CN114113227B - Measurement system and measurement method - Google Patents
Measurement system and measurement method Download PDFInfo
- Publication number
- CN114113227B CN114113227B CN202111383660.9A CN202111383660A CN114113227B CN 114113227 B CN114113227 B CN 114113227B CN 202111383660 A CN202111383660 A CN 202111383660A CN 114113227 B CN114113227 B CN 114113227B
- Authority
- CN
- China
- Prior art keywords
- impedance
- cell
- equivalent circuit
- gep
- mathematical model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/16—Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Chemical & Material Sciences (AREA)
- Computational Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- Pathology (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Analytical Chemistry (AREA)
- Computer Hardware Design (AREA)
- Health & Medical Sciences (AREA)
- Electrochemistry (AREA)
- Algebra (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Description
技术领域Technical field
本发明涉及一种测量与数据处理相结合的方法,特别涉及一种用于胚胎发育过程中的电学特性精准测量方法。The invention relates to a method that combines measurement and data processing, and in particular, to a method for accurately measuring electrical properties during embryonic development.
背景技术Background technique
由于单细胞是生命组织的最小结构和功能单位,所以检测胚胎的发育过程对揭示生命的奥秘、研究药物反应具有极其重要的意义。Since single cells are the smallest structural and functional units of living tissue, detecting the development process of embryos is of extremely important significance for revealing the mysteries of life and studying drug responses.
然而常规的检测方法如:单细胞测序,基因编辑技术既复杂又昂贵。生物阻抗谱(Bioimpedance Spectroscopy,BIS)作为一种无标签、无辐射的非侵入性新型技术已经被广泛应用于工业、生物以及医学方面。However, conventional detection methods such as single-cell sequencing and gene editing technology are complex and expensive. Bioimpedance Spectroscopy (BIS), as a new label-free, radiation-free, non-invasive technology, has been widely used in industry, biology and medicine.
生物阻抗谱方法能够定量判断细胞的类型、大小和数量(一维信息),其应用也较为广泛。如:The bioimpedance spectroscopy method can quantitatively determine the type, size and number of cells (one-dimensional information), and its application is also widespread. like:
参考文献1:JP2011050765A提供一种进行生物阻抗分析的方法和设备。在一些实施例中,提供了等效电路频率响应模型,其提供了与MRI数据的改善的相关性。频率响应模型考虑了身体组成,包括身体部分的脂肪成分。Reference 1: JP2011050765A provides a method and equipment for bioimpedance analysis. In some embodiments, an equivalent circuit frequency response model is provided that provides improved correlation with MRI data. The frequency response model takes into account body composition, including the fat composition of body parts.
参考文献2:WO2005027717A2提供一种生物阻抗分析的方法和设备。通过对受试者的小腿进行生物阻抗谱(BIS)和MRI所获得的数据说明,与在50kHz的单频分析和使用常规Cole-Cole模型进行的分析相比,可以改善相关性。Reference 2: WO2005027717A2 provides a method and device for bioimpedance analysis. Data obtained from bioimpedance spectroscopy (BIS) and MRI of subjects' calves illustrate improved correlations compared to single-frequency analysis at 50 kHz and analysis using the conventional Cole-Cole model.
然而,生物阻抗谱的检测精度常受被测物位置变动的影响,因此,直接利用生物阻抗谱的测量数据无法精确提取发育过程中细胞的电学特性参数。However, the detection accuracy of bioimpedance spectroscopy is often affected by changes in the position of the measured object. Therefore, it is impossible to accurately extract the electrical characteristic parameters of cells during development by directly using the measurement data of bioimpedance spectroscopy.
发明内容Contents of the invention
本发明的目的是解决现有生物阻抗谱方法检测精度低的问题,提供一种测量系统以及测量方法。The purpose of the present invention is to solve the problem of low detection accuracy of existing bioimpedance spectroscopy methods and provide a measurement system and a measurement method.
一种测量系统,其包括:传感器、位置测量系统、数值仿真系统、位置校正系统、电学特性参数提取系统;A measurement system, which includes: a sensor, a position measurement system, a numerical simulation system, a position correction system, and an electrical characteristic parameter extraction system;
所述传感器,用于测量细胞的阻抗;The sensor is used to measure the impedance of cells;
所述位置测量系统,用于测量细胞在传感器中的位置;The position measurement system is used to measure the position of cells in the sensor;
所述数值仿真系统,用于获得细胞位置与阻抗间的特征关系;The numerical simulation system is used to obtain the characteristic relationship between cell position and impedance;
所述位置校正系统,用于得到位置校正后的阻抗;The position correction system is used to obtain the impedance after position correction;
所述电学特性参数提取系统,用于利用生物阻抗谱等效电路自拟合算法实现电学特性参数的提取。The electrical characteristic parameter extraction system is used to extract electrical characteristic parameters using a bioimpedance spectrum equivalent circuit self-fitting algorithm.
进一步,所述的位置测量系统采用电子显微镜。Further, the position measurement system uses an electron microscope.
一种测量方法,包括有如下步骤:A measurement method including the following steps:
步骤一,获得细胞位置与阻抗间的特征关系:通过数值仿真获取若干细胞位置与阻抗间数值;利用多项式来拟合构建阻抗与细胞位置间的数学模型;Step 1: Obtain the characteristic relationship between cell position and impedance: obtain several values between cell position and impedance through numerical simulation; use polynomials to fit and construct a mathematical model between impedance and cell position;
步骤二,在传感器中测量细胞的阻抗,并且通过电子显微镜观察细胞的坐标位置;Step 2: Measure the impedance of the cell in the sensor and observe the coordinate position of the cell through an electron microscope;
步骤三,位置校正:依据步骤一得到的阻抗与细胞位置间的数学模型以及步骤二记录的细胞的坐标位置,对步骤二得到的阻抗进行相应的校正;Step three, position correction: Based on the mathematical model between the impedance obtained in step one and the cell position and the coordinate position of the cell recorded in step two, the impedance obtained in step two is corrected accordingly;
步骤四,根据步骤三校正后的数据,利用生物阻抗谱等效电路自拟合算法实现电学特性参数的提取。Step 4: Based on the corrected data in Step 3, use the bioimpedance spectrum equivalent circuit self-fitting algorithm to extract electrical characteristic parameters.
进一步,对于步骤一而言,通过数值仿真,来获取细胞在传感器中的位置与阻抗间数学模型,具体包括:Furthermore, for step one, numerical simulation is used to obtain the mathematical model between the position and impedance of cells in the sensor, specifically including:
S1-1,对仿真区域进行网格划分;S1-1, mesh the simulation area;
S1-2,随机选择其中任意一个位置作为胚胎的中心坐标位置,其坐标表达为(xc,yc),频率f为任意频率fb,并测量得到的阻抗值表达为Zbc;S1-2, randomly select any one of the positions as the center coordinate position of the embryo, its coordinates are expressed as (x c , y c ), the frequency f is any frequency f b , and the measured impedance value is expressed as Z bc ;
中心坐标选取j组,频率选取n组;The center coordinates select j group, and the frequency selects n group;
则,记录阻抗值矩阵Z:Then, record the impedance value matrix Z:
记录位置矩阵X:Record position matrix X:
S1-3,求解矩阵A:S1-3, solve matrix A:
A=ZX-1 A=ZX -1
其中:in:
进一步,步骤二记录了胚胎在传感器中的实际位置为(xp,yp),其记录的频率为fg阻抗为Zg;则转化到参考位置(xr,yr)的阻抗为Z'g:Further, step two records the actual position of the embryo in the sensor as (x p , y p ), the recorded frequency is f g and the impedance is Z g ; then the impedance converted to the reference position (x r , y r ) is Z ' g :
进一步,步骤四,具体包括以下子步骤:Further, step four specifically includes the following sub-steps:
S4-1,根据基因表达式算法(GEP)构建等效电路模型:S4-1, construct an equivalent circuit model based on the Gene Expression Algorithm (GEP):
设定GEP的功能符号为{“S”,“P”};Set the function symbol of GEP to {"S", "P"};
基于生物阻抗谱等效电路常用的电器元件,设定GEP的终端符号为{“R”,“C”,“L”,“CPE”,“Z_w”};Based on commonly used electrical components in bioimpedance spectrum equivalent circuits, set the terminal symbols of GEP to {"R", "C", "L", "CPE", "Z_w"};
其中“S”代表串联关系,“P”代表并联关系,“R”代表电阻元件,“C”代表电容元件,“L”代表电感元件,“CPE”代表常相位元件,“Z_w”代表扩散阻抗,与终端符号相对应的阻抗表达式如下:Among them, "S" represents the series relationship, "P" represents the parallel relationship, "R" represents the resistance element, "C" represents the capacitance element, "L" represents the inductance element, "CPE" represents the constant phase element, and "Z_w" represents the diffusion impedance. , the impedance expression corresponding to the terminal symbol is as follows:
ZL=jwLZ L =jwL
t=h(n-1)+1t=h(n-1)+1
l=t+hl=t+h
式中:In the formula:
Z_c表示:容抗,单位为:Ω;Z_c means: capacitive reactance, unit: Ω;
ω表示:角频率,单位为rad/s;ω represents: angular frequency, unit is rad/s;
C表示:电容值,单位为:c;C represents: capacitance value, unit: c;
ZL表示:感抗,单位为:Ω;Z L means: inductive reactance, unit: Ω;
Zω表示:扩散阻抗,单位为:Ω;Z ω represents: diffusion impedance, unit: Ω;
Y表示:Warburg导纳的模数,具体取值在(0,1)范围内,单位无量纲;Y represents: the modulus of Warburg admittance, the specific value is within the range of (0,1), and the unit is dimensionless;
ZCPE表示:常相位阻抗,单位为:Ω;Z CPE means: constant phase impedance, unit: Ω;
Y0表示:前因子、常相位元件剥离频率后的大小或模一般化元件,一般取值(0,1)Y 0 represents: the size or modulus of the pre-factor and constant-phase components after stripping off the frequency, generally taking the value (0,1)
n表示:幂指数,取值在[-1,1]范围内;n represents: power index, the value is in the range of [-1,1];
t表示:尾长长度,无量纲;t means: tail length, dimensionless;
h表示:头长长度,无量纲;h means: head length, dimensionless;
l表示:GEP基因总长,无量纲;l represents: the total length of the GEP gene, dimensionless;
L表示:电感,单位为:H;L means: inductance, unit: H;
j虚数单位;j imaginary unit;
根据GEP个体组成原理,首先需要根据需求自行设定头长h和n,则此时个体长度则可知晓;According to the GEP individual composition principle, you first need to set the head length h and n according to your needs, then the individual length can be known at this time;
S4-2,通过GEP的编码与解码方式组成等效电路模型,子节点的父节点即为功能符号,该符号对应着电气元件的组合关系:S4-2, form an equivalent circuit model through GEP encoding and decoding methods. The parent node of the child node is the functional symbol, which corresponds to the combination relationship of electrical components:
基于GEP建立的等效电路模型,通过遗传算法拟合生物阻抗谱:Based on the equivalent circuit model established by GEP, the bioimpedance spectrum is fitted by genetic algorithm:
首先GA依据等效电路模型中含有的电气元件初始化电学特性参数种群,最大迭代数;First, GA initializes the electrical characteristic parameter population and the maximum number of iterations based on the electrical components contained in the equivalent circuit model;
其次,设定GA选择概率Ps用于确保每代中较佳的个体能够有更大的概率遗传至下一代,另外设定交叉概率Pc以及变异概率Pm用于产生新个体,避免解集陷入局部最佳,从而保证每次GA算法可保证当前等效电路可取得最佳适应度;Secondly, the GA selection probability P s is set to ensure that the better individuals in each generation can be inherited to the next generation with a greater probability. In addition, the crossover probability P c and mutation probability P m are set to generate new individuals to avoid solving the problem. The set falls into a local optimum, thereby ensuring that each GA algorithm can ensure that the current equivalent circuit can achieve the best fitness;
再次,将GA获得最佳适应度反馈给GEP的个体用于等效电路的优化;Thirdly, the individuals who obtain the best fitness from GA are fed back to GEP for the optimization of equivalent circuits;
最后,经过GEP优化以及GA计算拟合可获得最佳的等效电路及其相应的电学参数,进而可获知生物阻抗谱中蕴含的电学特性参数。Finally, through GEP optimization and GA calculation and fitting, the best equivalent circuit and its corresponding electrical parameters can be obtained, and then the electrical characteristic parameters contained in the bioimpedance spectrum can be obtained.
本发明技术方案的优点主要体现在:The advantages of the technical solution of the present invention are mainly reflected in:
1)本申请的第一个发明点在于:发现“细胞位置在传感器中的位置不同,其测量得到的阻抗不同”这一现象。基于此现象,要想研究不同细胞或者细胞在不同阶段的阻抗,就需要将实际测量得到的阻抗去除位置的影响。1) The first invention of this application is the discovery of the phenomenon that "different cell positions in the sensor result in different measured impedances." Based on this phenomenon, if you want to study the impedance of different cells or cells at different stages, you need to remove the influence of position from the actual measured impedance.
基于该问题,发明人通过大量的实验发现,细胞在传感器中的位置与阻抗之间的关系满足下式:Based on this problem, the inventor found through a large number of experiments that the relationship between the position of cells in the sensor and the impedance satisfies the following formula:
据此,提出了步骤一、三来消除上述位置影响。Based on this, steps one and three are proposed to eliminate the above-mentioned location effects.
2)本申请的第二个发明点在于:本申请能够用于测量细胞的电学特性参数;本申请的方法用于研究药物反应具有良好的应用前景。2) The second invention of this application is that this application can be used to measure the electrical characteristic parameters of cells; the method of this application has good application prospects for studying drug responses.
附图说明Description of the drawings
下面结合附图中的实施例对本发明作进一步的详细说明,但并不构成对本发明的任何限制。The present invention will be further described in detail below with reference to the embodiments in the drawings, but this does not constitute any limitation on the present invention.
图1为本申请的测量方法的流程图。Figure 1 is a flow chart of the measurement method of the present application.
具体实施方式Detailed ways
本发明的目的、优点和特点,将通过下面优选实施例的非限制性说明进行解释。这些实施例仅是应用本发明技术方案的典型范例,凡采取等同替换或者等效变换而形成的技术方案,均落在本发明要求保护的范围之内。The objects, advantages and features of the present invention will be explained by the following non-limiting description of preferred embodiments. These embodiments are only typical examples of applying the technical solutions of the present invention. Any technical solutions formed by adopting equivalent substitutions or equivalent transformations fall within the scope of protection claimed by the present invention.
[实施例一:精确测量方法的整体框架设计][Example 1: Overall framework design of accurate measurement method]
本申请的精确测量方法以及一种测量系统,下面结合附图1对本发明作进一步的说明。The precise measurement method and a measurement system of the present application will be further described below with reference to Figure 1.
一种胚胎发育过程中电学特性精准测量方法,包括有如下步骤:A method for accurately measuring electrical properties during embryonic development, including the following steps:
步骤一,获得细胞位置与阻抗间的特征关系:通过数值仿真获取细胞位置与阻抗间数值;Step 1: Obtain the characteristic relationship between cell position and impedance: obtain the value between cell position and impedance through numerical simulation;
利用多项式来拟合构建阻抗与细胞位置间的数学模型;Use polynomials to fit and construct a mathematical model between impedance and cell position;
步骤二,在传感器中测量细胞的阻抗、并且通过电子显微镜观察细胞的坐标位置;Step 2: Measure the impedance of the cell in the sensor and observe the coordinate position of the cell through an electron microscope;
步骤三,位置校正:依据步骤一得到的阻抗与细胞位置间的数学模型以及步骤二记录的细胞的坐标位置,对步骤二得到的阻抗进行相应的校正,从而避免位置因素对阻抗的影响,实现高精度测量。Step three, position correction: Based on the mathematical model between the impedance obtained in step one and the cell position and the coordinate position of the cell recorded in step two, the impedance obtained in step two is corrected accordingly to avoid the influence of position factors on the impedance and achieve High-precision measurement.
步骤四,根据步骤三校正后的数据,利用生物阻抗谱等效电路自拟合算法实现电学特性参数的提取。Step 4: Based on the corrected data in Step 3, use the bioimpedance spectrum equivalent circuit self-fitting algorithm to extract electrical characteristic parameters.
针对上述的测量方法,实施例一也提出了一种测量系统,其构成与作用见表1。In view of the above measurement method, Embodiment 1 also proposes a measurement system, whose composition and function are shown in Table 1.
表1Table 1
对于步骤四而言,利用生物阻抗谱等效电路自拟合算法对电学特性进行提取;自动拟合算法是一种遗传表达式算法与遗传算法相结合的混合算法,其中遗传表达式算法实现生物阻抗谱等效电路的构建,遗传算法则基于构建的等效电路模型实现生物阻抗谱的拟合以及电学参数的计算。For step four, the bioimpedance spectrum equivalent circuit self-fitting algorithm is used to extract electrical characteristics; the automatic fitting algorithm is a hybrid algorithm that combines genetic expression algorithm and genetic algorithm, in which the genetic expression algorithm realizes biological For the construction of the equivalent circuit of the impedance spectrum, the genetic algorithm realizes the fitting of the bioimpedance spectrum and the calculation of the electrical parameters based on the constructed equivalent circuit model.
[实施例二:数值仿真系统的具体工作][Embodiment 2: Specific work of the numerical simulation system]
数值仿真系统的具体工作,对应的就是步骤一的工作。The specific work of the numerical simulation system corresponds to the work of step one.
对于步骤一而言,通过数值仿真,来获取细胞在传感器中的位置与阻抗间数学模型,具体包括:For step one, numerical simulation is used to obtain the mathematical model between the position and impedance of cells in the sensor, specifically including:
S1-1,对仿真区域进行网格划分;S1-1, mesh the simulation area;
S1-2,随机选择其中任意一个位置作为胚胎的中心坐标位置,其坐标表达为(xc,yc),频率f为任意频率fb,并测量得到的阻抗值表达为Zbc;S1-2, randomly select any one of the positions as the central coordinate position of the embryo, its coordinates are expressed as (x c , y c ), the frequency f is any frequency f b , and the measured impedance value is expressed as Z bc ;
中心坐标选取j组,频率选取n组;The center coordinates select j group, and the frequency selects n group;
则,记录阻抗值矩阵Z:Then, record the impedance value matrix Z:
记录位置矩阵X:Record position matrix X:
S1-3,求解矩阵A:S1-3, solve matrix A:
上述矩阵采用下式表达:Z=A·XThe above matrix is expressed by the following formula: Z=A·X
可知:A=ZX-1(即能够求解到矩阵A中的各个数值)It can be seen that: A=ZX -1 (that is, each value in the matrix A can be solved)
其中,in,
S1-4,建立阻抗与细胞位置进行拟合建立相应的数学模型:S1-4, establish impedance and cell position to fit and establish a corresponding mathematical model:
[实施例三:位置校正系统的具体工作][Embodiment 3: Specific work of the position correction system]
对于实施例一的方法而言,其中的一个难题在于“如何进行位置校正”,该问题具体而言,是在实际测量过程中,胚胎的会发生变动,致使胚胎会处于传感器的不同位置;而胚胎处于传感器的不同位置时,其测量的阻抗是不同的,对此,就很难评价效果。For the method of Embodiment 1, one of the difficult problems is "how to perform position correction". Specifically, this problem is that during the actual measurement process, the embryo will change, causing the embryo to be in different positions of the sensor; and When the embryo is in different positions of the sensor, the measured impedance is different, so it is difficult to evaluate the effect.
也即,每次测量时,胚胎在传感器中的实际的坐标位置(xp,yp)必然是不同的,进而需要将不同的坐标位置测量的阻抗值转化到同一坐标位置(参考位置(xr,yr))下进行比较分析,进而可避免位置因素对阻抗的影响得到高精度的测量结果。That is to say, the actual coordinate position (x p , y p ) of the embryo in the sensor must be different every time it is measured, and the impedance values measured at different coordinate positions need to be converted to the same coordinate position (reference position (x r , y r )), which can avoid the influence of position factors on impedance and obtain high-precision measurement results.
对于此问题,进行如下处理:For this problem, proceed as follows:
其校正过程的步骤如下:The steps of the calibration process are as follows:
步骤二记录了胚胎在传感器中的实际位置为(xp,yp),其记录的频率为fg阻抗为Zg;Step 2 records the actual position of the embryo in the sensor as (x p , y p ), the recorded frequency is f g and the impedance is Z g ;
则转化到参考位置(xr,yr)的阻抗为Z'g:Then the impedance converted to the reference position (x r , y r ) is Z' g :
[实施例四:利用生物阻抗谱等效电路自拟合算法对电学特性进行提取][Example 4: Extracting electrical characteristics using bioimpedance spectrum equivalent circuit self-fitting algorithm]
对于实施例一的方法而言,其中的一个难题在于“如何用生物阻抗谱等效电路自拟合算法对电学特性进行提取”对于步骤三而言,利用生物阻抗谱等效电路自拟合算法对电学特性参数进行提取;自动拟合算法是一种遗传表达式算法与遗传算法相结合的混合算法,其中遗传表达式算法实现生物阻抗谱等效电路的构建,遗传算法则基于所构建的等效电路实现生物阻抗谱的拟合以及电学特性参数的提取。具体而言,包括以下步骤:For the method of Embodiment 1, one of the difficult problems is "how to use the bioimpedance spectrum equivalent circuit self-fitting algorithm to extract electrical characteristics." For step three, use the bioimpedance spectrum equivalent circuit self-fitting algorithm. Extract electrical characteristic parameters; the automatic fitting algorithm is a hybrid algorithm that combines genetic expression algorithm and genetic algorithm. The genetic expression algorithm realizes the construction of bioimpedance spectrum equivalent circuit, and the genetic algorithm is based on the constructed equivalent circuit. The effective circuit realizes the fitting of bioimpedance spectrum and the extraction of electrical characteristic parameters. Specifically, it includes the following steps:
S4-1,根据基因表达式算法(GEP)构建等效电路模型:S4-1, construct an equivalent circuit model based on the Gene Expression Algorithm (GEP):
设定GEP的功能符号为{“S”,“P”};Set the function symbol of GEP to {"S", "P"};
基于生物阻抗谱等效电路常用的电器元件,设定GEP的终端符号为{“R”,“C”,“L”,“CPE”,“Z_w”};Based on commonly used electrical components in bioimpedance spectrum equivalent circuits, set the terminal symbols of GEP to {"R", "C", "L", "CPE", "Z_w"};
其中“S”代表串联关系,“P”代表并联关系,“R”代表电阻元件,“C”代表电容元件,“L”代表电感元件,“CPE”代表常相位元件,“Z_w”代表扩散阻抗,与终端符号相对应的阻抗表达式如(2)-(6)所示。Among them, "S" represents the series relationship, "P" represents the parallel relationship, "R" represents the resistance element, "C" represents the capacitance element, "L" represents the inductance element, "CPE" represents the constant phase element, and "Z_w" represents the diffusion impedance. , the impedance expression corresponding to the terminal symbol is shown in (2)-(6).
ZL=jwLZ L =jwL
t=h(n-1)+1t=h(n-1)+1
l=t+hl=t+h
Z_c表示:容抗,单位为:Ω;Z_c means: capacitive reactance, unit: Ω;
ω表示:角频率,单位为rad/s;ω represents: angular frequency, unit is rad/s;
C表示:电容值,单位为:c;C represents: capacitance value, unit: c;
ZL表示:感抗,单位为:Ω;Z L means: inductive reactance, unit: Ω;
Zω表示:扩散阻抗,单位为:Ω;Z ω represents: diffusion impedance, unit: Ω;
Y表示:Warburg导纳的模数,具体取值在(0,1)范围内,单位无量纲;Y represents: the modulus of Warburg admittance, the specific value is within the range of (0,1), and the unit is dimensionless;
ZCPE表示:常相位阻抗,单位为:Ω;Z CPE means: constant phase impedance, unit: Ω;
Y0表示:前因子、常相位元件剥离频率后的大小或模一般化元件,一般取值(0,1)Y 0 represents: the size or modulus of the pre-factor and constant-phase components after stripping off the frequency, generally taking the value (0,1)
n表示:幂指数,取值在[-1,1]范围内;n represents: power index, the value is in the range of [-1,1];
t表示:尾长长度,无量纲;t means: tail length, dimensionless;
h表示:头长长度,无量纲;h means: head length, dimensionless;
l表示:GEP基因总长,无量纲;l represents: the total length of the GEP gene, dimensionless;
L表示:电感,单位为:H;L means: inductance, unit: H;
j虚数单位;j imaginary unit;
根据GEP个体组成原理,首先需要根据研究者自己的需求设定头长h和n,则此时个体长度可由公式(8)获知。According to the GEP individual composition principle, the head length h and n need to be set first according to the researcher's own needs. At this time, the individual length can be known by formula (8).
S4-2,可通过GEP的编码(二叉树层序遍历)与解码(二叉树后序遍历)方式组成等效电路模型,子节点的父节点即为功能符号,该符号对应着电气元件的组合关系。S4-2, the equivalent circuit model can be formed through GEP encoding (binary tree level in-order traversal) and decoding (binary tree post-order traversal). The parent node of the child node is the functional symbol, which corresponds to the combination relationship of electrical components.
基于GEP建立的等效电路模型,通过遗传算法(GA)拟合生物阻抗谱:Based on the equivalent circuit model established by GEP, the bioimpedance spectrum is fitted by genetic algorithm (GA):
首先GA依据等效电路模型中含有的电气元件初始化电学特性参数种群,最大迭代数;First, GA initializes the electrical characteristic parameter population based on the electrical components contained in the equivalent circuit model, and the maximum number of iterations;
其次,设定GA选择概率Ps用于确保每代中较佳的个体能够有更大的概率遗传至下一代,另外设定交叉概率Pc以及变异概率Pm用于产生新个体,避免解集陷入局部最佳,从而保证每次GA算法可保证当前等效电路可取得最佳适应度(与生物阻抗谱“最佳拟合”)Secondly, the GA selection probability P s is set to ensure that the better individuals in each generation can be inherited to the next generation with a greater probability. In addition, the crossover probability P c and mutation probability P m are set to generate new individuals to avoid solving the problem. The set falls into a local optimum, thus ensuring that each GA algorithm can ensure that the current equivalent circuit can achieve the best fitness ("best fit" with the bioimpedance spectrum)
再次,将GA获得最佳适应度反馈给GEP的个体用于等效电路的优化。Thirdly, the individuals who obtain the best fitness from GA are fed back to GEP for the optimization of equivalent circuits.
最后,经过GEP优化以及GA计算拟合可获得最佳的等效电路及其相应的电学参数,进而可获知生物阻抗谱中蕴含的电学特性参数。Finally, through GEP optimization and GA calculation and fitting, the best equivalent circuit and its corresponding electrical parameters can be obtained, and then the electrical characteristic parameters contained in the bioimpedance spectrum can be obtained.
图1中的:③等效电路的拟合即为GEP构建等效电路的过程,电学参数的计算则可以通过GA算法拟合生物阻抗谱完成。In Figure 1: ③ Equivalent circuit fitting is the process of constructing an equivalent circuit by GEP, and the calculation of electrical parameters can be completed by fitting the bioimpedance spectrum with the GA algorithm.
该方法已经成功被申请人用于微粒子悬浮液的等效电路自拟合;This method has been successfully used by the applicant for equivalent circuit self-fitting of microparticle suspensions;
申请人首先测量了10μm聚甲基丙烯酸甲酯(Poly Methyl Methacrylate,10PMMA),10μm聚苯乙烯磁性微球(10μm Polystyrene Magnetic,10PSM)、10μm,20μm 30μm聚苯乙烯(10μm,20μm 30μm Polystyrene,10PS,20PS,30PS)的阻抗数据。The applicant first measured 10μm polymethyl methacrylate (10PMMA), 10μm polystyrene magnetic microspheres (10μm Polystyrene Magnetic, 10PSM), 10μm, 20μm 30μm polystyrene (10μm, 20μm 30μm Polystyrene, 10PS). ,20PS,30PS) impedance data.
其次,利用等效电路自拟合算法实现了PMMA生物阻抗谱的拟合(拟合精度大于99%),并基于PMMA的等效电路模型拟合了其余四种微颗粒悬浮液的生物阻抗谱。Secondly, the PMMA bioimpedance spectrum was fitted using the equivalent circuit self-fitting algorithm (the fitting accuracy was greater than 99%), and the bioimpedance spectra of the remaining four microparticle suspensions were fitted based on the PMMA equivalent circuit model. .
最后,依据等效电路自拟合算法所反映出的电学特性参数显示了粒子直径以及粒子种类的识别。Finally, the particle diameter and particle type identification are shown based on the electrical characteristic parameters reflected by the equivalent circuit self-fitting algorithm.
以上所举实施例为本发明的较佳实施方式,仅用来方便说明本发明,并非对本发明作任何形式上的限制,任何所属技术领域中具有通常知识者,若在不脱离本发明所提技术特征的范围内,利用本发明所揭示技术内容所作出局部更动或修饰的等效实施例,并且未脱离本发明的技术特征内容,均仍属于本发明技术特征的范围内。The above-mentioned embodiments are preferred embodiments of the present invention. They are only used to facilitate the explanation of the present invention and are not intended to limit the present invention in any form. Anyone with ordinary knowledge in the relevant technical field can make any modifications without departing from the teachings of the present invention. Within the scope of the technical features of the present invention, equivalent embodiments that make partial changes or modifications using the technical content disclosed in the present invention, and do not deviate from the technical features of the present invention, still fall within the scope of the technical features of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111383660.9A CN114113227B (en) | 2021-11-22 | 2021-11-22 | Measurement system and measurement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111383660.9A CN114113227B (en) | 2021-11-22 | 2021-11-22 | Measurement system and measurement method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114113227A CN114113227A (en) | 2022-03-01 |
CN114113227B true CN114113227B (en) | 2024-02-02 |
Family
ID=80438970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111383660.9A Active CN114113227B (en) | 2021-11-22 | 2021-11-22 | Measurement system and measurement method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114113227B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116824048B (en) * | 2023-06-05 | 2024-01-30 | 南京航空航天大学 | A sensor, Jacobian matrix solution method, three-dimensional imaging system and method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1543912A (en) * | 2003-11-18 | 2004-11-10 | 华中科技大学 | Method and device for measuring multi-frequency impedance of biological tissue |
CN2705789Y (en) * | 2003-11-18 | 2005-06-22 | 华中科技大学 | Biological tissue multiple frequency impedance measurer |
CN108254325A (en) * | 2017-12-18 | 2018-07-06 | 江苏大学 | A kind of Phosphorus Nutrition in Plants detecting system and its method based on blade electrical impedance spectrum |
CN110123320A (en) * | 2019-05-13 | 2019-08-16 | 南京航空航天大学 | A kind of portable frequency sweep impedance bioelectrical measurement system and its measurement method |
CN111514947A (en) * | 2020-04-20 | 2020-08-11 | 南京航空航天大学 | Micro-fluidic chip for cell electrical impedance spectroscopy measurement |
CN111643079A (en) * | 2020-04-26 | 2020-09-11 | 南京航空航天大学 | Accurate tumor cell impedance detection method based on mutual compensation of bioimpedance spectroscopy and impedance imaging |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2004273821B2 (en) * | 2003-09-12 | 2010-08-12 | Renal Research Institute, Lcc | Bioimpedance methods and apparatus |
EP2265208A2 (en) * | 2008-04-15 | 2010-12-29 | Navotek Medical Ltd. | Hybrid medical device localization system |
WO2018057201A1 (en) * | 2016-09-20 | 2018-03-29 | Sensor Kinesis Corp. | Surface acoustic wave biosensor employing an analog front end and dna encoded libraries to improved limit of detection (lod) with exemplary apparatus of the same |
-
2021
- 2021-11-22 CN CN202111383660.9A patent/CN114113227B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1543912A (en) * | 2003-11-18 | 2004-11-10 | 华中科技大学 | Method and device for measuring multi-frequency impedance of biological tissue |
CN2705789Y (en) * | 2003-11-18 | 2005-06-22 | 华中科技大学 | Biological tissue multiple frequency impedance measurer |
CN108254325A (en) * | 2017-12-18 | 2018-07-06 | 江苏大学 | A kind of Phosphorus Nutrition in Plants detecting system and its method based on blade electrical impedance spectrum |
CN110123320A (en) * | 2019-05-13 | 2019-08-16 | 南京航空航天大学 | A kind of portable frequency sweep impedance bioelectrical measurement system and its measurement method |
CN111514947A (en) * | 2020-04-20 | 2020-08-11 | 南京航空航天大学 | Micro-fluidic chip for cell electrical impedance spectroscopy measurement |
CN111643079A (en) * | 2020-04-26 | 2020-09-11 | 南京航空航天大学 | Accurate tumor cell impedance detection method based on mutual compensation of bioimpedance spectroscopy and impedance imaging |
Non-Patent Citations (4)
Title |
---|
基于伪随机二进制序列的阻抗谱快速重构及其在电化学能源领域的应用;李伟恒等;电化学(第03期);全文 * |
基于生物阻抗谱的细胞电学特性研究;姚佳烽等;物理学报(第16期);全文 * |
基于电化学阻抗谱(EIS)的生物细胞检测方法;姚佳烽等;生物化工(第02期);全文 * |
改进免疫网络及其算法在面向乳腺检测的便携式生物阻抗谱系统研究与开发;姜祝鹏;南京航空航天大学(第2021期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN114113227A (en) | 2022-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Nakhleh | Computational approaches to species phylogeny inference and gene tree reconciliation | |
Greenbury et al. | The structure of genotype-phenotype maps makes fitness landscapes navigable | |
Scorcioni et al. | L-Measure: a web-accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies | |
CN105986008A (en) | CNV detection method and CNV detection apparatus | |
CN114113227B (en) | Measurement system and measurement method | |
CN107918725B (en) | A DNA methylation prediction method for selecting optimal features based on machine learning | |
CN113537245A (en) | A feature map-based neural network pruning method | |
WO2024187890A1 (en) | Snp data-based prediction method, apparatus and device and readable storage medium | |
CN118226261A (en) | A battery cell consistency evaluation method, device, system and medium | |
CN110010195A (en) | A kind of method and device detecting single nucleotide mutation | |
Xiao et al. | Modeling three-dimensional chromosome structures using gene expression data | |
CN114512188B (en) | DNA binding protein recognition method based on improved protein sequence position specificity matrix | |
CN113035275B (en) | Feature extraction method for tumor gene point mutation by combining contour coefficient and RJMMC algorithm | |
CN115148288A (en) | A kind of microorganism identification method, identification device and related equipment | |
CN113160886B (en) | Cell type prediction system based on single cell Hi-C data | |
CN109920480A (en) | A kind of method and apparatus correcting high-flux sequence data | |
CN106778072A (en) | For the flow bearing calibration of second generation Oncogenome high-flux sequence data | |
CN106778071A (en) | System and method for analyzing sequencing data of bacterial strains | |
CN111508559A (en) | Method and device for detecting target area CNV | |
JPWO2014175427A1 (en) | Method, apparatus and program for evaluating DNA status | |
CN101320404B (en) | A Computer Automatic Classification Method for Biological Viruses | |
CN114048794A (en) | Human tissue identification and classification method, system, computer equipment and medium | |
CN114566221A (en) | Automatic analysis and interpretation system for NGS data of genetic diseases | |
CN113035274A (en) | NMF-based tumor gene point mutation characteristic map extraction algorithm | |
CN119311476B (en) | Omics data capture and reconstruction method based on JDLGR algorithm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |