CN114122212B - LED epitaxial structure and preparation method thereof - Google Patents
LED epitaxial structure and preparation method thereof Download PDFInfo
- Publication number
- CN114122212B CN114122212B CN202111353735.9A CN202111353735A CN114122212B CN 114122212 B CN114122212 B CN 114122212B CN 202111353735 A CN202111353735 A CN 202111353735A CN 114122212 B CN114122212 B CN 114122212B
- Authority
- CN
- China
- Prior art keywords
- layer
- type
- structural
- structural layer
- led epitaxial
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/819—Bodies characterised by their shape, e.g. curved or truncated substrates
- H10H20/82—Roughened surfaces, e.g. at the interface between epitaxial layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/811—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
- H10H20/812—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions within the light-emitting regions, e.g. having quantum confinement structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/816—Bodies having carrier transport control structures, e.g. highly-doped semiconductor layers or current-blocking structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/822—Materials of the light-emitting regions
- H10H20/824—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
Landscapes
- Led Devices (AREA)
Abstract
本发明提供了一种LED外延结构及其制备方法,所述LED外延结构从下至上依次包括:位于衬底上的底部缓冲层、腐蚀截止层、第一型半导体层、有源层以及第二型半导体层,其中,所述第一型半导体层从下至上依次包括第一型窗口层、第一型粗化限制层、第一型限制层以及第一型波导层,且所述第一型粗化限制层为Al组分渐变的结构层。本发明通过形成Al组分渐变的第一型粗化限制层可以提高LED芯片的出光效率、降低LED芯片的工作电压以及提高工艺稳定性。
The invention provides an LED epitaxial structure and a preparation method thereof. The LED epitaxial structure includes from bottom to top: a bottom buffer layer located on a substrate, a corrosion cutoff layer, a first type semiconductor layer, an active layer and a second type semiconductor layer, wherein the first type semiconductor layer includes a first type window layer, a first type roughened confinement layer, a first type confinement layer and a first type waveguide layer from bottom to top, and the first type The roughened confinement layer is a structural layer with a gradual change in Al composition. The present invention can improve the light extraction efficiency of the LED chip, reduce the operating voltage of the LED chip, and improve process stability by forming a first-type roughened confinement layer with a gradient Al composition.
Description
技术领域Technical field
本发明涉及半导体技术领域,特别涉及一种LED外延结构及其制备方法。The present invention relates to the field of semiconductor technology, and in particular to an LED epitaxial structure and a preparation method thereof.
背景技术Background technique
发光二极管(LED,Light Emitting Diode)是一种半导体固体发光器件,具有结构简单、重量轻、无污染等优点,已广泛应用于数码,显示,照明及植物工程等多个领域,被称为环保、节能的绿色照明光源,蕴藏了巨大的商机。其中,以砷化镓(GaAs)为代表的III-V族化合物半导体由于具有发光效率高、电子饱和漂移速度高以及化学性质稳定等特点,在高亮发光二极管、激光器等光电子领域有着巨大的应用潜力,引起了人们的广泛关注。Light Emitting Diode (LED, Light Emitting Diode) is a semiconductor solid light-emitting device with the advantages of simple structure, light weight, and no pollution. It has been widely used in many fields such as digital, display, lighting, and plant engineering. It is known as environmentally friendly , energy-saving green lighting sources contain huge business opportunities. Among them, III-V compound semiconductors represented by gallium arsenide (GaAs) have huge applications in optoelectronic fields such as high-brightness light-emitting diodes and lasers due to their high luminous efficiency, high electron saturation drift speed, and stable chemical properties. potential has attracted widespread attention.
为获得高出光效率的发光二极管,目前一般采用反极性结构,即N电极在上,P电极在下的结构,正面(N电极面)采用粗化工艺,以提高光萃取效率。目前业内常用的表面粗化工艺一般为湿法化学腐蚀的方式,而如何控制粗化效果成为本领域人员关注的重点。In order to obtain a light-emitting diode with high luminous efficiency, a reverse polarity structure is generally adopted, that is, a structure with the N electrode on top and the P electrode on the bottom. The front surface (N electrode surface) adopts a roughening process to improve the light extraction efficiency. At present, the commonly used surface roughening process in the industry is generally wet chemical etching, and how to control the roughening effect has become the focus of people in this field.
发明内容Contents of the invention
本发明的目的在于提供一种LED外延结构及其制备方法,以控制粗化效果,提高LED芯片的出光效率,降低LED芯片的工作电压,以及提高工艺稳定性。The object of the present invention is to provide an LED epitaxial structure and a preparation method thereof to control the roughening effect, improve the light extraction efficiency of the LED chip, reduce the operating voltage of the LED chip, and improve process stability.
为了实现上述目的以及其他相关目的,本发明提供了一种LED外延结构,所述LED外延结构从下至上依次包括:位于衬底上的底部缓冲层、腐蚀截止层、第一型半导体层、有源层以及第二型半导体层,其中,所述第一型半导体层从下至上依次包括第一型窗口层、第一型粗化限制层、第一型限制层以及第一型波导层,且所述第一型粗化限制层为Al组分渐变的结构层。In order to achieve the above objects and other related objects, the present invention provides an LED epitaxial structure, which includes from bottom to top: a bottom buffer layer located on the substrate, a corrosion cutoff layer, a first-type semiconductor layer, and a a source layer and a second-type semiconductor layer, wherein the first-type semiconductor layer includes, from bottom to top, a first-type window layer, a first-type roughened confinement layer, a first-type confinement layer, and a first-type waveguide layer, and The first type roughening restriction layer is a structural layer with a gradient Al composition.
可选的,所述第一型粗化限制层包括第一结构层组成的单层结构或多周期结构,周期数k的范围为2至30。Optionally, the first type roughening restriction layer includes a single-layer structure or a multi-periodic structure composed of the first structural layer, and the period number k ranges from 2 to 30.
可选的,所述第一结构层为(AlxGa1-x)yIn1-yP,且x的范围为0.05~0.65,y的范围为0.45~0.55。Optionally, the first structural layer is (Al x Ga 1-x ) y In 1-y P, and x ranges from 0.05 to 0.65, and y ranges from 0.45 to 0.55.
可选的,所述第一型粗化限制层的厚度为100nm~1500nm。Optionally, the thickness of the first type roughening limiting layer is 100 nm to 1500 nm.
可选的,所述第一型粗化限制层包括第一结构层和第二结构层组成的两层结构或第一结构层和第二结构层交替堆叠组成的多周期结构,周期数k的范围为2至30。Optionally, the first type roughening restriction layer includes a two-layer structure composed of a first structural layer and a second structural layer or a multi-period structure composed of an alternate stack of first structural layers and second structural layers, with a period number k. Range is 2 to 30.
可选的,所述第一结构层为(AlmGa1-m)nIn1-nP,所述第二结构层为(AlaGa1-a)bIn1- bP,且0.05≤m≤0.65,0.05≤a≤0.65,0.45≤n≤0.55,0.45≤b≤0.55。Optionally, the first structural layer is (Al m Ga 1-m ) n In 1-n P, the second structural layer is (A a Ga 1-a ) b In 1- b P, and 0.05 ≤m≤0.65, 0.05≤a≤0.65, 0.45≤n≤0.55, 0.45≤b≤0.55.
可选的,所述第一型粗化限制层中Al组分的渐变方式包括线性渐变、非线性渐变、阶梯式变化方式中的一种或任意组合。Optionally, the gradient mode of the Al component in the first type roughening restriction layer includes one or any combination of linear gradient, nonlinear gradient, stepwise change.
可选的,所述线性渐变中Al组分的渐变方式为从所述第一型窗口层指向所述第一型限制层方向从大到小线性渐变或从小到大线性渐变。Optionally, the gradient mode of the Al component in the linear gradient is a linear gradient from large to small or from small to large in a direction from the first type window layer to the first type confinement layer.
可选的,同一周期中,所述第一结构层与所述第二结构层中Al组分a和Al组分m中的最大值和最小值的差值大于0.25。Optionally, in the same period, the difference between the maximum value and the minimum value of the Al component a and the Al component m in the first structural layer and the second structural layer is greater than 0.25.
可选的,同一周期中,所述第一结构层与所述第二结构层中In组分n与In组分b的差值小于5%。Optionally, in the same cycle, the difference between the In component n and the In component b in the first structural layer and the second structural layer is less than 5%.
可选的,所述第一结构层的厚度为10nm~750nm,所述第二结构层的厚度为10nm~750nm,且所述第一型粗化限制层的厚度为100nm~1500nm。Optionally, the thickness of the first structural layer is 10 nm ~ 750 nm, the thickness of the second structural layer is 10 nm ~ 750 nm, and the thickness of the first type roughening limiting layer is 100 nm ~ 1500 nm.
可选的,所述第一型粗化限制层中掺杂Si或Te。Optionally, the first type roughening confinement layer is doped with Si or Te.
可选的,所述第一型半导体层还包括第一型欧姆接触层,且所述第一型欧姆接触层位于所述腐蚀截止层与所述第一型窗口层之间。Optionally, the first type semiconductor layer further includes a first type ohmic contact layer, and the first type ohmic contact layer is located between the corrosion stop layer and the first type window layer.
可选的,所述第二型半导体层从下至上依次包括:第二型波导层、第二型限制层、过渡层、第二型窗口层以及第二型欧姆接触层。Optionally, the second type semiconductor layer includes, from bottom to top, a second type waveguide layer, a second type confinement layer, a transition layer, a second type window layer, and a second type ohmic contact layer.
可选的,所述第一型半导体层为N型半导体层,所述第二型半导体层为P型半导体层。Optionally, the first-type semiconductor layer is an N-type semiconductor layer, and the second-type semiconductor layer is a P-type semiconductor layer.
可选的,所述衬底包括GaAs衬底或Si衬底。Optionally, the substrate includes a GaAs substrate or a Si substrate.
为了实现上述目的以及其他相关目的,本发明还提供了一种LED外延结构的制备方法,包括以下步骤:In order to achieve the above objects and other related objects, the present invention also provides a method for preparing an LED epitaxial structure, which includes the following steps:
提供一衬底;provide a substrate;
在所述衬底上依次生长底部缓冲层、腐蚀截止层和第一型半导体层,其中,所述第一型半导体层从下至上依次包括第一型窗口层、第一型粗化限制层、第一型限制层以及第一型波导层,且所述第一型粗化限制层为Al组分渐变的结构层;A bottom buffer layer, a corrosion stop layer, and a first-type semiconductor layer are sequentially grown on the substrate, wherein the first-type semiconductor layer includes, from bottom to top, a first-type window layer, a first-type roughening restriction layer, A first-type confinement layer and a first-type waveguide layer, and the first-type roughened confinement layer is a structural layer with a gradient Al composition;
在所述第一型半导体层上依次生长有源层以及第二型半导体层。An active layer and a second type semiconductor layer are grown sequentially on the first type semiconductor layer.
可选的,所述第一型粗化限制层包括第一结构层组成的单层结构或多周期结构,周期数k的范围为2至30。Optionally, the first type roughening restriction layer includes a single-layer structure or a multi-periodic structure composed of the first structural layer, and the period number k ranges from 2 to 30.
可选的,所述第一结构层为(AlxGa1-x)yIn1-yP,且x的范围为0.05~0.65,y的范围为0.45~0.55。Optionally, the first structural layer is (Al x Ga 1-x ) y In 1-y P, and x ranges from 0.05 to 0.65, and y ranges from 0.45 to 0.55.
可选的,所述第一型粗化限制层的厚度为100nm~1500nm。Optionally, the thickness of the first type roughening limiting layer is 100 nm to 1500 nm.
可选的,所述第一型粗化限制层包括第一结构层和第二结构层组成的两层结构或第一结构层和第二结构层交替堆叠组成的多周期结构,周期数k的范围为2至30。Optionally, the first type roughening restriction layer includes a two-layer structure composed of a first structural layer and a second structural layer or a multi-period structure composed of an alternate stack of first structural layers and second structural layers, with a period number k. Range is 2 to 30.
可选的,所述第一结构层为(AlmGa1-m)nIn1-nP,所述第二结构层为(AlaGa1-a)bIn1- bP,且0.05≤m≤0.65,0.05≤a≤0.65,0.45≤n≤0.55,0.45≤b≤0.55。Optionally, the first structural layer is (Al m Ga 1-m ) n In 1-n P, the second structural layer is (A a Ga 1-a ) b In 1- b P, and 0.05 ≤m≤0.65, 0.05≤a≤0.65, 0.45≤n≤0.55, 0.45≤b≤0.55.
可选的,所述第一型粗化限制层中Al组分的渐变方式为线性渐变、非线性渐变、阶梯式变化方式中的一种或任意组合。Optionally, the gradient mode of the Al component in the first type roughening restriction layer is one of linear gradient, nonlinear gradient, stepwise change, or any combination.
可选的,所述线性渐变中Al组分的渐变方式为从所述第一型窗口层指向所述第一型限制层方向从大到小线性渐变或从小到大线性渐变。Optionally, the gradient mode of the Al component in the linear gradient is a linear gradient from large to small or from small to large in a direction from the first type window layer to the first type confinement layer.
可选的,同一周期中,所述第一结构层与所述第二结构层中Al组分a和Al组分m中的最大值和最小值的差值大于0.25。Optionally, in the same period, the difference between the maximum value and the minimum value of the Al component a and the Al component m in the first structural layer and the second structural layer is greater than 0.25.
可选的,同一周期中,所述第一结构层与所述第二结构层中In组分n与In组分b的差值小于5%。Optionally, in the same cycle, the difference between the In component n and the In component b in the first structural layer and the second structural layer is less than 5%.
可选的,所述第一结构层的厚度为10nm~750nm,所述第二结构层的厚度为10nm~750nm,且所述第一型粗化限制层的厚度为100nm~1500nm。Optionally, the thickness of the first structural layer is 10 nm ~ 750 nm, the thickness of the second structural layer is 10 nm ~ 750 nm, and the thickness of the first type roughening limiting layer is 100 nm ~ 1500 nm.
可选的,所述第一型粗化限制层中掺杂Si或Te。Optionally, the first type roughening confinement layer is doped with Si or Te.
可选的,所述第一型半导体层还包括第一型欧姆接触层,所述第一型欧姆接触层位于所述腐蚀截止层与所述第一型窗口层之间。Optionally, the first type semiconductor layer further includes a first type ohmic contact layer, and the first type ohmic contact layer is located between the corrosion stop layer and the first type window layer.
可选的,所述第二型半导体层从下至上依次包括:第二型波导层、第二型限制层、过渡层、第二型窗口层和第二型欧姆接触层。Optionally, the second type semiconductor layer includes, from bottom to top, a second type waveguide layer, a second type confinement layer, a transition layer, a second type window layer, and a second type ohmic contact layer.
可选的,所述第一型半导体层为N型半导体层,所述第二型半导体层为P型半导体层。Optionally, the first-type semiconductor layer is an N-type semiconductor layer, and the second-type semiconductor layer is a P-type semiconductor layer.
可选的,所述衬底包括GaAs衬底或Si衬底。Optionally, the substrate includes a GaAs substrate or a Si substrate.
可选的,所述外延结构的制备工艺为MOCVD工艺、分子束外延工艺、HVPE工艺、等离子体辅助化学气相沉积以及溅射法中的任意一种。Optionally, the preparation process of the epitaxial structure is any one of MOCVD process, molecular beam epitaxy process, HVPE process, plasma-assisted chemical vapor deposition and sputtering method.
与现有技术相比,本发明的技术方案具有以下有益效果:Compared with the existing technology, the technical solution of the present invention has the following beneficial effects:
本发明通过在第一型窗口层和第一型限制层之间设置Al组分渐变的第一型粗化限制层,以确保第一型粗化限制层对粗化溶液具有较好的腐蚀限制效果,可以有效的控制粗化的整体深度以控制粗化效果,进而提高电流扩展效果,降低工作电压,并提高工艺稳定性;同时由于Al组分渐变形成折射率渐变的结构,可以有效减少LED外延结构的内反射损耗,增大LED外延结构出射光的出射角,使得光能够更多的耦合出去,提高LED芯片的出光效率,进而提高LED芯片的发光效率。The present invention ensures that the first type roughening restriction layer has better corrosion restriction for the roughening solution by arranging a first type roughening restriction layer with a gradient Al composition between the first type window layer and the first type restriction layer. Effect, the overall depth of roughening can be effectively controlled to control the roughening effect, thereby improving the current expansion effect, reducing the operating voltage, and improving process stability; at the same time, due to the gradual change of the Al component to form a structure with a gradual refractive index, it can effectively reduce the LED The internal reflection loss of the epitaxial structure increases the exit angle of the light emitted from the LED epitaxial structure, allowing more light to be coupled out, improving the light extraction efficiency of the LED chip, and thereby improving the luminous efficiency of the LED chip.
附图说明Description of the drawings
图1是本发明实施例一的LED外延结构的结构示意图;Figure 1 is a schematic structural diagram of an LED epitaxial structure according to Embodiment 1 of the present invention;
图2是本发明实施例二的第一型粗化限制层的结构示意图;Figure 2 is a schematic structural diagram of the first type of roughening restriction layer in Embodiment 2 of the present invention;
图3是本发明一实施例的LED外延结构的制备方法的流程图;Figure 3 is a flow chart of a method for manufacturing an LED epitaxial structure according to an embodiment of the present invention;
图1~2中,In Figures 1 to 2,
101-衬底,102-底部缓冲层,103-腐蚀截止层,201-第一型欧姆接触层,202-第一型窗口层,203-第一型粗化限制层,204-第一型限制层,205-第一型波导层,206-有源层,207-第二型波导层,208-第二型限制层,209-过渡层,210-第二型窗口层,211-第二型欧姆接触层,2031-第一结构层,2032-第二结构层。101-Substrate, 102-Bottom buffer layer, 103-Corrosion stop layer, 201-First type ohmic contact layer, 202-First type window layer, 203-First type roughening restriction layer, 204-First type restriction Layer, 205-first type waveguide layer, 206-active layer, 207-second type waveguide layer, 208-second type confinement layer, 209-transition layer, 210-second type window layer, 211-second type Ohmic contact layer, 2031-first structural layer, 2032-second structural layer.
具体实施方式Detailed ways
以下结合附图和具体实施例对本发明提出的LED外延结构及其制备方法作进一步详细说明。根据下面说明书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。The LED epitaxial structure and its preparation method proposed by the present invention will be further described in detail below with reference to the accompanying drawings and specific examples. The advantages and features of the present invention will become clearer from the following description. It should be noted that the drawings are in a very simplified form and use imprecise proportions, and are only used to conveniently and clearly assist in explaining the embodiments of the present invention.
在对按照本发明的实施方式进行说明之前,事先对下述内容进行说明。首先,在本说明书中,仅标记为“GaInP”时,表示Ga、In的总和与P的化学组成比为1:1,Ga与In的比率不固定的任意的化合物。仅标记为“AlGaInP”时,表示Al、Ga、In的总和与P的化学组成比为1:1,Al、Ga与In的比率不固定的任意的化合物。另外,仅标记为“AlInP”时,表示Al、In的总和与P的化学组成比为1:1,Al与In的比率不固定的任意的化合物。Before describing the embodiment according to the present invention, the following content will be described in advance. First, in this specification, when simply labeled "GaInP", it means that the chemical composition ratio of the sum of Ga and In to P is 1:1, and that the ratio of Ga and In is not fixed. When simply labeled "AlGaInP", it means that the chemical composition ratio of the sum of Al, Ga, and In to P is 1:1, and that the ratio of Al, Ga, and In is not fixed. In addition, when simply labeled as "AlInP", it means that the chemical composition ratio of the sum of Al and In to P is 1:1, and the ratio of Al to In is not fixed.
实施例一Embodiment 1
图1是本实施例的LED外延结构的结构示意图。参阅图1,所述LED外延结构从下至上依次包括:位于衬底101上的底部缓冲层102、腐蚀截止层103、第一型半导体层、有源层206以及第二型半导体层,其中,所述第一型半导体层从下至上依次包括第一型窗口层202、第一型粗化限制层203、第一型限制层204以及第一型波导层205,且所述第一型粗化限制层203为Al组分渐变的结构层。Figure 1 is a schematic structural diagram of the LED epitaxial structure of this embodiment. Referring to Figure 1, the LED epitaxial structure includes from bottom to top: a bottom buffer layer 102 located on the substrate 101, an etching stop layer 103, a first-type semiconductor layer, an active layer 206 and a second-type semiconductor layer, wherein, The first type semiconductor layer includes a first type window layer 202, a first type roughening confinement layer 203, a first type confinement layer 204 and a first type waveguide layer 205 from bottom to top, and the first type roughening The confinement layer 203 is a structural layer with a gradient Al composition.
所述第一型半导体层还包括第一型欧姆接触层201,且所述第一型欧姆接触层201位于所述腐蚀截止层103与所述第一型窗口层202之间。The first type semiconductor layer further includes a first type ohmic contact layer 201 , and the first type ohmic contact layer 201 is located between the corrosion stop layer 103 and the first type window layer 202 .
所述第二型半导体层从下至上依次包括:第二型波导层207、第二型限制层208、过渡层209、第二型窗口层210以及第二型欧姆接触层211。The second type semiconductor layer includes, from bottom to top, a second type waveguide layer 207, a second type confinement layer 208, a transition layer 209, a second type window layer 210, and a second type ohmic contact layer 211.
所述第一型半导体层与所述第二型半导体层的极性相反,例如,所述第一型半导体层为N型半导体层,则对应的所述第二型半导体层为P型半导体层。相应的,所述N型半导体层包括依次堆叠的N型欧姆接触层、N型窗口层、N型粗化限制层、N型限制层以及N型波导层。所述P型半导体层包括依次堆叠的P型波导层、P型限制层、过渡层、P型窗口层以及P型欧姆接触层。The first-type semiconductor layer and the second-type semiconductor layer have opposite polarities. For example, if the first-type semiconductor layer is an N-type semiconductor layer, the corresponding second-type semiconductor layer is a P-type semiconductor layer. . Correspondingly, the N-type semiconductor layer includes an N-type ohmic contact layer, an N-type window layer, an N-type roughened confinement layer, an N-type confinement layer and an N-type waveguide layer stacked in sequence. The P-type semiconductor layer includes a P-type waveguide layer, a P-type confinement layer, a transition layer, a P-type window layer and a P-type ohmic contact layer stacked in sequence.
参阅图3,所述LED外延结构的制备方法具体包括以下步骤:Referring to Figure 3, the preparation method of the LED epitaxial structure specifically includes the following steps:
步骤S1:提供一衬底101;Step S1: Provide a substrate 101;
步骤S2:在所述衬底101上依次生长底部缓冲层102、腐蚀截止层103和第一型半导体层,其中,所述第一型半导体层从下至上依次包括第一型窗口层202、第一型粗化限制层203、第一型限制层204以及第一型波导层205,且所述第一型粗化限制层203为Al组分渐变的结构层;Step S2: Sequentially grow the bottom buffer layer 102, the corrosion stop layer 103 and the first-type semiconductor layer on the substrate 101, where the first-type semiconductor layer includes the first-type window layer 202, the first-type window layer 202 and the first-type semiconductor layer 202 from bottom to top. A type of roughened confinement layer 203, a first type of confinement layer 204 and a first type of waveguide layer 205, and the first type of roughened confinement layer 203 is a structural layer with a gradient Al composition;
步骤S3:在所述第一型半导体层上依次生长有源层206以及第二型半导体层。Step S3: sequentially grow the active layer 206 and the second-type semiconductor layer on the first-type semiconductor layer.
所述LED外延结构的制备工艺为金属有机化合物化学气相沉积(MOCVD)工艺、分子束外延(MBE)工艺或超高真空化学气相沉积(UHVCVD)工艺中的任意一种,优选为MOCVD工艺。以下具体实施例中以MOCVD工艺为例进行说明。The preparation process of the LED epitaxial structure is any one of metal organic compound chemical vapor deposition (MOCVD) process, molecular beam epitaxy (MBE) process or ultra-high vacuum chemical vapor deposition (UHVCVD) process, preferably MOCVD process. In the following specific embodiments, the MOCVD process is taken as an example for description.
在步骤S1中,所述衬底101优选为GaAs(砷化镓)衬底,也可以为Si(硅)衬底,但不限于此。In step S1, the substrate 101 is preferably a GaAs (gallium arsenide) substrate, and may also be a Si (silicon) substrate, but is not limited thereto.
在步骤S2中,在所述衬底101上生长底部缓冲层102。所述底部缓冲层102,最大限度的消除衬底101的表面缺陷对LED外延结构的影响,减少LED外延结构出现缺陷和位错,并为下一步生长提供了新鲜的界面。所述底部缓冲层102的材料优选为GaAs,但不限于此。所述底部缓冲层102中掺杂第一型掺杂剂,例如N型掺杂剂,可以为硅(Si)、碲(Te)中的至少一种,但不限于此。进一步地,所述第一型掺杂剂优选为Si。In step S2, a bottom buffer layer 102 is grown on the substrate 101. The bottom buffer layer 102 minimizes the impact of surface defects of the substrate 101 on the LED epitaxial structure, reduces defects and dislocations in the LED epitaxial structure, and provides a fresh interface for the next step of growth. The material of the bottom buffer layer 102 is preferably GaAs, but is not limited thereto. The bottom buffer layer 102 is doped with a first-type dopant, such as an N-type dopant, which may be at least one of silicon (Si) and tellurium (Te), but is not limited thereto. Further, the first type dopant is preferably Si.
所述底部缓冲层102的生长优选为在MOCVD生长炉的反应室内生长100nm~300nm厚度的底部缓冲层102。例如,生长200nm厚度的底部缓冲层102。The growth of the bottom buffer layer 102 preferably involves growing the bottom buffer layer 102 with a thickness of 100 nm to 300 nm in a reaction chamber of a MOCVD growth furnace. For example, the bottom buffer layer 102 is grown to a thickness of 200 nm.
在生长所述底部缓冲层102之后,在所述底部缓冲层102上生长腐蚀截止层103。所述腐蚀截止层103的材质优选为GaInP,但不限于此。所述腐蚀截止层103中掺杂第一型掺杂剂,例如N型掺杂剂,可以为硅(Si)、碲(Te)中的至少一种,但不限于此。进一步地,所述第一型掺杂剂优选为Si。After growing the bottom buffer layer 102 , an corrosion stop layer 103 is grown on the bottom buffer layer 102 . The material of the corrosion stop layer 103 is preferably GaInP, but is not limited thereto. The corrosion stop layer 103 is doped with a first-type dopant, such as an N-type dopant, which may be at least one of silicon (Si) and tellurium (Te), but is not limited thereto. Further, the first type dopant is preferably Si.
所述腐蚀截止层103的生长优选为在MOCVD生长炉的反应室内生长100nm~200nm厚度的腐蚀截止层103。例如,生长150nm厚度的腐蚀截止层103。The corrosion stop layer 103 is preferably grown in a reaction chamber of a MOCVD growth furnace with a thickness of 100 nm to 200 nm. For example, the corrosion stop layer 103 is grown to a thickness of 150 nm.
在生长所述腐蚀截止层103之后,在所述腐蚀截止层103上生长第一型半导体层。所述第一型半导体层从下至上依次包括第一型窗口层202、第一型粗化限制层203、第一型限制层204以及第一型波导层205,且所述第一型粗化限制层203为Al组分渐变的结构层。所述第一型半导体层还可以包括第一型欧姆接触层201,且所述第一型欧姆接触层201位于所述腐蚀截止层103与所述第一型窗口层202之间。After the corrosion stop layer 103 is grown, a first type semiconductor layer is grown on the corrosion stop layer 103 . The first type semiconductor layer includes a first type window layer 202, a first type roughening confinement layer 203, a first type confinement layer 204 and a first type waveguide layer 205 from bottom to top, and the first type roughening The confinement layer 203 is a structural layer with a gradient Al composition. The first type semiconductor layer may further include a first type ohmic contact layer 201 , and the first type ohmic contact layer 201 is located between the corrosion stop layer 103 and the first type window layer 202 .
因此,在生长所述腐蚀截止层103之后,在所述腐蚀截止层103上生长所述第一型欧姆接触层201。所述第一型欧姆接触层201的材质可以为InGaAs或GaAs,优选为GaAs,但不限于此。所述第一型欧姆接触层201中掺杂第一型掺杂剂,例如N型掺杂剂,可以为硅(Si)、碲(Te)中的一种,但不限于此。进一步地,所述第一型掺杂剂优选为Si。Therefore, after growing the corrosion stop layer 103 , the first type ohmic contact layer 201 is grown on the corrosion stop layer 103 . The first type ohmic contact layer 201 may be made of InGaAs or GaAs, preferably GaAs, but is not limited thereto. The first type ohmic contact layer 201 is doped with a first type dopant, such as an N-type dopant, which can be one of silicon (Si) and tellurium (Te), but is not limited thereto. Further, the first type dopant is preferably Si.
所述第一型欧姆接触层201的生长优选为在MOCVD生长炉的反应室内生长20nm~100nm厚度的第一型欧姆接触层201。例如,生长50nm厚度的第一型欧姆接触层201。The first type ohmic contact layer 201 is preferably grown in a reaction chamber of a MOCVD growth furnace with a thickness of 20 nm to 100 nm. For example, the first type ohmic contact layer 201 is grown to a thickness of 50 nm.
生长所述第一型欧姆接触层201之后,在所述第一型欧姆接触层201上生长所述第一型窗口层202。所述第一型窗口层202主要的作用是第一型电流扩展和出光。所述第一型窗口层202的材质可以为AlGaInP,但不限于此。所述第一型窗口层202中掺杂第一型掺杂剂,例如N型掺杂剂,可以为硅(Si)、碲(Te)中的至少一种,但不限于此。进一步地,所述第一型掺杂剂优选为Si。After growing the first type ohmic contact layer 201, the first type window layer 202 is grown on the first type ohmic contact layer 201. The main functions of the first type window layer 202 are first type current expansion and light extraction. The first type window layer 202 may be made of AlGaInP, but is not limited thereto. The first type window layer 202 is doped with a first type dopant, such as an N-type dopant, which may be at least one of silicon (Si) and tellurium (Te), but is not limited thereto. Further, the first type dopant is preferably Si.
所述第一型窗口层202的生长优选为在MOCVD生长炉的反应室内生长500nm~2500nm厚度的第一型窗口层202。例如,生长1000nm厚度的第一型窗口层202。The growth of the first type window layer 202 preferably involves growing the first type window layer 202 with a thickness of 500 nm to 2500 nm in a reaction chamber of a MOCVD growth furnace. For example, the first type window layer 202 is grown to a thickness of 1000 nm.
在生长所述第一型窗口层202之后,在所述第一型窗口层202上生长所述第一型粗化限制层203。对于反极性产品,目前均采用湿法粗化工艺对第一型窗口层202进行粗化,对于同一种材质如AlGaInP,湿法粗化的选择比与Al组分的相关性较大,当Al组分差异较大时可以有效限制湿法粗化速度,本申请采用Al组分渐变的结构层作为第一型粗化限制层203,在纵向(沿着LED外延结构的厚度方向)可有效的控制湿法粗化时的粗化深度,确保结构设计的最优化,提高工艺稳定性;通过控制每一颗芯粒的剩余厚度一致,进而每颗芯粒的亮度和电压一致性好;并且,控制粗化效果,横向可以促进电流扩展,进而降低工作电压;另外,Al组分渐变结构的折射率也是渐变的,可以有效减少LED外延结构的内反射,提高出光效率。After growing the first type window layer 202, the first type roughening limiting layer 203 is grown on the first type window layer 202. For reverse polarity products, a wet roughening process is currently used to roughen the first type window layer 202. For the same material such as AlGaInP, the selection ratio of wet roughening has a greater correlation with the Al component. When When the Al composition difference is large, the wet roughening speed can be effectively limited. This application uses a structural layer with a gradient Al composition as the first type of roughening limiting layer 203, which can effectively limit the wet roughening speed in the longitudinal direction (along the thickness direction of the LED epitaxial structure). Controlling the roughening depth during wet roughening ensures the optimization of structural design and improves process stability; by controlling the remaining thickness of each core particle to be consistent, the brightness and voltage consistency of each core particle are good; and , controlling the roughening effect, the lateral direction can promote the current expansion, thereby reducing the operating voltage; in addition, the refractive index of the Al component gradient structure is also gradient, which can effectively reduce the internal reflection of the LED epitaxial structure and improve the light extraction efficiency.
所述第一型粗化限制层203包括第一结构层2031组成的单层结构或多周期结构,周期数k的范围为2至30。参阅图1,所述第一型粗化限制层203包括单层结构的第一结构层2031,所述第一结构层2031的材质为(AlxGa1-x)yIn1-yP,且x的范围为0.05~0.65,y的范围为0.45~0.55,y优选为0.5。在其他实施例中,所述第一型粗化限制层203也可以包括多层第一结构层2031组成的多周期结构,例如周期数k等于5时是5层第一结构层2031组成的多周期结构。所述第一型粗化限制层203中的Al组分渐变的方式包括线性渐变、非线性渐变、阶梯式变化方式中的一种或任意组合。具体的,线性渐变包括从所述第一型窗口层202向所述第一型限制层204方向,从低Al组分线性渐变至高Al组分或从低Al组分线性渐变至高Al组分;非线性渐变例如先渐变然后平稳,或者为先渐变然后平稳再渐变的方式,或者为抛物线式渐变等;阶梯式变化为阶梯式的突变变化,例如从0.1直接跳变到0.2,再跳变到0.4等。在一个优选的实施例中,Al组分x由下向上(从所述第一型窗口层202向所述第一型限制层204)从0.45到0.15线性渐变递减,进而起到粗化限制作用。The first type roughening restriction layer 203 includes a single-layer structure or a multi-period structure composed of a first structural layer 2031, and the period number k ranges from 2 to 30. Referring to FIG. 1 , the first type roughening restriction layer 203 includes a first structural layer 2031 with a single-layer structure. The material of the first structural layer 2031 is (Al x Ga 1-x ) y In 1-y P, And the range of x is 0.05-0.65, and the range of y is 0.45-0.55, and y is preferably 0.5. In other embodiments, the first type roughening restriction layer 203 may also include a multi-periodic structure composed of multiple first structural layers 2031. For example, when the period number k is equal to 5, it is a multi-periodic structure composed of five first structural layers 2031. periodic structure. The Al component gradient in the first type roughening restriction layer 203 includes one or any combination of linear gradient, nonlinear gradient, stepwise change. Specifically, the linear gradient includes a linear gradient from a low Al component to a high Al component or from a low Al component to a high Al component in the direction from the first type window layer 202 to the first type confinement layer 204; Nonlinear gradients, for example, first gradually change and then become stable, or first gradually change, then become stable and then gradually change again, or parabolic gradients, etc.; stepped changes are step-like sudden changes, such as jumping directly from 0.1 to 0.2, and then jumping to 0.4 etc. In a preferred embodiment, the Al component x decreases linearly from 0.45 to 0.15 from bottom to top (from the first type window layer 202 to the first type confinement layer 204), thereby playing a role in coarsening and restriction. .
所述第一型粗化限制层203中掺杂第一型掺杂剂,例如N型掺杂剂,可以为硅(Si)、碲(Te)中的至少一种,但不限于此。进一步地,所述第一型掺杂剂优选为Si。所述第一型粗化限制层203的生长优选为在MOCVD生长炉的反应室内生长100nm~1500nm厚度的第一型粗化限制层203。例如,生长1000nm厚度的第一型粗化限制层203。The first type roughening restriction layer 203 is doped with a first type dopant, such as an N-type dopant, which may be at least one of silicon (Si) and tellurium (Te), but is not limited thereto. Further, the first type dopant is preferably Si. The growth of the first type roughening restriction layer 203 is preferably performed by growing the first type roughening restriction layer 203 with a thickness of 100 nm to 1500 nm in a reaction chamber of a MOCVD growth furnace. For example, the first type roughening restriction layer 203 is grown to a thickness of 1000 nm.
在生长所述第一型粗化限制层203之后,在所述第一型粗化限制层203上生长所述第一型限制层204。所述第一型限制层204的材质优选为AlInP,但不限于此。所述第一型限制层204中掺杂第一型掺杂剂,例如N型掺杂剂,可以为硅(Si)、碲(Te)中的至少一种,但不限于此。进一步地,所述第一型掺杂剂优选为Si。After growing the first type roughening restriction layer 203, the first type restriction layer 204 is grown on the first type roughening restriction layer 203. The material of the first type confinement layer 204 is preferably AlInP, but is not limited thereto. The first type confinement layer 204 is doped with a first type dopant, such as an N-type dopant, which may be at least one of silicon (Si) and tellurium (Te), but is not limited thereto. Further, the first type dopant is preferably Si.
所述第一型限制层204的生长优选为在MOCVD生长炉的反应室内生长200nm~1000nm厚度的第一型限制层204。例如,生长500nm厚度的第一型限制层204。The first type confinement layer 204 is preferably grown in a reaction chamber of a MOCVD growth furnace with a thickness of 200 nm to 1000 nm. For example, the first type confinement layer 204 is grown to a thickness of 500 nm.
在生长所述第一型限制层204之后,在所述第一型限制层204上生长所述第一型波导层205。所述第一型波导层205的材质优选为(AlyGa1-y)0.5In0.5P,且0.45≤y≤0.85。所述第一型波导层205为非掺杂层,即所述第一型波导层205中不掺杂任何元素。After growing the first type confinement layer 204, the first type waveguide layer 205 is grown on the first type confinement layer 204. The material of the first type waveguide layer 205 is preferably ( Aly Ga 1-y ) 0.5 In 0.5 P, and 0.45≤y≤0.85. The first type waveguide layer 205 is an undoped layer, that is, the first type waveguide layer 205 is not doped with any element.
所述第一型波导层205的生长优选为在MOCVD生长炉的反应室内生长40nm~200nm厚度的第一型波导层205。例如,生长100nm厚度的第一型波导层205。The growth of the first type waveguide layer 205 preferably involves growing the first type waveguide layer 205 with a thickness of 40 nm to 200 nm in a reaction chamber of a MOCVD growth furnace. For example, the first type waveguide layer 205 is grown to a thickness of 100 nm.
在步骤S3中,在生长所述第一型波导层205之后,在所述第一型波导层205上生长所述有源层206。所述有源层206主要用作发光层。所述有源层206优选为多量子阱结构,即所述有源层206优选为量子阱和量子垒组成的周期性结构,且所述有源层206的周期数优选为6~60对。所述有源层206的材质可以为AlGaInP/AlGaInP,其中,量子垒的Al组分较高,量子阱的Al组分较低。所述有源层206的厚度优选为50nm~500nm。In step S3, after growing the first type waveguide layer 205, the active layer 206 is grown on the first type waveguide layer 205. The active layer 206 is mainly used as a light-emitting layer. The active layer 206 is preferably a multi-quantum well structure, that is, the active layer 206 is preferably a periodic structure composed of quantum wells and quantum barriers, and the number of periods of the active layer 206 is preferably 6 to 60 pairs. The active layer 206 may be made of AlGaInP/AlGaInP, where the quantum barrier has a higher Al component and the quantum well has a lower Al component. The thickness of the active layer 206 is preferably 50 nm to 500 nm.
所述有源层206的生长优选为在MOCVD生长炉的反应室内生长6~60个周期的有源层206。例如,生长12个周期的有源层206。The growth of the active layer 206 is preferably performed in a reaction chamber of a MOCVD growth furnace for 6 to 60 cycles. For example, active layer 206 is grown for 12 cycles.
在生长所述有源层206之后,在所述有源层206上生长第二型半导体层。所述第二型半导体层从下至上依次包括:第二型波导层207、第二型限制层208、过渡层209、第二型窗口层210和第二型欧姆接触层211。After growing the active layer 206, a second-type semiconductor layer is grown on the active layer 206. The second type semiconductor layer includes, from bottom to top, a second type waveguide layer 207, a second type confinement layer 208, a transition layer 209, a second type window layer 210, and a second type ohmic contact layer 211.
因此,在生长所述有源层206之后,在所述有源层206上生长所述第二型波导层207。所述第一型波导层205和所述第二型波导层207作为波导层生长在有源层206与限制层之间,主要是为了阻滞杂质扩散影响有源层206的内量子效率,同时提高电子空穴复合几率,有效防止电子空穴溢出有源层206,提高发光效率。Therefore, after growing the active layer 206, the second type waveguide layer 207 is grown on the active layer 206. The first type waveguide layer 205 and the second type waveguide layer 207 are grown as waveguide layers between the active layer 206 and the confinement layer, mainly to block impurity diffusion from affecting the internal quantum efficiency of the active layer 206, and at the same time The recombination probability of electron holes is increased, the electron holes are effectively prevented from overflowing the active layer 206, and the luminous efficiency is improved.
所述第二型波导层207的材质优选与所述第一型波导层205的材质相同,即所述第二型波导层207的材质也优选为(AlyGa1-y)0.5In0.5P,且0.45≤y≤0.85。例如,第二型波导层207的材质为(Al0.65Ga0.35)0.5In0.5P。所述第二型波导层207为非掺杂层,即所述第二型波导层207中不掺杂任何元素。The material of the second type waveguide layer 207 is preferably the same as the material of the first type waveguide layer 205, that is, the material of the second type waveguide layer 207 is also preferably ( Aly Ga 1-y ) 0.5 In 0.5 P , and 0.45≤y≤0.85. For example, the material of the second type waveguide layer 207 is (Al 0.65 Ga 0.35 ) 0.5 In 0.5 P. The second type waveguide layer 207 is an undoped layer, that is, the second type waveguide layer 207 is not doped with any element.
所述第二型波导层207的生长优选为在MOCVD生长炉的反应室内生长40nm~300nm厚度的第二型波导层207。例如,生长80nm厚度的第二型波导层207。The growth of the second-type waveguide layer 207 is preferably performed by growing the second-type waveguide layer 207 with a thickness of 40 nm to 300 nm in a reaction chamber of a MOCVD growth furnace. For example, the second type waveguide layer 207 is grown to a thickness of 80 nm.
在生长所述第二型波导层207之后,在所述第二型波导层207上生长所述第二型限制层208。所述第二型限制层208用于提供空穴。而且所述第一型限制层204和所述第二型限制层208作为限制层主要有两个作用,一方面是限制少数载流子不溢出有源层206,提高复合发光效率;另一方面是作为一个重要的窗口,使有源层206发出的光子极容易通过限制层,来提高LED芯片的发光效率。After growing the second type waveguide layer 207, the second type confinement layer 208 is grown on the second type waveguide layer 207. The second type confinement layer 208 is used to provide holes. Moreover, the first type confinement layer 204 and the second type confinement layer 208 mainly serve two functions as confinement layers. On the one hand, they restrict minority carriers from overflowing the active layer 206 and improve the recombination luminous efficiency; on the other hand, As an important window, the photons emitted by the active layer 206 can easily pass through the confinement layer, thereby improving the luminous efficiency of the LED chip.
所述第二型限制层208的材质优选为AlInP,但不限于此。所述第二型限制层208中掺杂第二型掺杂剂,例如p型掺杂剂,可以为镁(Mg)、锌(Zn)中的至少一种,但不限于此。进一步地,所述第二型掺杂剂优选为Mg。The material of the second type restriction layer 208 is preferably AlInP, but is not limited thereto. The second type confinement layer 208 is doped with a second type dopant, such as a p-type dopant, which may be at least one of magnesium (Mg) and zinc (Zn), but is not limited thereto. Further, the second type dopant is preferably Mg.
所述第二型限制层208的生长优选为在MOCVD生长炉的反应室内生长200nm~1500nm厚度的第二型限制层208。例如,生长500nm厚度的第二型限制层208。The growth of the second type confinement layer 208 preferably involves growing the second type confinement layer 208 with a thickness of 200 nm to 1500 nm in a reaction chamber of a MOCVD growth furnace. For example, the second type confinement layer 208 is grown to a thickness of 500 nm.
在生长所述第二型限制层208之后,在所述第二型限制层208上生长所述过渡层209。所述过渡层209的材质优选为AlGaInP,但不限于此。所述第二型过渡层209中掺杂第二型掺杂剂,例如p型掺杂剂,可以为镁(Mg)、锌(Zn)中的至少一种,但不限于此。进一步地,所述第二型掺杂剂优选为Mg。After growing the second type confinement layer 208, the transition layer 209 is grown on the second type confinement layer 208. The transition layer 209 is preferably made of AlGaInP, but is not limited thereto. The second type transition layer 209 is doped with a second type dopant, such as a p-type dopant, which may be at least one of magnesium (Mg) and zinc (Zn), but is not limited thereto. Further, the second type dopant is preferably Mg.
所述过渡层209的生长优选为在MOCVD生长炉的反应室内生长10nm~80nm厚度的过渡层209。例如,生长50nm厚度的过渡层209。The transition layer 209 is preferably grown in a reaction chamber of a MOCVD growth furnace with a thickness of 10 nm to 80 nm. For example, a transition layer 209 is grown to a thickness of 50 nm.
在生长所述过渡层209之后,在所述过渡层209上生长所述第二型窗口层210。所述第二型窗口层210的材质优选为GaP,但不限于此。所述第二型窗口层210中掺杂第二型掺杂剂,例如p型掺杂剂,可以为镁(Mg)、锌(Zn)、碳(C)中的至少一种,但不限于此。进一步地,所述第二型掺杂剂优选为Mg。After growing the transition layer 209, the second type window layer 210 is grown on the transition layer 209. The material of the second type window layer 210 is preferably GaP, but is not limited thereto. The second type window layer 210 is doped with a second type dopant, such as a p-type dopant, which can be at least one of magnesium (Mg), zinc (Zn), and carbon (C), but is not limited to this. Further, the second type dopant is preferably Mg.
所述第二型窗口层210的生长优选为在MOCVD生长炉的反应室内生长200nm~3000nm厚度的第二型窗口层210。例如,生长2000nm厚度的第二型窗口层210。The growth of the second type window layer 210 preferably involves growing the second type window layer 210 with a thickness of 200 nm to 3000 nm in a reaction chamber of a MOCVD growth furnace. For example, the second type window layer 210 is grown to a thickness of 2000 nm.
在生长所述第二型窗口层210之后,在所述第二型窗口层210上生长所述第二型欧姆接触层211。所述第二型欧姆接触层211用于与金属电极形成欧姆接触。所述第二型欧姆接触层211的材质优选为GaP,但不限于此。所述第二型欧姆接触层211中可以掺杂碳(C)。After the second type window layer 210 is grown, the second type ohmic contact layer 211 is grown on the second type window layer 210 . The second type ohmic contact layer 211 is used to form ohmic contact with the metal electrode. The material of the second type ohmic contact layer 211 is preferably GaP, but is not limited thereto. The second type ohmic contact layer 211 may be doped with carbon (C).
所述第二型欧姆接触层211的生长优选为在MOCVD生长炉的反应室内生长20nm~100nm厚度的第二型欧姆接触层211。例如,生长50nm厚度的第二型欧姆接触层211。The growth of the second-type ohmic contact layer 211 preferably involves growing the second-type ohmic contact layer 211 with a thickness of 20 nm to 100 nm in a reaction chamber of a MOCVD growth furnace. For example, the second type ohmic contact layer 211 is grown to a thickness of 50 nm.
实施例二Embodiment 2
图2是本实施例的第一型粗化限制层的结构示意图。本实施例与实施例一的区别仅在于所述第一型粗化限制层203的结构不同,结构相同的部分在此不再赘述。与实施例一相比,实施例二的粗化限制作用和促进横向电流扩展的作用更好。Figure 2 is a schematic structural diagram of the first type roughening restriction layer in this embodiment. The difference between this embodiment and Embodiment 1 is only that the structure of the first type roughening restriction layer 203 is different, and the parts with the same structure will not be described again here. Compared with Embodiment 1, Embodiment 2 has better coarsening limiting effect and promotion of lateral current expansion.
具体而言,所述LED外延结构中的第一型粗化限制层203包括第一结构层2031和第二结构层2032组成的两层结构或第一结构层2031和第二结构层2032交替堆叠组成的多周期结构,周期数k的范围为2至30,优选为20~30。参阅图2,所述第一型粗化限制层203包括第一结构层2031和第二结构层2032组成的两层结构。所述第一结构层2031的材质为(AlmGa1-m)nIn1-nP,所述第二结构层2032的材质为(AlaGa1-a)bIn1-bP,即所述第一型粗化限制层203的材质为(AlmGa1-m)nIn1-nP/(AlaGa1-a)bIn1-bP。其中,n和b的范围均为0.45~0.55,优选b=0.5,n=0.5;0.05≤m≤0.65,0.05≤a≤0.65。在其他实施例中,所述第一型粗化限制层203也可以包括多层第一结构层2031和第二结构层2032组成的多周期结构,例如周期数k等于10时是10组第一结构层2031和第二结构层2032交替堆叠组成的多周期结构,即所述第一型粗化限制层203的材质为((AlmGa1-m)nIn1-nP/(AlaGa1-a)bIn1-bP)10。并且,同一周期中,Al组分a和Al组分m中的最大值和最小值的差值大于0.25,以确保所述第一型粗化限制层203对粗化溶液具有较好的腐蚀限制效果;同一周期中,In组分n和In组分b的差值小于5%,以确保所述第一型粗化限制层203与所述衬底101之间晶格失配较小。Specifically, the first type roughening restriction layer 203 in the LED epitaxial structure includes a two-layer structure composed of a first structural layer 2031 and a second structural layer 2032 or the first structural layer 2031 and the second structural layer 2032 are alternately stacked In the multi-periodic structure formed, the period number k ranges from 2 to 30, preferably from 20 to 30. Referring to FIG. 2 , the first type roughening restriction layer 203 includes a two-layer structure composed of a first structural layer 2031 and a second structural layer 2032 . The material of the first structural layer 2031 is (Al m Ga 1-m ) n In 1-n P, and the material of the second structural layer 2032 is (A a Ga 1-a ) b In 1-b P. That is, the material of the first type roughening restriction layer 203 is (Al m Ga 1-m ) n In 1-n P/(A a Ga 1-a ) b In 1-b P. Wherein, the ranges of n and b are both 0.45 to 0.55, preferably b=0.5, n=0.5; 0.05≤m≤0.65, 0.05≤a≤0.65. In other embodiments, the first type roughening restriction layer 203 may also include a multi-period structure composed of multiple first structural layers 2031 and second structural layers 2032. For example, when the period number k is equal to 10, there are 10 groups of first structures. The structural layer 2031 and the second structural layer 2032 are alternately stacked to form a multi-periodic structure, that is, the material of the first type roughening restriction layer 203 is ((Al m Ga 1-m ) n In 1-n P/(Al a Ga 1-a ) b In 1-b P) 10 . Moreover, in the same cycle, the difference between the maximum value and the minimum value of Al component a and Al component m is greater than 0.25 to ensure that the first type roughening restriction layer 203 has better corrosion restriction for the roughening solution. Effect: In the same cycle, the difference between In component n and In component b is less than 5% to ensure that the lattice mismatch between the first type roughening restriction layer 203 and the substrate 101 is small.
在生长所述第一型窗口层202之后,在所述第一型窗口层202上,先生长所述第一结构层2031,再生长所述第二结构层2032,即完成一个周期的第一型粗化限制层203的生长;继续交替生长所述第一结构层2031和所述第二结构层2032即完成多周期结构的第一型粗化限制层203的生长。所述第一型粗化限制层203中的Al组分渐变的方式包括线性渐变、非线性渐变、阶梯式变化方式中的一种或任意组合。具体的,线性渐变包括从所述第一型窗口层202向所述第一型限制层204方向,从低Al组分线性渐变至高Al组分或从低Al组分线性渐变至高Al组分;非线性渐变例如先渐变然后平稳,或者为先渐变然后平稳再渐变的方式,或者为抛物线式渐变等;阶梯式变化为阶梯式的突变变化,例如从0.1直接跳变到0.2,再跳变到0.4等。在一个优选的实施例中,所述第一结构层2031中的Al组分m由下向上(从所述第一型窗口层202向所述第一型限制层204)从0.15到0.45线性渐变递增,所述第二结构层2032中的Al组分a由下向上(从所述第一型窗口层202向所述第一型限制层204)从0.45到0.15线性渐变递减。After growing the first type window layer 202, first grow the first structural layer 2031 on the first type window layer 202, and then grow the second structural layer 2032, that is, completing the first step of a cycle. The growth of the first type roughening restriction layer 203; continuing to alternately grow the first structural layer 2031 and the second structural layer 2032 is to complete the growth of the first type roughening restriction layer 203 with a multi-periodic structure. The Al component gradient in the first type roughening restriction layer 203 includes one or any combination of linear gradient, nonlinear gradient, stepwise change. Specifically, the linear gradient includes a linear gradient from a low Al component to a high Al component or from a low Al component to a high Al component in the direction from the first type window layer 202 to the first type confinement layer 204; Nonlinear gradients, for example, first gradually change and then become stable, or first gradually change, then become stable and then gradually change again, or parabolic gradients, etc.; stepped changes are step-like sudden changes, such as jumping directly from 0.1 to 0.2, and then jumping to 0.4 etc. In a preferred embodiment, the Al component m in the first structural layer 2031 linearly gradients from 0.15 to 0.45 from bottom to top (from the first type window layer 202 to the first type confinement layer 204). Increasingly, the Al component a in the second structural layer 2032 decreases linearly from 0.45 to 0.15 from bottom to top (from the first type window layer 202 to the first type confinement layer 204).
所述第一结构层2031的厚度为10nm~750nm,所述第二结构层2032的厚度为10nm~750nm,且所述第一型粗化限制层203的总厚度为100~1500nm。The thickness of the first structural layer 2031 is 10 nm to 750 nm, the thickness of the second structural layer 2032 is 10 nm to 750 nm, and the total thickness of the first type roughening restriction layer 203 is 100 to 1500 nm.
本发明通过在第一型窗口层和第一型限制层之间设置Al组分渐变的第一型粗化限制层,以确保第一型粗化限制层对粗化溶液具有较好的腐蚀限制效果,可以有效的控制粗化的整体深度以控制粗化效果,进而提高电流扩展效果,降低工作电压,并提高工艺稳定性;同时由于Al组分渐变形成折射率渐变的结构,可以有效减少LED外延结构的内反射损耗,增大LED外延结构出射光的出射角,使得光能够更多的耦合出去,提高LED芯片的出光效率,进而提高LED芯片的发光效率。The present invention ensures that the first type roughening restriction layer has better corrosion restriction for the roughening solution by arranging a first type roughening restriction layer with a gradient Al composition between the first type window layer and the first type restriction layer. Effect, the overall depth of roughening can be effectively controlled to control the roughening effect, thereby improving the current expansion effect, reducing the operating voltage, and improving process stability; at the same time, due to the gradual change of the Al component to form a structure with a gradual refractive index, it can effectively reduce the LED The internal reflection loss of the epitaxial structure increases the exit angle of the light emitted from the LED epitaxial structure, allowing more light to be coupled out, improving the light extraction efficiency of the LED chip, and thereby improving the luminous efficiency of the LED chip.
此外,可以理解的是,虽然本发明已以较佳实施例披露如上,然而上述实施例并非用以限定本发明。对于任何熟悉本领域的技术人员而言,在不脱离本发明技术方案范围情况下,都可利用上述揭示的技术内容对本发明技术方案作出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。In addition, it can be understood that although the present invention has been disclosed above in preferred embodiments, the above embodiments are not intended to limit the present invention. For any person familiar with the art, without departing from the scope of the technical solution of the present invention, they can use the technical content disclosed above to make many possible changes and modifications to the technical solution of the present invention, or modify it into equivalent changes. Example. Therefore, any simple modifications, equivalent changes, and modifications made to the above embodiments based on the technical essence of the present invention without departing from the content of the technical solution of the present invention still fall within the protection scope of the technical solution of the present invention.
而且还应该理解的是,本发明并不限于此处描述的特定的方法、化合物、材质、制造技术、用法和应用,它们可以变化。还应该理解的是,此处描述的术语仅仅用来描述特定实施例,而不是用来限制本发明的范围。必须注意的是,此处的以及所附权利要求中使用的单数形式“一个”、“一种”以及“该”包括复数基准,除非上下文明确表示相反意思。因此,例如,对“一个步骤”引述意味着对一个或多个步骤的引述,并且可能包括次级步骤。应该以最广义的含义来理解使用的所有连词。因此,词语“或”应该被理解为具有逻辑“或”的定义,而不是逻辑“异或”的定义,除非上下文明确表示相反意思。此处描述的结构将被理解为还引述该结构的功能等效物。可被解释为近似的语言应该被那样理解,除非上下文明确表示相反意思。Furthermore, it is to be understood that this invention is not limited to the particular methods, compounds, materials, manufacturing techniques, uses and applications described herein, as they may vary. It should also be understood that the terminology described herein is used only to describe particular embodiments and is not intended to limit the scope of the invention. It must be noted that, as used herein and in the appended claims, the singular forms "a," "an," and "the" include plural referents unless the context clearly dictates a contrary meaning. Thus, for example, a reference to "a step" means a reference to one or more steps, and may include secondary steps. All conjunctions used should be understood in their broadest sense. Accordingly, the word "or" should be understood to have the definition of a logical "or" and not a logical "exclusive-or" unless the context clearly indicates the contrary. Structures described herein will be understood to also recite functional equivalents of that structure. Language that may be construed as approximate should be construed as such unless the context clearly indicates a contrary meaning.
Claims (25)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111353735.9A CN114122212B (en) | 2021-11-03 | 2021-11-03 | LED epitaxial structure and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111353735.9A CN114122212B (en) | 2021-11-03 | 2021-11-03 | LED epitaxial structure and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114122212A CN114122212A (en) | 2022-03-01 |
CN114122212B true CN114122212B (en) | 2023-11-10 |
Family
ID=80395690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111353735.9A Active CN114122212B (en) | 2021-11-03 | 2021-11-03 | LED epitaxial structure and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114122212B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113823716B (en) * | 2021-09-17 | 2023-09-15 | 厦门士兰明镓化合物半导体有限公司 | LED epitaxial structure and preparation method thereof |
CN114447164B (en) * | 2022-04-08 | 2022-07-19 | 南昌凯迅光电股份有限公司 | Positive polarity LED with gradual change structure and preparation method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104332537B (en) * | 2014-10-17 | 2017-06-16 | 厦门乾照光电股份有限公司 | A kind of light emitting diode epitaxial structure of high concentration Te doping |
CN106910799A (en) * | 2017-02-09 | 2017-06-30 | 华灿光电(浙江)有限公司 | Preparation method of light-emitting diode |
CN107316931A (en) * | 2017-07-06 | 2017-11-03 | 山东浪潮华光光电子股份有限公司 | The flip LED epitaxial wafer and its manufacture method of a kind of GaAs bases roughening Rotating fields |
CN110707183A (en) * | 2019-08-23 | 2020-01-17 | 华灿光电(苏州)有限公司 | GaAs-based infrared light-emitting diode chip and preparation method thereof |
CN111430520A (en) * | 2020-04-30 | 2020-07-17 | 聚灿光电科技股份有限公司 | L ED epitaxial structure with N-type electron blocking layer, preparation method of structure and L ED device |
CN113594315A (en) * | 2021-07-27 | 2021-11-02 | 厦门士兰明镓化合物半导体有限公司 | LED chip epitaxial structure and preparation method thereof |
-
2021
- 2021-11-03 CN CN202111353735.9A patent/CN114122212B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104332537B (en) * | 2014-10-17 | 2017-06-16 | 厦门乾照光电股份有限公司 | A kind of light emitting diode epitaxial structure of high concentration Te doping |
CN106910799A (en) * | 2017-02-09 | 2017-06-30 | 华灿光电(浙江)有限公司 | Preparation method of light-emitting diode |
CN107316931A (en) * | 2017-07-06 | 2017-11-03 | 山东浪潮华光光电子股份有限公司 | The flip LED epitaxial wafer and its manufacture method of a kind of GaAs bases roughening Rotating fields |
CN110707183A (en) * | 2019-08-23 | 2020-01-17 | 华灿光电(苏州)有限公司 | GaAs-based infrared light-emitting diode chip and preparation method thereof |
CN111430520A (en) * | 2020-04-30 | 2020-07-17 | 聚灿光电科技股份有限公司 | L ED epitaxial structure with N-type electron blocking layer, preparation method of structure and L ED device |
CN113594315A (en) * | 2021-07-27 | 2021-11-02 | 厦门士兰明镓化合物半导体有限公司 | LED chip epitaxial structure and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN114122212A (en) | 2022-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113823716B (en) | LED epitaxial structure and preparation method thereof | |
CN103681985B (en) | Epitaxial wafer of a kind of light emitting diode and preparation method thereof | |
CN114447165B (en) | LED epitaxial structure and preparation method thereof | |
CN103500781A (en) | Efficient AlGaInP light emitting diode epitaxial wafer and preparation method thereof | |
CN114122212B (en) | LED epitaxial structure and preparation method thereof | |
CN112219286B (en) | A kind of tunneling junction for multi-junction LED, multi-junction LED and preparation method thereof | |
CN104300058B (en) | A kind of green-yellow light LED of the wide barrier structure containing doping | |
CN108091743A (en) | A kind of yellow light flip LED epitaxial structure and preparation method thereof | |
CN115621383A (en) | Red light emitting diode epitaxial structure and manufacturing method thereof | |
CN113422293B (en) | InGaN/GaN quantum well laser with stepped upper waveguide and preparation method thereof | |
WO2025060934A1 (en) | Red-light led epitaxial structure and preparation method therefor | |
CN114551671A (en) | LED epitaxial structure and preparation method thereof | |
CN114023857B (en) | LED epitaxial structure and preparation method thereof | |
CN119208473A (en) | Epitaxial structure for Micro-LED and preparation method thereof, Micro-LED | |
CN208014725U (en) | A kind of novel deep ultraviolet LED epitaxial structure | |
WO2024066412A1 (en) | Infrared light-emitting diode and manufacturing method therefor | |
CN115498080A (en) | Infrared LED epitaxial structure and manufacturing method thereof | |
CN113594315B (en) | LED chip epitaxial structure and preparation method thereof | |
CN116314501A (en) | LED epitaxial structure and preparation method thereof | |
KR20220107307A (en) | Epitaxial structure and manufacturing method thereof, LED device | |
CN114864769B (en) | LED epitaxial structure and preparation method thereof | |
CN114551670B (en) | Infrared light emitting diode epitaxial structure and preparation method thereof | |
CN118198216A (en) | Light emitting diode, LED epitaxial structure and preparation method thereof | |
Saranya et al. | Parameter Analysis Review on Multiple Quantum Well based InGaN/GaN Light Emitting Diode | |
CN114864769A (en) | LED epitaxial structure and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |