动卫星(LMS)信道和高斯白噪声(AWGN)信道下的译码性能基本相当。First, the complexity of the decoding algorithm is greatly reduced, effectively shortening the calculation time, and the decoding performance of the two encoding algorithms under the Land Mobile Satellite (LMS) channel and Gaussian White Noise (AWGN) channel is basically the same.

第二,将RS-LDPC级联码应用到B-CNAV1时,利用现有B-CNAV1电文子帧3预留的页面类型存放级联码中RS外码产生的校验位,保持了B-CNAV1电文的帧结构,最大程度的减少了因电文编码升级引起的电文内部和外部接口修改,从而降低了因电文编码升级造成的软、硬件更新成本。Second, when applying the RS-LDPC concatenated code to B-CNAV1, the page type reserved for the existing B-CNAV1 message subframe 3 is used to store the check bits generated by the RS outer code in the concatenated code, maintaining the B-CNAV1 The frame structure of the CNAV1 message minimizes the modification of the internal and external interfaces of the message caused by the message encoding upgrade, thereby reducing the software and hardware update costs caused by the message encoding upgrade.

第三,RS外码采用系统编码方式,RS编码后信息位的位置仍保持不变,接收端可根据实际信号接收质量实现分级译码处理:在完成二进制LDPC内码译码后,可利用译码结果与LDPC校验矩阵转置的乘积结果或各帧的CRC校验结果判断内码译码结果是否正确,如果内码译码结果正确则结束译码,否则才需进行RS外码译码,从而进一步降低了译码算法复杂度。Third, the RS outer code adopts the system encoding method. The position of the information bits remains unchanged after RS encoding. The receiving end can implement hierarchical decoding processing according to the actual signal reception quality: after completing the binary LDPC inner code decoding, the decoding can be The product result of the code result and the LDPC check matrix transpose or the CRC check result of each frame determines whether the inner code decoding result is correct. If the inner code decoding result is correct, the decoding ends. Otherwise, RS outer code decoding is required. , thereby further reducing the complexity of the decoding algorithm.

附图说明Description of the drawings

图1为本发明的基于RS-LDPC级联码的B-CNAV1电文编码流程图。Figure 1 is a flow chart of B-CNAV1 message encoding based on RS-LDPC concatenated code of the present invention.

图2为本发明定义的B-CNAV1电文子帧3页面类型5的信息编排格式。Figure 2 shows the information layout format of page type 5 of B-CNAV1 message subframe 3 defined in the present invention.

图3是基于RS-LDPC级联码的B-CNAV1电文子帧2的RS(95,75)编码过程的示意图。Figure 3 is a schematic diagram of the RS (95, 75) encoding process of B-CNAV1 message subframe 2 based on RS-LDPC concatenated code.

图4是基于RS-LDPC级联码的B-CNAV1电文子帧3的RS(41,33)编码过程的示意图。Figure 4 is a schematic diagram of the RS (41, 33) encoding process of B-CNAV1 message subframe 3 based on RS-LDPC concatenated code.

图5是基于RS-LDPC级联码的B-CNAV1电文子帧2/子帧3的二进制LDPC内码校验矩阵结构。Figure 5 is the binary LDPC inner code check matrix structure of B-CNAV1 message subframe 2/subframe 3 based on RS-LDPC concatenated code.

图6是B-CNAV1电文块交织的交织与解交织方法示意图。Figure 6 is a schematic diagram of the interleaving and deinterleaving methods of B-CNAV1 message block interleaving.

图7为基于RS-LDPC级联码与B-CNAV1电文原有64进制LDPC码在AWGN信道下的误帧率仿真结果比较。Figure 7 shows the comparison of the frame error rate simulation results under the AWGN channel based on the RS-LDPC concatenated code and the original 64-base LDPC code of the B-CNAV1 message.

图8为基于RS-LDPC级联码与B-CNAV1电文原有64进制LDPC码在Prieto-Cerdeira两状态LMS信道下的误帧率仿真结果比较。Figure 8 shows the comparison of the frame error rate simulation results based on the RS-LDPC concatenated code and the original 64-base LDPC code of the B-CNAV1 message under the Prieto-Cerdeira two-state LMS channel.

图9为基于RS-LDPC级联码与B-CNAV1电文原有64进制LDPC码在计算复杂度数值上的比较。Figure 9 shows a comparison of the computational complexity values based on the RS-LDPC concatenated code and the original 64-base LDPC code of the B-CNAV1 message.

下面结合附图及实施例对本发明做进一步的详细描述。The present invention will be described in further detail below with reference to the accompanying drawings and examples.

具体实施方式Detailed ways

本实施例给出一种基于RS-LDPC级联码的电文编码方法,以北斗卫星导航系统B-CNAV1电文为应用对象,给出了该级联码的实例化设计参数,外码采用RS码、内码采用二进制LDPC码的电文级联编码方式,即用二进制LDPC码替换B-CNAV1电文子帧2和子帧3原有的64进制LDPC码以降低算法复杂度,同时,在二进制LDPC码编码前增加RS外码,以对抗衰落信道引起的突发错误。为适应B-CNAV1电文信息编排格式,利用B-CNAV1电文为子帧3预留的页面类型,新定义了一个页面类型5,用于存放前一帧中子帧2和子帧3经RS编码后的校验位。This embodiment provides a message encoding method based on RS-LDPC concatenated code. Taking Beidou Satellite Navigation System B-CNAV1 message as the application object, the instantiated design parameters of the concatenated code are given. The outer code adopts RS code. , the inner code adopts the message concatenation encoding method of binary LDPC code, that is, using binary LDPC code to replace the original 64-digit LDPC code of B-CNAV1 message subframe 2 and subframe 3 to reduce the complexity of the algorithm. At the same time, in the binary LDPC code The RS outer code is added before encoding to combat burst errors caused by fading channels. In order to adapt to the B-CNAV1 message information format, using the page type reserved for subframe 3 in the B-CNAV1 message, a new page type 5 is defined, which is used to store the RS-encoded subframes 2 and 3 in the previous frame. check digit.

以下是发明人给出的具体实施例。The following are specific examples given by the inventor.

实施例:Example:

本实施例以B-CNAV1电文为例,描述B-CNAV1电文的RS-LDPC级联编码方法。This embodiment takes the B-CNAV1 message as an example to describe the RS-LDPC cascade encoding method of the B-CNAV1 message.

令B-CNAV1电文当前帧为第i帧,下一帧为第i+1帧,i为自然数;Let the current frame of the B-CNAV1 message be the i-th frame, the next frame be the i+1-th frame, and i is a natural number;

以第i帧子帧2和子帧3为例,介绍B-CNAV1电文的RS-LDPC级联编码方法;以第i+1帧子帧3为例介绍本发明新定义的子帧3页面类型5的信息编排格式。Taking subframe 2 and subframe 3 of the i-th frame as an example, the RS-LDPC cascade encoding method of the B-CNAV1 message is introduced; taking subframe 3 of the i+1th frame as an example to introduce the newly defined subframe 3 page type 5 of the present invention. information format.

参考图1和图2,B-CNAV1电文的RS-LDPC级联编码方法,实现步骤如下:Referring to Figure 1 and Figure 2, the RS-LDPC cascade encoding method of B-CNAV1 message is implemented as follows:

步骤1,分别将第i帧子帧2和子帧3的GF(2)域二进制比特数据转换为GF(28)域元素,即每8比特二进制数据对应一个GF(28)域元素,GF(28)域的本原多项式为x8+x4+x3+x2+1:Step 1: Convert the GF(2) domain binary bit data of subframe 2 and subframe 3 of the i-th frame into GF(2 8 ) domain elements, that is, every 8 bits of binary data corresponds to a GF(2 8 ) domain element, GF The primitive polynomial of the (2 8 ) domain is x 8 +x 4 +x 3 +x 2 +1:

(1)子帧2的600比特二进制数据转换为75个GF(28)域元素;(1) The 600-bit binary data of subframe 2 is converted into 75 GF(2 8 ) domain elements;

(2)子帧3的264比特二进制数据转换为33个GF(28)域元素;(2) The 264-bit binary data of subframe 3 is converted into 33 GF (2 8 ) field elements;

步骤2,对步骤1转换为GF(28)域的第i帧子帧2和子帧3数据分别进行RS系统编码:Step 2: Perform RS system coding on the subframe 2 and subframe 3 data of the i-th frame converted into the GF(2 8 ) domain in step 1:

(1)对子帧2进行RS(95,75)编码的过程如图3所示:(1) The process of RS(95,75) encoding for subframe 2 is shown in Figure 3:

首先在子帧2的75个GF(28)域信息位符号前补160个GF(28)域符号0,然后对信息位补足为235个GF(28)域符号的子帧2进行RS(255,235)编码,最后将RS(255,235)编码后的前160个GF(28)域符号删除,只保留后95个GF(28)域编码符号。First, 160 GF(2 8 ) domain symbols 0 are added in front of the 75 GF(2 8 ) domain information bit symbols in subframe 2, and then the information bits are supplemented to 235 GF(2 8 ) domain symbols in subframe 2. RS (255, 235) encoding, and finally the first 160 GF (2 8 ) domain symbols after RS (255, 235) encoding are deleted, leaving only the last 95 GF (2 8 ) domain encoding symbols.

(2)对子帧3进行RS(41,33)的编码过程如图4所示。首先在子帧3的33个GF(28)域信息位符号前补214个GF(28)域符号0,然后对信息位补足为247个GF(28)域符号的子帧3进行RS(255,247)编码,最后将RS(255,247)编码后的前214个GF(28)域符号删除,只保留后41个GF(28)域编码符号。(2) The encoding process of RS(41,33) for subframe 3 is shown in Figure 4. First, 214 GF(2 8 ) domain symbols 0 are added in front of the 33 GF(2 8 ) domain information bit symbols in subframe 3, and then the information bits are supplemented to 247 GF(2 8 ) domain symbols in subframe 3. RS (255, 247) encoding, and finally the first 214 GF (2 8 ) domain symbols after RS (255, 247) encoding are deleted, leaving only the last 41 GF (2 8 ) domain encoding symbols.

步骤3,将步骤2得到的第i帧子帧2和子帧3的GF(28)域RS编码符号分别转换为二进制比特:Step 3: Convert the GF (2 8 ) domain RS coding symbols of subframe 2 and subframe 3 of the i-th frame obtained in step 2 into binary bits respectively:

(1)子帧2的95位GF(28)域RS编码符号转换为由600比特信息位和160比特校验位构成的760比特;(1) The 95-bit GF(2 8 ) domain RS coded symbol of subframe 2 is converted into 760 bits consisting of 600 bits of information bits and 160 bits of check bits;

(2)子帧3的41位GF(28)域RS编码符号转换为由264比特信息位和64比特校验位构成的328比特。(2) The 41-bit GF (2 8 ) domain RS encoding symbol of subframe 3 is converted into 328 bits consisting of 264 bits of information bits and 64 bits of parity bits.

步骤4,对步骤3得到的第i帧子帧2的600比特信息位和子帧3的264比特信息位分别进行二进制LDPC编码;子帧2和子帧3的二进制LDPC校验矩阵为近似下三角矩阵,由6个稀疏的子矩阵A、B、C、D、T和E组成,其中T为下三角矩阵;Step 4: Perform binary LDPC coding on the 600-bit information bits of subframe 2 and the 264-bit information bits of subframe 3 of the i-th frame obtained in step 3 respectively; the binary LDPC check matrices of subframe 2 and subframe 3 are approximate lower triangular matrices. , composed of 6 sparse sub-matrices A, B, C, D, T and E, where T is a lower triangular matrix;

令s为子帧2或子帧3的信息位比特向量,校验位比特向量p1和p2可通过下式计算:Let s be the information bit vector of subframe 2 or subframe 3, and the parity bit vectors p 1 and p 2 can be calculated by the following formula:

式中,φ=-E·T-1·B+D,[]T表示转置。编码后的码字向量为(s;p1;p2)。In the formula, φ=-E·T -1 ·B+D, [] T represents transposition. The encoded codeword vector is (s; p 1 ; p 2 ).

(1)对子帧2进行二进制LDPC(1200,600)编码,编码后为1200比特。在本实施例中子帧2的校验矩阵六个子矩阵A、B、T、C、D、E的维数分别为599×600、599×1、599×599、1×600、1×1、1×599。(1) Binary LDPC (1200, 600) encoding is performed on subframe 2, and the encoding is 1200 bits. In this embodiment, the dimensions of the six sub-matrices A, B, T, C, D, and E of the check matrix of subframe 2 are 599×600, 599×1, 599×599, 1×600, and 1×1 respectively. , 1×599.

(2)子帧3进行二进制LDPC(528,264)编码,编码后为528比特。在本实施例中子帧3的校验矩阵六个子矩阵A、B、T、C、D、E的维度分别为263×264、263×1、263×263、1×264、1×1、1×263。(2) Subframe 3 is encoded with binary LDPC (528, 264), and the encoding is 528 bits. In this embodiment, the dimensions of the six sub-matrices A, B, T, C, D, and E of the check matrix of subframe 3 are 263×264, 263×1, 263×263, 1×264, 1×1, 1×263.

对得到的编码后的子帧2和子帧3进行交织,在本实施例中仍采用如图6所示的B-CNAV1电文原有38×46大小的块交织器。The obtained encoded subframe 2 and subframe 3 are interleaved. In this embodiment, the original 38×46 size block interleaver of the B-CNAV1 message as shown in Figure 6 is still used.

步骤5,新建一个子帧3页面类型5(PageID为000101),将第i帧子帧2经RS编码并转换至GF(2)域的160个校验位和子帧3经RS编码后并转换至GF(2)域的64个校验位放入第i+1帧子帧3(页面类型5)中,共计224比特,剩余10比特为预留位。子帧3页面类型5的数据编排格式如图2所示。第i+1帧的级联编码过程与第i帧相同。Step 5, create a new subframe 3 page type 5 (PageID is 000101), RS-encode and convert the i-th subframe 2 to the 160 check digits of the GF(2) domain and RS-encode and convert subframe 3 The 64 check bits to the GF(2) field are placed in subframe 3 (page type 5) of the i+1th frame, totaling 224 bits, and the remaining 10 bits are reserved bits. The data format of subframe 3 page type 5 is shown in Figure 2. The concatenated encoding process of frame i+1 is the same as that of frame i.

随着卫星导航系统的升级换代,电文编码朝着逼近性能极限的方向发展,然而采用更先进的单一码(如多进制LDPC码)会引入计算复杂度过高的问题。级联码(如本发明提出的RS-LDPC级联码)通过联合两个译码复杂度相对较低的短分量码构造等效长码,能有效提高纠错性能并降低译码复杂度。With the upgrading of satellite navigation systems, message coding is developing towards the performance limit. However, the use of more advanced single codes (such as multi-ary LDPC codes) will introduce the problem of excessive computational complexity. Concatenated codes (such as the RS-LDPC concatenated code proposed by the present invention) can effectively improve error correction performance and reduce decoding complexity by combining two short component codes with relatively low decoding complexity to construct an equivalent long code.

图7和图8分别给出了基于RS-LDPC级联码与B-CNAV1电文原有64进制LDPC码在AWGN信道(代表开阔环境)和Prieto-Cerdeira两状态LMS信道(代表复杂环境)下的误帧率仿真结果,其中Prieto-Cerdeira两状态LMS信道模型选择城市环境、卫星仰角为60°、终端平均速率为50km/h条件下的场景参数。从图7和图8可以看出,当误帧率为1E-2时,RS-LDPC与64进制LDPC码在解调性能上基本相当。Figures 7 and 8 respectively show the original 64-ary LDPC code based on RS-LDPC concatenated code and B-CNAV1 message in the AWGN channel (representing an open environment) and the Prieto-Cerdeira two-state LMS channel (representing a complex environment). The frame error rate simulation results, in which the Prieto-Cerdeira two-state LMS channel model selects scene parameters under the conditions of urban environment, satellite elevation angle of 60°, and average terminal rate of 50km/h. It can be seen from Figures 7 and 8 that when the frame error rate is 1E-2, the demodulation performance of RS-LDPC and 64-ary LDPC codes is basically the same.

图9给出了B-CNAV1电文子帧2分别采用基于RS-LDPC级联码和原有64进制LDPC码时的计算复杂度进行比较。由于编译码算法的复杂度主要取决于译码算法,因此此处仅比较译码算法,其中RS码采用Berlekamp-Massey译码算法,二进制LDPC采用LLR-BP译码算法,64进制LDPC码采用截短信息向量长度为16的扩展最小和(EMS)译码算法。可以看出,本实施例给出的基于RS-LDPC级联码的电文编码方法,RS-LDPC码的译码总运算数不到64进制LDPC码译码总运算数的1/5。Figure 9 shows the comparison of the computational complexity when B-CNAV1 message subframe 2 is based on RS-LDPC concatenated code and the original 64-base LDPC code. Since the complexity of the encoding and decoding algorithm mainly depends on the decoding algorithm, only the decoding algorithms are compared here. The RS code uses the Berlekamp-Massey decoding algorithm, the binary LDPC uses the LLR-BP decoding algorithm, and the 64-ary LDPC code uses Extended minimum sum (EMS) decoding algorithm with truncated information vector length 16. It can be seen that, in the message encoding method based on RS-LDPC concatenated codes given in this embodiment, the total number of decoding operations of the RS-LDPC code is less than 1/5 of the total number of decoding operations of the hexadecimal LDPC code.

Claims (1)

1. A text encoding method based on RS-LDPC cascade codes is characterized in that the method takes a Beidou satellite navigation system B-CNAV1 text as an application object, adopts an RS code as an outer code and adopts a binary LDPC code as an inner code, and comprises the following steps:
1) The original 64-system LDPC codes of the electronic sub-frame 2 and the electronic sub-frame 3 of the Beidou satellite navigation system B-CNAV1 are replaced by the binary LDPC codes, and meanwhile, the RS outer codes are added before the binary LDPC codes are coded;
2) Defining a new page type 5 for storing check bits of subframe 2 and subframe 3 after RS coding in the previous frame by using the reserved page type of the B-CNAV1 message for subframe 3;
the specific implementation steps are as follows:
let the current frame of B-CNAV1 message be the i-th frame, the next frame be the i+1th frame, i is a natural number;
step 1, converting GF (2) domain binary bit data of an ith frame subframe 2 and subframe 3 into GF (2) 8 ) The field element, i.e. one GF (2) for every 8 bits of binary data 8 ) Domain element, GF (2 8 ) The primitive polynomial of the domain is x 8 +x 4 +x 3 +x 2 +1:
(1) 600-bit binary data conversion of subframe 2 into 75 GF (2 8 ) A domain element;
(2) 264-bit binary data conversion of subframe 3 into 33 GF (2 8 ) A domain element;
step 2, converting step 1 into GF (2 8 ) RS system coding is respectively carried out on the data of the subframe 2 and the subframe 3 of the ith frame of the domain:
(1) The RS (95, 75) encoding process for subframe 2 is:
first at 75 GF (2 8 ) The field information bit sign is prepended with 160 GF (2) 8 ) Domain symbol 0, then complements the information bits with 235 GF (2 8 ) Subframe 2 of the field symbol is RS (255, 235) encoded, and finally the first 160 GFs (2) encoded by RS (255, 235) 8 ) Domain symbolNumber deletion, leaving only the last 95 GF (2 8 ) Domain coding symbols;
(2) The coding process of RS (41, 33) for subframe 3 is:
first at 33 GF (2) of subframe 3 8 ) The field information bit sign is prepended by 214 GF (2) 8 ) Field symbol 0, then the information bits are complemented with 247 GF (2 8 ) Subframe 3 of the field symbol is RS (255, 247) encoded, and finally the first 214 GFs (2) after RS (255, 247) encoding are performed 8 ) The field symbol is deleted, and only the last 41 GF (2 8 ) Domain coding symbols;
step 3, GF (2) of the ith frame sub-frame 2 and sub-frame 3 obtained in step 2 8 ) The domain RS code symbols are converted into binary bits, respectively:
(1) 95 bits GF (2) of subframe 2 8 ) The domain RS code symbol is converted into 760 bits consisting of 600 bits of information bits and 160 bits of check bits;
(2) 41 bits GF (2) of subframe 3 8 ) The domain RS code symbol is converted into 328 bits composed of 264-bit information bits and 64-bit check bits;
step 4, respectively performing binary LDPC coding on the 600 bit information bits of the ith frame subframe 2 and the 264 bit information bits of the subframe 3 obtained in the step 3; the binary LDPC check matrix of the subframe 2 and the subframe 3 is an approximate lower triangular matrix, and consists of 6 sparse submatricesAnd->Composition of->Is a lower triangular matrix;
order theFor the information bit vector of subframe 2 or subframe 3, check bit vector +.>And->Can be calculated by the following formula:
in the method, in the process of the invention,[] T representing the transpose, the encoded codeword vector is +.>
(1) Binary LDPC (1200, 600) encoding of subframe 2, with 1200 bits after encoding; check matrix six sub-matrices of sub-frame 2The dimensions of (2) are 599×600, 599×1, 599×599, 1×600, 1×1, 1×599, respectively;
(2) Subframe 3 is binary LDPC (528, 264) coded, 528 bits after coding; check matrix six sub-matrices of sub-frame 3The dimensions of (2) are 263×264, 263×1, 263×263, 1×264, 1×1, 1×263, respectively;
interleaving the obtained encoded sub-frame 2 and sub-frame 3, and adopting a block interleaver with the original size of 38 multiplied by 46 of the B-CNAV1 telegram;
step 5, newly creating a sub-frame 3 page type 5, namely putting 160 check bits of an ith frame sub-frame 2 which is subjected to RS coding and is converted to a GF (2) domain and 64 check bits of the sub-frame 3 which are subjected to RS coding and are converted to the GF (2) domain into the page type 5 of the ith+1th frame sub-frame 3, wherein 224 bits are total, and the rest 10 bits are reserved bits; the concatenated coding process of the i+1th frame is the same as that of the i frame.
CN202111288235.1A 2021-11-02 2021-11-02 Text coding method based on RS-LDPC cascade codes Active CN114124297B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111288235.1A CN114124297B (en) 2021-11-02 2021-11-02 Text coding method based on RS-LDPC cascade codes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111288235.1A CN114124297B (en) 2021-11-02 2021-11-02 Text coding method based on RS-LDPC cascade codes

Publications (2)

Publication Number Publication Date
CN114124297A CN114124297A (en) 2022-03-01
CN114124297B true CN114124297B (en) 2023-10-20

Family

ID=80380108

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111288235.1A Active CN114124297B (en) 2021-11-02 2021-11-02 Text coding method based on RS-LDPC cascade codes

Country Status (1)

Country Link
CN (1) CN114124297B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1960357A (en) * 2006-10-20 2007-05-09 北京泰美世纪科技有限公司 Multicarrier digital mobile multimedia broadcast system, and digital information transmission method
CN101013931A (en) * 2006-11-27 2007-08-08 北京创毅视讯科技有限公司 Method and apparatus for channel coding and interleaving in mobile media broadcast
CN101277118A (en) * 2007-03-28 2008-10-01 北京三星通信技术研究有限公司 Coding method of concatenated codes based on LDPC codes
KR101684157B1 (en) * 2015-08-11 2016-12-07 한국과학기술원 Error correcting system and method using rs-ldpc concatenated coding
CN109639431A (en) * 2018-11-19 2019-04-16 中国科学院光电研究院 A kind of text authentication method, equipment, system and medium
CN113037296A (en) * 2019-12-24 2021-06-25 北京新岸线移动通信技术有限公司 LDPC (Low Density parity check) cascade-based coding and decoding method and device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1960357A (en) * 2006-10-20 2007-05-09 北京泰美世纪科技有限公司 Multicarrier digital mobile multimedia broadcast system, and digital information transmission method
CN101013931A (en) * 2006-11-27 2007-08-08 北京创毅视讯科技有限公司 Method and apparatus for channel coding and interleaving in mobile media broadcast
CN101277118A (en) * 2007-03-28 2008-10-01 北京三星通信技术研究有限公司 Coding method of concatenated codes based on LDPC codes
KR101684157B1 (en) * 2015-08-11 2016-12-07 한국과학기술원 Error correcting system and method using rs-ldpc concatenated coding
CN109639431A (en) * 2018-11-19 2019-04-16 中国科学院光电研究院 A kind of text authentication method, equipment, system and medium
CN113037296A (en) * 2019-12-24 2021-06-25 北京新岸线移动通信技术有限公司 LDPC (Low Density parity check) cascade-based coding and decoding method and device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A Novel Concatenated Coding Scheme:RS-SC-LDPC Codes;Qiu Jie;IEEE;全文 *
Concatenated Coding for GNSS Signals in Urban Envieronments;Jing Ke;Applied science;全文 *
前向纠错编码类型盲识别关键技术研究;覃江毅;信息科技辑;全文 *

Also Published As

Publication number Publication date
CN114124297A (en) 2022-03-01

Similar Documents

Publication Publication Date Title
CA2661264C (en) Method of correcting message errors using cyclic redundancy checks
CA2229453C (en) Data transmitting method, data transmitting system transmitter, and receiver
US8046658B2 (en) Method and device for decoding blocks encoded with an LDPC code
CN102386996B (en) A kind of physical layer data in satellite two-way communication transmission method and device
CN107113090A (en) The generation method and equipment of polarization Polar codes
WO2014149738A1 (en) Systems and methods for multi-stage soft input decoding
CN102130695A (en) Decoding method and device of concatenated codes
US6279132B1 (en) Concatenated error control method and system for a processing satellite uplink
CN115885478B (en) Method and communication device for constructing LDPC code
WO2022057582A1 (en) Coding method and device
CN108809518A (en) For reducing the cascade Spinal code construction methods of error performance
CN100488059C (en) Component coder and coding method, double-output Turbo coder and coding method
CN114124297B (en) Text coding method based on RS-LDPC cascade codes
CN108574491B (en) Data processing method, data processing device and communication device
CN100417031C (en) Method of realizing Reed Solomen convolution code in broadband radio insertion system
CN101431340B (en) Fast self-adapting confidence propagation interpretation method for Reed-Solomon code
CN108631913A (en) A kind of deinterleaving method and relevant device based on Quasi-cyclic Low-density Parity-check Codes
CN103117752B (en) CCSDS system high-speed walks abreast RS encoder and coding method
CN106788909B (en) CRC calculation method and device based on GMR satellite communication protocols
CN101459429A (en) Decoding method for low density generation matrix code
WO2020083492A1 (en) A channel encoder and a method for encoding an information word
CN116436471A (en) Encoding and decoding method, communication device, and storage medium
CN112953568B (en) Forward error correction code for deleting channel and construction method thereof
KR101279283B1 (en) Apparatus and method for transmitting/receiving signal in a communication system using a block code
EP0687072A2 (en) Faster linear block decoding apparatus and method for receivers in digital cellular communication and other systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant