[go: up one dir, main page]

CN114122157B - Photovoltaic cell and its manufacturing method, photovoltaic module - Google Patents

Photovoltaic cell and its manufacturing method, photovoltaic module Download PDF

Info

Publication number
CN114122157B
CN114122157B CN202210108488.4A CN202210108488A CN114122157B CN 114122157 B CN114122157 B CN 114122157B CN 202210108488 A CN202210108488 A CN 202210108488A CN 114122157 B CN114122157 B CN 114122157B
Authority
CN
China
Prior art keywords
reflection layer
refractive index
content ratio
photovoltaic cell
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210108488.4A
Other languages
Chinese (zh)
Other versions
CN114122157A (en
Inventor
瞿佳华
金井升
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Jinko Solar Co Ltd
Original Assignee
Zhejiang Jinko Solar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Jinko Solar Co Ltd filed Critical Zhejiang Jinko Solar Co Ltd
Priority to CN202210108488.4A priority Critical patent/CN114122157B/en
Priority to CN202210387930.1A priority patent/CN114975642B/en
Publication of CN114122157A publication Critical patent/CN114122157A/en
Application granted granted Critical
Publication of CN114122157B publication Critical patent/CN114122157B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/30Coatings
    • H10F77/306Coatings for devices having potential barriers
    • H10F77/311Coatings for devices having potential barriers for photovoltaic cells
    • H10F77/315Coatings for devices having potential barriers for photovoltaic cells the coatings being antireflective or having enhancing optical properties
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/40Optical elements or arrangements
    • H10F77/42Optical elements or arrangements directly associated or integrated with photovoltaic cells, e.g. light-reflecting means or light-concentrating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Photovoltaic Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

The embodiment of the application relates to the field of solar energy, and provides a photovoltaic cell, a manufacturing method thereof and a photovoltaic module, wherein the photovoltaic cell comprises: a substrate; a first anti-reflection layer positioned on one side of the substrate; the second antireflection layer is positioned on one side, far away from the substrate, of the first antireflection layer, the first antireflection layer comprises a first silicon oxynitride material, the second antireflection layer comprises a second silicon oxynitride material, and in the direction perpendicular to the direction of the first antireflection layer pointing to the second antireflection layer, the content ratio of oxygen elements and nitrogen elements of one of the first antireflection layer and the second antireflection layer tends to increase, and the content ratio of oxygen elements and nitrogen elements of the other one tends to decrease. The embodiment of the application is at least beneficial to improving the absorptivity of the photovoltaic cell to light incident on the photovoltaic cell.

Description

光伏电池及其制造方法、光伏组件Photovoltaic cell and its manufacturing method, photovoltaic module

技术领域technical field

本申请实施例涉及太阳能领域,特别涉及一种光伏电池及其制造方法、光伏组件。The embodiments of the present application relate to the field of solar energy, and in particular, to a photovoltaic cell, a method for manufacturing the same, and a photovoltaic assembly.

背景技术Background technique

光伏电池对太阳光的反射率或吸收率是影响光伏电池光电转换效率的关键因素。目前业内光伏电池中常采用单层氮化硅、多层氮化硅或者氮化硅与其他材料膜层的叠层结构作为减反射结构。The reflectivity or absorption rate of photovoltaic cells to sunlight is a key factor affecting the photoelectric conversion efficiency of photovoltaic cells. At present, single-layer silicon nitride, multi-layer silicon nitride, or a stacked structure of silicon nitride and other material films are often used as anti-reflection structures in photovoltaic cells in the industry.

然而,氮化硅膜层存在较大内应力,且在制备氮化硅膜层的工艺过程中由于氢元素的存在,会在氮化硅膜层中产生较多的缺陷,这些均会降低氮化硅膜层对光的吸收率,从而降低光伏电池对光的吸收率。However, the silicon nitride film has a large internal stress, and during the process of preparing the silicon nitride film, due to the existence of hydrogen, more defects will be generated in the silicon nitride film, which will reduce the nitrogen The light absorption rate of the silicon oxide film layer is reduced, thereby reducing the light absorption rate of the photovoltaic cell.

发明内容SUMMARY OF THE INVENTION

本申请实施例提供一种光伏电池及其制造方法、光伏组件,至少有利于提高光伏电池对光的吸收率。Embodiments of the present application provide a photovoltaic cell, a method for manufacturing the same, and a photovoltaic assembly, which are at least conducive to improving the light absorption rate of the photovoltaic cell.

根据本申请一些实施例,本申请实施例一方面提供一种光伏电池,包括:基底;第一减反射层,位于所述基底的一侧;第二减反射层,位于所述第一减反射层远离所述基底的一侧,所述第一减反射层包括第一氮氧化硅材料,所述第二减反射层包括第二氮氧化硅材料,沿垂直于所述第一减反射层指向所述第二减反射层方向的方向上,所述第一减反射层和所述第二减反射层中一者的氧元素和氮元素的含量比值呈增大趋势,另一者的氧元素和氮元素的含量比值呈减小趋势。According to some embodiments of the present application, one aspect of the embodiments of the present application provides a photovoltaic cell, comprising: a substrate; a first anti-reflection layer located on one side of the substrate; and a second anti-reflection layer located on the first anti-reflection layer The side of the layer away from the substrate, the first anti-reflection layer includes a first silicon oxynitride material, the second anti-reflection layer includes a second silicon oxynitride material, and the direction is perpendicular to the first anti-reflection layer. In the direction of the direction of the second anti-reflection layer, the content ratio of oxygen element and nitrogen element in one of the first anti-reflection layer and the second anti-reflection layer shows an increasing trend, and the oxygen element in the other The content ratio of nitrogen and nitrogen showed a decreasing trend.

在一些实施例中,所述第一减反射层中氧元素和氮元素的含量比值不大于0.9,所述第二减反射层中氧元素和氮元素的含量比值不大于0.9。In some embodiments, the content ratio of oxygen element and nitrogen element in the first anti-reflection layer is not greater than 0.9, and the content ratio of oxygen element and nitrogen element in the second anti-reflection layer is not greater than 0.9.

在一些实施例中,所述第一氮氧化硅材料为氧化硅和氮化硅的混合物,所述第二氮氧化硅材料为氧化硅和氮化硅的混合物,沿垂直于所述第一减反射层指向所述第二减反射层方向的方向上,所述第一减反射层和所述第二减反射层中一者的氧化硅和氮化硅的含量比值呈增大趋势,另一者的氧化硅和氮化硅的含量比值呈减小趋势。In some embodiments, the first silicon oxynitride material is a mixture of silicon oxide and silicon nitride, and the second silicon oxynitride material is a mixture of silicon oxide and silicon nitride. In the direction in which the reflective layer points to the direction of the second anti-reflection layer, the content ratio of silicon oxide and silicon nitride in one of the first anti-reflection layer and the second anti-reflection layer tends to increase, and the other The content ratio of silicon oxide and silicon nitride in the former showed a decreasing trend.

在一些实施例中,所述第一减反射层中氧化硅和氮化硅的含量比值变化范围为0~1,所述第二减反射层中氧化硅和氮化硅的含量比值变化范围为0~1。In some embodiments, the content ratio of silicon oxide and silicon nitride in the first anti-reflection layer ranges from 0 to 1, and the content ratio of silicon oxide and silicon nitride in the second anti-reflection layer ranges from 0 to 1. 0~1.

在一些实施例中,沿垂直于所述第一减反射层指向所述第二减反射层方向的方向上,所述第一减反射层和所述第二减反射层中一者的氧元素含量呈增大趋势,另一者的氧元素含量呈减小趋势,且所述第一减反射层和所述第二减反射层中氧元素与硅元素的含量比值不大于0.5。In some embodiments, in a direction perpendicular to the direction of the first anti-reflection layer pointing to the second anti-reflection layer, the oxygen element of one of the first anti-reflection layer and the second anti-reflection layer The content of the oxygen element shows an increasing trend, and the oxygen element content of the other one shows a decreasing trend, and the content ratio of the oxygen element to the silicon element in the first anti-reflection layer and the second anti-reflection layer is not greater than 0.5.

在一些实施例中,沿垂直于所述第一减反射层指向所述第二减反射层方向的方向上,所述第一减反射层和所述第二减反射层中一者的氮元素含量呈增大趋势,另一者的氮元素含量呈减小趋势,且所述第一减反射层和所述第二减反射层中氧元素与硅元素的含量比值变化范围为1.05~1.33。In some embodiments, in a direction perpendicular to the direction of the first anti-reflection layer pointing to the second anti-reflection layer, the nitrogen element of one of the first anti-reflection layer and the second anti-reflection layer The content is increasing, and the nitrogen content of the other is decreasing, and the content ratio of oxygen element and silicon element in the first anti-reflection layer and the second anti-reflection layer varies from 1.05 to 1.33.

在一些实施例中,沿所述第一减反射层指向所述第二减反射层的方向上,所述第一减反射层的厚度为30nm~50nm,所述第二减反射层的厚度为30nm~50nm。In some embodiments, along the direction from the first anti-reflection layer to the second anti-reflection layer, the thickness of the first anti-reflection layer is 30 nm˜50 nm, and the thickness of the second anti-reflection layer is 30nm~50nm.

在一些实施例中,沿垂直于所述第一减反射层指向所述第二减反射层方向的方向上,所述第一减反射层和所述第二减反射层中的一者的折射率呈增大趋势,另一者的折射率呈减小趋势,且所述第一减反射层和所述第二减反射层的折射率的差值先呈减小趋势然后呈增大趋势。In some embodiments, the refraction of one of the first anti-reflection layer and the second anti-reflection layer is in a direction perpendicular to the direction of the first anti-reflection layer pointing to the second anti-reflection layer The refractive index of the first anti-reflection layer and the second anti-reflection layer shows a decreasing trend first and then an increasing trend.

在一些实施例中,所述第一减反射层的折射率和所述第二减反射层的折射率的最大值为1.9~2.1,所述第一减反射层的折射率和所述第二减反射层的折射率的最小值为1.4~1.6。In some embodiments, the maximum value of the refractive index of the first anti-reflection layer and the refractive index of the second anti-reflection layer is 1.9˜2.1, and the refractive index of the first anti-reflection layer and the second The minimum value of the refractive index of the antireflection layer is 1.4 to 1.6.

在一些实施例中,所述第一减反射层的折射率最高值与所述第二减反射层的折射率最高值相同,所述第一减反射层的折射率最低值与所述第二减反射层的折射率最低值相同。In some embodiments, the highest value of the refractive index of the first anti-reflection layer is the same as the highest value of the refractive index of the second anti-reflection layer, and the lowest value of the refractive index of the first anti-reflection layer is the same as the highest value of the refractive index of the second anti-reflection layer The minimum value of the refractive index of the antireflection layer is the same.

根据本申请一些实施例,本申请实施例另一方面还提供一种光伏电池的制造方法,包括:提供基底;在所述基底的一侧形成第一减反射层;在所述第一减反射层远离所述基底的一侧形成第二减反射层,所述第一减反射层包括第一氮氧化硅材料,所述第二减反射层包括第二氮氧化硅材料,沿垂直于所述第一减反射层指向所述第二减反射层方向的方向上,所述第一减反射层和所述第二减反射层中一者的氧元素和氮元素的含量比值呈增大趋势,另一者的氧元素和氮元素的含量比值呈减小趋势。According to some embodiments of the present application, another embodiment of the present application further provides a method for manufacturing a photovoltaic cell, comprising: providing a substrate; forming a first anti-reflection layer on one side of the substrate; and forming a first anti-reflection layer on the first anti-reflection layer A second anti-reflection layer is formed on a side of the layer away from the substrate, the first anti-reflection layer includes a first silicon oxynitride material, and the second anti-reflection layer includes a second silicon oxynitride material, along the direction perpendicular to the The first anti-reflection layer points to the direction of the second anti-reflection layer, and the content ratio of oxygen and nitrogen in one of the first anti-reflection layer and the second anti-reflection layer tends to increase, On the other hand, the content ratio of oxygen and nitrogen showed a decreasing trend.

在一些实施例中,光伏电池的制造方法还包括:提供腔室,且沿垂直于所述第一减反射层指向所述第二减反射层方向的方向上,在所述腔室上依次设置第一进气口和第二进气口,且所述第一进气口和所述第二进气口的进气方向相反,所述基底位于所述第一进气口和所述第二进气口之间;在所述腔室内形成所述第一减反射层的步骤包括:在所述基底的一侧沉积氮化硅材料,且在沉积过程中,打开所述第一进气口并关闭所述第二进气口;在所述腔室内形成所述第二减反射层的步骤包括:在所述第一减反射层远离所述基底的一侧沉积氮化硅材料,且在沉积过程中,关闭所述第一进气口并打开所述第二进气口;在形成所述第一减反射层的步骤和形成所述第二减反射层的步骤中,所述第一进气口和所述第二进气口提供的气体为至少包含氧元素的气体。In some embodiments, the method for manufacturing a photovoltaic cell further includes: providing a cavity, and in a direction perpendicular to the direction of the first anti-reflection layer pointing to the second anti-reflection layer, the cavity is sequentially arranged on the cavity a first air inlet and a second air inlet, and the air intake directions of the first air inlet and the second air inlet are opposite, and the base is located at the first air inlet and the second air inlet between the air inlets; the step of forming the first anti-reflection layer in the chamber includes: depositing a silicon nitride material on one side of the substrate, and during the deposition process, opening the first air inlet and closing the second air inlet; the step of forming the second anti-reflection layer in the chamber includes: depositing a silicon nitride material on the side of the first anti-reflection layer away from the substrate, and During the deposition process, the first air inlet is closed and the second air inlet is opened; in the step of forming the first anti-reflection layer and the step of forming the second anti-reflection layer, the first The gas provided by the gas inlet and the second gas inlet is gas containing at least oxygen element.

在一些实施例中,所述至少包含氧元素的气体包括氧气或者一氧化二氮。In some embodiments, the gas containing at least elemental oxygen includes oxygen or nitrous oxide.

在一些实施例中,所述第一进气口和所述第二进气口提供的气体相同。In some embodiments, the first gas inlet and the second gas inlet provide the same gas.

在一些实施例中,所述第一进气口提供的气体的气体流量不高于150mL/s,所述第二进气口提供的气体的气体流量不高于150mL/s。In some embodiments, the gas flow rate of the gas provided by the first air inlet is not higher than 150 mL/s, and the gas flow rate of the gas provided by the second air inlet is not higher than 150 mL/s.

根据本申请一些实施例,本申请实施例又一方面还提供一种光伏组件,包括:电池串,由上述任一项所述的光伏电池连接形成,或者由上述任一项所述的制造方法制造的光伏电池连接形成;封装胶膜,用于覆盖所述电池串的表面;盖板,用于覆盖所述封装胶膜背离所述电池串的表面。According to some embodiments of the present application, another aspect of the embodiments of the present application further provides a photovoltaic module, comprising: a battery string formed by connecting the photovoltaic cells described in any one of the above, or by the manufacturing method described in any one of the above The manufactured photovoltaic cells are connected and formed; an encapsulating adhesive film is used to cover the surface of the battery string; a cover plate is used to cover the surface of the encapsulating adhesive film facing away from the battery string.

本申请实施例提供的技术方案至少具有以下优点:The technical solutions provided by the embodiments of the present application have at least the following advantages:

在基底上堆叠有第一减反射层和第二减反射层,且沿垂直于第一减反射层指向第二减反射层方向的方向上,设计第一减反射层和第二减反射层中氧元素和氮元素的含量逐渐变化,以使得第一减反射层和第二减反射层中氧元素和氮元素的含量比值逐渐变化,则沿垂直于第一减反射层指向第二减反射层方向的方向上,第一减反射层和第二减反射层对光的折射率的大小逐渐变化,且第一减反射层和第二减反射层对光的折射率的大小的变化趋势不同,从而有利于增大光在第一减反射层和第二减反射层中发生全反射的概率,以及降低入射至第一减反射层和第二减反射层中的光经过一次或多次折射进入空气中的概率,从而极大的减少入射至光伏组件上的光的损失,提高光伏组件对入射至光伏组件上的光的吸收率。A first anti-reflection layer and a second anti-reflection layer are stacked on the substrate, and along the direction perpendicular to the direction of the first anti-reflection layer to the second anti-reflection layer, the first anti-reflection layer and the second anti-reflection layer are designed The content of oxygen element and nitrogen element changes gradually, so that the content ratio of oxygen element and nitrogen element in the first anti-reflection layer and the second anti-reflection layer gradually changes, then the direction perpendicular to the first anti-reflection layer is directed to the second anti-reflection layer In the direction of the direction, the size of the refractive index of the first anti-reflection layer and the second anti-reflection layer to light gradually changes, and the change trend of the size of the refractive index of the first anti-reflection layer and the second anti-reflection layer to light is different, Therefore, it is beneficial to increase the probability of total reflection of light in the first anti-reflection layer and the second anti-reflection layer, and reduce the incidence of light entering the first anti-reflection layer and the second anti-reflection layer through one or more refractions. The probability of being in the air, thereby greatly reducing the loss of light incident on the photovoltaic module, and improving the absorption rate of the photovoltaic module to the light incident on the photovoltaic module.

附图说明Description of drawings

一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。One or more embodiments are exemplified by the pictures in the corresponding drawings, and these exemplifications do not constitute limitations of the embodiments, and elements with the same reference numerals in the drawings are denoted as similar elements, Unless otherwise stated, the figures in the accompanying drawings do not constitute a scale limitation.

图1为本申请一实施例提供的光伏电池的结构示意图;FIG. 1 is a schematic structural diagram of a photovoltaic cell according to an embodiment of the present application;

图2至图5为入射至本申请一实施例提供的第二减反射层上的光的四种传播路线的示意图;2 to 5 are schematic diagrams of four propagation paths of light incident on the second anti-reflection layer provided by an embodiment of the present application;

图6为本申请一实施例提供的第一减反射层或第二减反射层的折射率随第一减反射层或第二减反射层的材料成分变化而变化的折线图;6 is a graph showing the change of the refractive index of the first anti-reflection layer or the second anti-reflection layer as the material composition of the first anti-reflection layer or the second anti-reflection layer changes according to an embodiment of the present application;

图7至8为本申请另一实施例提供的光伏电池的制造方法各步骤对应的结构示意图;7 to 8 are schematic structural diagrams corresponding to each step of a method for manufacturing a photovoltaic cell according to another embodiment of the present application;

图9为本申请又一实施例提供的光伏组件的结构示意图。FIG. 9 is a schematic structural diagram of a photovoltaic module provided by another embodiment of the present application.

具体实施方式Detailed ways

由背景技术可知,光伏电池对光的吸收率有待提高。It can be known from the background art that the light absorption rate of photovoltaic cells needs to be improved.

本申请实施提供一种光伏电池,沿垂直于第一减反射层指向第二减反射层方向的方向上,第一减反射层和第二减反射层中一者的氧元素和氮元素的含量比值呈增大趋势,另一者的氧元素和氮元素的含量比值呈减小趋势,如此,沿垂直于第一减反射层指向第二减反射层方向的方向上,有利于使得第一减反射层和第二减反射层对光的折射率的大小均会呈现渐变的现象,且第一减反射层和第二减反射层对光的折射率的大小的变化趋势不同,从而有利于增大光在第一减反射层和第二减反射层中发生全反射的概率,以及降低入射至第一减反射层和第二减反射层中的光经过一次或多次折射进入空气中的概率,从而极大的减少入射至光伏组件上的光的损失,提高光伏组件对入射至光伏组件上的光的吸收率。An embodiment of the present application provides a photovoltaic cell, in a direction perpendicular to the direction from the first anti-reflection layer to the second anti-reflection layer, the content of oxygen and nitrogen in one of the first anti-reflection layer and the second anti-reflection layer The ratio shows an increasing trend, and the content ratio of the other oxygen element and nitrogen element shows a decreasing trend. In this way, along the direction perpendicular to the direction of the first anti-reflection layer to the second anti-reflection layer, it is beneficial to make the first anti-reflection layer. Both the reflective layer and the second anti-reflection layer will exhibit a gradual change in the refractive index of light, and the change trend of the refractive index of the first anti-reflection layer and the second anti-reflection layer to light is different, which is conducive to increasing the size of the refractive index of light. The probability of total reflection of light in the first anti-reflection layer and the second anti-reflection layer, and the probability of reducing the probability of light incident on the first anti-reflection layer and the second anti-reflection layer being refracted one or more times into the air , so as to greatly reduce the loss of light incident on the photovoltaic module, and improve the absorption rate of the photovoltaic module to the light incident on the photovoltaic module.

下面将结合附图对本申请的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施例中,为了使读者更好地理解本申请实施例而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请实施例所要求保护的技术方案。The embodiments of the present application will be described in detail below with reference to the accompanying drawings. However, those of ordinary skill in the art can understand that, in the embodiments of the present application, many technical details are provided for the reader to better understand the embodiments of the present application. However, even without these technical details and various changes and modifications based on the following embodiments, the technical solutions claimed in the embodiments of the present application can be implemented.

本申请一实施例提供一种光伏电池,以下将结合附图对本申请一实施例提供的光伏电池进行详细说明。图1为本申请一实施例提供的光伏电池的结构示意图;图2至图5为入射至本申请一实施例提供的第二减反射层上的光的四种传播路线的示意图;图6为本申请一实施例提供的第一减反射层或第二减反射层的折射率随第一减反射层或第二减反射层的材料成分变化而变化的折线图。需要说明的是,便于图示,图1至图5中未示意出光伏电池中的发射极、隧穿膜层、钝化膜层以及电极等结构。An embodiment of the present application provides a photovoltaic cell, and the photovoltaic cell provided by an embodiment of the present application will be described in detail below with reference to the accompanying drawings. 1 is a schematic structural diagram of a photovoltaic cell provided by an embodiment of the present application; FIGS. 2 to 5 are schematic diagrams of four propagation routes of light incident on the second anti-reflection layer provided by an embodiment of the present application; An embodiment of the present application provides a graph of the change in the refractive index of the first anti-reflection layer or the second anti-reflection layer with the change of the material composition of the first anti-reflection layer or the second anti-reflection layer. It should be noted that, for the convenience of illustration, the structures of the emitter, the tunneling film, the passivation film and the electrode in the photovoltaic cell are not shown in FIGS. 1 to 5 .

参考图1至图5,光伏电池包括:基底100;第一减反射层101,位于基底100的一侧;第二减反射层102,位于第一减反射层101远离基底100的一侧。其中,沿垂直于第一减反射层101指向第二减反射层102方向的方向X上,第一减反射层101和第二减反射层102中的一者的折射率呈增大趋势,另一者的折射率呈减小趋势,且第一减反射层101和第二减反射层102的折射率的差值先呈减小趋势然后呈增大趋势。1 to 5 , the photovoltaic cell includes: a substrate 100 ; a first anti-reflection layer 101 located on one side of the substrate 100 ; Wherein, along the direction X perpendicular to the direction of the first anti-reflection layer 101 to the second anti-reflection layer 102, the refractive index of one of the first anti-reflection layer 101 and the second anti-reflection layer 102 increases, and the other The refractive index of one of them is decreasing, and the difference between the refractive indices of the first anti-reflection layer 101 and the second anti-reflection layer 102 is first decreasing and then increasing.

可以理解的是,在一些实施例中,某一参数呈增大趋势指的是该参数逐渐增大,即在变化过程中,该参数一直是逐渐增大的形势;某一参数呈减小趋势指的是该参数逐渐减小,即在变化过程中,该参数一直是逐渐减小的形势。在另一些实施例中,某一参数呈增大趋势指的是在变化过程中,该参数整体呈增大的形势,在局部的变化过程中,该参数可以是呈逐渐减小的形势;某一参数呈减小趋势指的是在变化过程中,该参数整体呈减小的形势,在局部的变化过程中,该参数可以是呈逐渐增大的形势。在其他实施例中,某一参数呈增大趋势可以是该参数逐渐增大,某一参数呈减小趋势可以是整体呈减小的形势,在局部的变化过程中,该参数是呈逐渐增大的形势;或者,某一参数呈增大趋势可以是整体呈增大的形势,在局部的变化过程中,该参数是呈逐渐减小的形势,某一参数呈减小趋势指的是该参数逐渐减小。It can be understood that, in some embodiments, the increasing trend of a certain parameter means that the parameter gradually increases, that is, in the changing process, the parameter is always increasing gradually; a certain parameter has a decreasing trend. It means that the parameter gradually decreases, that is, in the process of change, the parameter has been gradually decreasing. In other embodiments, the increasing trend of a certain parameter means that in the process of change, the parameter increases as a whole, and in the process of local change, the parameter may gradually decrease; A decreasing trend of a parameter means that in the process of change, the parameter is in a state of decreasing as a whole, and in a local process of change, the parameter may be in a state of increasing gradually. In other embodiments, the increasing trend of a certain parameter may be that the parameter gradually increases, the decreasing trend of a certain parameter may be that the overall decreasing trend, and in the local change process, the parameter is gradually increasing Or, a parameter showing an increasing trend may be an overall increase, and in the local change process, the parameter is gradually decreasing, and a parameter showing a decreasing trend refers to the parameters gradually decrease.

例如,在一些实施例中,第一减反射层101和第二减反射层102中的一者的折射率呈增大趋势指的是:第一减反射层101和第二减反射层102中的一者的折射率逐渐增大;即在变化过程中,第一减反射层101和第二减反射层102中的一者的折射率一直是逐渐增大的形势;第一减反射层101和第二减反射层102中的一者的折射率呈减小趋势指的是:第一减反射层101和第二减反射层102中的一者的折射率逐渐减小,即在变化过程中,第一减反射层101和第二减反射层102中的一者的折射率一直是逐渐减小的形势。在另一些实施例中,第一减反射层101和第二减反射层102中的一者的折射率呈增大趋势指的是:在变化过程中,该折射率整体呈增大的形势,在局部的变化过程中,该折射率可以是呈逐渐减小的形势;第一减反射层101和第二减反射层102中的一者的折射率呈减小趋势指的是:在变化过程中,该折射率整体呈减小的形势,在局部的变化过程中,该折射率可以是呈逐渐增大的形势。在其他实施例中,折射率呈增大趋势可以是该折射率逐渐增大,折射率呈减小趋势可以是整体呈减小的形势,在局部的变化过程中,该折射率是呈逐渐增大的形势;或者,折射率呈增大趋势可以是整体呈增大的形势,在局部的变化过程中,该折射率是呈逐渐减小的形势,折射率呈减小趋势指的是该折射率逐渐减小。For example, in some embodiments, the index of refraction of one of the first anti-reflection layer 101 and the second anti-reflection layer 102 tends to increase, which means: the first anti-reflection layer 101 and the second anti-reflection layer 102 The refractive index of one of them gradually increases; that is, during the change process, the refractive index of one of the first anti-reflection layer 101 and the second anti-reflection layer 102 is always in a state of increasing gradually; the first anti-reflection layer 101 The decreasing trend of the refractive index of one of the first anti-reflection layer 101 and the second anti-reflection layer 102 means that the refractive index of one of the first anti-reflection layer 101 and the second anti-reflection layer 102 gradually decreases, that is, during the change process Among them, the refractive index of one of the first anti-reflection layer 101 and the second anti-reflection layer 102 is always in a state of gradually decreasing. In some other embodiments, the fact that the refractive index of one of the first anti-reflection layer 101 and the second anti-reflection layer 102 has an increasing trend refers to that during the change process, the refractive index increases as a whole, During the local change process, the refractive index may be in a state of gradually decreasing; the decreasing trend of the refractive index of one of the first anti-reflection layer 101 and the second anti-reflection layer 102 means that: during the change process , the refractive index is in a state of decreasing as a whole, and in a local change process, the refractive index may be in a state of increasing gradually. In other embodiments, the increasing trend of the refractive index may be that the refractive index gradually increases, the decreasing trend of the refractive index may be that the refractive index is decreasing as a whole, and in the local change process, the refractive index is gradually increasing Or, the index of refraction shows an increasing trend, which can be an overall increase. In the process of local changes, the index of refraction is gradually reduced, and the decreasing trend of the index of rate gradually decreases.

需要说明的是,若存在堆叠的第一介质层和第二介质层,且第一介质层的折射率低于第二介质层的折射率,第一介质层具有相对于第二介质层的临界角,当光从折射率较高的第二介质层中入射至折射率较低的第一介质层上,若光线在传播至第二介质层和第一介质层相接触处的入射角大于等于该临界角,折射光线将会消失,所有的入射光线将被反射至第二介质层中而不折射进第一介质层中,该光学现象称为全反射(total internalreflection,TIR)。其中,在全反射现象中,光刚好发生全反射,即光线的折射角为90度时光线的入射角为临界角。在一些实施例中,第一介质层可以包括减反射层和/或钝化层,第二介质层可以包括减反射层和/或钝化层。It should be noted that if there are stacked first dielectric layers and second dielectric layers, and the refractive index of the first dielectric layer is lower than that of the second dielectric layer, the first dielectric layer has a critical value relative to the second dielectric layer. Angle, when light is incident from the second medium layer with higher refractive index to the first medium layer with lower refractive index, if the incident angle of the light traveling to the contact between the second medium layer and the first medium layer is greater than or equal to At this critical angle, the refracted rays will disappear, and all the incident rays will be reflected into the second dielectric layer without being refracted into the first dielectric layer, an optical phenomenon called total internal reflection (TIR). Among them, in the phenomenon of total reflection, the light is just totally reflected, that is, the incident angle of the light when the refraction angle of the light is 90 degrees is the critical angle. In some embodiments, the first dielectric layer may include an anti-reflection layer and/or a passivation layer, and the second dielectric layer may include an anti-reflection layer and/or a passivation layer.

此外,第一介质层的折射率和第二介质层的折射率之间的差值越大,第一介质层相对于第二介质层的临界角越小,光线从第二介质层传播至第一介质层的过程中,越容易发生全反射现象,即光线越容易在第二介质层在发生反射,越不容易折射进第一介质层中。In addition, the greater the difference between the refractive index of the first dielectric layer and the refractive index of the second dielectric layer, the smaller the critical angle of the first dielectric layer relative to the second dielectric layer, and the light propagates from the second dielectric layer to the second dielectric layer. In the process of one dielectric layer, the phenomenon of total reflection is more likely to occur, that is, the more easily the light is reflected in the second dielectric layer, and the less likely it is refracted into the first dielectric layer.

其中,沿方向X上,第一减反射层101和第二减反射层102之间的折射率之差先呈减小趋势然后呈增大趋势,则沿方向X上,第一减反射层101和第二减反射层102相接触的界面处的临界角会先呈增大趋势然后呈减小趋势。可以理解的是,第一减反射层101和第二减反射层102相接触的界面处的临界角为该界面处的第一减反射层101相对于第二减反射层102的临界角。需要说明的是,前述已经详细描述了关于“呈增大趋势”、“呈增大趋势所包含的具体情形”、“呈减小趋势”以及“呈减小趋势所包含的具体情形”,在此对折射率之差呈增大趋势的相关描述和折射率之差呈减小趋势的相关描述不做赘述。Wherein, along the direction X, the difference in refractive index between the first anti-reflection layer 101 and the second anti-reflection layer 102 firstly decreases and then increases, so along the direction X, the first anti-reflection layer 101 The critical angle at the interface in contact with the second anti-reflection layer 102 will first increase and then decrease. It can be understood that the critical angle at the interface between the first anti-reflection layer 101 and the second anti-reflection layer 102 is the critical angle of the first anti-reflection layer 101 relative to the second anti-reflection layer 102 at the interface. It should be noted that the foregoing has described in detail about the "increasing trend", "the specific situation included in the increasing trend", "the decreasing trend" and "the specific situation included in the decreasing trend". The related description that the difference in refractive index is increasing and the description that the difference in refractive index is decreasing will not be repeated here.

在上述前提下,光从第二减反射层102远离第一减反射层101的一侧入射,依次在第二减反射层102、第一减反射层101以及基底100中传播的情况可以分为以下四种情形:Under the above premise, the case where light is incident from the side of the second anti-reflection layer 102 away from the first anti-reflection layer 101 and propagates in the second anti-reflection layer 102 , the first anti-reflection layer 101 and the substrate 100 in sequence can be divided into The following four situations:

需要说明的是,为了便于后续的说明,图2至图5中以沿方向X上,第一减反射层101的折射率大小的变化趋势为由低到高,第二减反射层102的折射率大小的变化趋势为由高到低为示例,在实际应用中,沿方向X上,第一减反射层101的折射率大小的变化趋势可以为由高到低,第二减反射层102的折射率大小的变化趋势可以为由低到高。It should be noted that, in order to facilitate the subsequent description, in FIGS. 2 to 5 , along the direction X, the change trend of the refractive index of the first anti-reflection layer 101 is from low to high, and the refraction of the second anti-reflection layer 102 The change trend of the refractive index is from high to low as an example. In practical applications, along the direction X, the change trend of the refractive index of the first anti-reflection layer 101 can be from high to low. The changing trend of the size of the refractive index can be from low to high.

情形一:参考图2,光入射至第二减反射层102的折射率较高处,光第一次从第二减反射层102中入射至第二减反射层102与第一减反射层101相接触的A位置时,光在A处的入射角为β,第一减反射层101在A处相对于第二减反射层102的临界角小于等于入射角β。Case 1: Referring to FIG. 2 , the light is incident on the second anti-reflection layer 102 where the refractive index is higher, and the light is incident from the second anti-reflection layer 102 to the second anti-reflection layer 102 and the first anti-reflection layer 101 for the first time At the contact position A, the incident angle of the light at A is β, and the critical angle of the first anti-reflection layer 101 relative to the second anti-reflection layer 102 at A is less than or equal to the incident angle β.

由于入射角β大于等于A处第一减反射层101相对于第二减反射层102的临界角,则光会在第二减反射层102层中发生全反射。沿方向X上,第一减反射层101的折射率呈增大趋势,第二减反射层102的折射率呈减小趋势,则第一减反射层101的折射率和第二减反射层102的折射率的差值会呈减小趋势,使得第一减反射层101和第二减反射层102相接触处的临界角呈增大趋势,则存在光在第二减反射层102中经过几次全反射后,例如,光从第二减反射层102中入射至第二减反射层102与第一减反射层101相接触的B位置时,入射角β小于B处第一减反射层101相对于第二减反射层102的临界角,第二减反射层102中的光会折射进第一减反射层101中。Since the incident angle β is greater than or equal to the critical angle of the first anti-reflection layer 101 relative to the second anti-reflection layer 102 at A, the light will be totally reflected in the second anti-reflection layer 102 . Along the direction X, the refractive index of the first anti-reflection layer 101 shows an increasing trend, and the refractive index of the second anti-reflection layer 102 shows a decreasing trend, so the refractive index of the first anti-reflection layer 101 and the second anti-reflection layer 102 The difference between the refractive indices of the first anti-reflection layer 101 and the second anti-reflection layer 102 will tend to decrease, so that the critical angle at the contact point between the first anti-reflection layer 101 and the second anti-reflection layer 102 will tend to increase. After sub-total reflection, for example, when light is incident from the second anti-reflection layer 102 to the position B where the second anti-reflection layer 102 is in contact with the first anti-reflection layer 101, the incident angle β is smaller than that of the first anti-reflection layer 101 at B Relative to the critical angle of the second anti-reflection layer 102 , the light in the second anti-reflection layer 102 is refracted into the first anti-reflection layer 101 .

光在B处发生折射时,是从折射率高的第二减反射层102进入折射率低的第一减反射层101,则折射角Ψ大于入射角β,由于沿方向X上,第一减反射层101和第二减反射层102相接触处的临界角先呈增大趋势然后呈减小趋势,则在该光后续的传播过程中,再次从第一减反射层101中传播至第一减反射层101与第二减反射层102相接触处时,有利于使得此处的入射角Ψ大于此处第一减反射层101和第二减反射层102之间的临界角,因而该光容易在第一减反射层101中发生全反射,不容易折射进第二减反射层102中。此外,沿方向X上,第二减反射层102中的光在B处之后入射至第一减反射层101和第二减反射层102相接触处时,也有利于使得此处的入射角Ψ大于此处第一减反射层101和第二减反射层102之间的临界角,因而光容易在第一减反射层101发生全反射,不容易折射进第二减反射层102中。需要说明的是,前述已经详细描述了关于“呈增大趋势”以及“呈增大趋势”所包含的具体情形,在此对临界角呈增大趋势的相关描述和临界角呈减小趋势的相关描述不做赘述。When the light is refracted at B, it enters the first anti-reflection layer 101 with a low refractive index from the second anti-reflection layer 102 with a high refractive index, and the refraction angle Ψ is greater than the incident angle β. The critical angle at the contact point between the reflection layer 101 and the second anti-reflection layer 102 first increases and then decreases, so in the subsequent propagation process of the light, it propagates from the first anti-reflection layer 101 to the first anti-reflection layer 101 again. When the anti-reflection layer 101 is in contact with the second anti-reflection layer 102, it is beneficial to make the incident angle Ψ here greater than the critical angle between the first anti-reflection layer 101 and the second anti-reflection layer 102, so the light Total reflection easily occurs in the first anti-reflection layer 101 , and it is not easy to be refracted into the second anti-reflection layer 102 . In addition, along the direction X, when the light in the second anti-reflection layer 102 is incident on the contact point between the first anti-reflection layer 101 and the second anti-reflection layer 102 after the point B, it is also beneficial to make the incident angle Ψ here. If the angle is greater than the critical angle between the first anti-reflection layer 101 and the second anti-reflection layer 102 , light is likely to be totally reflected in the first anti-reflection layer 101 and not easily refracted into the second anti-reflection layer 102 . It should be noted that the foregoing has described in detail about the “increasing trend” and the specific situations included in the “increasing trend”, and here the relevant description of the critical angle showing an increasing trend and the critical angle showing a decreasing trend The relevant descriptions are not repeated.

由上述分析可知,在情形一中,从第二减反射层102远离第一减反射层101的一侧入射的光大部分都依次在第二减反射层102和第一减反射层101发生全反射,然后最终被基底100充分吸收,降低入射至光伏电池中的光最终传播至光伏电池外的概率,从而有利于提高光伏电池对光的吸收率。It can be seen from the above analysis that, in case 1, most of the light incident from the side of the second anti-reflection layer 102 away from the first anti-reflection layer 101 is totally reflected in the second anti-reflection layer 102 and the first anti-reflection layer 101 in turn. , and finally fully absorbed by the substrate 100 , reducing the probability that the light incident into the photovoltaic cell will eventually propagate to the outside of the photovoltaic cell, thereby helping to improve the light absorption rate of the photovoltaic cell.

情形二:参考图3,光入射至第二减反射层102的折射率较高处,光第一次从第二减反射层102中入射至第二减反射层102与第一减反射层101相接触的A位置时,光在A处的入射角为β,第一减反射层101在A处相对于第二减反射层102的临界角大于入射角β。Case 2: Referring to FIG. 3 , the light is incident on the second anti-reflection layer 102 where the refractive index is higher, and the light is incident from the second anti-reflection layer 102 to the second anti-reflection layer 102 and the first anti-reflection layer 101 for the first time At the contact position A, the incident angle of the light at A is β, and the critical angle of the first anti-reflection layer 101 relative to the second anti-reflection layer 102 at A is greater than the incident angle β.

由于入射角β小于A处第一减反射层101相对于第二减反射层102的临界角,则光会在第二减反射层102中发生反射和折射,即部分光会从第二减反射层102中折射进第一减反射层101中。折射进第一减反射层101中的光部分会直接被基底100吸收,部分会反射至第一减反射层101与第二减反射层102相接触处,例如C处。Since the incident angle β is smaller than the critical angle of the first anti-reflection layer 101 relative to the second anti-reflection layer 102 at A, the light will be reflected and refracted in the second anti-reflection layer 102, that is, part of the light will be reflected from the second anti-reflection layer 102. The layer 102 is refracted into the first anti-reflection layer 101 . Part of the light refracted into the first anti-reflection layer 101 will be directly absorbed by the substrate 100 , and part of the light will be reflected to the contact point between the first anti-reflection layer 101 and the second anti-reflection layer 102 , for example, at C.

由前述第一减反射层101的折射率的变化趋势和第二减反射层102的折射率的变化趋势可知,C处第一减反射层101和第二减反射层102之间的折射率之差小于A处第一减反射层101和第二减反射层102之间的折射率之差。由于光从第一减反射层101向第二减反射层102中传播时,第一减反射层101和第二减反射层102之间的折射率之差越来越小,则折射角越来越小,即角Ψ与角β之间的差值大于角Ψ与角δ之间的差值,则C处的折射角δ大于A处入射角β,有利于增大角δ大于第二减反射层102与空气之间的临界角的概率,从而有利于降低光从第二减反射层102层折射进空气中的概率,以提高入射光经过第一减反射层101和第二减反射层102的反射与折射进入基底100中的概率,从而有利于提高光伏电池对光的吸收率。From the change trend of the refractive index of the first anti-reflection layer 101 and the change trend of the refractive index of the second anti-reflection layer 102, it can be known that the difference between the refractive indices between the first anti-reflection layer 101 and the second anti-reflection layer 102 at C is The difference is smaller than the difference in refractive index between the first anti-reflection layer 101 and the second anti-reflection layer 102 at A. As the light propagates from the first anti-reflection layer 101 to the second anti-reflection layer 102, the refractive index difference between the first anti-reflection layer 101 and the second anti-reflection layer 102 becomes smaller and smaller, and the refraction angle becomes smaller and smaller. The smaller, that is, the difference between the angle Ψ and the angle β is greater than the difference between the angle Ψ and the angle δ, the refraction angle δ at C is greater than the incident angle β at A, which is beneficial to increase the angle δ to be greater than the second anti-reflection The probability of the critical angle between the layer 102 and the air is beneficial to reduce the probability of light refracting from the second anti-reflection layer 102 into the air, so as to improve the incident light passing through the first anti-reflection layer 101 and the second anti-reflection layer 102 The probability of reflection and refraction entering into the substrate 100 is favorable to improve the light absorption rate of the photovoltaic cell.

情形三:参考图4,光入射至第二减反射层102的折射率较低处,光第一次从第一减反射层101中入射至第一减反射层101与基底100相接触的D位置时,光在D处的入射角为Ψ,第二减反射层102在E处相对于第一减反射层101的临界角小于等于入射角Ψ。Case 3: Referring to FIG. 4 , the light is incident on the lower refractive index of the second anti-reflection layer 102 , and the light is incident from the first anti-reflection layer 101 to D where the first anti-reflection layer 101 is in contact with the substrate 100 for the first time. When the angle of incidence of light at D is Ψ, the critical angle of the second anti-reflection layer 102 relative to the first anti-reflection layer 101 at E is less than or equal to the incident angle Ψ.

情形四:参考图5,光入射至第二减反射层102的折射率较低处,光第一次从第一减反射层101中入射至第一减反射层101与基底100相接触的D位置时,光在D处的入射角为Ψ,第二减反射层102在E处相对于第一减反射层101的临界角大于入射角Ψ。Case 4: Referring to FIG. 5 , the light is incident on the place where the refractive index of the second anti-reflection layer 102 is lower, and the light is incident from the first anti-reflection layer 101 to D where the first anti-reflection layer 101 is in contact with the substrate 100 for the first time. When the angle of incidence of light at D is Ψ, the critical angle of the second anti-reflection layer 102 relative to the first anti-reflection layer 101 at E is greater than the incident angle Ψ.

对于情形三和情形四,光由空气中折射进第二减反射层102,由于第二减反射层102的折射率低于第一减反射层101的折射率,则光势必会从第二减反射层102中折射进第一减反射层101中,无论是如情形三中第二减反射层102在E处相对于第一减反射层101的临界角小于等于入射角Ψ,光会在第一减反射层101中经过一段时间的全反射,不会折射进第二减反射层102中,然后被基底100吸收,还是如情形四,第二减反射层102在E处相对于第一减反射层101的临界角大于入射角Ψ,在第一减反射层101和第二减反射层102的相接触处,部分光发生反射进入第一减反射层101中,然后从第一减反射层101中折射进基底100中。可见,情形三和情形四中,大部分光均会传播至基底100中,且沿与方向X平行且相反的方向上,基底100与第一减反射层101之间的折射率之差呈增大趋势,则基底100与第一减反射层101之间的临界角呈减小趋势,有利于增大光在基底100中的发生全反射的概率,降低光从基底100中折射出来最终进入空气中的概率,从而极大的减少入射至光伏组件上的光的损失,提高光伏组件对光的吸收率。For cases 3 and 4, light is refracted from the air into the second anti-reflection layer 102. Since the refractive index of the second anti-reflection layer 102 is lower than the refractive index of the first anti-reflection layer 101, the light is bound to be refracted from the second anti-reflection layer 101. The reflection layer 102 is refracted into the first anti-reflection layer 101, no matter if the critical angle of the second anti-reflection layer 102 relative to the first anti-reflection layer 101 at E is less than or equal to the incident angle Ψ in the third case, the light will After a period of total reflection in the first anti-reflection layer 101, it will not be refracted into the second anti-reflection layer 102 and then absorbed by the substrate 100. As in the fourth case, the second anti-reflection layer 102 is at E relative to the first anti-reflection layer 102. The critical angle of the reflection layer 101 is greater than the incident angle Ψ, and at the contact point between the first anti-reflection layer 101 and the second anti-reflection layer 102, part of the light is reflected into the first anti-reflection layer 101, and then from the first anti-reflection layer 102. 101 into the substrate 100. It can be seen that in the third and fourth cases, most of the light will propagate into the substrate 100, and along the direction parallel to and opposite to the direction X, the difference in refractive index between the substrate 100 and the first anti-reflection layer 101 increases The general trend is that the critical angle between the substrate 100 and the first anti-reflection layer 101 tends to decrease, which is beneficial to increase the probability of total reflection of light in the substrate 100 and reduce the refraction of light from the substrate 100 and finally enter the air Therefore, the loss of light incident on the photovoltaic module is greatly reduced, and the absorption rate of the photovoltaic module to light is improved.

此外,情形三中,在光传播进基底100中时,由于沿光的传播方向,即沿与方向X平行且与方向X相反的方向上,第一减反射层101的折射率呈减小趋势,即基底100的折射率与第一减反射层101的折射率之差呈增大趋势,光从基底100中折射进第一减反射层101中的概率越来越小,从而有利于降低传播至光伏电池中的光再次传播至空气中的概率。情形四中,在第一减反射层101和第二减反射层102的相接触处,虽然部分光会从第一减反射层101中折射进第二减反射层102中,但由于沿与方向X平行且与方向X相反的方向上,第二减反射层102的折射率呈增大趋势,则光从第二减反射层102中折射进空气中的概率越来越小,从而也有利于降低传播至光伏电池中的光再次传播至空气中的概率。In addition, in case 3, when the light propagates into the substrate 100, the refractive index of the first anti-reflection layer 101 tends to decrease along the propagation direction of the light, that is, along the direction parallel to the direction X and opposite to the direction X , that is, the difference between the refractive index of the substrate 100 and the refractive index of the first anti-reflection layer 101 tends to increase, and the probability of light being refracted from the substrate 100 into the first anti-reflection layer 101 is getting smaller and smaller, which is beneficial to reduce the propagation The probability that light entering a photovoltaic cell will re-transmit into the air. In case 4, at the contact point between the first anti-reflection layer 101 and the second anti-reflection layer 102, although part of the light will be refracted from the first anti-reflection layer 101 into the second anti-reflection layer 102, due to the direction of In the direction parallel to X and opposite to the direction X, the refractive index of the second anti-reflection layer 102 tends to increase, and the probability of light being refracted into the air from the second anti-reflection layer 102 becomes smaller and smaller, which is beneficial to Reduces the probability of light propagating into the photovoltaic cell re-propagating into the air.

由上述四种情形的分析可知,设计沿垂直于第一减反射层101指向第二减反射层102方向的方向X上,第一减反射层101和第二减反射层102中的一者的折射率呈增大趋势,另一者的折射率呈减小趋势,且第一减反射层101和第二减反射层102的折射率的差值先呈减小趋势然后呈增大趋势的光伏电池,有利于增大光在第一减反射层101和/或第二减反射层102和/或基底100中发生全反射的概率,以及降低光在第一减反射层101和/或第二减反射层102和/或基底100中经过一次或多次折射进入空气中的概率,从而极大的降低入射至光伏组件上的光的损失,提高光伏组件对光的吸收率。From the analysis of the above four cases, it can be seen that the design of one of the first anti-reflection layer 101 and the second anti-reflection layer 102 along the direction X perpendicular to the direction of the first anti-reflection layer 101 to the second anti-reflection layer 102 The refractive index is increasing, the refractive index of the other is decreasing, and the difference between the refractive indices of the first anti-reflection layer 101 and the second anti-reflection layer 102 is first decreasing and then increasing. The battery is beneficial to increase the probability of total reflection of light in the first anti-reflection layer 101 and/or the second anti-reflection layer 102 and/or the substrate 100, and reduce the light in the first anti-reflection layer 101 and/or the second anti-reflection layer 101. The probability of the anti-reflection layer 102 and/or the substrate 100 being refracted one or more times into the air greatly reduces the loss of light incident on the photovoltaic module and improves the light absorption rate of the photovoltaic module.

在一些实施例中,第一减反射层101的折射率和第二减反射层102的折射率的最大值为1.9~2.1,第一减反射层101的折射率和第二减反射层102的折射率的最小值为1.4~1.6,即第一减反射层101的折射率的最大值的变化范围与第二减反射层102的折射率的最大值的变化范围相同,第一减反射层101的折射率的最小值的变化范围与第二减反射层102的折射率的最小值的变化范围相同。如此,有利于避免第一减反射层101和第二减反射层102的折射率之差过大,避免光在第一减反射层101或第二减反射层102中发生的全反射次数过多,造成不必要的光损失,从而有利于提高光传播至基底100中的概率,以提高基底100对光的吸收率。In some embodiments, the maximum value of the refractive index of the first anti-reflection layer 101 and the refractive index of the second anti-reflection layer 102 is 1.9˜2.1, and the refractive index of the first anti-reflection layer 101 and the second anti-reflection layer 102 The minimum value of the refractive index is 1.4˜1.6, that is, the variation range of the maximum value of the refractive index of the first anti-reflection layer 101 is the same as the variation range of the maximum value of the refractive index of the second anti-reflection layer 102 . The variation range of the minimum value of the refractive index of α is the same as the variation range of the minimum value of the refractive index of the second anti-reflection layer 102 . In this way, it is beneficial to avoid that the difference between the refractive indices of the first anti-reflection layer 101 and the second anti-reflection layer 102 is too large, and avoid excessive total reflection times of light in the first anti-reflection layer 101 or the second anti-reflection layer 102 , causing unnecessary light loss, which is beneficial to improve the probability of light propagating into the substrate 100 , so as to improve the light absorption rate of the substrate 100 .

在一些实施例中,第一减反射层101的折射率最高值与第二减反射层102的折射率最高值相同,第一减反射层101的折射率最低值与第二减反射层102的折射率最低值相同。如此,沿方向X上,有利于控制第一减反射层101的折射率由最低值渐变为最高值的幅度与第二减反射层102的折射率由最高值渐变为最低值的幅度一致,从而有利于使得第一减反射层101和第二减反射层102的折射率之差的变化更平缓,譬如在接近第一减反射层101和第二减反射层102的中心区域时,第一减反射层101和第二减反射层102的折射率之差几乎为零,沿方向X上,第一减反射层101和第二减反射层102的折射率之差先平缓的减小,减小至第一减反射层101和第二减反射层102的折射率之差为零时,第一减反射层101和第二减反射层102的折射率之差再平缓的增大。此外,第一减反射层101和第二减反射层102的折射率之差的变化更平缓有利于进一步降低光从光伏电池中折射进空气中的概率,从而有利于进一步提高光伏电池对光的吸收率。In some embodiments, the highest value of the refractive index of the first anti-reflection layer 101 is the same as the highest value of the refractive index of the second anti-reflection layer 102 , and the lowest value of the refractive index of the first anti-reflection layer 101 is the same as the highest value of the refractive index of the second anti-reflection layer 102 The lowest values of refractive index are the same. In this way, along the direction X, it is beneficial to control the amplitude of the gradient of the refractive index of the first anti-reflection layer 101 from the lowest value to the highest value is consistent with the amplitude of the gradient of the refractive index of the second anti-reflection layer 102 from the highest value to the lowest value, thereby It is beneficial to make the change of the difference between the refractive indices of the first anti-reflection layer 101 and the second anti-reflection layer 102 more gradual. The difference between the refractive indices of the reflective layer 101 and the second anti-reflection layer 102 is almost zero. Along the direction X, the difference between the refractive indices of the first anti-reflection layer 101 and the second anti-reflection layer 102 decreases firstly and then decreases. When the difference between the refractive indices of the first anti-reflection layer 101 and the second anti-reflection layer 102 is zero, the difference between the refractive indices of the first anti-reflection layer 101 and the second anti-reflection layer 102 increases gradually. In addition, the change of the difference between the refractive indices of the first anti-reflection layer 101 and the second anti-reflection layer 102 is more gradual, which is beneficial to further reduce the probability of light being refracted from the photovoltaic cell into the air, thereby further improving the light efficiency of the photovoltaic cell. Absorption rate.

在一些实施例中,第一减反射层101的折射率和第二减反射层102的折射率的最高值均可以为2.1,第一减反射层101的折射率和第二减反射层102的折射率的最低值均可以为1.5。In some embodiments, the highest value of the refractive index of the first anti-reflection layer 101 and the refractive index of the second anti-reflection layer 102 may both be 2.1, and the refractive index of the first anti-reflection layer 101 and the second anti-reflection layer 102 The lowest value of the refractive index can be 1.5.

在一些实施例中,沿垂直于第一减反射层101指向第二减反射层102方向的方向X上,第一减反射层101包括第一氮氧化硅材料,第二减反射层102包括第二氮氧化硅材料,第一减反射层101和第二减反射层102中一者的氧元素和氮元素的含量比值呈增大趋势,另一者的氧元素和氮元素的含量比值呈减小趋势。由于氮氧化硅材料中氧元素和氮元素的含量比值越高,氮氧化硅材料的折射率越低,则沿方向X上,由于氮氧化硅材料中氧元素和氮元素的含量比值的变化,第一减反射层101和第二减反射层102中的一者的折射率呈增大趋势,另一者的折射率呈减小趋势。需要说明的是,前述已经详细描述了关于“呈增大趋势”、“呈增大趋势所包含的具体情形”、“呈减小趋势”以及“呈减小趋势所包含的具体情形”,在此对氧元素和氮元素的含量比值呈增大趋势的相关描述和氧元素和氮元素的含量比值呈减小趋势的相关描述不做赘述。需要说明的是,为了便于后续的说明,以沿方向X上,第一减反射层101中氧元素和氮元素的含量比值呈减小趋势,第二减反射层102中氧元素和氮元素的含量比值呈增大趋势为示例,即沿方向X上,第一减反射层101的折射率呈增大趋势,第二减反射层102的折射率呈减小趋势,在实际应用中,沿方向X上,可以是第一减反射层101中氧元素和氮元素的含量比值呈增大趋势,第二减反射层102中氧元素和氮元素的含量比值呈减小趋势。In some embodiments, along the direction X perpendicular to the direction of the first anti-reflection layer 101 to the second anti-reflection layer 102, the first anti-reflection layer 101 includes a first silicon oxynitride material, and the second anti-reflection layer 102 includes a first anti-reflection layer 102. In the silicon oxynitride material, the content ratio of oxygen and nitrogen in one of the first anti-reflection layer 101 and the second anti-reflection layer 102 is increasing, and the content ratio of oxygen and nitrogen in the other is decreasing. Small trend. Since the higher the content ratio of oxygen and nitrogen in the silicon oxynitride material, the lower the refractive index of the silicon oxynitride material, along the direction X, due to the change in the content ratio of oxygen and nitrogen in the silicon oxynitride material, The refractive index of one of the first anti-reflection layer 101 and the second anti-reflection layer 102 tends to increase, and the refractive index of the other tends to decrease. It should be noted that the foregoing has described in detail about the "increasing trend", "the specific situation included in the increasing trend", "the decreasing trend" and "the specific situation included in the decreasing trend". The related description that the content ratio of oxygen element and nitrogen element shows an increasing trend and the related description that the content ratio of oxygen element and nitrogen element shows a decreasing trend will not be repeated here. It should be noted that, in order to facilitate the subsequent description, along the direction X, the content ratio of oxygen element and nitrogen element in the first anti-reflection layer 101 tends to decrease, and the content ratio of oxygen element and nitrogen element in the second anti-reflection layer 102 It is an example that the content ratio shows an increasing trend, that is, along the direction X, the refractive index of the first anti-reflection layer 101 shows an increasing trend, and the refractive index of the second anti-reflection layer 102 shows a decreasing trend. In practical applications, along the direction On X, it may be that the content ratio of oxygen element and nitrogen element in the first anti-reflection layer 101 tends to increase, and the content ratio of oxygen element and nitrogen element in the second anti-reflection layer 102 tends to decrease.

在一些实施例中,第一减反射层101包括第一氮氧化硅材料,第二减反射层102包括第二氮氧化硅材料,沿垂直于第一减反射层101指向第二减反射层102方向的方向X上,第一减反射层101和第二减反射层102中一者的氧元素含量呈增大趋势,另一者的氧元素含量呈减小趋势,且第一减反射层101和第二减反射层102中氧元素与硅元素的含量比值不大于0.5,如此,有利于进一步保证第一减反射层101的折射率和第二减反射层102的折射率呈相反的变化趋势。在一个例子中,第一减反射层101和第二减反射层102中氧元素与硅元素的含量比值不大于0.43。需要说明的是,前述已经详细描述了关于“呈增大趋势”、“呈增大趋势所包含的具体情形”、“呈减小趋势”以及“呈减小趋势所包含的具体情形”,在此对氧元素含量呈增大趋势的相关描述和氧元素含量呈减小趋势的相关描述不做赘述。In some embodiments, the first anti-reflection layer 101 includes a first silicon oxynitride material, the second anti-reflection layer 102 includes a second silicon oxynitride material, and the direction perpendicular to the first anti-reflection layer 101 is directed to the second anti-reflection layer 102 In the direction X of the direction, the oxygen element content of one of the first anti-reflection layer 101 and the second anti-reflection layer 102 tends to increase, and the oxygen element content of the other tends to decrease, and the first anti-reflection layer 101 and the content ratio of oxygen element and silicon element in the second anti-reflection layer 102 is not greater than 0.5, so it is beneficial to further ensure that the refractive index of the first anti-reflection layer 101 and the refractive index of the second anti-reflection layer 102 have opposite changing trends . In one example, the content ratio of oxygen element to silicon element in the first anti-reflection layer 101 and the second anti-reflection layer 102 is not greater than 0.43. It should be noted that the foregoing has described in detail about the "increasing trend", "the specific situation included in the increasing trend", "the decreasing trend" and "the specific situation included in the decreasing trend". The related description of the increasing trend of the oxygen element content and the related description of the decreasing trend of the oxygen element content will not be repeated here.

需要说明的是,本公开实施例中以“沿方向X上,第一减反射层101中的氧元素含量呈减小趋势,使得第一减反射层101中的氧元素和氮元素的含量比值呈减小趋势,以使第一减反射层101的折射率呈增大趋势;第二减反射层102中的氧元素含量呈增大趋势,使得第二减反射层102中的氧元素和氮元素的含量比值呈增大趋势,以使第二减反射层102的折射率呈减小趋势”为示例,在实际应用中,沿方向X上,可以是:第一减反射层101中的氧元素含量呈增大趋势,第二减反射层102中的氧元素含量呈减小趋势。It should be noted that, in the embodiment of the present disclosure, “along the direction X, the content of oxygen in the first anti-reflection layer 101 tends to decrease, so that the content ratio of oxygen and nitrogen in the first anti-reflection layer 101 is shows a decreasing trend, so that the refractive index of the first anti-reflection layer 101 shows an increasing trend; the content of oxygen in the second anti-reflection layer 102 shows an increasing trend, so that the oxygen and nitrogen in the second anti-reflection layer 102 The content ratio of the elements tends to increase, so that the refractive index of the second anti-reflection layer 102 tends to decrease” as an example. In practical applications, along the direction X, it can be: oxygen in the first anti-reflection layer 101 The element content tends to increase, and the oxygen element content in the second anti-reflection layer 102 tends to decrease.

在一些实施例中,第一减反射层101包括第一氮氧化硅材料,第二减反射层102包括第二氮氧化硅材料,沿垂直于第一减反射层101指向第二减反射层102方向的方向X上,第一减反射层101和第二减反射层102中一者的氮元素含量呈增大趋势,另一者的氮元素含量呈减小趋势,且第一减反射层101和第二减反射层102中氮元素与硅元素的含量比值变化范围为1.05~1.33,如此,有利于进一步保证第一减反射层101的折射率和第二减反射层102的折射率呈相反的变化趋势。需要说明的是,前述已经详细描述了关于“呈增大趋势”、“呈增大趋势所包含的具体情形”、“呈减小趋势”以及“呈减小趋势所包含的具体情形”,在此对氮元素含量呈增大趋势的相关描述和氮元素含量呈减小趋势的相关描述不做赘述。In some embodiments, the first anti-reflection layer 101 includes a first silicon oxynitride material, the second anti-reflection layer 102 includes a second silicon oxynitride material, and the direction perpendicular to the first anti-reflection layer 101 is directed to the second anti-reflection layer 102 In the direction X of the direction, the nitrogen content of one of the first anti-reflection layer 101 and the second anti-reflection layer 102 tends to increase, and the nitrogen content of the other tends to decrease, and the first anti-reflection layer 101 and the content ratio of nitrogen element and silicon element in the second anti-reflection layer 102 ranges from 1.05 to 1.33, so it is beneficial to further ensure that the refractive index of the first anti-reflection layer 101 and the refractive index of the second anti-reflection layer 102 are opposite changing trend. It should be noted that the foregoing has described in detail about the "increasing trend", "the specific situation included in the increasing trend", "the decreasing trend" and "the specific situation included in the decreasing trend". The description about the increasing trend of nitrogen content and the description about the decreasing trend of nitrogen content will not be repeated here.

需要说明的是,在一些实施例中,沿方向X上,可以是第一减反射层101和第二减反射层102中一者的氧元素含量和氮元素含量均呈增大趋势,另一者的氧元素含量和氮元素含量均呈减小趋势;在另一些实施例中,沿方向X上,可以仅是第一减反射层101和第二减反射层102中一者的氮元素含量均呈增大趋势,仅是另一者的氮元素含量呈减小趋势。前述两种实施例中,沿方向X上,第一减反射层101和第二减反射层102中一者的氧元素含量和/或氮元素含量呈增大趋势,均会使得其氧元素和氮元素的含量比值呈增大趋势,以使其折射率呈减小趋势;第一减反射层101和第二减反射层102中另一者的氧元素含量和/或氮元素含量呈减小趋势,均会使得其氧元素和氮元素的含量比值呈减小趋势,以使其折射率呈增大趋势。It should be noted that, in some embodiments, along the direction X, the content of oxygen and nitrogen in one of the first anti-reflection layer 101 and the second anti-reflection layer 102 both tend to increase, and the other Both the oxygen element content and the nitrogen element content of the first anti-reflection layer 101 and the nitrogen element content tend to decrease; in other embodiments, along the direction X, the nitrogen element content of only one of the first anti-reflection layer 101 and the second anti-reflection layer 102 may be Both showed an increasing trend, but the nitrogen content of the other showed a decreasing trend. In the foregoing two embodiments, along the direction X, the oxygen element content and/or nitrogen element content of one of the first anti-reflection layer 101 and the second anti-reflection layer 102 tends to increase, which will cause the oxygen element and the nitrogen element to increase. The content ratio of nitrogen element tends to increase, so that its refractive index tends to decrease; the oxygen element content and/or nitrogen element content of the other one of the first anti-reflection layer 101 and the second anti-reflection layer 102 decreases trend, the content ratio of oxygen element and nitrogen element will tend to decrease, so that the refractive index will tend to increase.

本公开实施例中以“沿方向X上,第一减反射层101中的氧元素含量和氮元素含量均呈减小趋势,使得第一减反射层101中的氧元素和氮元素的含量比值呈减小趋势,以使第一减反射层101的折射率呈增大趋势;第二减反射层102中的氧元素含量和氮元素含量均呈增大趋势,使得第二减反射层102中的氧元素和氮元素的含量比值呈增大趋势,以使第二减反射层102的折射率呈减小趋势”为示例,在实际应用中,沿方向X上,可以是:第一减反射层101中的氧元素含量和氮元素含量均呈增大趋势,第二减反射层102中的氧元素含量和氮元素含量均呈减小趋势。In the embodiment of the present disclosure, “along the direction X, the content of oxygen and nitrogen in the first anti-reflection layer 101 both show a decreasing trend, so that the content ratio of oxygen and nitrogen in the first anti-reflection layer 101 is shows a decreasing trend, so that the refractive index of the first anti-reflection layer 101 shows an increasing trend; the oxygen element content and nitrogen element content in the second anti-reflection layer 102 both show an increasing trend, so that the second anti-reflection layer 102 has an increasing trend. The content ratio of the oxygen element and the nitrogen element tends to increase, so that the refractive index of the second anti-reflection layer 102 has a decreasing trend” as an example. In practical applications, along the direction X, it can be: the first anti-reflection layer The content of oxygen element and the content of nitrogen element in the layer 101 both show an increasing trend, and the content of oxygen element and nitrogen element in the second anti-reflection layer 102 both show a decreasing trend.

在一些实施例中,第一减反射层101中氧元素和氮元素的含量比值不大于0.9,第二减反射层102中氧元素和氮元素的含量比值不大于0.9。需要说明的是,沿方向X上,第一减反射层101中的氧元素含量是呈减小趋势的,则存在第一减反射层101中的部分区域不存在氧元素,仅以氮元素和硅元素构成,因而存在第一减反射层101中氧元素和氮元素的含量比值为0的情况,同理,存在第二减反射层102中的部分区域不存在氧元素,仅以氮元素和硅元素构成,因而存在第二减反射层102中氧元素和氮元素的含量比值为0的情况。In some embodiments, the content ratio of oxygen element and nitrogen element in the first anti-reflection layer 101 is not greater than 0.9, and the content ratio of oxygen element and nitrogen element in the second anti-reflection layer 102 is not greater than 0.9. It should be noted that, along the direction X, the oxygen element content in the first anti-reflection layer 101 tends to decrease, so there is no oxygen element in the partial area of the first anti-reflection layer 101, and only nitrogen and It is composed of silicon element, so there is a situation where the content ratio of oxygen element and nitrogen element in the first anti-reflection layer 101 is 0. Similarly, there is no oxygen element in the partial area of the second anti-reflection layer 102, and only nitrogen and nitrogen elements are present. It is composed of silicon element, so the content ratio of oxygen element and nitrogen element in the second anti-reflection layer 102 may be 0.

在一些实施例中,第一氮氧化硅材料为氧化硅和氮化硅的混合物,第二氮氧化硅材料为氧化硅和氮化硅的混合物,沿垂直于第一减反射层101指向第二减反射层102方向的方向X上,第一减反射层101和第二减反射层102中一者的氧化硅和氮化硅的含量比值呈增大趋势,另一者的氧化硅和氮化硅的含量比值呈减小趋势。In some embodiments, the first silicon oxynitride material is a mixture of silicon oxide and silicon nitride, and the second silicon oxynitride material is a mixture of silicon oxide and silicon nitride. In the direction X of the direction of the anti-reflection layer 102, the content ratio of silicon oxide and silicon nitride in one of the first anti-reflection layer 101 and the second anti-reflection layer 102 tends to increase, and the content ratio of silicon oxide and nitride in the other The content ratio of silicon showed a decreasing trend.

本公开实施例中以“沿方向X上,第一减反射层101中的氧化硅和氮化硅的含量比值呈减小趋势,使得第一减反射层101中的氧元素和氮元素的含量比值呈减小趋势,以使第一减反射层101的折射率呈增大趋势;第二减反射层102中的氧化硅和氮化硅的含量比值呈增大趋势,使得第二减反射层102中的氧元素和氮元素的含量比值呈增大趋势,以使第二减反射层102的折射率呈减小趋势”为示例,在实际应用中,沿方向X上,可以是:第一减反射层101中的氧化硅和氮化硅的含量比值呈增大趋势,第二减反射层102中的氧化硅和氮化硅的含量比值呈减小趋势。In the embodiment of the present disclosure, “along the direction X, the content ratio of silicon oxide and silicon nitride in the first anti-reflection layer 101 tends to decrease, so that the content of oxygen element and nitrogen element in the first anti-reflection layer 101 is The ratio shows a decreasing trend, so that the refractive index of the first anti-reflection layer 101 shows an increasing trend; the content ratio of silicon oxide and silicon nitride in the second anti-reflection layer 102 shows an increasing trend, so that the second anti-reflection layer 102 has an increasing trend. The content ratio of oxygen element and nitrogen element in 102 shows an increasing trend, so that the refractive index of the second anti-reflection layer 102 shows a decreasing trend” as an example. In practical applications, along the direction X, it can be: the first The content ratio of silicon oxide and silicon nitride in the anti-reflection layer 101 has an increasing trend, and the content ratio of silicon oxide and silicon nitride in the second anti-reflection layer 102 has a decreasing trend.

在一些实施例中,沿方向X上,第二减反射层102的反射率随第二减反射层102中的氧化硅和氮化硅的含量比值的增大而逐渐增大的趋势如图6所示,且沿平行于方向X且与方向X相反的方向上,第一减反射层101的反射率随第一减反射层101中的氧化硅和氮化硅的含量比值的增大而逐渐增大的趋势也如图6所示。In some embodiments, along the direction X, the reflectivity of the second anti-reflection layer 102 gradually increases as the content ratio of silicon oxide and silicon nitride in the second anti-reflection layer 102 increases, as shown in FIG. 6 . As shown, and along the direction parallel to the direction X and opposite to the direction X, the reflectivity of the first anti-reflection layer 101 gradually increases with the increase of the content ratio of silicon oxide and silicon nitride in the first anti-reflection layer 101 The increasing trend is also shown in Figure 6.

在一些实施例中,第一减反射层101中氧化硅和氮化硅的含量比值变化范围为0~1,第二减反射层102中氧化硅和氮化硅的含量比值变化范围为0~1。需要说明的是,沿方向X上,第一减反射层101中的氧化硅的含量是呈减小趋势的,则存在第一减反射层101中的部分区域不存在氧化硅,仅以氮化硅构成,因而存在第一减反射层101中氧化硅和氮化硅的含量比值为0的情况,同理,存在第二减反射层102中的部分区域不存在氧化硅,仅以氮化硅构成,因而存在第二减反射层102中氧化硅和氮化硅的含量比值为0的情况。In some embodiments, the content ratio of silicon oxide and silicon nitride in the first anti-reflection layer 101 ranges from 0 to 1, and the content ratio of silicon oxide and silicon nitride in the second anti-reflection layer 102 ranges from 0 to 1. 1. It should be noted that, along the direction X, the content of silicon oxide in the first anti-reflection layer 101 tends to decrease, so there is no silicon oxide in the partial area of the first anti-reflection layer 101, only nitridation Therefore, the content ratio of silicon oxide and silicon nitride in the first anti-reflection layer 101 is 0. Similarly, there is no silicon oxide in the partial area of the second anti-reflection layer 102, and only silicon nitride is used. Therefore, there is a case where the content ratio of silicon oxide and silicon nitride in the second anti-reflection layer 102 is zero.

在一些实施例中,继续参考图1,沿第一减反射层101指向第二减反射层102的方向Y上,第一减反射层101和第二减反射层102的厚度为30nm~50nm。In some embodiments, continuing to refer to FIG. 1 , along the direction Y from the first anti-reflection layer 101 to the second anti-reflection layer 102 , the thicknesses of the first anti-reflection layer 101 and the second anti-reflection layer 102 are 30 nm˜50 nm.

综上所述,第一减反射层101和第二减反射层102相互配合,且沿垂直于第一减反射层101指向第二减反射层102方向的方向X上,设计第一减反射层101和第二减反射层102中氧元素和/或氮元素的含量逐渐变化,以使得第一减反射层101和第二减反射层102中氧元素和/或氮元素的含量比值逐渐变化,则沿垂直于第一减反射层101指向第二减反射层102方向的方向X上,第一减反射层101和第二减反射层102对光的折射率的大小均逐渐变化,且第一减反射层101和第二减反射层102对光的折射率的大小的变化趋势不同,从而有利于增大光在第一减反射层101和第二减反射层102中发生全反射的概率,以及降低入射至第一减反射层101和第二减反射层102中的光经过一次或多次折射进入空气中的概率,从而极大的减少入射至光伏组件上的光的损失,提高光伏组件对入射至光伏组件上的光的吸收率。To sum up, the first anti-reflection layer 101 and the second anti-reflection layer 102 cooperate with each other, and the first anti-reflection layer is designed along the direction X perpendicular to the direction of the first anti-reflection layer 101 to the second anti-reflection layer 102 The content of oxygen and/or nitrogen in 101 and the second anti-reflection layer 102 is gradually changed, so that the content ratio of oxygen and/or nitrogen in the first anti-reflection layer 101 and the second anti-reflection layer 102 is gradually changed, Then along the direction X perpendicular to the direction of the first anti-reflection layer 101 to the second anti-reflection layer 102, the refractive indices of the first anti-reflection layer 101 and the second anti-reflection layer 102 to light both gradually change, and the first The change trend of the refractive index of light to the anti-reflection layer 101 and the second anti-reflection layer 102 is different, which is beneficial to increase the probability of total reflection of light in the first anti-reflection layer 101 and the second anti-reflection layer 102, And reduce the probability that the light incident on the first anti-reflection layer 101 and the second anti-reflection layer 102 is refracted one or more times into the air, thereby greatly reducing the loss of light incident on the photovoltaic module and improving the photovoltaic module. Absorptivity of light incident on a photovoltaic module.

本申请另一实施例还提供一种光伏电池的制造方法,用于制造上述实施例提供的光伏电池。以下将结合附图对本申请另一实施例提供的光伏电池的制造方法进行详细说明,需要说明的是,与前述实施例相对应的部分,在此不做赘述。图7至8为本申请另一实施例提供的光伏电池的制造方法各步骤对应的结构示意图。Another embodiment of the present application further provides a method for manufacturing a photovoltaic cell, which is used for manufacturing the photovoltaic cell provided in the above embodiment. The manufacturing method of the photovoltaic cell provided by another embodiment of the present application will be described in detail below with reference to the accompanying drawings. It should be noted that the parts corresponding to the foregoing embodiments will not be repeated here. 7 to 8 are schematic structural diagrams corresponding to each step of a method for manufacturing a photovoltaic cell according to another embodiment of the present application.

参考图7至图8,光伏电池的制造方法包括:提供基底100;在基底100的一侧形成第一减反射层101;在第一减反射层101远离基底100的一侧形成第二减反射层102,第一减反射层101包括第一氮氧化硅材料,第二减反射层102包括第二氮氧化硅材料,沿垂直于第一减反射层101指向第二减反射层102方向的方向X上,第一减反射层101和第二减反射层102中一者的氧元素和氮元素的含量比值呈增大趋势,另一者的氧元素和氮元素的含量比值呈减小趋势。如此,有利于使得沿方向X上,第一减反射层101和第二减反射层102中的一者的折射率呈增大趋势,另一者的折射率呈减小趋势,且第一减反射层101和第二减反射层102的折射率的差值先呈减小趋势然后呈增大趋势,从而有利于提高光伏电池对光的吸收率。7 to 8 , the method for manufacturing a photovoltaic cell includes: providing a substrate 100; forming a first anti-reflection layer 101 on one side of the substrate 100; forming a second anti-reflection layer on a side of the first anti-reflection layer 101 away from the substrate 100 Layer 102, the first anti-reflection layer 101 includes a first silicon oxynitride material, and the second anti-reflection layer 102 includes a second silicon oxynitride material, along a direction perpendicular to the direction of the first anti-reflection layer 101 to the direction of the second anti-reflection layer 102 On X, the content ratio of oxygen and nitrogen in one of the first anti-reflection layer 101 and the second anti-reflection layer 102 tends to increase, and the content ratio of oxygen and nitrogen in the other tends to decrease. In this way, along the direction X, the refractive index of one of the first anti-reflection layer 101 and the second anti-reflection layer 102 tends to increase, and the refractive index of the other tends to decrease, and the first The difference between the refractive indices of the reflective layer 101 and the second anti-reflection layer 102 first shows a decreasing trend and then an increasing trend, which is beneficial to improve the light absorption rate of the photovoltaic cell.

在一些实施例中,光伏电池的制造方法还可以包括如下步骤:In some embodiments, the method of manufacturing a photovoltaic cell may further include the following steps:

结合参考图1和参考图7,提供腔室103,且沿垂直于第一减反射层101指向第二减反射层102方向的方向X上,在腔室上依次设置第一进气口113和第二进气口123,且第一进气口113和第二进气口123的进气方向相反,基底100位于第一进气口113和第二进气口123之间。Referring to FIG. 1 and FIG. 7 , a chamber 103 is provided, and along the direction X perpendicular to the direction of the first anti-reflection layer 101 and the direction of the second anti-reflection layer 102 , the first air inlet 113 and The second air inlet 123 , and the air intake directions of the first air inlet 113 and the second air inlet 123 are opposite, and the substrate 100 is located between the first air inlet 113 and the second air inlet 123 .

需要说明的是,腔室103上还设置有第三进气口133,用于提供形成氮化硅膜层的气体。在一些实施例中,第三进气口用于同时提供形成氮化硅膜层的氮源气体和硅源气体。在其他实施例中,腔室在具有第三进气口的同时还可以具有第四进气口,其中,第三进气口和第四进气口中的一者用于提供形成氮化硅膜层的氮源气体,第三进气口和第四进气口中的另一者用于提供形成氮化硅膜层的硅源气体。It should be noted that the chamber 103 is further provided with a third gas inlet 133 for supplying the gas for forming the silicon nitride film layer. In some embodiments, the third gas inlet is used for simultaneously supplying the nitrogen source gas and the silicon source gas for forming the silicon nitride film layer. In other embodiments, the chamber may have a fourth gas inlet in addition to the third gas inlet, wherein one of the third gas inlet and the fourth gas inlet is used to provide the formation of the silicon nitride film The other one of the third gas inlet and the fourth gas inlet is used to supply the silicon source gas for forming the silicon nitride film layer.

继续参考图7,在腔室103内形成第一减反射层101的步骤包括:在基底100的一侧沉积氮化硅材料,且在沉积过程中,打开第一进气口113并关闭第二进气口123;参考图8,在腔室103内形成第二减反射层102的步骤包括:在第一减反射层101远离基底100的一侧沉积氮化硅材料,且在沉积过程中,关闭第一进气口113并打开第二进气口123。其中,在形成第一减反射层101的步骤和形成第二减反射层102的步骤中,第一进气口113和第二进气口123提供的气体为至少包含氧元素的气体,且第三进气口133一直处于打开状态,用于提供沉积氮化硅材料的氮源气体和硅源气体。Continuing to refer to FIG. 7 , the steps of forming the first anti-reflection layer 101 in the chamber 103 include: depositing a silicon nitride material on one side of the substrate 100 , and during the deposition process, opening the first gas inlet 113 and closing the second gas inlet 113 Air inlet 123; Referring to FIG. 8, the step of forming the second anti-reflection layer 102 in the chamber 103 includes: depositing a silicon nitride material on the side of the first anti-reflection layer 101 away from the substrate 100, and during the deposition process, The first air inlet 113 is closed and the second air inlet 123 is opened. Wherein, in the step of forming the first anti-reflection layer 101 and the step of forming the second anti-reflection layer 102, the gas provided by the first air inlet 113 and the second air inlet 123 is a gas containing at least oxygen element, and the first The three gas inlets 133 are always in an open state for supplying nitrogen source gas and silicon source gas for depositing the silicon nitride material.

由于在形成第一减反射层101时,第一进气口113处于打开状态且第二进气口123处于关闭状态,则在形成第一减反射层101的过程中,第一减反射层101中越远离第一进气口113的区域中至少包含氧元素的气体的含量越少,因而有利于形成沿方向X上,氧元素含量逐渐减少的第一减反射层101,从而使得第一减反射层101的折射率沿方向X上呈增大趋势。同理,在形成第二减反射层102时,第一进气口113处于关闭状态且第二进气口123处于打开状态,则在形成第二减反射层102的过程中,第二减反射层102中越远离第二进气口123的区域中至少包含氧元素的气体的含量越少,因而有利于形成沿方向X上,氧元素含量逐渐增加的第二减反射层102,从而使得第二减反射层102的折射率沿方向X上呈减小趋势。Since the first air inlet 113 is in an open state and the second air inlet 123 is in a closed state when the first anti-reflection layer 101 is formed, during the process of forming the first anti-reflection layer 101 , the first anti-reflection layer 101 The farther away from the first air inlet 113, the lower the content of the gas containing at least the oxygen element, so it is beneficial to form the first anti-reflection layer 101 along the direction X with the oxygen element content gradually decreasing, so that the first anti-reflection layer 101 is formed. The refractive index of the layer 101 tends to increase in the direction X. Similarly, when the second anti-reflection layer 102 is formed, the first air inlet 113 is in a closed state and the second air inlet 123 is in an open state, then in the process of forming the second anti-reflection layer 102, the second anti-reflection The farther away from the second air inlet 123 in the layer 102, the less the content of the gas containing at least oxygen element is, so it is beneficial to form the second anti-reflection layer 102 along the direction X, the content of oxygen element gradually increases, so that the second anti-reflection layer 102 is formed. The refractive index of the anti-reflection layer 102 has a decreasing trend along the direction X. As shown in FIG.

在一些实施例中,至少包含氧元素的气体包括氧气或者一氧化二氮气体。若至少包含氧元素的气体为一氧化二氮气体,则在形成第一减反射层101的过程中,第一减反射层101中越远离处于打开状态的第一进气口113的区域中的一氧化二氮气体的含量越少,因而有利于形成沿方向X上,氧元素含量和氮元素含量均逐渐减少的第一减反射层101,从而使得第一减反射层101的折射率沿方向X上呈增大趋势。同理,在形成第二减反射层102的过程中,第二减反射层102中越远离处于打开状态的第二进气口123的区域中的一氧化二氮气体的含量越少,因而有利于形成沿方向X上,氧元素含量和氮元素含量均逐渐增加的第二减反射层102,从而使得第二减反射层102的折射率沿方向X上呈减小趋势。In some embodiments, the gas containing at least elemental oxygen includes oxygen or nitrous oxide gas. If the gas containing at least oxygen element is nitrous oxide gas, in the process of forming the first anti-reflection layer 101 , a region of the first anti-reflection layer 101 that is farther away from the first air inlet 113 in the open state is formed. The smaller the content of nitrous oxide gas, the better the formation of the first anti-reflection layer 101 along the direction X, the content of oxygen and nitrogen elements are gradually reduced, so that the refractive index of the first anti-reflection layer 101 along the direction X is formed increasing trend. Similarly, in the process of forming the second anti-reflection layer 102, the content of nitrous oxide gas in the region of the second anti-reflection layer 102 that is farther away from the second air inlet 123 in the open state is less, which is beneficial to In the direction X, the second anti-reflection layer 102 is formed with the content of oxygen and nitrogen elements gradually increasing, so that the refractive index of the second anti-reflection layer 102 in the direction X tends to decrease.

在其他实施例中,第一进气口和第二进气口提供的气体也可以为包含氮元素但不包含氧元素的气体,通过改变第一减反射层和第二减反射层不同区域中氮元素的含量的不同,改变第一减反射层和第二减反射层不同区域的折射率。In other embodiments, the gas provided by the first air inlet and the second air inlet may also be a gas containing nitrogen but not oxygen. By changing the different regions of the first anti-reflection layer and the second anti-reflection layer Different contents of nitrogen elements change the refractive index of different regions of the first anti-reflection layer and the second anti-reflection layer.

在一些实施例中,第一进气口113和第二进气口123提供的气体相同,如此,有利于控制第一减反射层101的折射率和第二减反射层102的折射率的最大值相同,且有利于控制第一减反射层101的折射率和第二减反射层102的折射率的最小值相同。In some embodiments, the gases provided by the first air inlet 113 and the second air inlet 123 are the same, so it is beneficial to control the maximum refractive index of the first anti-reflection layer 101 and the refractive index of the second anti-reflection layer 102 The values are the same, and it is beneficial to control the minimum value of the refractive index of the first anti-reflection layer 101 and the refractive index of the second anti-reflection layer 102 to be the same.

在其他实施例中,第一进气口提供的气体与第二进气口提供的气体也可以不同,例如,第一进气口提供的气体可以为氧气,第二进气口提供的气体可以为一氧化氮气体。In other embodiments, the gas provided by the first gas inlet may be different from the gas provided by the second gas inlet. For example, the gas provided by the first gas inlet may be oxygen, and the gas provided by the second gas inlet may be oxygen. for nitric oxide gas.

在一些实施例中,第一进气口113提供的气体的气体流量不高于150mL/s,第二进气口123提供的气体的气体流量不高于150mL/s。如此,有利于避免在形成第一减反射层101和第二减反射层102的过程中提供过多的至少包含氧元素的气体,避免第一减反射层101和第二减反射层102中的氧元素和/或氮元素的含量过高,使得第一减反射层101和第二减反射层102中的氧元素和氮元素的含量比值过高,以避免第一减反射层101的折射率和第二减反射层102的折射率过低。由于第一减反射层101的折射率和/或第二减反射层102的折射率过低,不利于光在第一减反射层101和第二减反射层102中发生全反射,光容易从第一减反射层101和第二减反射层102中反射进空气中,造成不必要的光损失。因而,避免在形成第一减反射层101和第二减反射层102的过程中提供过多的至少包含氧元素的气体,以避免第一减反射层101和第二减反射层102的折射率之差过大,有利于避免不必要的光损失,从而有利于提高光伏电池对光的吸收率。In some embodiments, the gas flow rate of the gas provided by the first gas inlet 113 is not higher than 150 mL/s, and the gas flow rate of the gas provided by the second gas inlet port 123 is not higher than 150 mL/s. In this way, it is beneficial to avoid providing too much gas containing at least oxygen element in the process of forming the first anti-reflection layer 101 and the second anti-reflection layer 102, and to avoid the gas in the first anti-reflection layer 101 and the second anti-reflection layer 102. The content of oxygen and/or nitrogen is too high, so that the content ratio of oxygen and nitrogen in the first anti-reflection layer 101 and the second anti-reflection layer 102 is too high to avoid the refractive index of the first anti-reflection layer 101 and the refractive index of the second anti-reflection layer 102 is too low. Since the refractive index of the first anti-reflection layer 101 and/or the refractive index of the second anti-reflection layer 102 is too low, it is not conducive to the total reflection of light in the first anti-reflection layer 101 and the second anti-reflection layer 102, and the light is easily transmitted from The first anti-reflection layer 101 and the second anti-reflection layer 102 are reflected into the air, causing unnecessary light loss. Therefore, in the process of forming the first anti-reflection layer 101 and the second anti-reflection layer 102, it is avoided to provide too much gas containing at least oxygen element, so as to avoid the refractive index of the first anti-reflection layer 101 and the second anti-reflection layer 102 If the difference is too large, it is beneficial to avoid unnecessary light loss, thereby improving the light absorption rate of the photovoltaic cell.

综上所述,形成的光伏电池中,沿方向X上,第一减反射层101和第二减反射层102中一者的氧元素和氮元素的含量比值呈增大趋势,另一者的氧元素和氮元素的含量比值呈减小趋势,如此,有利于使得沿方向X上,第一减反射层101和第二减反射层102中的一者的折射率呈增大趋势,另一者的折射率呈减小趋势,且第一减反射层101和第二减反射层102的折射率的差值先呈减小趋势然后呈增大趋势,从而有利于提高光伏电池对光的吸收率。To sum up, in the formed photovoltaic cell, along the direction X, the content ratio of oxygen and nitrogen in one of the first anti-reflection layer 101 and the second anti-reflection layer 102 tends to increase, and the other The content ratio of oxygen element and nitrogen element tends to decrease, which is beneficial to make along the direction X, the refractive index of one of the first anti-reflection layer 101 and the second anti-reflection layer 102 tends to increase, and the other The refractive index of the first anti-reflection layer 101 and the second anti-reflection layer 102 show a decreasing trend first and then an increasing trend, which is beneficial to improve the absorption of light by the photovoltaic cell Rate.

本申请又一实施例还提供一种光伏组件,光伏组件用于将接收的光能转化为电能。图9为本申请又一实施例提供的光伏组件的结构示意图。Yet another embodiment of the present application also provides a photovoltaic assembly, which is used for converting received light energy into electrical energy. FIG. 9 is a schematic structural diagram of a photovoltaic module provided by another embodiment of the present application.

参考图9,光伏组件包括电池串(未标示)、封装胶膜140以及盖板150;电池串由多个光伏电池130连接形成,光伏电池130可以为前述的任一光伏电池,或者可以为前述的任一光伏电池的制备方法制备的光伏电池,相邻光伏电池130之间通过导电带(未图示)电连接,同时,相邻光伏电池130之间的位置关系既可以是部分层叠,也可以是相互拼接;封装胶膜140可以为乙烯-乙酸乙烯共聚物(EVA)胶膜、聚乙烯辛烯共弹性体(POE)胶膜或者聚对苯二甲酸乙二醇酯(PET)胶膜等有机封装胶膜,封装胶膜140覆盖在电池串的表面以密封;盖板150可以为玻璃盖板或塑料盖板等透明或半透明盖板,盖板150覆盖在封装胶膜140背离电池串的表面。Referring to FIG. 9 , the photovoltaic assembly includes a battery string (not marked), an encapsulating film 140 and a cover plate 150 ; the battery string is formed by connecting a plurality of photovoltaic cells 130 , and the photovoltaic cells 130 may be any of the aforementioned photovoltaic cells, or may be the aforementioned photovoltaic cells In the photovoltaic cells prepared by any of the photovoltaic cell preparation methods described above, the adjacent photovoltaic cells 130 are electrically connected by conductive tapes (not shown). Can be spliced to each other; the encapsulating film 140 can be an ethylene-vinyl acetate copolymer (EVA) film, a polyethylene octene co-elastomer (POE) film or a polyethylene terephthalate (PET) film Such as organic encapsulation film, the encapsulation film 140 covers the surface of the battery string to seal; the cover plate 150 can be a transparent or translucent cover plate such as a glass cover plate or a plastic cover plate, the cover plate 150 is covered on the encapsulation film 140 away from the battery the surface of the string.

在一些实施例中,盖板150上设置有陷光结构以增加入射光的利用率,不同盖板150的陷光结构可以不同。光伏组件具有较高的电流收集能力和较低的载流子复合率,可实现较高的光电转换效率;同时,光伏组件正面呈现暗蓝色甚至黑色,可应用于更多场景中。In some embodiments, a light trapping structure is provided on the cover plate 150 to increase the utilization rate of incident light, and the light trapping structure of different cover plates 150 may be different. Photovoltaic modules have high current collection capacity and low carrier recombination rate, which can achieve high photoelectric conversion efficiency; at the same time, the front of photovoltaic modules is dark blue or even black, which can be used in more scenes.

在一些实施例中,封装胶膜140和盖板150仅位于光伏电池130的前表面,避免位于后表面的封装胶膜140和盖板150对较弱的光线造成进一步阻隔和削弱;同时,光伏组件还可以采用侧边全包围式封装,即采用封装胶膜140完全包覆光伏组件的侧边,以防止光伏组件在层压过程中发生层压偏移的现象,以及避免外部环境通过光伏组件的侧边影响光伏电池的性能,例如水汽侵入。In some embodiments, the encapsulation film 140 and the cover plate 150 are only located on the front surface of the photovoltaic cell 130 to avoid further blocking and weakening of weak light by the encapsulation film 140 and the cover plate 150 located on the rear surface; The module can also be encapsulated by the sides, that is, the side of the photovoltaic module is completely covered by the encapsulation film 140, so as to prevent the lamination offset of the photovoltaic module during the lamination process, and to prevent the external environment from passing through the photovoltaic module. side affects the performance of photovoltaic cells, such as water vapor intrusion.

本领域的普通技术人员可以理解,上述各实施方式是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请实施例的精神和范围。任何本领域技术人员,在不脱离本申请实施例的精神和范围内,均可作各自更动与修改,因此本申请实施例的保护范围应当以权利要求限定的范围为准。Those of ordinary skill in the art can understand that the above-mentioned embodiments are specific examples for realizing the present application, and in practical applications, various changes can be made in form and details without departing from the embodiments of the present application. spirit and scope. Any person skilled in the art can make respective changes and modifications without departing from the spirit and scope of the embodiments of the present application. Therefore, the protection scope of the embodiments of the present application should be subject to the scope defined by the claims.

Claims (16)

1.一种光伏电池,其特征在于,包括:1. A photovoltaic cell, characterized in that, comprising: 基底;base; 第一减反射层,位于所述基底的一侧;a first anti-reflection layer, located on one side of the substrate; 第二减反射层,位于所述第一减反射层远离所述基底的一侧,所述第一减反射层包括第一氮氧化硅材料,所述第二减反射层包括第二氮氧化硅材料,沿垂直于所述第一减反射层指向所述第二减反射层方向的方向上,所述第一减反射层和所述第二减反射层中一者的氧元素和氮元素的含量比值呈增大趋势,另一者的氧元素和氮元素的含量比值呈减小趋势。A second anti-reflection layer, located on the side of the first anti-reflection layer away from the substrate, the first anti-reflection layer includes a first silicon oxynitride material, and the second anti-reflection layer includes a second silicon oxynitride material material, along the direction perpendicular to the direction of the first anti-reflection layer pointing to the second anti-reflection layer, the oxygen and nitrogen elements of one of the first anti-reflection layer and the second anti-reflection layer are The content ratio showed an increasing trend, and the content ratio of the other oxygen element and nitrogen element showed a decreasing trend. 2.如权利要求1所述的光伏电池,其特征在于,所述第一减反射层中氧元素和氮元素的含量比值不大于0.9,所述第二减反射层中氧元素和氮元素的含量比值不大于0.9。2. The photovoltaic cell according to claim 1, wherein the content ratio of oxygen element and nitrogen element in the first anti-reflection layer is not greater than 0.9, and the content ratio of oxygen element and nitrogen element in the second anti-reflection layer is not greater than 0.9. The content ratio is not more than 0.9. 3.如权利要求1所述的光伏电池,其特征在于,所述第一氮氧化硅材料为氧化硅和氮化硅的混合物,所述第二氮氧化硅材料为氧化硅和氮化硅的混合物,沿垂直于所述第一减反射层指向所述第二减反射层方向的方向上,所述第一减反射层和所述第二减反射层中一者的氧化硅和氮化硅的含量比值呈增大趋势,另一者的氧化硅和氮化硅的含量比值呈减小趋势。3. The photovoltaic cell of claim 1, wherein the first silicon oxynitride material is a mixture of silicon oxide and silicon nitride, and the second silicon oxynitride material is a mixture of silicon oxide and silicon nitride A mixture of silicon oxide and silicon nitride of one of the first anti-reflection layer and the second anti-reflection layer in a direction perpendicular to the direction of the first anti-reflection layer to the second anti-reflection layer The content ratio of silicon oxide and silicon nitride shows a decreasing trend. 4.如权利要求3所述的光伏电池,其特征在于,所述第一减反射层中氧化硅和氮化硅的含量比值变化范围为0~1,所述第二减反射层中氧化硅和氮化硅的含量比值变化范围为0~1。4 . The photovoltaic cell according to claim 3 , wherein the content ratio of silicon oxide and silicon nitride in the first anti-reflection layer varies from 0 to 1, and the silicon oxide in the second anti-reflection layer The content ratio of silicon nitride and silicon nitride varies from 0 to 1. 5.如权利要求1所述的光伏电池,其特征在于,沿垂直于所述第一减反射层指向所述第二减反射层方向的方向上,所述第一减反射层和所述第二减反射层中一者的氧元素含量呈增大趋势,另一者的氧元素含量呈减小趋势,且所述第一减反射层和所述第二减反射层中氧元素与硅元素的含量比值不大于0.5。5. The photovoltaic cell of claim 1, wherein in a direction perpendicular to the direction of the first anti-reflection layer pointing to the second anti-reflection layer, the first anti-reflection layer and the second anti-reflection layer The oxygen element content of one of the two anti-reflection layers shows an increasing trend, and the oxygen element content of the other shows a decreasing trend, and the oxygen and silicon elements in the first anti-reflection layer and the second anti-reflection layer The content ratio is not more than 0.5. 6.如权利要求5所述的光伏电池,其特征在于,沿垂直于所述第一减反射层指向所述第二减反射层方向的方向上,所述第一减反射层和所述第二减反射层中一者的氮元素含量呈增大趋势,另一者的氮元素含量呈减小趋势,且所述第一减反射层和所述第二减反射层中氮元素与硅元素的含量比值变化范围为1.05~1.33。6. The photovoltaic cell of claim 5, wherein in a direction perpendicular to the direction of the first anti-reflection layer pointing to the second anti-reflection layer, the first anti-reflection layer and the second anti-reflection layer The nitrogen element content of one of the two anti-reflection layers shows an increasing trend, and the nitrogen element content of the other one shows a decreasing trend, and the nitrogen and silicon elements in the first anti-reflection layer and the second anti-reflection layer The variation range of the content ratio is 1.05~1.33. 7.如权利要求1所述的光伏电池,其特征在于,沿所述第一减反射层指向所述第二减反射层的方向上,所述第一减反射层的厚度为30nm~50nm,所述第二减反射层的厚度为30nm~50nm。7 . The photovoltaic cell according to claim 1 , wherein along the direction from the first anti-reflection layer to the second anti-reflection layer, the thickness of the first anti-reflection layer is 30 nm to 50 nm, 8 . The thickness of the second anti-reflection layer is 30nm˜50nm. 8.如权利要求1-7任一项所述的光伏电池,其特征在于,沿垂直于所述第一减反射层指向所述第二减反射层方向的方向上,所述第一减反射层和所述第二减反射层中的一者的折射率呈增大趋势,另一者的折射率呈减小趋势,且所述第一减反射层和所述第二减反射层的折射率的差值先呈减小趋势然后呈增大趋势。8 . The photovoltaic cell according to claim 1 , wherein in a direction perpendicular to the direction of the first anti-reflection layer pointing to the second anti-reflection layer, the first anti-reflection layer The refractive index of one of the layer and the second anti-reflection layer tends to increase, and the refractive index of the other tends to decrease, and the refraction of the first anti-reflection layer and the second anti-reflection layer The difference of the ratios firstly decreased and then increased. 9.如权利要求8所述的光伏电池,其特征在于,所述第一减反射层的折射率和所述第二减反射层的折射率的最大值为1.9~2.1,所述第一减反射层的折射率和所述第二减反射层的折射率的最小值为1.4~1.6。9 . The photovoltaic cell according to claim 8 , wherein the maximum value of the refractive index of the first anti-reflection layer and the refractive index of the second anti-reflection layer is 1.9˜2.1, and the first The minimum value of the refractive index of the reflection layer and the refractive index of the second anti-reflection layer is 1.4-1.6. 10.如权利要求8所述的光伏电池,其特征在于,所述第一减反射层的折射率最高值与所述第二减反射层的折射率最高值相同,所述第一减反射层的折射率最低值与所述第二减反射层的折射率最低值相同。10 . The photovoltaic cell of claim 8 , wherein the highest value of the refractive index of the first anti-reflection layer is the same as the highest value of the refractive index of the second anti-reflection layer, and the first anti-reflection layer The lowest value of the refractive index of is the same as the lowest value of the refractive index of the second anti-reflection layer. 11.一种光伏电池的制造方法,其特征在于,包括:11. A method of manufacturing a photovoltaic cell, comprising: 提供基底;provide a base; 在所述基底的一侧形成第一减反射层;forming a first anti-reflection layer on one side of the substrate; 在所述第一减反射层远离所述基底的一侧形成第二减反射层,所述第一减反射层包括第一氮氧化硅材料,所述第二减反射层包括第二氮氧化硅材料,沿垂直于所述第一减反射层指向所述第二减反射层方向的方向上,所述第一减反射层和所述第二减反射层中一者的氧元素和氮元素的含量比值呈增大趋势,另一者的氧元素和氮元素的含量比值呈减小趋势。A second anti-reflection layer is formed on the side of the first anti-reflection layer away from the substrate, the first anti-reflection layer includes a first silicon oxynitride material, and the second anti-reflection layer includes a second silicon oxynitride material material, along the direction perpendicular to the direction of the first anti-reflection layer pointing to the second anti-reflection layer, the oxygen and nitrogen elements of one of the first anti-reflection layer and the second anti-reflection layer are The content ratio showed an increasing trend, and the content ratio of the other oxygen element and nitrogen element showed a decreasing trend. 12.如权利要求11所述的制造方法,其特征在于,还包括:12. The manufacturing method of claim 11, further comprising: 提供腔室,且沿垂直于所述第一减反射层指向所述第二减反射层方向的方向上,在所述腔室上依次设置第一进气口和第二进气口,且所述第一进气口和所述第二进气口的进气方向相反,所述基底位于所述第一进气口和所述第二进气口之间;A chamber is provided, and along a direction perpendicular to the direction of the first anti-reflection layer pointing to the second anti-reflection layer, a first air inlet and a second air inlet are sequentially arranged on the chamber, and the The air intake directions of the first air inlet and the second air inlet are opposite, and the base is located between the first air inlet and the second air inlet; 在所述腔室内形成所述第一减反射层的步骤包括:在所述基底的一侧沉积氮化硅材料,且在沉积过程中,打开所述第一进气口并关闭所述第二进气口;The step of forming the first anti-reflection layer in the chamber includes depositing a silicon nitride material on one side of the substrate, and during the deposition, opening the first gas inlet and closing the second gas inlet air intake; 在所述腔室内形成所述第二减反射层的步骤包括:在所述第一减反射层远离所述基底的一侧沉积氮化硅材料,且在沉积过程中,关闭所述第一进气口并打开所述第二进气口;The step of forming the second anti-reflection layer in the chamber includes: depositing a silicon nitride material on a side of the first anti-reflection layer away from the substrate, and during the deposition process, turning off the first anti-reflection layer. air inlet and open the second air inlet; 在形成所述第一减反射层的步骤和形成所述第二减反射层的步骤中,所述第一进气口和所述第二进气口提供的气体为至少包含氧元素的气体。In the step of forming the first anti-reflection layer and the step of forming the second anti-reflection layer, the gas provided by the first gas inlet and the second gas inlet is a gas containing at least oxygen element. 13.如权利要求12所述的制造方法,其特征在于,所述至少包含氧元素的气体包括氧气或者一氧化二氮。13. The manufacturing method according to claim 12, wherein the gas containing at least oxygen element includes oxygen gas or nitrous oxide. 14.如权利要求12所述的制造方法,其特征在于,所述第一进气口和所述第二进气口提供的气体相同。14. The manufacturing method of claim 12, wherein the first gas inlet and the second gas inlet provide the same gas. 15.如权利要求12所述的制造方法,其特征在于,所述第一进气口提供的气体的气体流量不高于150mL/s,所述第二进气口提供的气体的气体流量不高于150mL/s。15. The manufacturing method according to claim 12, wherein the gas flow rate of the gas provided by the first air inlet is not higher than 150 mL/s, and the gas flow rate of the gas provided by the second air inlet is not higher than 150 mL/s. higher than 150mL/s. 16.一种光伏组件,其特征在于,包括:16. A photovoltaic module, comprising: 电池串,由如权利要求1至10中任一项所述的光伏电池连接形成,或者由如权利要求11至15中任一项所述的制造方法制造的光伏电池连接形成;a string of cells formed by connecting photovoltaic cells as claimed in any one of claims 1 to 10, or by connecting photovoltaic cells manufactured by a manufacturing method as claimed in any one of claims 11 to 15; 封装胶膜,用于覆盖所述电池串的表面;an encapsulation film for covering the surface of the battery string; 盖板,用于覆盖所述封装胶膜背离所述电池串的表面。a cover plate for covering the surface of the packaging adhesive film facing away from the battery string.
CN202210108488.4A 2022-01-28 2022-01-28 Photovoltaic cell and its manufacturing method, photovoltaic module Active CN114122157B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210108488.4A CN114122157B (en) 2022-01-28 2022-01-28 Photovoltaic cell and its manufacturing method, photovoltaic module
CN202210387930.1A CN114975642B (en) 2022-01-28 2022-01-28 Photovoltaic cell and photovoltaic module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210108488.4A CN114122157B (en) 2022-01-28 2022-01-28 Photovoltaic cell and its manufacturing method, photovoltaic module

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202210387930.1A Division CN114975642B (en) 2022-01-28 2022-01-28 Photovoltaic cell and photovoltaic module

Publications (2)

Publication Number Publication Date
CN114122157A CN114122157A (en) 2022-03-01
CN114122157B true CN114122157B (en) 2022-05-20

Family

ID=80362072

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202210387930.1A Active CN114975642B (en) 2022-01-28 2022-01-28 Photovoltaic cell and photovoltaic module
CN202210108488.4A Active CN114122157B (en) 2022-01-28 2022-01-28 Photovoltaic cell and its manufacturing method, photovoltaic module

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202210387930.1A Active CN114975642B (en) 2022-01-28 2022-01-28 Photovoltaic cell and photovoltaic module

Country Status (1)

Country Link
CN (2) CN114975642B (en)

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266095A (en) * 2006-03-27 2007-10-11 Mitsubishi Heavy Ind Ltd Photoelectric conversion cell, photoelectric conversion module, photoelectric conversion panel, and photoelectric conversion system
KR101213470B1 (en) * 2008-09-08 2012-12-20 한국전자통신연구원 Antireflection coating for solar cell, solar cell, and manufacturing method for solar cell
FR2939240B1 (en) * 2008-12-03 2011-02-18 Saint Gobain LAYERED ELEMENT AND PHOTOVOLTAIC DEVICE COMPRISING SUCH A MEMBER
US20110094574A1 (en) * 2009-10-27 2011-04-28 Calisolar Inc. Polarization Resistant Solar Cell Design Using SiCN
JP2014011246A (en) * 2012-06-28 2014-01-20 Kyocera Corp Solar cell element and solar cell module
US9018516B2 (en) * 2012-12-19 2015-04-28 Sunpower Corporation Solar cell with silicon oxynitride dielectric layer
US9400343B1 (en) * 2014-04-30 2016-07-26 Magnolia Optical Technologies, Inc. Highly durable hydrophobic antireflection structures and method of manufacturing the same
JP2016212193A (en) * 2015-05-01 2016-12-15 アーゼッド・エレクトロニック・マテリアルズ(ルクセンブルグ)ソシエテ・ア・レスポンサビリテ・リミテ Optical functional film and manufacturing method therefor
JP6094917B1 (en) * 2016-06-07 2017-03-15 紘一 勝又 Method for optimal design of antireflection film and photovoltaic power generation apparatus
TWI585988B (en) * 2016-10-21 2017-06-01 茂迪股份有限公司 Solar battery
CN207009446U (en) * 2017-08-07 2018-02-13 苏州阿特斯阳光电力科技有限公司 A kind of antireflective coating and polycrystalline silicon solar cell
CN108962999A (en) * 2018-06-14 2018-12-07 东方日升(常州)新能源有限公司 The composite membrane and preparation method thereof of solar battery attenuating reflectivity
CN208923157U (en) * 2018-12-07 2019-05-31 苏州阿特斯阳光电力科技有限公司 Solar battery antireflective film, cell piece and battery component
CN111509081B (en) * 2020-03-20 2023-10-20 中国科学院宁波材料技术与工程研究所 Preparation method of ultrathin oxygen-containing nitrogen-silicon film and application of ultrathin oxygen-containing nitrogen-silicon film in passivation contact battery
CN111668317B (en) * 2020-05-29 2021-09-24 晶科绿能(上海)管理有限公司 Photovoltaic module, solar cell and preparation method thereof
CN213601878U (en) * 2020-11-26 2021-07-02 苏州阿特斯阳光电力科技有限公司 A solar cell and photovoltaic module
CN214797429U (en) * 2021-02-23 2021-11-19 浙江晶科能源有限公司 Solar cell and photovoltaic module thereof
CN113571604B (en) * 2021-09-27 2022-01-25 浙江晶科能源有限公司 Photovoltaic cell, preparation method thereof and photovoltaic module

Also Published As

Publication number Publication date
CN114975642A (en) 2022-08-30
CN114122157A (en) 2022-03-01
CN114975642B (en) 2024-02-27

Similar Documents

Publication Publication Date Title
US11588065B2 (en) Solar cell and photovoltaic module
Lehr et al. Energy yield modelling of perovskite/silicon two-terminal tandem PV modules with flat and textured interfaces
Xu et al. Light management in monolithic perovskite/silicon tandem solar cells
CN114759097B (en) Solar cell and preparation method thereof, photovoltaic module
CN116387371B (en) Solar cells and manufacturing methods, photovoltaic modules and photovoltaic systems
Gota et al. Energy yield modelling of textured perovskite/silicon tandem photovoltaics with thick perovskite top cells
Singh et al. Comparing optical performance of a wide range of perovskite/silicon tandem architectures under real-world conditions
JP7431303B2 (en) Solar cells and their manufacturing methods, photovoltaic modules
CN108447929A (en) Photovoltaic module with light-trapping structure and processing method thereof
CN115000213B (en) Photovoltaic cell, manufacturing method thereof and photovoltaic module
CN114122157B (en) Photovoltaic cell and its manufacturing method, photovoltaic module
CN213601878U (en) A solar cell and photovoltaic module
CN218182221U (en) Solar cells and photovoltaic modules
US20140216520A1 (en) Solar cell module and fabricating method thereof
US9614108B1 (en) Optically-thin chalcogenide solar cells
CN218101276U (en) PV
CN218918902U (en) Solar cell and photovoltaic module
CN216213500U (en) Novel heterogeneous crystalline silicon cell
CN115706173A (en) Solar cell, preparation method thereof and photovoltaic module
Stannowski et al. Nanocrystalline silicon oxide interlayer in monolithic perovskite/silicon heterojunction tandem solar cells with total current density> 39 mA/cm 2
CN118431307B (en) Photovoltaic cell, preparation method thereof, photovoltaic module and photovoltaic system
CN209119115U (en) Solar battery sheet and battery component with the cell piece
TWI419343B (en) Tandem solar cell
KR101373250B1 (en) Thin film solar cell and method of fabricating the same
CN208111457U (en) A photovoltaic module with a light-trapping structure

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant