CN114122157B - Photovoltaic cell and its manufacturing method, photovoltaic module - Google Patents
Photovoltaic cell and its manufacturing method, photovoltaic module Download PDFInfo
- Publication number
- CN114122157B CN114122157B CN202210108488.4A CN202210108488A CN114122157B CN 114122157 B CN114122157 B CN 114122157B CN 202210108488 A CN202210108488 A CN 202210108488A CN 114122157 B CN114122157 B CN 114122157B
- Authority
- CN
- China
- Prior art keywords
- reflection layer
- refractive index
- content ratio
- photovoltaic cell
- reflection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 20
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 162
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 97
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 97
- 239000001301 oxygen Substances 0.000 claims abstract description 97
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 81
- 239000000758 substrate Substances 0.000 claims abstract description 46
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 40
- 239000010703 silicon Substances 0.000 claims abstract description 40
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 40
- 239000000463 material Substances 0.000 claims abstract description 39
- 230000007423 decrease Effects 0.000 claims abstract description 34
- 239000007789 gas Substances 0.000 claims description 74
- 230000003247 decreasing effect Effects 0.000 claims description 63
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 45
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 45
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 30
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 30
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 9
- 238000000151 deposition Methods 0.000 claims description 8
- 238000005538 encapsulation Methods 0.000 claims description 7
- 239000001272 nitrous oxide Substances 0.000 claims description 6
- 238000005137 deposition process Methods 0.000 claims description 5
- 239000002313 adhesive film Substances 0.000 claims description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims 1
- 230000008021 deposition Effects 0.000 claims 1
- 229910001882 dioxygen Inorganic materials 0.000 claims 1
- 238000004806 packaging method and process Methods 0.000 claims 1
- 230000009286 beneficial effect Effects 0.000 abstract description 29
- 239000010410 layer Substances 0.000 description 526
- 238000000034 method Methods 0.000 description 35
- 230000031700 light absorption Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 5
- 238000002161 passivation Methods 0.000 description 3
- 238000002310 reflectometry Methods 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- -1 polyethylene octene Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/30—Coatings
- H10F77/306—Coatings for devices having potential barriers
- H10F77/311—Coatings for devices having potential barriers for photovoltaic cells
- H10F77/315—Coatings for devices having potential barriers for photovoltaic cells the coatings being antireflective or having enhancing optical properties
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/40—Optical elements or arrangements
- H10F77/42—Optical elements or arrangements directly associated or integrated with photovoltaic cells, e.g. light-reflecting means or light-concentrating means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/52—PV systems with concentrators
Landscapes
- Photovoltaic Devices (AREA)
- Laminated Bodies (AREA)
Abstract
Description
技术领域technical field
本申请实施例涉及太阳能领域,特别涉及一种光伏电池及其制造方法、光伏组件。The embodiments of the present application relate to the field of solar energy, and in particular, to a photovoltaic cell, a method for manufacturing the same, and a photovoltaic assembly.
背景技术Background technique
光伏电池对太阳光的反射率或吸收率是影响光伏电池光电转换效率的关键因素。目前业内光伏电池中常采用单层氮化硅、多层氮化硅或者氮化硅与其他材料膜层的叠层结构作为减反射结构。The reflectivity or absorption rate of photovoltaic cells to sunlight is a key factor affecting the photoelectric conversion efficiency of photovoltaic cells. At present, single-layer silicon nitride, multi-layer silicon nitride, or a stacked structure of silicon nitride and other material films are often used as anti-reflection structures in photovoltaic cells in the industry.
然而,氮化硅膜层存在较大内应力,且在制备氮化硅膜层的工艺过程中由于氢元素的存在,会在氮化硅膜层中产生较多的缺陷,这些均会降低氮化硅膜层对光的吸收率,从而降低光伏电池对光的吸收率。However, the silicon nitride film has a large internal stress, and during the process of preparing the silicon nitride film, due to the existence of hydrogen, more defects will be generated in the silicon nitride film, which will reduce the nitrogen The light absorption rate of the silicon oxide film layer is reduced, thereby reducing the light absorption rate of the photovoltaic cell.
发明内容SUMMARY OF THE INVENTION
本申请实施例提供一种光伏电池及其制造方法、光伏组件,至少有利于提高光伏电池对光的吸收率。Embodiments of the present application provide a photovoltaic cell, a method for manufacturing the same, and a photovoltaic assembly, which are at least conducive to improving the light absorption rate of the photovoltaic cell.
根据本申请一些实施例,本申请实施例一方面提供一种光伏电池,包括:基底;第一减反射层,位于所述基底的一侧;第二减反射层,位于所述第一减反射层远离所述基底的一侧,所述第一减反射层包括第一氮氧化硅材料,所述第二减反射层包括第二氮氧化硅材料,沿垂直于所述第一减反射层指向所述第二减反射层方向的方向上,所述第一减反射层和所述第二减反射层中一者的氧元素和氮元素的含量比值呈增大趋势,另一者的氧元素和氮元素的含量比值呈减小趋势。According to some embodiments of the present application, one aspect of the embodiments of the present application provides a photovoltaic cell, comprising: a substrate; a first anti-reflection layer located on one side of the substrate; and a second anti-reflection layer located on the first anti-reflection layer The side of the layer away from the substrate, the first anti-reflection layer includes a first silicon oxynitride material, the second anti-reflection layer includes a second silicon oxynitride material, and the direction is perpendicular to the first anti-reflection layer. In the direction of the direction of the second anti-reflection layer, the content ratio of oxygen element and nitrogen element in one of the first anti-reflection layer and the second anti-reflection layer shows an increasing trend, and the oxygen element in the other The content ratio of nitrogen and nitrogen showed a decreasing trend.
在一些实施例中,所述第一减反射层中氧元素和氮元素的含量比值不大于0.9,所述第二减反射层中氧元素和氮元素的含量比值不大于0.9。In some embodiments, the content ratio of oxygen element and nitrogen element in the first anti-reflection layer is not greater than 0.9, and the content ratio of oxygen element and nitrogen element in the second anti-reflection layer is not greater than 0.9.
在一些实施例中,所述第一氮氧化硅材料为氧化硅和氮化硅的混合物,所述第二氮氧化硅材料为氧化硅和氮化硅的混合物,沿垂直于所述第一减反射层指向所述第二减反射层方向的方向上,所述第一减反射层和所述第二减反射层中一者的氧化硅和氮化硅的含量比值呈增大趋势,另一者的氧化硅和氮化硅的含量比值呈减小趋势。In some embodiments, the first silicon oxynitride material is a mixture of silicon oxide and silicon nitride, and the second silicon oxynitride material is a mixture of silicon oxide and silicon nitride. In the direction in which the reflective layer points to the direction of the second anti-reflection layer, the content ratio of silicon oxide and silicon nitride in one of the first anti-reflection layer and the second anti-reflection layer tends to increase, and the other The content ratio of silicon oxide and silicon nitride in the former showed a decreasing trend.
在一些实施例中,所述第一减反射层中氧化硅和氮化硅的含量比值变化范围为0~1,所述第二减反射层中氧化硅和氮化硅的含量比值变化范围为0~1。In some embodiments, the content ratio of silicon oxide and silicon nitride in the first anti-reflection layer ranges from 0 to 1, and the content ratio of silicon oxide and silicon nitride in the second anti-reflection layer ranges from 0 to 1. 0~1.
在一些实施例中,沿垂直于所述第一减反射层指向所述第二减反射层方向的方向上,所述第一减反射层和所述第二减反射层中一者的氧元素含量呈增大趋势,另一者的氧元素含量呈减小趋势,且所述第一减反射层和所述第二减反射层中氧元素与硅元素的含量比值不大于0.5。In some embodiments, in a direction perpendicular to the direction of the first anti-reflection layer pointing to the second anti-reflection layer, the oxygen element of one of the first anti-reflection layer and the second anti-reflection layer The content of the oxygen element shows an increasing trend, and the oxygen element content of the other one shows a decreasing trend, and the content ratio of the oxygen element to the silicon element in the first anti-reflection layer and the second anti-reflection layer is not greater than 0.5.
在一些实施例中,沿垂直于所述第一减反射层指向所述第二减反射层方向的方向上,所述第一减反射层和所述第二减反射层中一者的氮元素含量呈增大趋势,另一者的氮元素含量呈减小趋势,且所述第一减反射层和所述第二减反射层中氧元素与硅元素的含量比值变化范围为1.05~1.33。In some embodiments, in a direction perpendicular to the direction of the first anti-reflection layer pointing to the second anti-reflection layer, the nitrogen element of one of the first anti-reflection layer and the second anti-reflection layer The content is increasing, and the nitrogen content of the other is decreasing, and the content ratio of oxygen element and silicon element in the first anti-reflection layer and the second anti-reflection layer varies from 1.05 to 1.33.
在一些实施例中,沿所述第一减反射层指向所述第二减反射层的方向上,所述第一减反射层的厚度为30nm~50nm,所述第二减反射层的厚度为30nm~50nm。In some embodiments, along the direction from the first anti-reflection layer to the second anti-reflection layer, the thickness of the first anti-reflection layer is 30 nm˜50 nm, and the thickness of the second anti-reflection layer is 30nm~50nm.
在一些实施例中,沿垂直于所述第一减反射层指向所述第二减反射层方向的方向上,所述第一减反射层和所述第二减反射层中的一者的折射率呈增大趋势,另一者的折射率呈减小趋势,且所述第一减反射层和所述第二减反射层的折射率的差值先呈减小趋势然后呈增大趋势。In some embodiments, the refraction of one of the first anti-reflection layer and the second anti-reflection layer is in a direction perpendicular to the direction of the first anti-reflection layer pointing to the second anti-reflection layer The refractive index of the first anti-reflection layer and the second anti-reflection layer shows a decreasing trend first and then an increasing trend.
在一些实施例中,所述第一减反射层的折射率和所述第二减反射层的折射率的最大值为1.9~2.1,所述第一减反射层的折射率和所述第二减反射层的折射率的最小值为1.4~1.6。In some embodiments, the maximum value of the refractive index of the first anti-reflection layer and the refractive index of the second anti-reflection layer is 1.9˜2.1, and the refractive index of the first anti-reflection layer and the second The minimum value of the refractive index of the antireflection layer is 1.4 to 1.6.
在一些实施例中,所述第一减反射层的折射率最高值与所述第二减反射层的折射率最高值相同,所述第一减反射层的折射率最低值与所述第二减反射层的折射率最低值相同。In some embodiments, the highest value of the refractive index of the first anti-reflection layer is the same as the highest value of the refractive index of the second anti-reflection layer, and the lowest value of the refractive index of the first anti-reflection layer is the same as the highest value of the refractive index of the second anti-reflection layer The minimum value of the refractive index of the antireflection layer is the same.
根据本申请一些实施例,本申请实施例另一方面还提供一种光伏电池的制造方法,包括:提供基底;在所述基底的一侧形成第一减反射层;在所述第一减反射层远离所述基底的一侧形成第二减反射层,所述第一减反射层包括第一氮氧化硅材料,所述第二减反射层包括第二氮氧化硅材料,沿垂直于所述第一减反射层指向所述第二减反射层方向的方向上,所述第一减反射层和所述第二减反射层中一者的氧元素和氮元素的含量比值呈增大趋势,另一者的氧元素和氮元素的含量比值呈减小趋势。According to some embodiments of the present application, another embodiment of the present application further provides a method for manufacturing a photovoltaic cell, comprising: providing a substrate; forming a first anti-reflection layer on one side of the substrate; and forming a first anti-reflection layer on the first anti-reflection layer A second anti-reflection layer is formed on a side of the layer away from the substrate, the first anti-reflection layer includes a first silicon oxynitride material, and the second anti-reflection layer includes a second silicon oxynitride material, along the direction perpendicular to the The first anti-reflection layer points to the direction of the second anti-reflection layer, and the content ratio of oxygen and nitrogen in one of the first anti-reflection layer and the second anti-reflection layer tends to increase, On the other hand, the content ratio of oxygen and nitrogen showed a decreasing trend.
在一些实施例中,光伏电池的制造方法还包括:提供腔室,且沿垂直于所述第一减反射层指向所述第二减反射层方向的方向上,在所述腔室上依次设置第一进气口和第二进气口,且所述第一进气口和所述第二进气口的进气方向相反,所述基底位于所述第一进气口和所述第二进气口之间;在所述腔室内形成所述第一减反射层的步骤包括:在所述基底的一侧沉积氮化硅材料,且在沉积过程中,打开所述第一进气口并关闭所述第二进气口;在所述腔室内形成所述第二减反射层的步骤包括:在所述第一减反射层远离所述基底的一侧沉积氮化硅材料,且在沉积过程中,关闭所述第一进气口并打开所述第二进气口;在形成所述第一减反射层的步骤和形成所述第二减反射层的步骤中,所述第一进气口和所述第二进气口提供的气体为至少包含氧元素的气体。In some embodiments, the method for manufacturing a photovoltaic cell further includes: providing a cavity, and in a direction perpendicular to the direction of the first anti-reflection layer pointing to the second anti-reflection layer, the cavity is sequentially arranged on the cavity a first air inlet and a second air inlet, and the air intake directions of the first air inlet and the second air inlet are opposite, and the base is located at the first air inlet and the second air inlet between the air inlets; the step of forming the first anti-reflection layer in the chamber includes: depositing a silicon nitride material on one side of the substrate, and during the deposition process, opening the first air inlet and closing the second air inlet; the step of forming the second anti-reflection layer in the chamber includes: depositing a silicon nitride material on the side of the first anti-reflection layer away from the substrate, and During the deposition process, the first air inlet is closed and the second air inlet is opened; in the step of forming the first anti-reflection layer and the step of forming the second anti-reflection layer, the first The gas provided by the gas inlet and the second gas inlet is gas containing at least oxygen element.
在一些实施例中,所述至少包含氧元素的气体包括氧气或者一氧化二氮。In some embodiments, the gas containing at least elemental oxygen includes oxygen or nitrous oxide.
在一些实施例中,所述第一进气口和所述第二进气口提供的气体相同。In some embodiments, the first gas inlet and the second gas inlet provide the same gas.
在一些实施例中,所述第一进气口提供的气体的气体流量不高于150mL/s,所述第二进气口提供的气体的气体流量不高于150mL/s。In some embodiments, the gas flow rate of the gas provided by the first air inlet is not higher than 150 mL/s, and the gas flow rate of the gas provided by the second air inlet is not higher than 150 mL/s.
根据本申请一些实施例,本申请实施例又一方面还提供一种光伏组件,包括:电池串,由上述任一项所述的光伏电池连接形成,或者由上述任一项所述的制造方法制造的光伏电池连接形成;封装胶膜,用于覆盖所述电池串的表面;盖板,用于覆盖所述封装胶膜背离所述电池串的表面。According to some embodiments of the present application, another aspect of the embodiments of the present application further provides a photovoltaic module, comprising: a battery string formed by connecting the photovoltaic cells described in any one of the above, or by the manufacturing method described in any one of the above The manufactured photovoltaic cells are connected and formed; an encapsulating adhesive film is used to cover the surface of the battery string; a cover plate is used to cover the surface of the encapsulating adhesive film facing away from the battery string.
本申请实施例提供的技术方案至少具有以下优点:The technical solutions provided by the embodiments of the present application have at least the following advantages:
在基底上堆叠有第一减反射层和第二减反射层,且沿垂直于第一减反射层指向第二减反射层方向的方向上,设计第一减反射层和第二减反射层中氧元素和氮元素的含量逐渐变化,以使得第一减反射层和第二减反射层中氧元素和氮元素的含量比值逐渐变化,则沿垂直于第一减反射层指向第二减反射层方向的方向上,第一减反射层和第二减反射层对光的折射率的大小逐渐变化,且第一减反射层和第二减反射层对光的折射率的大小的变化趋势不同,从而有利于增大光在第一减反射层和第二减反射层中发生全反射的概率,以及降低入射至第一减反射层和第二减反射层中的光经过一次或多次折射进入空气中的概率,从而极大的减少入射至光伏组件上的光的损失,提高光伏组件对入射至光伏组件上的光的吸收率。A first anti-reflection layer and a second anti-reflection layer are stacked on the substrate, and along the direction perpendicular to the direction of the first anti-reflection layer to the second anti-reflection layer, the first anti-reflection layer and the second anti-reflection layer are designed The content of oxygen element and nitrogen element changes gradually, so that the content ratio of oxygen element and nitrogen element in the first anti-reflection layer and the second anti-reflection layer gradually changes, then the direction perpendicular to the first anti-reflection layer is directed to the second anti-reflection layer In the direction of the direction, the size of the refractive index of the first anti-reflection layer and the second anti-reflection layer to light gradually changes, and the change trend of the size of the refractive index of the first anti-reflection layer and the second anti-reflection layer to light is different, Therefore, it is beneficial to increase the probability of total reflection of light in the first anti-reflection layer and the second anti-reflection layer, and reduce the incidence of light entering the first anti-reflection layer and the second anti-reflection layer through one or more refractions. The probability of being in the air, thereby greatly reducing the loss of light incident on the photovoltaic module, and improving the absorption rate of the photovoltaic module to the light incident on the photovoltaic module.
附图说明Description of drawings
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。One or more embodiments are exemplified by the pictures in the corresponding drawings, and these exemplifications do not constitute limitations of the embodiments, and elements with the same reference numerals in the drawings are denoted as similar elements, Unless otherwise stated, the figures in the accompanying drawings do not constitute a scale limitation.
图1为本申请一实施例提供的光伏电池的结构示意图;FIG. 1 is a schematic structural diagram of a photovoltaic cell according to an embodiment of the present application;
图2至图5为入射至本申请一实施例提供的第二减反射层上的光的四种传播路线的示意图;2 to 5 are schematic diagrams of four propagation paths of light incident on the second anti-reflection layer provided by an embodiment of the present application;
图6为本申请一实施例提供的第一减反射层或第二减反射层的折射率随第一减反射层或第二减反射层的材料成分变化而变化的折线图;6 is a graph showing the change of the refractive index of the first anti-reflection layer or the second anti-reflection layer as the material composition of the first anti-reflection layer or the second anti-reflection layer changes according to an embodiment of the present application;
图7至8为本申请另一实施例提供的光伏电池的制造方法各步骤对应的结构示意图;7 to 8 are schematic structural diagrams corresponding to each step of a method for manufacturing a photovoltaic cell according to another embodiment of the present application;
图9为本申请又一实施例提供的光伏组件的结构示意图。FIG. 9 is a schematic structural diagram of a photovoltaic module provided by another embodiment of the present application.
具体实施方式Detailed ways
由背景技术可知,光伏电池对光的吸收率有待提高。It can be known from the background art that the light absorption rate of photovoltaic cells needs to be improved.
本申请实施提供一种光伏电池,沿垂直于第一减反射层指向第二减反射层方向的方向上,第一减反射层和第二减反射层中一者的氧元素和氮元素的含量比值呈增大趋势,另一者的氧元素和氮元素的含量比值呈减小趋势,如此,沿垂直于第一减反射层指向第二减反射层方向的方向上,有利于使得第一减反射层和第二减反射层对光的折射率的大小均会呈现渐变的现象,且第一减反射层和第二减反射层对光的折射率的大小的变化趋势不同,从而有利于增大光在第一减反射层和第二减反射层中发生全反射的概率,以及降低入射至第一减反射层和第二减反射层中的光经过一次或多次折射进入空气中的概率,从而极大的减少入射至光伏组件上的光的损失,提高光伏组件对入射至光伏组件上的光的吸收率。An embodiment of the present application provides a photovoltaic cell, in a direction perpendicular to the direction from the first anti-reflection layer to the second anti-reflection layer, the content of oxygen and nitrogen in one of the first anti-reflection layer and the second anti-reflection layer The ratio shows an increasing trend, and the content ratio of the other oxygen element and nitrogen element shows a decreasing trend. In this way, along the direction perpendicular to the direction of the first anti-reflection layer to the second anti-reflection layer, it is beneficial to make the first anti-reflection layer. Both the reflective layer and the second anti-reflection layer will exhibit a gradual change in the refractive index of light, and the change trend of the refractive index of the first anti-reflection layer and the second anti-reflection layer to light is different, which is conducive to increasing the size of the refractive index of light. The probability of total reflection of light in the first anti-reflection layer and the second anti-reflection layer, and the probability of reducing the probability of light incident on the first anti-reflection layer and the second anti-reflection layer being refracted one or more times into the air , so as to greatly reduce the loss of light incident on the photovoltaic module, and improve the absorption rate of the photovoltaic module to the light incident on the photovoltaic module.
下面将结合附图对本申请的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施例中,为了使读者更好地理解本申请实施例而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请实施例所要求保护的技术方案。The embodiments of the present application will be described in detail below with reference to the accompanying drawings. However, those of ordinary skill in the art can understand that, in the embodiments of the present application, many technical details are provided for the reader to better understand the embodiments of the present application. However, even without these technical details and various changes and modifications based on the following embodiments, the technical solutions claimed in the embodiments of the present application can be implemented.
本申请一实施例提供一种光伏电池,以下将结合附图对本申请一实施例提供的光伏电池进行详细说明。图1为本申请一实施例提供的光伏电池的结构示意图;图2至图5为入射至本申请一实施例提供的第二减反射层上的光的四种传播路线的示意图;图6为本申请一实施例提供的第一减反射层或第二减反射层的折射率随第一减反射层或第二减反射层的材料成分变化而变化的折线图。需要说明的是,便于图示,图1至图5中未示意出光伏电池中的发射极、隧穿膜层、钝化膜层以及电极等结构。An embodiment of the present application provides a photovoltaic cell, and the photovoltaic cell provided by an embodiment of the present application will be described in detail below with reference to the accompanying drawings. 1 is a schematic structural diagram of a photovoltaic cell provided by an embodiment of the present application; FIGS. 2 to 5 are schematic diagrams of four propagation routes of light incident on the second anti-reflection layer provided by an embodiment of the present application; An embodiment of the present application provides a graph of the change in the refractive index of the first anti-reflection layer or the second anti-reflection layer with the change of the material composition of the first anti-reflection layer or the second anti-reflection layer. It should be noted that, for the convenience of illustration, the structures of the emitter, the tunneling film, the passivation film and the electrode in the photovoltaic cell are not shown in FIGS. 1 to 5 .
参考图1至图5,光伏电池包括:基底100;第一减反射层101,位于基底100的一侧;第二减反射层102,位于第一减反射层101远离基底100的一侧。其中,沿垂直于第一减反射层101指向第二减反射层102方向的方向X上,第一减反射层101和第二减反射层102中的一者的折射率呈增大趋势,另一者的折射率呈减小趋势,且第一减反射层101和第二减反射层102的折射率的差值先呈减小趋势然后呈增大趋势。1 to 5 , the photovoltaic cell includes: a
可以理解的是,在一些实施例中,某一参数呈增大趋势指的是该参数逐渐增大,即在变化过程中,该参数一直是逐渐增大的形势;某一参数呈减小趋势指的是该参数逐渐减小,即在变化过程中,该参数一直是逐渐减小的形势。在另一些实施例中,某一参数呈增大趋势指的是在变化过程中,该参数整体呈增大的形势,在局部的变化过程中,该参数可以是呈逐渐减小的形势;某一参数呈减小趋势指的是在变化过程中,该参数整体呈减小的形势,在局部的变化过程中,该参数可以是呈逐渐增大的形势。在其他实施例中,某一参数呈增大趋势可以是该参数逐渐增大,某一参数呈减小趋势可以是整体呈减小的形势,在局部的变化过程中,该参数是呈逐渐增大的形势;或者,某一参数呈增大趋势可以是整体呈增大的形势,在局部的变化过程中,该参数是呈逐渐减小的形势,某一参数呈减小趋势指的是该参数逐渐减小。It can be understood that, in some embodiments, the increasing trend of a certain parameter means that the parameter gradually increases, that is, in the changing process, the parameter is always increasing gradually; a certain parameter has a decreasing trend. It means that the parameter gradually decreases, that is, in the process of change, the parameter has been gradually decreasing. In other embodiments, the increasing trend of a certain parameter means that in the process of change, the parameter increases as a whole, and in the process of local change, the parameter may gradually decrease; A decreasing trend of a parameter means that in the process of change, the parameter is in a state of decreasing as a whole, and in a local process of change, the parameter may be in a state of increasing gradually. In other embodiments, the increasing trend of a certain parameter may be that the parameter gradually increases, the decreasing trend of a certain parameter may be that the overall decreasing trend, and in the local change process, the parameter is gradually increasing Or, a parameter showing an increasing trend may be an overall increase, and in the local change process, the parameter is gradually decreasing, and a parameter showing a decreasing trend refers to the parameters gradually decrease.
例如,在一些实施例中,第一减反射层101和第二减反射层102中的一者的折射率呈增大趋势指的是:第一减反射层101和第二减反射层102中的一者的折射率逐渐增大;即在变化过程中,第一减反射层101和第二减反射层102中的一者的折射率一直是逐渐增大的形势;第一减反射层101和第二减反射层102中的一者的折射率呈减小趋势指的是:第一减反射层101和第二减反射层102中的一者的折射率逐渐减小,即在变化过程中,第一减反射层101和第二减反射层102中的一者的折射率一直是逐渐减小的形势。在另一些实施例中,第一减反射层101和第二减反射层102中的一者的折射率呈增大趋势指的是:在变化过程中,该折射率整体呈增大的形势,在局部的变化过程中,该折射率可以是呈逐渐减小的形势;第一减反射层101和第二减反射层102中的一者的折射率呈减小趋势指的是:在变化过程中,该折射率整体呈减小的形势,在局部的变化过程中,该折射率可以是呈逐渐增大的形势。在其他实施例中,折射率呈增大趋势可以是该折射率逐渐增大,折射率呈减小趋势可以是整体呈减小的形势,在局部的变化过程中,该折射率是呈逐渐增大的形势;或者,折射率呈增大趋势可以是整体呈增大的形势,在局部的变化过程中,该折射率是呈逐渐减小的形势,折射率呈减小趋势指的是该折射率逐渐减小。For example, in some embodiments, the index of refraction of one of the first
需要说明的是,若存在堆叠的第一介质层和第二介质层,且第一介质层的折射率低于第二介质层的折射率,第一介质层具有相对于第二介质层的临界角,当光从折射率较高的第二介质层中入射至折射率较低的第一介质层上,若光线在传播至第二介质层和第一介质层相接触处的入射角大于等于该临界角,折射光线将会消失,所有的入射光线将被反射至第二介质层中而不折射进第一介质层中,该光学现象称为全反射(total internalreflection,TIR)。其中,在全反射现象中,光刚好发生全反射,即光线的折射角为90度时光线的入射角为临界角。在一些实施例中,第一介质层可以包括减反射层和/或钝化层,第二介质层可以包括减反射层和/或钝化层。It should be noted that if there are stacked first dielectric layers and second dielectric layers, and the refractive index of the first dielectric layer is lower than that of the second dielectric layer, the first dielectric layer has a critical value relative to the second dielectric layer. Angle, when light is incident from the second medium layer with higher refractive index to the first medium layer with lower refractive index, if the incident angle of the light traveling to the contact between the second medium layer and the first medium layer is greater than or equal to At this critical angle, the refracted rays will disappear, and all the incident rays will be reflected into the second dielectric layer without being refracted into the first dielectric layer, an optical phenomenon called total internal reflection (TIR). Among them, in the phenomenon of total reflection, the light is just totally reflected, that is, the incident angle of the light when the refraction angle of the light is 90 degrees is the critical angle. In some embodiments, the first dielectric layer may include an anti-reflection layer and/or a passivation layer, and the second dielectric layer may include an anti-reflection layer and/or a passivation layer.
此外,第一介质层的折射率和第二介质层的折射率之间的差值越大,第一介质层相对于第二介质层的临界角越小,光线从第二介质层传播至第一介质层的过程中,越容易发生全反射现象,即光线越容易在第二介质层在发生反射,越不容易折射进第一介质层中。In addition, the greater the difference between the refractive index of the first dielectric layer and the refractive index of the second dielectric layer, the smaller the critical angle of the first dielectric layer relative to the second dielectric layer, and the light propagates from the second dielectric layer to the second dielectric layer. In the process of one dielectric layer, the phenomenon of total reflection is more likely to occur, that is, the more easily the light is reflected in the second dielectric layer, and the less likely it is refracted into the first dielectric layer.
其中,沿方向X上,第一减反射层101和第二减反射层102之间的折射率之差先呈减小趋势然后呈增大趋势,则沿方向X上,第一减反射层101和第二减反射层102相接触的界面处的临界角会先呈增大趋势然后呈减小趋势。可以理解的是,第一减反射层101和第二减反射层102相接触的界面处的临界角为该界面处的第一减反射层101相对于第二减反射层102的临界角。需要说明的是,前述已经详细描述了关于“呈增大趋势”、“呈增大趋势所包含的具体情形”、“呈减小趋势”以及“呈减小趋势所包含的具体情形”,在此对折射率之差呈增大趋势的相关描述和折射率之差呈减小趋势的相关描述不做赘述。Wherein, along the direction X, the difference in refractive index between the
在上述前提下,光从第二减反射层102远离第一减反射层101的一侧入射,依次在第二减反射层102、第一减反射层101以及基底100中传播的情况可以分为以下四种情形:Under the above premise, the case where light is incident from the side of the
需要说明的是,为了便于后续的说明,图2至图5中以沿方向X上,第一减反射层101的折射率大小的变化趋势为由低到高,第二减反射层102的折射率大小的变化趋势为由高到低为示例,在实际应用中,沿方向X上,第一减反射层101的折射率大小的变化趋势可以为由高到低,第二减反射层102的折射率大小的变化趋势可以为由低到高。It should be noted that, in order to facilitate the subsequent description, in FIGS. 2 to 5 , along the direction X, the change trend of the refractive index of the
情形一:参考图2,光入射至第二减反射层102的折射率较高处,光第一次从第二减反射层102中入射至第二减反射层102与第一减反射层101相接触的A位置时,光在A处的入射角为β,第一减反射层101在A处相对于第二减反射层102的临界角小于等于入射角β。Case 1: Referring to FIG. 2 , the light is incident on the
由于入射角β大于等于A处第一减反射层101相对于第二减反射层102的临界角,则光会在第二减反射层102层中发生全反射。沿方向X上,第一减反射层101的折射率呈增大趋势,第二减反射层102的折射率呈减小趋势,则第一减反射层101的折射率和第二减反射层102的折射率的差值会呈减小趋势,使得第一减反射层101和第二减反射层102相接触处的临界角呈增大趋势,则存在光在第二减反射层102中经过几次全反射后,例如,光从第二减反射层102中入射至第二减反射层102与第一减反射层101相接触的B位置时,入射角β小于B处第一减反射层101相对于第二减反射层102的临界角,第二减反射层102中的光会折射进第一减反射层101中。Since the incident angle β is greater than or equal to the critical angle of the
光在B处发生折射时,是从折射率高的第二减反射层102进入折射率低的第一减反射层101,则折射角Ψ大于入射角β,由于沿方向X上,第一减反射层101和第二减反射层102相接触处的临界角先呈增大趋势然后呈减小趋势,则在该光后续的传播过程中,再次从第一减反射层101中传播至第一减反射层101与第二减反射层102相接触处时,有利于使得此处的入射角Ψ大于此处第一减反射层101和第二减反射层102之间的临界角,因而该光容易在第一减反射层101中发生全反射,不容易折射进第二减反射层102中。此外,沿方向X上,第二减反射层102中的光在B处之后入射至第一减反射层101和第二减反射层102相接触处时,也有利于使得此处的入射角Ψ大于此处第一减反射层101和第二减反射层102之间的临界角,因而光容易在第一减反射层101发生全反射,不容易折射进第二减反射层102中。需要说明的是,前述已经详细描述了关于“呈增大趋势”以及“呈增大趋势”所包含的具体情形,在此对临界角呈增大趋势的相关描述和临界角呈减小趋势的相关描述不做赘述。When the light is refracted at B, it enters the
由上述分析可知,在情形一中,从第二减反射层102远离第一减反射层101的一侧入射的光大部分都依次在第二减反射层102和第一减反射层101发生全反射,然后最终被基底100充分吸收,降低入射至光伏电池中的光最终传播至光伏电池外的概率,从而有利于提高光伏电池对光的吸收率。It can be seen from the above analysis that, in
情形二:参考图3,光入射至第二减反射层102的折射率较高处,光第一次从第二减反射层102中入射至第二减反射层102与第一减反射层101相接触的A位置时,光在A处的入射角为β,第一减反射层101在A处相对于第二减反射层102的临界角大于入射角β。Case 2: Referring to FIG. 3 , the light is incident on the
由于入射角β小于A处第一减反射层101相对于第二减反射层102的临界角,则光会在第二减反射层102中发生反射和折射,即部分光会从第二减反射层102中折射进第一减反射层101中。折射进第一减反射层101中的光部分会直接被基底100吸收,部分会反射至第一减反射层101与第二减反射层102相接触处,例如C处。Since the incident angle β is smaller than the critical angle of the
由前述第一减反射层101的折射率的变化趋势和第二减反射层102的折射率的变化趋势可知,C处第一减反射层101和第二减反射层102之间的折射率之差小于A处第一减反射层101和第二减反射层102之间的折射率之差。由于光从第一减反射层101向第二减反射层102中传播时,第一减反射层101和第二减反射层102之间的折射率之差越来越小,则折射角越来越小,即角Ψ与角β之间的差值大于角Ψ与角δ之间的差值,则C处的折射角δ大于A处入射角β,有利于增大角δ大于第二减反射层102与空气之间的临界角的概率,从而有利于降低光从第二减反射层102层折射进空气中的概率,以提高入射光经过第一减反射层101和第二减反射层102的反射与折射进入基底100中的概率,从而有利于提高光伏电池对光的吸收率。From the change trend of the refractive index of the
情形三:参考图4,光入射至第二减反射层102的折射率较低处,光第一次从第一减反射层101中入射至第一减反射层101与基底100相接触的D位置时,光在D处的入射角为Ψ,第二减反射层102在E处相对于第一减反射层101的临界角小于等于入射角Ψ。Case 3: Referring to FIG. 4 , the light is incident on the lower refractive index of the
情形四:参考图5,光入射至第二减反射层102的折射率较低处,光第一次从第一减反射层101中入射至第一减反射层101与基底100相接触的D位置时,光在D处的入射角为Ψ,第二减反射层102在E处相对于第一减反射层101的临界角大于入射角Ψ。Case 4: Referring to FIG. 5 , the light is incident on the place where the refractive index of the
对于情形三和情形四,光由空气中折射进第二减反射层102,由于第二减反射层102的折射率低于第一减反射层101的折射率,则光势必会从第二减反射层102中折射进第一减反射层101中,无论是如情形三中第二减反射层102在E处相对于第一减反射层101的临界角小于等于入射角Ψ,光会在第一减反射层101中经过一段时间的全反射,不会折射进第二减反射层102中,然后被基底100吸收,还是如情形四,第二减反射层102在E处相对于第一减反射层101的临界角大于入射角Ψ,在第一减反射层101和第二减反射层102的相接触处,部分光发生反射进入第一减反射层101中,然后从第一减反射层101中折射进基底100中。可见,情形三和情形四中,大部分光均会传播至基底100中,且沿与方向X平行且相反的方向上,基底100与第一减反射层101之间的折射率之差呈增大趋势,则基底100与第一减反射层101之间的临界角呈减小趋势,有利于增大光在基底100中的发生全反射的概率,降低光从基底100中折射出来最终进入空气中的概率,从而极大的减少入射至光伏组件上的光的损失,提高光伏组件对光的吸收率。For
此外,情形三中,在光传播进基底100中时,由于沿光的传播方向,即沿与方向X平行且与方向X相反的方向上,第一减反射层101的折射率呈减小趋势,即基底100的折射率与第一减反射层101的折射率之差呈增大趋势,光从基底100中折射进第一减反射层101中的概率越来越小,从而有利于降低传播至光伏电池中的光再次传播至空气中的概率。情形四中,在第一减反射层101和第二减反射层102的相接触处,虽然部分光会从第一减反射层101中折射进第二减反射层102中,但由于沿与方向X平行且与方向X相反的方向上,第二减反射层102的折射率呈增大趋势,则光从第二减反射层102中折射进空气中的概率越来越小,从而也有利于降低传播至光伏电池中的光再次传播至空气中的概率。In addition, in
由上述四种情形的分析可知,设计沿垂直于第一减反射层101指向第二减反射层102方向的方向X上,第一减反射层101和第二减反射层102中的一者的折射率呈增大趋势,另一者的折射率呈减小趋势,且第一减反射层101和第二减反射层102的折射率的差值先呈减小趋势然后呈增大趋势的光伏电池,有利于增大光在第一减反射层101和/或第二减反射层102和/或基底100中发生全反射的概率,以及降低光在第一减反射层101和/或第二减反射层102和/或基底100中经过一次或多次折射进入空气中的概率,从而极大的降低入射至光伏组件上的光的损失,提高光伏组件对光的吸收率。From the analysis of the above four cases, it can be seen that the design of one of the
在一些实施例中,第一减反射层101的折射率和第二减反射层102的折射率的最大值为1.9~2.1,第一减反射层101的折射率和第二减反射层102的折射率的最小值为1.4~1.6,即第一减反射层101的折射率的最大值的变化范围与第二减反射层102的折射率的最大值的变化范围相同,第一减反射层101的折射率的最小值的变化范围与第二减反射层102的折射率的最小值的变化范围相同。如此,有利于避免第一减反射层101和第二减反射层102的折射率之差过大,避免光在第一减反射层101或第二减反射层102中发生的全反射次数过多,造成不必要的光损失,从而有利于提高光传播至基底100中的概率,以提高基底100对光的吸收率。In some embodiments, the maximum value of the refractive index of the
在一些实施例中,第一减反射层101的折射率最高值与第二减反射层102的折射率最高值相同,第一减反射层101的折射率最低值与第二减反射层102的折射率最低值相同。如此,沿方向X上,有利于控制第一减反射层101的折射率由最低值渐变为最高值的幅度与第二减反射层102的折射率由最高值渐变为最低值的幅度一致,从而有利于使得第一减反射层101和第二减反射层102的折射率之差的变化更平缓,譬如在接近第一减反射层101和第二减反射层102的中心区域时,第一减反射层101和第二减反射层102的折射率之差几乎为零,沿方向X上,第一减反射层101和第二减反射层102的折射率之差先平缓的减小,减小至第一减反射层101和第二减反射层102的折射率之差为零时,第一减反射层101和第二减反射层102的折射率之差再平缓的增大。此外,第一减反射层101和第二减反射层102的折射率之差的变化更平缓有利于进一步降低光从光伏电池中折射进空气中的概率,从而有利于进一步提高光伏电池对光的吸收率。In some embodiments, the highest value of the refractive index of the
在一些实施例中,第一减反射层101的折射率和第二减反射层102的折射率的最高值均可以为2.1,第一减反射层101的折射率和第二减反射层102的折射率的最低值均可以为1.5。In some embodiments, the highest value of the refractive index of the
在一些实施例中,沿垂直于第一减反射层101指向第二减反射层102方向的方向X上,第一减反射层101包括第一氮氧化硅材料,第二减反射层102包括第二氮氧化硅材料,第一减反射层101和第二减反射层102中一者的氧元素和氮元素的含量比值呈增大趋势,另一者的氧元素和氮元素的含量比值呈减小趋势。由于氮氧化硅材料中氧元素和氮元素的含量比值越高,氮氧化硅材料的折射率越低,则沿方向X上,由于氮氧化硅材料中氧元素和氮元素的含量比值的变化,第一减反射层101和第二减反射层102中的一者的折射率呈增大趋势,另一者的折射率呈减小趋势。需要说明的是,前述已经详细描述了关于“呈增大趋势”、“呈增大趋势所包含的具体情形”、“呈减小趋势”以及“呈减小趋势所包含的具体情形”,在此对氧元素和氮元素的含量比值呈增大趋势的相关描述和氧元素和氮元素的含量比值呈减小趋势的相关描述不做赘述。需要说明的是,为了便于后续的说明,以沿方向X上,第一减反射层101中氧元素和氮元素的含量比值呈减小趋势,第二减反射层102中氧元素和氮元素的含量比值呈增大趋势为示例,即沿方向X上,第一减反射层101的折射率呈增大趋势,第二减反射层102的折射率呈减小趋势,在实际应用中,沿方向X上,可以是第一减反射层101中氧元素和氮元素的含量比值呈增大趋势,第二减反射层102中氧元素和氮元素的含量比值呈减小趋势。In some embodiments, along the direction X perpendicular to the direction of the
在一些实施例中,第一减反射层101包括第一氮氧化硅材料,第二减反射层102包括第二氮氧化硅材料,沿垂直于第一减反射层101指向第二减反射层102方向的方向X上,第一减反射层101和第二减反射层102中一者的氧元素含量呈增大趋势,另一者的氧元素含量呈减小趋势,且第一减反射层101和第二减反射层102中氧元素与硅元素的含量比值不大于0.5,如此,有利于进一步保证第一减反射层101的折射率和第二减反射层102的折射率呈相反的变化趋势。在一个例子中,第一减反射层101和第二减反射层102中氧元素与硅元素的含量比值不大于0.43。需要说明的是,前述已经详细描述了关于“呈增大趋势”、“呈增大趋势所包含的具体情形”、“呈减小趋势”以及“呈减小趋势所包含的具体情形”,在此对氧元素含量呈增大趋势的相关描述和氧元素含量呈减小趋势的相关描述不做赘述。In some embodiments, the
需要说明的是,本公开实施例中以“沿方向X上,第一减反射层101中的氧元素含量呈减小趋势,使得第一减反射层101中的氧元素和氮元素的含量比值呈减小趋势,以使第一减反射层101的折射率呈增大趋势;第二减反射层102中的氧元素含量呈增大趋势,使得第二减反射层102中的氧元素和氮元素的含量比值呈增大趋势,以使第二减反射层102的折射率呈减小趋势”为示例,在实际应用中,沿方向X上,可以是:第一减反射层101中的氧元素含量呈增大趋势,第二减反射层102中的氧元素含量呈减小趋势。It should be noted that, in the embodiment of the present disclosure, “along the direction X, the content of oxygen in the
在一些实施例中,第一减反射层101包括第一氮氧化硅材料,第二减反射层102包括第二氮氧化硅材料,沿垂直于第一减反射层101指向第二减反射层102方向的方向X上,第一减反射层101和第二减反射层102中一者的氮元素含量呈增大趋势,另一者的氮元素含量呈减小趋势,且第一减反射层101和第二减反射层102中氮元素与硅元素的含量比值变化范围为1.05~1.33,如此,有利于进一步保证第一减反射层101的折射率和第二减反射层102的折射率呈相反的变化趋势。需要说明的是,前述已经详细描述了关于“呈增大趋势”、“呈增大趋势所包含的具体情形”、“呈减小趋势”以及“呈减小趋势所包含的具体情形”,在此对氮元素含量呈增大趋势的相关描述和氮元素含量呈减小趋势的相关描述不做赘述。In some embodiments, the
需要说明的是,在一些实施例中,沿方向X上,可以是第一减反射层101和第二减反射层102中一者的氧元素含量和氮元素含量均呈增大趋势,另一者的氧元素含量和氮元素含量均呈减小趋势;在另一些实施例中,沿方向X上,可以仅是第一减反射层101和第二减反射层102中一者的氮元素含量均呈增大趋势,仅是另一者的氮元素含量呈减小趋势。前述两种实施例中,沿方向X上,第一减反射层101和第二减反射层102中一者的氧元素含量和/或氮元素含量呈增大趋势,均会使得其氧元素和氮元素的含量比值呈增大趋势,以使其折射率呈减小趋势;第一减反射层101和第二减反射层102中另一者的氧元素含量和/或氮元素含量呈减小趋势,均会使得其氧元素和氮元素的含量比值呈减小趋势,以使其折射率呈增大趋势。It should be noted that, in some embodiments, along the direction X, the content of oxygen and nitrogen in one of the
本公开实施例中以“沿方向X上,第一减反射层101中的氧元素含量和氮元素含量均呈减小趋势,使得第一减反射层101中的氧元素和氮元素的含量比值呈减小趋势,以使第一减反射层101的折射率呈增大趋势;第二减反射层102中的氧元素含量和氮元素含量均呈增大趋势,使得第二减反射层102中的氧元素和氮元素的含量比值呈增大趋势,以使第二减反射层102的折射率呈减小趋势”为示例,在实际应用中,沿方向X上,可以是:第一减反射层101中的氧元素含量和氮元素含量均呈增大趋势,第二减反射层102中的氧元素含量和氮元素含量均呈减小趋势。In the embodiment of the present disclosure, “along the direction X, the content of oxygen and nitrogen in the
在一些实施例中,第一减反射层101中氧元素和氮元素的含量比值不大于0.9,第二减反射层102中氧元素和氮元素的含量比值不大于0.9。需要说明的是,沿方向X上,第一减反射层101中的氧元素含量是呈减小趋势的,则存在第一减反射层101中的部分区域不存在氧元素,仅以氮元素和硅元素构成,因而存在第一减反射层101中氧元素和氮元素的含量比值为0的情况,同理,存在第二减反射层102中的部分区域不存在氧元素,仅以氮元素和硅元素构成,因而存在第二减反射层102中氧元素和氮元素的含量比值为0的情况。In some embodiments, the content ratio of oxygen element and nitrogen element in the
在一些实施例中,第一氮氧化硅材料为氧化硅和氮化硅的混合物,第二氮氧化硅材料为氧化硅和氮化硅的混合物,沿垂直于第一减反射层101指向第二减反射层102方向的方向X上,第一减反射层101和第二减反射层102中一者的氧化硅和氮化硅的含量比值呈增大趋势,另一者的氧化硅和氮化硅的含量比值呈减小趋势。In some embodiments, the first silicon oxynitride material is a mixture of silicon oxide and silicon nitride, and the second silicon oxynitride material is a mixture of silicon oxide and silicon nitride. In the direction X of the direction of the
本公开实施例中以“沿方向X上,第一减反射层101中的氧化硅和氮化硅的含量比值呈减小趋势,使得第一减反射层101中的氧元素和氮元素的含量比值呈减小趋势,以使第一减反射层101的折射率呈增大趋势;第二减反射层102中的氧化硅和氮化硅的含量比值呈增大趋势,使得第二减反射层102中的氧元素和氮元素的含量比值呈增大趋势,以使第二减反射层102的折射率呈减小趋势”为示例,在实际应用中,沿方向X上,可以是:第一减反射层101中的氧化硅和氮化硅的含量比值呈增大趋势,第二减反射层102中的氧化硅和氮化硅的含量比值呈减小趋势。In the embodiment of the present disclosure, “along the direction X, the content ratio of silicon oxide and silicon nitride in the
在一些实施例中,沿方向X上,第二减反射层102的反射率随第二减反射层102中的氧化硅和氮化硅的含量比值的增大而逐渐增大的趋势如图6所示,且沿平行于方向X且与方向X相反的方向上,第一减反射层101的反射率随第一减反射层101中的氧化硅和氮化硅的含量比值的增大而逐渐增大的趋势也如图6所示。In some embodiments, along the direction X, the reflectivity of the
在一些实施例中,第一减反射层101中氧化硅和氮化硅的含量比值变化范围为0~1,第二减反射层102中氧化硅和氮化硅的含量比值变化范围为0~1。需要说明的是,沿方向X上,第一减反射层101中的氧化硅的含量是呈减小趋势的,则存在第一减反射层101中的部分区域不存在氧化硅,仅以氮化硅构成,因而存在第一减反射层101中氧化硅和氮化硅的含量比值为0的情况,同理,存在第二减反射层102中的部分区域不存在氧化硅,仅以氮化硅构成,因而存在第二减反射层102中氧化硅和氮化硅的含量比值为0的情况。In some embodiments, the content ratio of silicon oxide and silicon nitride in the
在一些实施例中,继续参考图1,沿第一减反射层101指向第二减反射层102的方向Y上,第一减反射层101和第二减反射层102的厚度为30nm~50nm。In some embodiments, continuing to refer to FIG. 1 , along the direction Y from the
综上所述,第一减反射层101和第二减反射层102相互配合,且沿垂直于第一减反射层101指向第二减反射层102方向的方向X上,设计第一减反射层101和第二减反射层102中氧元素和/或氮元素的含量逐渐变化,以使得第一减反射层101和第二减反射层102中氧元素和/或氮元素的含量比值逐渐变化,则沿垂直于第一减反射层101指向第二减反射层102方向的方向X上,第一减反射层101和第二减反射层102对光的折射率的大小均逐渐变化,且第一减反射层101和第二减反射层102对光的折射率的大小的变化趋势不同,从而有利于增大光在第一减反射层101和第二减反射层102中发生全反射的概率,以及降低入射至第一减反射层101和第二减反射层102中的光经过一次或多次折射进入空气中的概率,从而极大的减少入射至光伏组件上的光的损失,提高光伏组件对入射至光伏组件上的光的吸收率。To sum up, the
本申请另一实施例还提供一种光伏电池的制造方法,用于制造上述实施例提供的光伏电池。以下将结合附图对本申请另一实施例提供的光伏电池的制造方法进行详细说明,需要说明的是,与前述实施例相对应的部分,在此不做赘述。图7至8为本申请另一实施例提供的光伏电池的制造方法各步骤对应的结构示意图。Another embodiment of the present application further provides a method for manufacturing a photovoltaic cell, which is used for manufacturing the photovoltaic cell provided in the above embodiment. The manufacturing method of the photovoltaic cell provided by another embodiment of the present application will be described in detail below with reference to the accompanying drawings. It should be noted that the parts corresponding to the foregoing embodiments will not be repeated here. 7 to 8 are schematic structural diagrams corresponding to each step of a method for manufacturing a photovoltaic cell according to another embodiment of the present application.
参考图7至图8,光伏电池的制造方法包括:提供基底100;在基底100的一侧形成第一减反射层101;在第一减反射层101远离基底100的一侧形成第二减反射层102,第一减反射层101包括第一氮氧化硅材料,第二减反射层102包括第二氮氧化硅材料,沿垂直于第一减反射层101指向第二减反射层102方向的方向X上,第一减反射层101和第二减反射层102中一者的氧元素和氮元素的含量比值呈增大趋势,另一者的氧元素和氮元素的含量比值呈减小趋势。如此,有利于使得沿方向X上,第一减反射层101和第二减反射层102中的一者的折射率呈增大趋势,另一者的折射率呈减小趋势,且第一减反射层101和第二减反射层102的折射率的差值先呈减小趋势然后呈增大趋势,从而有利于提高光伏电池对光的吸收率。7 to 8 , the method for manufacturing a photovoltaic cell includes: providing a
在一些实施例中,光伏电池的制造方法还可以包括如下步骤:In some embodiments, the method of manufacturing a photovoltaic cell may further include the following steps:
结合参考图1和参考图7,提供腔室103,且沿垂直于第一减反射层101指向第二减反射层102方向的方向X上,在腔室上依次设置第一进气口113和第二进气口123,且第一进气口113和第二进气口123的进气方向相反,基底100位于第一进气口113和第二进气口123之间。Referring to FIG. 1 and FIG. 7 , a
需要说明的是,腔室103上还设置有第三进气口133,用于提供形成氮化硅膜层的气体。在一些实施例中,第三进气口用于同时提供形成氮化硅膜层的氮源气体和硅源气体。在其他实施例中,腔室在具有第三进气口的同时还可以具有第四进气口,其中,第三进气口和第四进气口中的一者用于提供形成氮化硅膜层的氮源气体,第三进气口和第四进气口中的另一者用于提供形成氮化硅膜层的硅源气体。It should be noted that the
继续参考图7,在腔室103内形成第一减反射层101的步骤包括:在基底100的一侧沉积氮化硅材料,且在沉积过程中,打开第一进气口113并关闭第二进气口123;参考图8,在腔室103内形成第二减反射层102的步骤包括:在第一减反射层101远离基底100的一侧沉积氮化硅材料,且在沉积过程中,关闭第一进气口113并打开第二进气口123。其中,在形成第一减反射层101的步骤和形成第二减反射层102的步骤中,第一进气口113和第二进气口123提供的气体为至少包含氧元素的气体,且第三进气口133一直处于打开状态,用于提供沉积氮化硅材料的氮源气体和硅源气体。Continuing to refer to FIG. 7 , the steps of forming the
由于在形成第一减反射层101时,第一进气口113处于打开状态且第二进气口123处于关闭状态,则在形成第一减反射层101的过程中,第一减反射层101中越远离第一进气口113的区域中至少包含氧元素的气体的含量越少,因而有利于形成沿方向X上,氧元素含量逐渐减少的第一减反射层101,从而使得第一减反射层101的折射率沿方向X上呈增大趋势。同理,在形成第二减反射层102时,第一进气口113处于关闭状态且第二进气口123处于打开状态,则在形成第二减反射层102的过程中,第二减反射层102中越远离第二进气口123的区域中至少包含氧元素的气体的含量越少,因而有利于形成沿方向X上,氧元素含量逐渐增加的第二减反射层102,从而使得第二减反射层102的折射率沿方向X上呈减小趋势。Since the
在一些实施例中,至少包含氧元素的气体包括氧气或者一氧化二氮气体。若至少包含氧元素的气体为一氧化二氮气体,则在形成第一减反射层101的过程中,第一减反射层101中越远离处于打开状态的第一进气口113的区域中的一氧化二氮气体的含量越少,因而有利于形成沿方向X上,氧元素含量和氮元素含量均逐渐减少的第一减反射层101,从而使得第一减反射层101的折射率沿方向X上呈增大趋势。同理,在形成第二减反射层102的过程中,第二减反射层102中越远离处于打开状态的第二进气口123的区域中的一氧化二氮气体的含量越少,因而有利于形成沿方向X上,氧元素含量和氮元素含量均逐渐增加的第二减反射层102,从而使得第二减反射层102的折射率沿方向X上呈减小趋势。In some embodiments, the gas containing at least elemental oxygen includes oxygen or nitrous oxide gas. If the gas containing at least oxygen element is nitrous oxide gas, in the process of forming the
在其他实施例中,第一进气口和第二进气口提供的气体也可以为包含氮元素但不包含氧元素的气体,通过改变第一减反射层和第二减反射层不同区域中氮元素的含量的不同,改变第一减反射层和第二减反射层不同区域的折射率。In other embodiments, the gas provided by the first air inlet and the second air inlet may also be a gas containing nitrogen but not oxygen. By changing the different regions of the first anti-reflection layer and the second anti-reflection layer Different contents of nitrogen elements change the refractive index of different regions of the first anti-reflection layer and the second anti-reflection layer.
在一些实施例中,第一进气口113和第二进气口123提供的气体相同,如此,有利于控制第一减反射层101的折射率和第二减反射层102的折射率的最大值相同,且有利于控制第一减反射层101的折射率和第二减反射层102的折射率的最小值相同。In some embodiments, the gases provided by the
在其他实施例中,第一进气口提供的气体与第二进气口提供的气体也可以不同,例如,第一进气口提供的气体可以为氧气,第二进气口提供的气体可以为一氧化氮气体。In other embodiments, the gas provided by the first gas inlet may be different from the gas provided by the second gas inlet. For example, the gas provided by the first gas inlet may be oxygen, and the gas provided by the second gas inlet may be oxygen. for nitric oxide gas.
在一些实施例中,第一进气口113提供的气体的气体流量不高于150mL/s,第二进气口123提供的气体的气体流量不高于150mL/s。如此,有利于避免在形成第一减反射层101和第二减反射层102的过程中提供过多的至少包含氧元素的气体,避免第一减反射层101和第二减反射层102中的氧元素和/或氮元素的含量过高,使得第一减反射层101和第二减反射层102中的氧元素和氮元素的含量比值过高,以避免第一减反射层101的折射率和第二减反射层102的折射率过低。由于第一减反射层101的折射率和/或第二减反射层102的折射率过低,不利于光在第一减反射层101和第二减反射层102中发生全反射,光容易从第一减反射层101和第二减反射层102中反射进空气中,造成不必要的光损失。因而,避免在形成第一减反射层101和第二减反射层102的过程中提供过多的至少包含氧元素的气体,以避免第一减反射层101和第二减反射层102的折射率之差过大,有利于避免不必要的光损失,从而有利于提高光伏电池对光的吸收率。In some embodiments, the gas flow rate of the gas provided by the
综上所述,形成的光伏电池中,沿方向X上,第一减反射层101和第二减反射层102中一者的氧元素和氮元素的含量比值呈增大趋势,另一者的氧元素和氮元素的含量比值呈减小趋势,如此,有利于使得沿方向X上,第一减反射层101和第二减反射层102中的一者的折射率呈增大趋势,另一者的折射率呈减小趋势,且第一减反射层101和第二减反射层102的折射率的差值先呈减小趋势然后呈增大趋势,从而有利于提高光伏电池对光的吸收率。To sum up, in the formed photovoltaic cell, along the direction X, the content ratio of oxygen and nitrogen in one of the
本申请又一实施例还提供一种光伏组件,光伏组件用于将接收的光能转化为电能。图9为本申请又一实施例提供的光伏组件的结构示意图。Yet another embodiment of the present application also provides a photovoltaic assembly, which is used for converting received light energy into electrical energy. FIG. 9 is a schematic structural diagram of a photovoltaic module provided by another embodiment of the present application.
参考图9,光伏组件包括电池串(未标示)、封装胶膜140以及盖板150;电池串由多个光伏电池130连接形成,光伏电池130可以为前述的任一光伏电池,或者可以为前述的任一光伏电池的制备方法制备的光伏电池,相邻光伏电池130之间通过导电带(未图示)电连接,同时,相邻光伏电池130之间的位置关系既可以是部分层叠,也可以是相互拼接;封装胶膜140可以为乙烯-乙酸乙烯共聚物(EVA)胶膜、聚乙烯辛烯共弹性体(POE)胶膜或者聚对苯二甲酸乙二醇酯(PET)胶膜等有机封装胶膜,封装胶膜140覆盖在电池串的表面以密封;盖板150可以为玻璃盖板或塑料盖板等透明或半透明盖板,盖板150覆盖在封装胶膜140背离电池串的表面。Referring to FIG. 9 , the photovoltaic assembly includes a battery string (not marked), an encapsulating
在一些实施例中,盖板150上设置有陷光结构以增加入射光的利用率,不同盖板150的陷光结构可以不同。光伏组件具有较高的电流收集能力和较低的载流子复合率,可实现较高的光电转换效率;同时,光伏组件正面呈现暗蓝色甚至黑色,可应用于更多场景中。In some embodiments, a light trapping structure is provided on the
在一些实施例中,封装胶膜140和盖板150仅位于光伏电池130的前表面,避免位于后表面的封装胶膜140和盖板150对较弱的光线造成进一步阻隔和削弱;同时,光伏组件还可以采用侧边全包围式封装,即采用封装胶膜140完全包覆光伏组件的侧边,以防止光伏组件在层压过程中发生层压偏移的现象,以及避免外部环境通过光伏组件的侧边影响光伏电池的性能,例如水汽侵入。In some embodiments, the
本领域的普通技术人员可以理解,上述各实施方式是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请实施例的精神和范围。任何本领域技术人员,在不脱离本申请实施例的精神和范围内,均可作各自更动与修改,因此本申请实施例的保护范围应当以权利要求限定的范围为准。Those of ordinary skill in the art can understand that the above-mentioned embodiments are specific examples for realizing the present application, and in practical applications, various changes can be made in form and details without departing from the embodiments of the present application. spirit and scope. Any person skilled in the art can make respective changes and modifications without departing from the spirit and scope of the embodiments of the present application. Therefore, the protection scope of the embodiments of the present application should be subject to the scope defined by the claims.
Claims (16)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210108488.4A CN114122157B (en) | 2022-01-28 | 2022-01-28 | Photovoltaic cell and its manufacturing method, photovoltaic module |
CN202210387930.1A CN114975642B (en) | 2022-01-28 | 2022-01-28 | Photovoltaic cell and photovoltaic module |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210108488.4A CN114122157B (en) | 2022-01-28 | 2022-01-28 | Photovoltaic cell and its manufacturing method, photovoltaic module |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210387930.1A Division CN114975642B (en) | 2022-01-28 | 2022-01-28 | Photovoltaic cell and photovoltaic module |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114122157A CN114122157A (en) | 2022-03-01 |
CN114122157B true CN114122157B (en) | 2022-05-20 |
Family
ID=80362072
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210387930.1A Active CN114975642B (en) | 2022-01-28 | 2022-01-28 | Photovoltaic cell and photovoltaic module |
CN202210108488.4A Active CN114122157B (en) | 2022-01-28 | 2022-01-28 | Photovoltaic cell and its manufacturing method, photovoltaic module |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210387930.1A Active CN114975642B (en) | 2022-01-28 | 2022-01-28 | Photovoltaic cell and photovoltaic module |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN114975642B (en) |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007266095A (en) * | 2006-03-27 | 2007-10-11 | Mitsubishi Heavy Ind Ltd | Photoelectric conversion cell, photoelectric conversion module, photoelectric conversion panel, and photoelectric conversion system |
KR101213470B1 (en) * | 2008-09-08 | 2012-12-20 | 한국전자통신연구원 | Antireflection coating for solar cell, solar cell, and manufacturing method for solar cell |
FR2939240B1 (en) * | 2008-12-03 | 2011-02-18 | Saint Gobain | LAYERED ELEMENT AND PHOTOVOLTAIC DEVICE COMPRISING SUCH A MEMBER |
US20110094574A1 (en) * | 2009-10-27 | 2011-04-28 | Calisolar Inc. | Polarization Resistant Solar Cell Design Using SiCN |
JP2014011246A (en) * | 2012-06-28 | 2014-01-20 | Kyocera Corp | Solar cell element and solar cell module |
US9018516B2 (en) * | 2012-12-19 | 2015-04-28 | Sunpower Corporation | Solar cell with silicon oxynitride dielectric layer |
US9400343B1 (en) * | 2014-04-30 | 2016-07-26 | Magnolia Optical Technologies, Inc. | Highly durable hydrophobic antireflection structures and method of manufacturing the same |
JP2016212193A (en) * | 2015-05-01 | 2016-12-15 | アーゼッド・エレクトロニック・マテリアルズ(ルクセンブルグ)ソシエテ・ア・レスポンサビリテ・リミテ | Optical functional film and manufacturing method therefor |
JP6094917B1 (en) * | 2016-06-07 | 2017-03-15 | 紘一 勝又 | Method for optimal design of antireflection film and photovoltaic power generation apparatus |
TWI585988B (en) * | 2016-10-21 | 2017-06-01 | 茂迪股份有限公司 | Solar battery |
CN207009446U (en) * | 2017-08-07 | 2018-02-13 | 苏州阿特斯阳光电力科技有限公司 | A kind of antireflective coating and polycrystalline silicon solar cell |
CN108962999A (en) * | 2018-06-14 | 2018-12-07 | 东方日升(常州)新能源有限公司 | The composite membrane and preparation method thereof of solar battery attenuating reflectivity |
CN208923157U (en) * | 2018-12-07 | 2019-05-31 | 苏州阿特斯阳光电力科技有限公司 | Solar battery antireflective film, cell piece and battery component |
CN111509081B (en) * | 2020-03-20 | 2023-10-20 | 中国科学院宁波材料技术与工程研究所 | Preparation method of ultrathin oxygen-containing nitrogen-silicon film and application of ultrathin oxygen-containing nitrogen-silicon film in passivation contact battery |
CN111668317B (en) * | 2020-05-29 | 2021-09-24 | 晶科绿能(上海)管理有限公司 | Photovoltaic module, solar cell and preparation method thereof |
CN213601878U (en) * | 2020-11-26 | 2021-07-02 | 苏州阿特斯阳光电力科技有限公司 | A solar cell and photovoltaic module |
CN214797429U (en) * | 2021-02-23 | 2021-11-19 | 浙江晶科能源有限公司 | Solar cell and photovoltaic module thereof |
CN113571604B (en) * | 2021-09-27 | 2022-01-25 | 浙江晶科能源有限公司 | Photovoltaic cell, preparation method thereof and photovoltaic module |
-
2022
- 2022-01-28 CN CN202210387930.1A patent/CN114975642B/en active Active
- 2022-01-28 CN CN202210108488.4A patent/CN114122157B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN114975642A (en) | 2022-08-30 |
CN114122157A (en) | 2022-03-01 |
CN114975642B (en) | 2024-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11588065B2 (en) | Solar cell and photovoltaic module | |
Lehr et al. | Energy yield modelling of perovskite/silicon two-terminal tandem PV modules with flat and textured interfaces | |
Xu et al. | Light management in monolithic perovskite/silicon tandem solar cells | |
CN114759097B (en) | Solar cell and preparation method thereof, photovoltaic module | |
CN116387371B (en) | Solar cells and manufacturing methods, photovoltaic modules and photovoltaic systems | |
Gota et al. | Energy yield modelling of textured perovskite/silicon tandem photovoltaics with thick perovskite top cells | |
Singh et al. | Comparing optical performance of a wide range of perovskite/silicon tandem architectures under real-world conditions | |
JP7431303B2 (en) | Solar cells and their manufacturing methods, photovoltaic modules | |
CN108447929A (en) | Photovoltaic module with light-trapping structure and processing method thereof | |
CN115000213B (en) | Photovoltaic cell, manufacturing method thereof and photovoltaic module | |
CN114122157B (en) | Photovoltaic cell and its manufacturing method, photovoltaic module | |
CN213601878U (en) | A solar cell and photovoltaic module | |
CN218182221U (en) | Solar cells and photovoltaic modules | |
US20140216520A1 (en) | Solar cell module and fabricating method thereof | |
US9614108B1 (en) | Optically-thin chalcogenide solar cells | |
CN218101276U (en) | PV | |
CN218918902U (en) | Solar cell and photovoltaic module | |
CN216213500U (en) | Novel heterogeneous crystalline silicon cell | |
CN115706173A (en) | Solar cell, preparation method thereof and photovoltaic module | |
Stannowski et al. | Nanocrystalline silicon oxide interlayer in monolithic perovskite/silicon heterojunction tandem solar cells with total current density> 39 mA/cm 2 | |
CN118431307B (en) | Photovoltaic cell, preparation method thereof, photovoltaic module and photovoltaic system | |
CN209119115U (en) | Solar battery sheet and battery component with the cell piece | |
TWI419343B (en) | Tandem solar cell | |
KR101373250B1 (en) | Thin film solar cell and method of fabricating the same | |
CN208111457U (en) | A photovoltaic module with a light-trapping structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |