CN114124014B - Film bulk acoustic resonator and preparation method thereof - Google Patents
Film bulk acoustic resonator and preparation method thereof Download PDFInfo
- Publication number
- CN114124014B CN114124014B CN202210082753.6A CN202210082753A CN114124014B CN 114124014 B CN114124014 B CN 114124014B CN 202210082753 A CN202210082753 A CN 202210082753A CN 114124014 B CN114124014 B CN 114124014B
- Authority
- CN
- China
- Prior art keywords
- wave energy
- energy leakage
- metal electrode
- sound wave
- leakage suppression
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title abstract description 17
- 229910052751 metal Inorganic materials 0.000 claims abstract description 82
- 239000002184 metal Substances 0.000 claims abstract description 82
- 230000001629 suppression Effects 0.000 claims abstract description 40
- 239000000758 substrate Substances 0.000 claims abstract description 33
- 239000010409 thin film Substances 0.000 claims description 108
- 239000010408 film Substances 0.000 claims description 30
- 239000000463 material Substances 0.000 claims description 30
- 238000011049 filling Methods 0.000 claims description 16
- 238000000151 deposition Methods 0.000 claims description 10
- 238000005530 etching Methods 0.000 claims description 10
- 238000000465 moulding Methods 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- 229910052737 gold Inorganic materials 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 238000007493 shaping process Methods 0.000 claims description 4
- 238000004544 sputter deposition Methods 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims 6
- 230000000452 restraining effect Effects 0.000 claims 2
- 230000005684 electric field Effects 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 21
- 238000010586 diagram Methods 0.000 description 5
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000001755 magnetron sputter deposition Methods 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 238000001312 dry etching Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- 239000005360 phosphosilicate glass Substances 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000002207 thermal evaporation Methods 0.000 description 2
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 description 1
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- 238000009623 Bosch process Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003958 fumigation Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H3/00—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
- H03H3/007—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
- H03H3/02—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/02—Details
- H03H9/02007—Details of bulk acoustic wave devices
- H03H9/02015—Characteristics of piezoelectric layers, e.g. cutting angles
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H3/00—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
- H03H3/007—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
- H03H3/02—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
- H03H2003/023—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the membrane type
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Abstract
Description
技术领域technical field
本发明涉及射频滤波技术领域,特别是涉及一种薄膜体声波谐振器及其制备方法。The invention relates to the technical field of radio frequency filtering, in particular to a thin film bulk acoustic wave resonator and a preparation method thereof.
背景技术Background technique
在无线通讯中,射频滤波器作为过滤特定频率信号的中介,用于减少不同频段的信号干扰,在无线收发器中实现镜像消除、寄生滤波和信道选择等功能。随着5G网络的部署和市场的增长,射频滤波器的设计也朝着小型化、低功耗和集成化的方向发展。体声波谐振器(Bulk Acoustic Resonator,BAR)作为一种新型的射频微机电系统(Micro-Electro-Mechanical System,MEMS)器件,成为射频前端基础器件的研究重点。同时,由于其灵敏度高、体积小、能够实现无线收发信号等特点,在传感器领域也获得了突飞猛进的发展。In wireless communications, RF filters are used as an intermediary to filter specific frequency signals to reduce signal interference in different frequency bands, and to implement functions such as image cancellation, spurious filtering, and channel selection in wireless transceivers. With the deployment of 5G networks and the growth of the market, the design of RF filters is also developing towards miniaturization, low power consumption and integration. Bulk Acoustic Resonator (BAR), as a new type of RF Micro-Electro-Mechanical System (MEMS) device, has become the research focus of RF front-end basic devices. At the same time, due to its high sensitivity, small size, and the ability to wirelessly send and receive signals, it has also achieved rapid development in the field of sensors.
薄膜体声波谐振器(Film Bulk Acoustic Resonator,FBAR)是BAR谐振器中的一种重要结构,具有有效机电耦合系数高、品质因数(Q)高、能够与CMOS工艺兼容等特点。FBAR是在衬底材料上添加电极-压电膜-电极的“三明治”的薄膜器件,其理论Q值相对于固装谐振器(solidly mounted resonator,SMR)要高,但其声波能量在垂直方向的泄漏,使得实际Q值仍受限。如何减少薄膜体声波谐振器的声波能量在垂直方向的泄漏,成为一个亟待解决的技术问题。Film Bulk Acoustic Resonator (FBAR) is an important structure in BAR resonators, which has the characteristics of high effective electromechanical coupling coefficient, high quality factor (Q), and compatibility with CMOS technology. FBAR is a thin film device with an electrode-piezoelectric film-electrode "sandwich" added to the substrate material. Its theoretical Q value is higher than that of a solidly mounted resonator (SMR), but its acoustic energy is in the vertical direction. leakage, so that the actual Q value is still limited. How to reduce the leakage of the acoustic wave energy of the thin film bulk acoustic wave resonator in the vertical direction has become a technical problem to be solved urgently.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明提供了一种薄膜体声波谐振器及其制备方法,以减少薄膜体声波谐振器的声波能量在垂直方向的泄漏,提高薄膜体声波谐振器的Q值。In view of this, the present invention provides a thin film bulk acoustic wave resonator and a preparation method thereof, so as to reduce the leakage of the acoustic wave energy of the thin film bulk acoustic wave resonator in the vertical direction and improve the Q value of the thin film bulk acoustic wave resonator.
为实现上述目的,本发明提供了如下方案:For achieving the above object, the present invention provides the following scheme:
一种薄膜体声波谐振器,由上到下依次包括顶部金属电极、压电薄膜层、底部金属电极和衬底;A thin-film bulk acoustic wave resonator comprises, from top to bottom, a top metal electrode, a piezoelectric thin film layer, a bottom metal electrode and a substrate;
所述底部金属电极设置在所述衬底上,所述衬底具有空气腔;the bottom metal electrode is disposed on the substrate, and the substrate has an air cavity;
所述顶部金属电极在所述压电薄膜层的上表面形成第一声波能量泄漏抑制部,所述底部金属电极在所述压电薄膜层的下表面形成第二声波能量泄漏抑制部;其中,第一声波能量泄漏抑制部与第二声波能量泄漏抑制部的数量相同且位置相对;所述第一声波能量泄漏抑制部和所述第二声波能量泄漏抑制部均位于所述空气腔的上部;The top metal electrode forms a first acoustic wave energy leakage suppressing portion on the upper surface of the piezoelectric thin film layer, and the bottom metal electrode forms a second acoustic wave energy leakage suppressing portion on the lower surface of the piezoelectric thin film layer; wherein , the number of the first acoustic wave energy leakage suppressing part and the second acoustic energy leakage suppressing part are the same and the positions are opposite; the first acoustic wave energy leakage suppressing part and the second acoustic wave energy leakage suppressing part are both located in the air cavity the upper part;
所述第一声波能量泄漏抑制部包括凹槽和/或凸起,对应的所述第二声波能量泄漏抑制部包括凸起和/或凹槽,所述压电薄膜层在由顶部金属电极和底部金属电极所覆盖的区段内厚度一致;The first acoustic wave energy leakage suppressing portion includes grooves and/or protrusions, the corresponding second acoustic wave energy leakage suppressing portion includes protrusions and/or grooves, and the piezoelectric thin film layer is formed by the top metal electrode. Consistent with the thickness in the section covered by the bottom metal electrode;
所述顶部金属电极与所述压电薄膜层的上表面贴合,所述底部金属电极与所述压电薄膜层的下表面贴合。The top metal electrode is attached to the upper surface of the piezoelectric thin film layer, and the bottom metal electrode is attached to the lower surface of the piezoelectric thin film layer.
可选的,所述第一声波能量泄漏抑制部和所述第二声波能量泄漏抑制部的宽度分别为声波波长的整数倍。Optionally, the widths of the first acoustic wave energy leakage suppressing portion and the second acoustic wave energy leakage suppressing portion are respectively an integer multiple of the acoustic wave wavelength.
可选的,所述第一声波能量泄漏抑制部所包括的凹槽和/或凸起均为第一子抑制部,同理,所述第二声波能量泄漏抑制部所包括的凸起和/或凹槽均为第二子抑制部;其中:Optionally, the grooves and/or protrusions included in the first acoustic wave energy leakage suppressing portion are all first sub-suppressing portions. Similarly, the protrusions and/or protrusions included in the second acoustic wave energy leakage suppressing portion are the same. /or the grooves are all second sub-suppression parts; wherein:
第一子抑制部的宽度总和为声波波长的整数倍,第二子抑制部的宽度总和为声波波长的整数倍,并且,第一子抑制部之间的宽度比与第二子抑制部之间的宽度比相一致。The sum of the widths of the first sub-suppression parts is an integer multiple of the wavelength of the acoustic wave, the sum of the widths of the second sub-suppression parts is an integral multiple of the wavelength of the acoustic waves, and the ratio of the width between the first sub-suppression parts and the second sub-suppression part is The width ratio is the same.
可选的,所述第一声波能量泄漏抑制部包括沿延伸方向依次设置的两个凹槽,所述第二声波能量泄漏抑制部包括沿延伸方向依次设置的两个凸起;Optionally, the first acoustic wave energy leakage suppressing portion includes two grooves arranged in sequence along the extending direction, and the second acoustic wave energy leakage suppressing portion includes two protrusions arranged sequentially along the extending direction;
或所述第一声波能量泄漏抑制部包括沿延伸方向依次设置的凸起和凹槽,所述第二声波能量泄漏抑制部包括沿延伸方向依次设置的凹槽和凸起;Or the first acoustic wave energy leakage suppressing portion includes protrusions and grooves arranged in sequence along the extending direction, and the second acoustic wave energy leakage suppressing portion includes grooves and protrusions sequentially disposed along the extending direction;
或所述第一声波能量泄漏抑制部包括沿延伸方向依次设置的凹槽和凸起,所述第二声波能量泄漏抑制部包括沿延伸方向依次设置的凸起和凹槽;Or the first acoustic wave energy leakage suppressing portion includes grooves and protrusions arranged in sequence along the extending direction, and the second acoustic wave energy leakage suppressing portion includes protrusions and grooves sequentially disposed along the extending direction;
或所述第一声波能量泄漏抑制部包括沿延伸方向依次设置的两个凸起,所述第二声波能量泄漏抑制部包括沿延伸方向依次设置的两个凹槽。Or the first acoustic wave energy leakage suppressing portion includes two protrusions arranged in sequence along the extending direction, and the second acoustic wave energy leakage suppressing portion includes two grooves arranged sequentially along the extending direction.
可选的,所述第一声波能量泄漏抑制部中沿延伸方向依次设置的两个凹槽的宽度比为1:2,所述第二声波能量泄漏抑制部中沿延伸方向依次设置的两个凸起的宽度比为1:2;Optionally, the width ratio of the two grooves arranged in sequence along the extending direction in the first acoustic wave energy leakage suppressing portion is 1:2, and the two grooves sequentially arranged along the extending direction in the second acoustic wave energy leakage suppressing portion have a width ratio of 1:2. The width ratio of each protrusion is 1:2;
或所述第一声波能量泄漏抑制部中沿延伸方向依次设置的凸起和凹槽的宽度比为1:2,所述第二声波能量泄漏抑制部中沿延伸方向依次设置的凹槽和凸起的宽度比为1:2;Or the width ratio of the protrusions and the grooves arranged in sequence along the extending direction in the first acoustic wave energy leakage suppressing portion is 1:2, and the grooves and grooves arranged sequentially along the extending direction in the second acoustic wave energy leakage suppressing portion are 1:2. The width ratio of the protrusions is 1:2;
或所述第一声波能量泄漏抑制部中沿延伸方向依次设置的凹槽和凸起的宽度比为1:2,所述第二声波能量泄漏抑制部中沿延伸方向依次设置的凸起和凹槽的宽度比为1:2;Or the width ratio of grooves and protrusions arranged in sequence along the extending direction in the first acoustic wave energy leakage suppressing portion is 1:2, and the protrusions and protrusions sequentially arranged along the extending direction in the second acoustic wave energy leakage suppressing portion have a ratio of 1:2. The width ratio of the groove is 1:2;
或所述第一声波能量泄漏抑制部中沿延伸方向依次设置的两个凸起的宽度比为1:2,所述第二声波能量泄漏抑制部中沿延伸方向依次设置的两个凹槽的宽度比为1:2。Or the width ratio of the two protrusions arranged in sequence along the extending direction in the first acoustic wave energy leakage suppressing portion is 1:2, and the two grooves sequentially arranged along the extending direction in the second acoustic wave energy leakage suppressing portion The width ratio is 1:2.
可选的,任一凹槽或凸起的截面形状为等腰梯形。Optionally, the cross-sectional shape of any groove or protrusion is an isosceles trapezoid.
可选的,所述衬底材料为Si,所述底部金属电极的材料为Al、Cu、Au或Mo,所述压电薄膜层的材料为压电材料,所述顶部金属电极的材料为Al、Cu、Au或Mo。Optionally, the material of the substrate is Si, the material of the bottom metal electrode is Al, Cu, Au or Mo, the material of the piezoelectric thin film layer is piezoelectric material, and the material of the top metal electrode is Al , Cu, Au or Mo.
一种制备方法,用于制备薄膜体声波谐振器,所述制备方法包括:A preparation method for preparing a thin-film bulk acoustic resonator, the preparation method comprising:
在衬底上刻蚀空气腔;Etch air cavities on the substrate;
在所述空气腔内沉淀预设高度的牺牲填充层;depositing a sacrificial filling layer with a preset height in the air cavity;
对所述牺牲填充层进行空腔成型处理;performing cavity forming processing on the sacrificial filling layer;
在成型处理后的牺牲填充层的上表面沉积厚度一致的底部金属电极,其中,所述底部金属电极在所述成型处理后的牺牲填充层的上表面上形成第二声波能量泄漏抑制部;A bottom metal electrode with uniform thickness is deposited on the upper surface of the shaped sacrificial filling layer, wherein the bottom metal electrode forms a second acoustic wave energy leakage suppressing part on the upper surface of the shaped sacrificial filling layer;
在衬底和所述底部金属电极的上表面溅射压电薄膜层;sputtering a piezoelectric thin film layer on the upper surface of the substrate and the bottom metal electrode;
对所述压电薄膜层进行成型处理;在成型处理后的压电薄膜层的上表面沉积厚度一致的顶部金属电极;其中,顶部金属电极在成型处理后的压电薄膜层的上表面上形成第一声波能量泄漏抑制部;forming the piezoelectric thin film layer; depositing a top metal electrode with a uniform thickness on the upper surface of the piezoelectric thin film layer after the forming process; wherein, the top metal electrode is formed on the upper surface of the piezoelectric thin film layer after the forming process a first acoustic wave energy leakage suppressing part;
去除所述牺牲填充层。The sacrificial fill layer is removed.
一种制备方法,其特征在于,用于制备薄膜体声波谐振器,所述制备方法包括:A preparation method, characterized in that it is used for preparing a thin-film bulk acoustic resonator, the preparation method comprising:
在衬底上刻蚀空气腔;Etch air cavities on the substrate;
对压电材料进行成膜和塑形,以形成所述压电薄膜层;filming and shaping the piezoelectric material to form the piezoelectric thin film layer;
在压电薄膜层的上表面沉积顶部金属电极,在压电薄膜层的下表面沉积底部金属电极,获得压电叠层结构;A top metal electrode is deposited on the upper surface of the piezoelectric thin film layer, and a bottom metal electrode is deposited on the lower surface of the piezoelectric thin film layer to obtain a piezoelectric laminated structure;
将所述压电叠层结构设置在所述衬底上。The piezoelectric laminate structure is disposed on the substrate.
一种MEMS器件,包括薄膜体声波谐振器。A MEMS device includes a thin film bulk acoustic resonator.
根据本发明提供的具体实施例,本发明公开了以下技术效果:According to the specific embodiments provided by the present invention, the present invention discloses the following technical effects:
本发明实施例公开一种薄膜体声波谐振器及其制备方法,薄膜体声波谐振器包括顶部金属电极、压电薄膜层、底部金属电极和衬底,顶部金属电极和底部金属电极分别在压电薄膜层的上下表面形成位置相对的第一声波能量泄漏抑制部和第二声波能量泄漏抑制部,并且,第一声波能量泄漏抑制部包括凹槽和/或凸起,对应的所述第二声波能量泄漏抑制部包括凸起和/或凹槽,这样可通过非平整性结构减少声波能量在垂直方向的泄露。同时,压电薄膜层在由顶部金属电极和底部金属电极所覆盖的区段内厚度一致,也即,压电薄膜层的上下表面在该区段内不同位置均保持平行且高度相同,以抑制电场的垂直分量,使得同频率的信号进行相干叠加,进一步减少声波能量在垂直方向的泄露,提高了薄膜体声波谐振器的Q值。The embodiment of the present invention discloses a thin-film bulk acoustic resonator and a preparation method thereof. The thin-film bulk acoustic resonator includes a top metal electrode, a piezoelectric thin film layer, a bottom metal electrode and a substrate. The top metal electrode and the bottom metal electrode are respectively connected to piezoelectric The upper and lower surfaces of the thin film layer form a first acoustic wave energy leakage suppressing portion and a second acoustic wave energy leakage suppressing portion, and the first acoustic wave energy leakage suppressing portion includes grooves and/or protrusions, corresponding to the first acoustic wave energy leakage suppressing portion. The second acoustic wave energy leakage suppressing part includes protrusions and/or grooves, so that the leakage of the acoustic wave energy in the vertical direction can be reduced by the non-flat structure. At the same time, the thickness of the piezoelectric thin film layer is the same in the section covered by the top metal electrode and the bottom metal electrode, that is, the upper and lower surfaces of the piezoelectric thin film layer are kept parallel and at the same height at different positions in this section to prevent The vertical component of the electric field makes the signals of the same frequency superimposed coherently, further reducing the leakage of acoustic wave energy in the vertical direction, and improving the Q value of the thin-film bulk acoustic wave resonator.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the accompanying drawings required in the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some of the present invention. In the embodiments, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without creative labor.
图1为本发明实施例提供的薄膜体声波谐振器的一种示例性结构;FIG. 1 is an exemplary structure of a thin-film bulk acoustic wave resonator provided by an embodiment of the present invention;
图2为本发明实施例提供的薄膜体声波谐振器的另一示例性结构;Fig. 2 is another exemplary structure of the thin film bulk acoustic wave resonator provided by the embodiment of the present invention;
图3为本发明实施例提供的薄膜体声波谐振器的又一示例性结构;Fig. 3 is another exemplary structure of the thin film bulk acoustic wave resonator provided by the embodiment of the present invention;
图4为本发明实施例提供的薄膜体声波谐振器的又一种示例性结构;Fig. 4 is another exemplary structure of the thin film bulk acoustic wave resonator provided by the embodiment of the present invention;
图5为现有的“三明治”结构的薄膜体声波谐振器的结构图;Fig. 5 is the structure diagram of the thin film bulk acoustic wave resonator of the existing "sandwich" structure;
图6为现有的“三明治”结构的薄膜体声波谐振器的导纳曲线图;Fig. 6 is the admittance curve diagram of the thin film bulk acoustic wave resonator of the existing "sandwich" structure;
图7为现有的“三明治”结构的薄膜体声波谐振器的品质因数曲线图;7 is a graph of the quality factor of a thin-film bulk acoustic resonator of an existing "sandwich" structure;
图8为图2所示薄膜体声波谐振器的导纳曲线图;Fig. 8 is the admittance curve diagram of the thin film bulk acoustic wave resonator shown in Fig. 2;
图9为图2所示薄膜体声波谐振器的品质因数曲线图;FIG. 9 is a graph of the quality factor of the thin-film bulk acoustic wave resonator shown in FIG. 2;
图10为图4所示薄膜体声波谐振器的导纳曲线图;Fig. 10 is the admittance curve diagram of the thin film bulk acoustic wave resonator shown in Fig. 4;
图11为图4所示薄膜体声波谐振器的品质因数曲线图;FIG. 11 is a graph of the quality factor of the thin film bulk acoustic wave resonator shown in FIG. 4;
图12为图3所示薄膜体声波谐振器的导纳曲线图;Fig. 12 is the admittance curve diagram of the thin film bulk acoustic wave resonator shown in Fig. 3;
图13为图3所示薄膜体声波谐振器的品质因数曲线图。FIG. 13 is a graph of the quality factor of the thin film bulk acoustic wave resonator shown in FIG. 3 .
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
本发明的目的是提供一种薄膜体声波谐振器及其制备方法,以减少薄膜体声波谐振器的声波能量在垂直方向的泄漏,提高薄膜体声波谐振器的Q值。The purpose of the present invention is to provide a thin film bulk acoustic wave resonator and a preparation method thereof, so as to reduce the leakage of the acoustic wave energy of the thin film bulk acoustic wave resonator in the vertical direction and improve the Q value of the thin film bulk acoustic wave resonator.
实施例1Example 1
如图1-4所示本发明实施例1提供一种薄膜体声波谐振器,由上到下依次包括顶部金属电极1、压电薄膜层2、底部金属电极3和衬底4;底部金属电极3设置在衬底4上,衬底4具有空气腔5;其中,顶部金属电极1和底部金属电极3的厚度为200-250nm,压电薄膜层2的厚度为0.8-1.3um。As shown in Figures 1-4,
顶部金属电极1与压电薄膜层2的上表面贴合,在压电薄膜层2的上表面形成第一声波能量泄漏抑制部,底部金属电极3与压电薄膜层2的下表面贴合,在压电薄膜层2的下表面形成第二声波能量泄漏抑制部;The
其中,第一声波能量泄漏抑制部与第二声波能量泄漏抑制部的数量相同且位置相对;第一声波能量泄漏抑制部和第二声波能量泄漏抑制部均位于空气腔5的上部。Wherein, the first acoustic wave energy leakage suppressing part and the second acoustic wave energy leakage suppressing part are the same in number and opposite to each other;
第一声波能量泄漏抑制部与第二声波能量泄漏抑制部的数量可依实际需要而设计,例如,一个、两个,乃至其他数量,在此不作赘述和限制。The number of the first acoustic wave energy leakage suppressing portion and the second acoustic energy leakage suppressing portion can be designed according to actual needs, for example, one, two, or even other numbers, which are not described and limited herein.
第一声波能量泄漏抑制部包括凹槽和/或凸起,对应的所述第二声波能量泄漏抑制部包括凸起和/或凹槽,压电薄膜层2在由顶部金属电极1和底部金属电极3所覆盖的区段内厚度一致(或厚度相同)。需要说明的是,所谓的厚度一致或厚度相同指:理论厚度相同,但因加工引起的误差应当允许,其中,凸起或凹槽的深度为10-100nm。The first acoustic wave energy leakage suppressing portion includes grooves and/or protrusions, the corresponding second acoustic wave energy leakage suppressing portion includes protrusions and/or grooves, and the piezoelectric
即,如图1所示,若第一声波能量泄漏抑制部包含凹槽a,则第二声波能量泄漏抑制部包含与之对应的凸起a’。由于压电薄膜层上下表面分别与顶部电极和底部电极相贴合,则在压电薄膜层上表面与上述凹槽a相邻的部位为凹槽b,压电薄膜层下表面与上述凸起a’相邻的部位为凸起b’。That is, as shown in FIG. 1 , if the first acoustic wave energy leakage suppressing portion includes the groove a, the second acoustic wave energy leakage suppressing portion includes the corresponding protrusion a'. Since the upper and lower surfaces of the piezoelectric film layer are respectively attached to the top electrode and the bottom electrode, the part adjacent to the above-mentioned groove a on the upper surface of the piezoelectric film layer is groove b, and the lower surface of the piezoelectric film layer is adjacent to the above-mentioned protrusion. The part adjacent to a' is a bulge b'.
由于厚度一致,在压电薄膜层上,凹槽b与凸起b’的位置相对且截面形状和截面尺寸均相同(此处的相同指理论相同,但因加工引起的误差应当允许);Due to the uniform thickness, on the piezoelectric film layer, the groove b and the protrusion b' are opposite in position and have the same cross-sectional shape and cross-sectional size (the same refers to the same theory here, but the error caused by processing should be allowed);
同理,如图4所示,若第一声波能量泄漏抑制部包含凸起c,则第二声波能量泄漏抑制部包含与之相对应的凹槽c’,则在压电薄膜层上表面与上述凸起c相邻的部位为凸起d,压电薄膜层下表面与上述凹槽c’相邻的部位为凹槽d’。由于厚度一致,凹槽d与凸起d’位置相对且截面形状和截面尺寸均相同(此处的相同指理论相同,但因加工引起的误差应当允许)。Similarly, as shown in FIG. 4 , if the first acoustic wave energy leakage suppressing portion includes a protrusion c, and the second acoustic wave energy leakage suppressing portion includes a corresponding groove c′, then the upper surface of the piezoelectric film layer The part adjacent to the protrusion c is the protrusion d, and the part adjacent to the groove c' on the lower surface of the piezoelectric film layer is the groove d'. Due to the same thickness, the groove d is opposite to the protrusion d', and the cross-sectional shape and cross-sectional size are the same (the same refers to the same theory here, but the error caused by processing should be allowed).
因此,也可说:压电薄膜层的上表面包含与第一声波能量泄漏抑制部相贴合的第三声波能量泄漏抑制部,压电薄膜层的下表面包含与第二声波能量泄漏抑制部相贴合的第四声波能量泄漏抑制部。第三声波能量泄漏抑制部与第四声波能量泄漏抑制部数量相同、位置相对,截面形状和截面尺寸均相同。Therefore, it can also be said that the upper surface of the piezoelectric thin film layer includes the third acoustic energy leakage suppressing portion that is in contact with the first acoustic energy leakage suppressing portion, and the lower surface of the piezoelectric thin film layer includes the second acoustic energy leakage suppressing portion. The fourth acoustic wave energy leakage suppressing part that is in close contact with each other. The third acoustic wave energy leakage suppressing portion and the fourth acoustic wave energy leakage suppressing portion have the same number, are opposite to each other, and have the same cross-sectional shape and cross-sectional size.
在一个示例中,第一声波能量泄漏抑制部和第二声波能量泄漏抑制部的宽度分别为声波波长的整数倍。In one example, the widths of the first acoustic wave energy leakage suppressing portion and the second acoustic energy leakage suppressing portion are respectively an integer multiple of the acoustic wave wavelength.
前述提及了,第一声波能量泄漏抑制部包括凹槽和/或凸起,可将凹槽、凸起统称为第一子抑制部,同理,第二声波能量泄漏抑制部中包括的凸起和/或凹槽,也可统称为第二子抑制部。As mentioned above, the first acoustic wave energy leakage suppressing portion includes grooves and/or protrusions, and the grooves and protrusions may be collectively referred to as the first sub-suppressing portion. Similarly, the second acoustic wave energy leakage suppressing portion includes The protrusions and/or the grooves may also be collectively referred to as the second sub-inhibition portion.
在另一个示例中,可设计各第一子抑制部的宽度总和为一个波长的整数倍,各第二声波能量泄漏抑制部的宽度总和为一个波长的整数倍,并且,各第一子抑制部之间的宽度比,与各第二子抑制部之间的宽度比相一致。由于电极宽度比只存在于整周期内,声波在整个压电材料中可进行相干叠加,从而获得更好的谐振性能。In another example, the sum of the widths of the first sub-suppression parts can be designed to be an integer multiple of a wavelength, the sum of the widths of the second acoustic wave energy leakage suppression parts can be designed to be an integer multiple of a wavelength, and the first sub-suppression parts can be designed to be an integer multiple of a wavelength. The width ratio between them corresponds to the width ratio between the second sub-suppression parts. Since the electrode width ratio only exists in the whole period, the acoustic waves can be superimposed coherently throughout the piezoelectric material, resulting in better resonance performance.
下面以第一声波能量泄漏抑制部包括两个第一子抑制部,第二声波能量泄漏抑制部包括两个第二子抑制部为例,进行介绍。The following description will be made by taking an example that the first acoustic wave energy leakage suppressing part includes two first sub-suppression parts, and the second acoustic wave energy leakage suppressing part includes two second sub-suppressing parts.
由于任一第一子抑制部可为凹槽或凸起,两个第一子抑制部的形状组合有四种,具体分四种情况介绍,四种情况中凹槽的深度均为20nm,凸起的高度均为20nm。Since any first sub-suppression portion can be a groove or a protrusion, there are four combinations of shapes of the two first sub-suppression portions, which are introduced in four cases. In the four cases, the depth of the groove is 20 nm, the convex The height is 20nm.
情况一
如图1所示,第一声波能量泄漏抑制部包括沿延伸方向依次设置的两个凹槽a,第二声波能量泄漏抑制部包括沿延伸方向依次设置的两个凸起a’,其中:第一声波能量泄漏抑制部中沿延伸方向依次设置的两个凹槽a的宽度比为1:2,作为一个优选实例,沿延伸方向第一个凹槽的宽度为1个波长,第二个凹槽的宽度为2个波长;As shown in FIG. 1 , the first acoustic wave energy leakage suppressing portion includes two grooves a arranged in sequence along the extending direction, and the second acoustic wave energy leakage suppressing portion includes two protrusions a' successively disposed along the extending direction, wherein: The width ratio of the two grooves a arranged in sequence along the extending direction in the first acoustic wave energy leakage suppressing part is 1:2. As a preferred example, the width of the first groove along the extending direction is 1 wavelength, and the second groove The width of each groove is 2 wavelengths;
第二声波能量泄漏抑制部中沿延伸方向依次设置的两个凸起a’的宽度比为1:2。The width ratio of the two protrusions a' arranged in sequence along the extending direction in the second acoustic wave energy leakage suppressing portion is 1:2.
中间压电薄膜层的厚度为信号波长的一半。The thickness of the middle piezoelectric thin film layer is half of the signal wavelength.
情况二
如图2所示,第一声波能量泄漏抑制部包括沿延伸方向依次设置的凸起c和凹槽a,第二声波能量泄漏抑制部包括沿延伸方向依次设置的凹槽c’和凸起a’,其中:As shown in FIG. 2 , the first acoustic wave energy leakage suppressing portion includes a protrusion c and a groove a arranged in sequence along the extending direction, and the second acoustic wave energy leakage suppressing portion includes a groove c′ and a protrusion disposed sequentially along the extending direction a', where:
第一声波能量泄漏抑制部中沿延伸方向依次设置的凸起c和凹槽a的宽度比为1:2,第二声波能量泄漏抑制部中沿延伸方向依次设置的凹槽c’和凸起a’的宽度比为1:2,即,凸起c的宽度为1个波长,凹槽a为2个波长,c和a的比例为1:2。The width ratio of the protrusions c and the grooves a arranged in sequence along the extending direction in the first acoustic wave energy leakage suppressing part is 1:2, and the grooves c' and the grooves a sequentially arranged along the extending direction in the second acoustic wave energy leakage suppressing part have a ratio of 1:2. The width ratio of a' is 1:2, that is, the width of the protrusion c is 1 wavelength, the groove a is 2 wavelengths, and the ratio of c to a is 1:2.
情况三Case three
如图3所示,第一声波能量泄漏抑制部包括沿延伸方向依次设置的凹槽a和凸起c,第二声波能量泄漏抑制部包括沿延伸方向依次设置的凸起a’和凹槽c’;第一声波能量泄漏抑制部中沿延伸方向依次设置的凹槽和凸起的宽度比为1:2,第二声波能量泄漏抑制部中沿延伸方向依次设置的凸起和凹槽的宽度比为1:2。As shown in FIG. 3 , the first acoustic wave energy leakage suppressing portion includes a groove a and a protrusion c arranged in sequence along the extending direction, and the second acoustic wave energy leakage suppressing portion includes a protrusion a' and a groove sequentially disposed along the extending direction c'; the width ratio of the grooves and the protrusions arranged in sequence along the extending direction in the first acoustic wave energy leakage suppressing portion is 1:2, and the protrusions and grooves sequentially arranged along the extending direction in the second acoustic wave energy leakage suppressing portion The width ratio is 1:2.
情况四
如图4所示,第一声波能量泄漏抑制部包括沿延伸方向依次设置的两个凸起c,所述第二声波能量泄漏抑制部包括沿延伸方向依次设置的两个凹槽c’。第一声波能量泄漏抑制部中沿延伸方向依次设置的两个凸起c的宽度比为1:2,第二声波能量泄漏抑制部中沿延伸方向依次设置的两个凹槽c’的宽度比为1:2。As shown in FIG. 4 , the first acoustic wave energy leakage suppressing portion includes two protrusions c arranged in sequence along the extending direction, and the second acoustic wave energy leakage suppressing portion includes two grooves c' sequentially disposed along the extending direction. The width ratio of the two protrusions c arranged in sequence along the extending direction in the first acoustic wave energy leakage suppressing portion is 1:2, and the widths of the two grooves c' successively arranged along the extending direction in the second acoustic energy leakage suppressing portion The ratio is 1:2.
上述包含凸起和/或凹槽的非平整性结构,减少了声波能量在垂直方向的泄露。同时,压电薄膜层在由顶部金属电极和底部金属电极所覆盖的区段内厚度一致,也即,压电薄膜层的上下表面在该区段内不同位置均保持平行且高度相同,这样可以抑制电场的垂直分量,使得同频率的信号进行相干叠加,进一步减少声波能量在垂直方向的泄露,提高了薄膜体声波谐振器的Q值。The above-mentioned uneven structure including protrusions and/or grooves reduces the leakage of acoustic energy in the vertical direction. At the same time, the thickness of the piezoelectric thin film layer is the same in the section covered by the top metal electrode and the bottom metal electrode, that is, the upper and lower surfaces of the piezoelectric thin film layer are kept parallel and at the same height at different positions in this section. The vertical component of the electric field is suppressed, so that the signals of the same frequency are superimposed coherently, further reducing the leakage of the acoustic wave energy in the vertical direction, and improving the Q value of the thin film bulk acoustic wave resonator.
此外,将第一声波能量泄漏抑制部和第二声波能量泄漏抑制部的宽度设置为声波波长的整数倍,以及第一声波能量泄漏抑制部和第二声波能量泄漏抑制部的宽度比一致,可以实现薄膜体声波谐振器中声波信号的相干叠加,提高薄膜体声波谐振器中声波能量,进一步提高了薄膜体声波谐振器的Q值。In addition, the width of the first acoustic wave energy leakage suppressing portion and the second acoustic wave energy leakage suppressing portion is set to an integer multiple of the acoustic wave wavelength, and the width ratio of the first acoustic wave energy leakage suppressing portion and the second acoustic wave energy leakage suppressing portion is consistent. , can realize the coherent superposition of the acoustic wave signal in the thin film bulk acoustic wave resonator, improve the acoustic wave energy in the thin film bulk acoustic wave resonator, and further improve the Q value of the thin film bulk acoustic wave resonator.
在本发明其他实施例中,所有实施例中的任一凹槽或凸起的截面形状为等腰梯形。通过斜坡状结构,使顶部电极和底部电极保持平行,且部分位置呈现出斜坡状,进一步的减少声波能量在垂直方向的泄露,进一步的提高了薄膜体声波谐振器的Q值。In other embodiments of the present invention, the cross-sectional shape of any groove or protrusion in all the embodiments is an isosceles trapezoid. Through the slope-like structure, the top electrode and the bottom electrode are kept parallel, and some positions are slope-like, which further reduces the leakage of acoustic wave energy in the vertical direction and further improves the Q value of the thin film bulk acoustic wave resonator.
如图5所示,一种现有的薄膜体声波谐振器是在衬底材料上的添加电极(顶部金属电极1)-压电膜(压电薄膜层2)-电极(底部金属电极3)的“三明治”FBAR的薄膜器件,这种结构的上下电极一般是平行设计的,但是在实际工艺中,这种结构由于需要保持平行的长度较长,实现完全平行的难度较大。而本申请通过设置第一声波能量泄漏抑制部和第二声波能量泄漏抑制部,将电极进行划分为多个部分(节段),分别在每个部分保持平行即可,降低了实现平行的工艺难度,提高了平行度。而且目前的工艺技术是可以实现凸起和凹槽的成型的,例如,各向异性干法刻蚀。As shown in Fig. 5, an existing thin film bulk acoustic wave resonator is an additive electrode (top metal electrode 1)-piezoelectric film (piezoelectric film layer 2)-electrode (bottom metal electrode 3) on the substrate material The "sandwich" FBAR thin film device, the upper and lower electrodes of this structure are generally designed in parallel, but in the actual process, this structure needs to maintain a long parallel length, and it is difficult to achieve complete parallelism. In the present application, the electrodes are divided into multiple parts (segments) by setting the first acoustic wave energy leakage suppressing part and the second acoustic wave energy leakage suppressing part, and each part can be kept in parallel, which reduces the need for parallelization. The difficulty of the process improves the parallelism. Moreover, the current process technology can realize the formation of protrusions and grooves, for example, anisotropic dry etching.
在本发明其他实施例中,所有实施例中的衬底材料示例性的可为Si,底部金属电极和顶部金属电极的材料示例性的可为Al、Cu、Au或Mo等,所述压电薄膜层的材料为压电材料。In other embodiments of the present invention, the material of the substrate in all the embodiments can be exemplified by Si, and the material of the bottom metal electrode and the top metal electrode can be exemplified by Al, Cu, Au or Mo, etc. The piezoelectric The material of the thin film layer is a piezoelectric material.
其中,压电材料是受到压力作用时会在两端面间出现电压的晶体材料。具体的,压电材料示例性的包括但不限于LiNbO3、LiTaO3、AlN、ZnO或PZT(锆钛酸铅系压电陶瓷)。Among them, the piezoelectric material is a crystalline material that produces a voltage between the two end faces when subjected to pressure. Specifically, examples of piezoelectric materials include, but are not limited to, LiNbO 3 , LiTaO 3 , AlN, ZnO or PZT (lead zirconate titanate piezoelectric ceramics).
本领域技术人员可根据需要灵活选择各组成部分所采用的材料,例如,可选择任意适合作电极的材料作为底部金属电极和顶部金属电极的材料,选择任意适合作衬底的材料作为本发明实施例中衬底的材料,在此不作赘述。Those skilled in the art can flexibly select the materials used for each component according to their needs. For example, any material suitable for the electrode can be selected as the material for the bottom metal electrode and the top metal electrode, and any material suitable for the substrate can be selected as the implementation of the present invention. The material of the substrate in this example will not be repeated here.
实施例2Example 2
本发明实施例的薄膜体声波谐振器可以应用于任意一种MEMS器件,MEMS(Micro-electro-mechanicalsystem微电子机械系统)器件可以为液位传感器、振荡器、麦克风、射频开关和滤波器等。The thin film bulk acoustic wave resonator of the embodiment of the present invention can be applied to any MEMS device, and the MEMS (Micro-electro-mechanical system) device can be a liquid level sensor, an oscillator, a microphone, a radio frequency switch, a filter, and the like.
MEMS器件的制备方法为:将本发明的薄膜体声波谐振器置于一或多个声反射器上以形成固态装配型谐振器,然后,将固态装配型谐振器与其它有源器件进行集成,封装得到MEMS器件。The preparation method of the MEMS device is as follows: placing the thin-film bulk acoustic wave resonator of the present invention on one or more acoustic reflectors to form a solid-state assembled resonator, and then integrating the solid-state assembled resonator with other active devices, The MEMS device is obtained by packaging.
实施例3Example 3
本发明实施例提供一种制备方法,用于制备实施例1中的薄膜体声波谐振器,制备方法包括:The embodiment of the present invention provides a preparation method for preparing the thin-film bulk acoustic wave resonator in
1)在衬底上刻蚀空气腔。1) Etch an air cavity on the substrate.
以衬底材料为Si为例,上述刻蚀具体包括:使用丙酮和异丙醇超声对衬底4进行清洗,采用基于BOSCH工艺的ICP刻蚀在衬底4上刻蚀出空气腔5。Taking the substrate material as Si as an example, the above etching specifically includes: ultrasonically cleaning the
2)在空气腔内沉淀预设高度的牺牲填充层。2) Deposit a sacrificial filling layer with a preset height in the air cavity.
在一个示例中,可在空气腔内采用常规低压化学气相淀积工艺(Low PressureChemical Vapor Deposition,LPCVD)淀积磷硅酸盐玻璃,得到牺牲填充层。In one example, the sacrificial filling layer can be obtained by depositing phosphosilicate glass in an air cavity using a conventional low pressure chemical vapor deposition (LPCVD) process.
该预设高度至少等于(也可大于):前述第二声波能量泄漏抑制部中凸起的表面与空气腔底面之间的距离。The preset height is at least equal to (and may also be greater than): the distance between the convex surface of the second acoustic wave energy leakage suppressing part and the bottom surface of the air cavity.
3)对牺牲填充层进行成型处理。3) Forming the sacrificial filling layer.
依据牺牲填充层的材质,成型处理的方式有多种,例如研磨、刻蚀(例如,各向异性干法刻蚀)、压制等等。Depending on the material of the sacrificial filling layer, there are various methods of forming, such as grinding, etching (eg, anisotropic dry etching), pressing, and the like.
以前述的磷硅酸盐玻璃,上述成型处理具体包括:通过化学机械研磨(ChemicalMechanical Planarization,CMP)进行图形化。With the aforementioned phosphosilicate glass, the above forming process specifically includes: patterning by chemical mechanical polishing (Chemical Mechanical Planarization, CMP).
所得的图形与底部金属电极(特别是前述的第二声波能量泄漏抑制部)的图形是互补的。The resulting pattern is complementary to that of the bottom metal electrode (especially the aforementioned second acoustic energy leakage suppressing portion).
4)在成型处理后的牺牲填充层的上表面沉积厚度一致的底部金属电极。4) A bottom metal electrode with uniform thickness is deposited on the upper surface of the sacrificial filling layer after the molding process.
在一个示例中,具体可包括:在成型处理后的牺牲填充层的上表面采用热蒸发或磁控溅射等方法沉积底部金属电极。In one example, it may specifically include: depositing a bottom metal electrode on the upper surface of the sacrificial filling layer after the molding process by using a method such as thermal evaporation or magnetron sputtering.
底部金属电极的相关描述请参见前述记载,在此不赘述。For the related description of the bottom metal electrode, please refer to the foregoing description, and will not be repeated here.
5)在衬底和所述底部金属电极的上表面溅射压电薄膜层。5) Sputtering a piezoelectric thin film layer on the upper surface of the substrate and the bottom metal electrode.
压电薄膜层的相关描述请参见前述记载,在此不赘述。For the relevant description of the piezoelectric thin film layer, please refer to the foregoing description, which will not be repeated here.
6)对压电薄膜层进行成型处理。6) Forming the piezoelectric film layer.
依据压电薄膜层的材质,成型处理的方式有多种,例如研磨、刻蚀(例如,各向异性干法刻蚀)、压制等等。Depending on the material of the piezoelectric thin film layer, there are various methods of forming, such as grinding, etching (eg, anisotropic dry etching), pressing, and the like.
在一个示例中,成型处理可包括采用等离子法刻蚀或磁控溅射法刻蚀压电薄膜层。In one example, the forming process may include etching the piezoelectric thin film layer using plasma etching or magnetron sputtering.
7)在成型处理后的压电薄膜层的上表面沉积厚度一致的顶部金属电极。7) A top metal electrode with a uniform thickness is deposited on the upper surface of the piezoelectric thin film layer after the molding process.
在一个示例中,可在成型处理后的压电薄膜层的上表面采用热蒸发或磁控溅射等方法沉积顶部金属电极。顶部金属电极的相关描述请参见前述记载,在此不赘述。In one example, the top metal electrode may be deposited on the upper surface of the piezoelectric thin film layer after the forming process by thermal evaporation or magnetron sputtering. For the related description of the top metal electrode, please refer to the foregoing description, and will not be repeated here.
8)去除所述牺牲填充层。8) Remove the sacrificial filling layer.
在一个示例中,具体包括:通过湿法腐蚀或熏蒸的方式去除牺牲层。In one example, the method specifically includes: removing the sacrificial layer by wet etching or fumigation.
实施例4Example 4
本发明实施例提供了另一种制备方法,用于制备实施例1中的薄膜体声波谐振器,制备方法包括:The embodiment of the present invention provides another preparation method for preparing the thin-film bulk acoustic wave resonator in
1)在衬底上刻蚀空气腔。1) Etch an air cavity on the substrate.
具体描述请参见上一制备方法中的介绍。For a detailed description, please refer to the introduction in the previous preparation method.
2)对压电材料进行成膜和塑形,以形成压电薄膜层。2) Filming and shaping the piezoelectric material to form a piezoelectric thin film layer.
在一个示例中,可通过溅射方式进行成膜。成型处理可包括采用等离子法刻蚀或磁控溅射法刻蚀。In one example, the film formation may be performed by sputtering. The shaping process may include etching using plasma etching or magnetron sputtering.
后续将在压电薄膜层的一表面(可称为上表面)沉积顶部金属电极,另一表面(可称为下表面)沉积底部金属电极,其中,上表面的图形与顶部金属电极(特别是前述的第一声波能量泄漏抑制部)的图形是互补的,而下表面的图形与底部金属电极(特别是前述的第二声波能量泄漏抑制部)的图形是互补的。3)在压电薄膜层的上表面沉积顶部金属电极,在压电薄膜层的下表面沉积底部金属电极,获得压电叠层结构。Subsequently, the top metal electrode will be deposited on one surface (which can be called the upper surface) of the piezoelectric thin film layer, and the bottom metal electrode will be deposited on the other surface (which can be called the lower surface), wherein the pattern on the upper surface is the same as that of the top metal electrode (especially the top metal electrode). The pattern of the aforementioned first acoustic energy leakage suppressing portion) is complementary, and the pattern of the lower surface is complementary to that of the bottom metal electrode (especially the aforementioned second acoustic energy leakage suppressing portion). 3) A top metal electrode is deposited on the upper surface of the piezoelectric thin film layer, and a bottom metal electrode is deposited on the lower surface of the piezoelectric thin film layer to obtain a piezoelectric laminated structure.
在一个示例中,具体可通过涂光刻胶、光刻、曝光和刻蚀等工艺进行沉积。In one example, the deposition may be performed by processes such as photoresist coating, photolithography, exposure, and etching.
4)将压电叠层结构设置(此处的设置可以为粘贴或高温黏贴的等)在衬底上。4) Set the piezoelectric laminated structure (the setting here can be pasted or high-temperature pasted, etc.) on the substrate.
为了说明本发明实施例所制备的薄膜体声波谐振器的性能,下面采用基于有限单元法(FEM,finite-element method)的COMSOL软件进行仿真,将图5所示的现有薄膜体声波谐振器与本发明实施例所制备的薄膜体声波谐振器(简称目标薄膜体声波谐振器)进行性能对比。In order to illustrate the performance of the thin film bulk acoustic wave resonator prepared in the embodiment of the present invention, COMSOL software based on finite element method (FEM, finite-element method) is used for simulation below, and the existing thin film bulk acoustic wave resonator shown in FIG. 5 is used for simulation. The performance is compared with the thin-film bulk acoustic resonator (referred to as the target thin-film bulk acoustic resonator) prepared in the embodiment of the present invention.
描述薄膜体声波谐振器性能的参数包括:优值(FoM)、有效耦合系数(k2)和品质因数(Q)。其中,优值(FoM)为有效耦合系数与品质因数的乘积,有效耦合系数(k2)为描述谐振器的机电转换效率的参数,品质因数(Q)为表述谐振器内部储存能量与耗散能量比值的参数。Parameters that describe the performance of thin film bulk acoustic resonators include: figure of merit (FoM), effective coupling coefficient (k 2 ), and quality factor (Q). Among them, the figure of merit (FoM) is the product of the effective coupling coefficient and the quality factor, the effective coupling coefficient (k 2 ) is a parameter describing the electromechanical conversion efficiency of the resonator, and the quality factor (Q) is a description of the internal energy storage and dissipation of the resonator Parameter for energy ratio.
性能验证结果如图6-13所示,其中:The performance verification results are shown in Figure 6-13, where:
图6为现有的“三明治”结构的薄膜体声波谐振器的导纳曲线图,图7为现有的“三明治”结构的薄膜体声波谐振器的品质因数曲线图。FIG. 6 is a graph of admittance of a thin-film bulk acoustic resonator with a conventional “sandwich” structure, and FIG. 7 is a graph of a quality factor of a thin-film bulk acoustic resonator with a conventional “sandwich” structure.
图8为图2所示薄膜体声波谐振器的导纳曲线图,图9为其品质因数曲线图。FIG. 8 is a graph of the admittance of the thin film bulk acoustic wave resonator shown in FIG. 2 , and FIG. 9 is a graph of the quality factor.
图10为图4所示薄膜体声波谐振器的导纳曲线图,图11为其品质因数曲线图。FIG. 10 is a graph of admittance of the thin film bulk acoustic wave resonator shown in FIG. 4 , and FIG. 11 is a graph of its quality factor.
图12为图3所示薄膜体声波谐振器的导纳曲线图,图13为其品质因数曲线图。FIG. 12 is a graph of admittance of the thin film bulk acoustic wave resonator shown in FIG. 3 , and FIG. 13 is a graph of its quality factor.
在本次性能对比中,图2-4所示薄膜体声波谐振器由前述提及的任一制备方法制备得到,均以铌酸锂(LiNbO3)晶体、钽酸锂(LiTaO3)晶体、氮化铝(AlN)或氧化锌(ZnO)等压电材料作为压电薄膜层的材料,顶部金属电极和底部金属电极使用Al、Pt、Ni或Mo等金属材料。In this performance comparison, the thin-film bulk acoustic wave resonators shown in Figures 2-4 are prepared by any of the aforementioned preparation methods, all of which are made of lithium niobate (LiNbO 3 ) crystal, lithium tantalate (LiTaO 3 ) crystal, Piezoelectric materials such as aluminum nitride (AlN) or zinc oxide (ZnO) are used as the material of the piezoelectric thin film layer, and metal materials such as Al, Pt, Ni or Mo are used for the top metal electrode and the bottom metal electrode.
基于图6-13可知,本发明实施例提供的薄膜体声波谐振器相比于现有的“三明治”结构的薄膜体声波谐振器,其导纳的峰值由现有的“三明治”结构的薄膜体声波谐振器的-1和-0.9提高到-10和-190、-30和-190及-10和-190,其品质因数由现有的“三明治”结构的薄膜体声波谐振器的6662.73升高到8356.41、7778.13,8356.46,可见本发明实施例提供的薄膜体声波谐振器具有更优的能量储存能力,且Q值得到了很大的提升。Based on Figs. 6-13, it can be seen that, compared with the existing thin film bulk acoustic resonator of the "sandwich" structure, the peak of the admittance of the thin film bulk acoustic resonator provided by the embodiment of the present invention is determined by the existing thin film of the "sandwich" structure. The -1 and -0.9 of the BAW resonator are improved to -10 and -190, -30 and -190, and -10 and -190, and its quality factor is improved from the existing "sandwich" structure thin-film BAW resonator of 6662.73 liters As high as 8356.41, 7778.13, and 8356.46, it can be seen that the thin film bulk acoustic wave resonator provided by the embodiment of the present invention has better energy storage capacity, and the Q value is greatly improved.
基于上述实施例,本发明的薄膜体声波谐振器,具有如下技术效果:Based on the above embodiments, the thin-film bulk acoustic wave resonator of the present invention has the following technical effects:
所设计的薄膜体声波谐振器的结构具有非平整性,压电薄膜层的两个凸面或凹面保证薄膜体声波谐振器的有源区域具有更多能量,横向声波能量泄漏进一步减少,从而提高FBAW谐振器的Q和FoM值,降低滤波器、振荡器等器件的插入损耗,提高整个系统的性能。The structure of the designed film bulk acoustic wave resonator has non-flatness, and the two convex or concave surfaces of the piezoelectric film layer ensure that the active area of the thin film bulk acoustic wave resonator has more energy, and the leakage of transverse acoustic wave energy is further reduced, thereby improving the FBAW. The Q and FoM values of the resonator reduce the insertion loss of devices such as filters and oscillators, and improve the performance of the entire system.
设计的薄膜体声波谐振器的顶部电极和底部电极依然是平行的,且局部呈现出斜坡状,可有效地减少声波能量在垂直方向的泄漏,从而达到提高Q值的目的。The top electrode and bottom electrode of the designed thin-film bulk acoustic wave resonator are still parallel, and locally present a slope shape, which can effectively reduce the leakage of acoustic wave energy in the vertical direction, so as to achieve the purpose of improving the Q value.
第一声波能量泄漏抑制部和第二声波能量泄漏抑制部宽度分别设置为声波波长的整数倍,使声波在整个压电材料中可进行相干叠加,从而获得更好的谐振性能。The widths of the first acoustic wave energy leakage suppressing portion and the second acoustic wave energy leakage suppressing portion are respectively set as integer multiples of the acoustic wave wavelength, so that the acoustic waves can be coherently superimposed in the entire piezoelectric material, thereby obtaining better resonance performance.
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。The various embodiments in this specification are described in a progressive manner, and each embodiment focuses on the differences from other embodiments, and the same and similar parts between the various embodiments can be referred to each other.
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。In this paper, specific examples are used to illustrate the principles and implementations of the present invention. The descriptions of the above embodiments are only used to help understand the methods and core ideas of the present invention; meanwhile, for those skilled in the art, according to the present invention There will be changes in the specific implementation and application scope. In conclusion, the contents of this specification should not be construed as limiting the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210082753.6A CN114124014B (en) | 2022-01-25 | 2022-01-25 | Film bulk acoustic resonator and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210082753.6A CN114124014B (en) | 2022-01-25 | 2022-01-25 | Film bulk acoustic resonator and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114124014A CN114124014A (en) | 2022-03-01 |
CN114124014B true CN114124014B (en) | 2022-05-17 |
Family
ID=80360809
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210082753.6A Active CN114124014B (en) | 2022-01-25 | 2022-01-25 | Film bulk acoustic resonator and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114124014B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114584100B (en) * | 2022-03-09 | 2025-07-04 | 苏州汉天下电子有限公司 | Bulk acoustic wave resonator, preparation method, filter, and preparation method |
CN114759897B (en) * | 2022-04-11 | 2023-05-23 | 浙江星曜半导体有限公司 | Film bulk acoustic resonator and preparation method thereof |
CN114598287B (en) * | 2022-05-09 | 2022-08-05 | 深圳新声半导体有限公司 | Method for manufacturing bulk acoustic wave resonator |
CN114726336B (en) * | 2022-06-09 | 2022-09-16 | 深圳新声半导体有限公司 | Film bulk acoustic resonator and preparation method thereof |
CN115833779A (en) * | 2023-02-15 | 2023-03-21 | 成都频岢微电子有限公司 | Wave-shaped bulk acoustic wave resonator |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101465628B (en) * | 2009-01-15 | 2011-05-11 | 电子科技大学 | Film bulk acoustic resonator and preparation method thereof |
KR102642910B1 (en) * | 2016-05-18 | 2024-03-04 | 삼성전기주식회사 | Acoustic resonator and method of manufacturing thereof |
CN110868184A (en) * | 2019-04-23 | 2020-03-06 | 中国电子科技集团公司第十三研究所 | Bulk acoustic wave resonator and semiconductor device |
CN111010138A (en) * | 2019-12-05 | 2020-04-14 | 武汉大学 | High-Q BAW Resonator |
US20210367582A1 (en) * | 2020-05-25 | 2021-11-25 | Samsung Electro-Mechanics Co., Ltd | Bulk-acoustic wave resonator and method for fabricating bulk-acoustic wave resonator |
CN112468109A (en) * | 2020-11-17 | 2021-03-09 | 上海师范大学 | Heterogeneous layered piezoelectric substrate suitable for high-frequency and broadband surface acoustic wave device |
-
2022
- 2022-01-25 CN CN202210082753.6A patent/CN114124014B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN114124014A (en) | 2022-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114124014B (en) | Film bulk acoustic resonator and preparation method thereof | |
CN112673568B (en) | Load resonator for adjusting frequency response of acoustic wave resonator | |
US9093979B2 (en) | Laterally-coupled acoustic resonators | |
CN100557969C (en) | Piezoelectric thin film resonator and filter using same | |
CN104811157B (en) | Piezoelectric thin film vibrator, wave filter and duplexer | |
CN100511991C (en) | Piezoelectric thin-film resonator and filter using the same | |
CN109546985A (en) | Bulk acoustic wave resonator and its manufacturing method | |
CN105610407B (en) | Piezoelectric thin film vibrator, filter and duplexer | |
CN110798167A (en) | Acoustic wave device and method of manufacturing the same | |
CN107317561B (en) | Bulk acoustic wave resonator and method for manufacturing the same | |
CN101645699A (en) | Piezoelectric thin0film resonator, filter using the same, and duplexer using the same | |
JP2007037102A (en) | Integrated filter in which thin film bulk acoustic resonator and surface acoustic wave resonator are integrated, and manufacturing method thereof | |
JP2011120241A (en) | Method for manufacturing bulk wave acoustic resonator of fbar type | |
JP4520415B2 (en) | Piezoelectric thin film resonator and manufacturing method thereof | |
JP2024533898A (en) | Bulk acoustic resonator and manufacturing method thereof, filter, electronic device | |
CN110890872A (en) | A method for reducing the effective electromechanical coupling coefficient of an ultra-high frequency bulk acoustic wave resonator | |
KR100631216B1 (en) | Air gap thin film bulk acoustic resonator and manufacturing method thereof | |
CN110708036A (en) | Filter with a filter element having a plurality of filter elements | |
JP2023552179A (en) | Frequency adjustable thin film bulk acoustic wave resonator and its manufacturing method | |
CA2642731C (en) | Method of isolation for acoustic resonator devices | |
KR100470711B1 (en) | Air-gap type FBAR fabrication method using poly-Silicon sacrificial layer and Etching-stop wall and FBAR fabricated by the same | |
CN113541636A (en) | Acoustic wave resonator and preparation method thereof | |
JP3860695B2 (en) | Piezoelectric resonator and filter | |
JP2008244653A (en) | Manufacturing method for thin-film bulk wave resonator | |
JP2008211392A (en) | Resonator and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |