CN114107333B - Application of barley receptor kinase HvSERK1 in root hair growth - Google Patents
Application of barley receptor kinase HvSERK1 in root hair growth Download PDFInfo
- Publication number
- CN114107333B CN114107333B CN202111253390.XA CN202111253390A CN114107333B CN 114107333 B CN114107333 B CN 114107333B CN 202111253390 A CN202111253390 A CN 202111253390A CN 114107333 B CN114107333 B CN 114107333B
- Authority
- CN
- China
- Prior art keywords
- barley
- hvserk1
- leu
- gene
- gly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/12—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
- C12N9/1205—Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8273—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/146—Genetically Modified [GMO] plants, e.g. transgenic plants
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Cell Biology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Medicinal Chemistry (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本发明涉及基因工程技术领域,具体是大麦HvSERK1基因、大麦受体类激酶HvSERK1,含有所述基因的重组表达载体,及其在促进植物根毛生长中的应用。本发明通过克隆大麦HvSERK1基因,并在拟南芥中进行遗传转化,过量表达外源大麦HvSERK1基因,能够显著提高拟南芥根毛长度。因此,HvSERK1可望用于基因工程育种,将其导入短根毛大麦品种中,有望提高大麦吸收水分和养分的能力。本发明为大麦耐干旱育种与生产提供了理论依据和相关基因。The invention relates to the technical field of genetic engineering, in particular to barley HvSERK1 gene, barley receptor kinase HvSERK1, a recombinant expression vector containing the gene, and an application thereof in promoting the growth of plant root hairs. The invention clones the barley HvSERK1 gene, carries out genetic transformation in Arabidopsis thaliana, and overexpresses the exogenous barley HvSERK1 gene, which can significantly increase the root hair length of the Arabidopsis thaliana. Therefore, HvSERK1 is expected to be used in genetic engineering breeding, and its introduction into short root hair barley varieties is expected to improve the ability of barley to absorb water and nutrients. The invention provides a theoretical basis and related genes for drought-resistant breeding and production of barley.
Description
技术领域technical field
本发明涉及基因工程技术领域,具体地说,是大麦HvSERK1基因及其表达载体、大麦受体类激酶HvSERK1及其应用。The invention relates to the technical field of genetic engineering, specifically barley HvSERK1 gene and its expression vector, barley receptor kinase HvSERK1 and application thereof.
背景技术Background technique
根毛是植物根表皮细胞中高度特化的细胞,能够增加根的表面积,提高植物获取水分和养分的能力;还能通过自身的适应性反应及其根系分泌物,来提高植物的抗逆性。目前,为了提高农作物的产量,农业生产上大量施用化肥和农药,已经造成了严重的环境污染和能源浪费,同时也增加了农民的成本投入,因此,研究如何获得较多和较长根毛的作物新品种,提高作物产量和高效利用养分水分,是提高作物产量、抗逆性和可持续农业发展的基础和关键。研究调控根毛生长和发育相关的基因,对于了解植物生长发育的遗传调控机理,具有重要的理论意义和实际应用价值。Root hairs are highly specialized cells in the root epidermis of plants, which can increase the surface area of the root and improve the ability of the plant to obtain water and nutrients; it can also improve the stress resistance of the plant through its own adaptive response and root exudates. At present, in order to increase the yield of crops, a large amount of chemical fertilizers and pesticides are used in agricultural production, which has caused serious environmental pollution and energy waste, and also increased the cost of farmers. Therefore, it is necessary to study how to obtain crops with more and longer root hairs New varieties, improved crop yields and efficient use of nutrients and water are the basis and key to improving crop yields, stress resistance and sustainable agricultural development. Studying the genes related to the regulation of root hair growth and development has important theoretical significance and practical application value for understanding the genetic regulation mechanism of plant growth and development.
受体类激酶是一类跨膜蛋白,广泛存在于植物中,它们中转导细胞外信号来调节植物发育、自交不亲和性和防御反应方面发挥了重要作用。SOMATIC EMBRYOGENESISRECEPTOR KINASES(SERKs)属于LRR-RLKs亚家族II,首先中胡萝卜体细胞胚胎发生过程中发现的一类受体类激酶。拟南芥中SERKs参与包括体细胞胚胎发生、幼苗发育、油菜素内酯(BRs)信号转导、植物免疫和气孔发育。拟南芥SERKs家族包括5个同源基因,分别是SERK1、SERK2、SERK3/BKA1、SERK4/BKK1和SERK5。SERK1和SERK2的氨基酸序列十分相似,其双突变体serk1serk2由于不能形成绒毡层细胞而导致败育,表明SERK1和SERK2对于拟南芥花药绒毡层的形成十分重要。BRs能够与生长素和其他植物激素相互作用,来影响拟南芥根的发育,三突变体serk1bak1bkk1不仅能够阻断BR信号通路,还会影响生长素极性运输、细胞周期、内皮层发育、根分生组织分化相关的基因表达下调,从而影响拟南芥根的发育。SERK1、SERK2、SERK3/BAK1、SERK4/BKK1都参与调控拟南芥气孔的发育,且不依赖于BR信号。Receptor-like kinases are a class of transmembrane proteins that are ubiquitous in plants and play an important role in transducing extracellular signals to regulate plant development, self-incompatibility and defense responses. SOMATIC EMBRYOGENESIS RECEPTOR KINASES (SERKs) belong to LRR-RLKs subfamily II, the first class of receptor kinases discovered during somatic embryogenesis in carrot. The involvement of SERKs in Arabidopsis includes somatic embryogenesis, seedling development, brassinosteroids (BRs) signal transduction, plant immunity and stomatal development. The Arabidopsis SERKs family includes five homologous genes, namely SERK1, SERK2, SERK3/BKA1, SERK4/BKK1 and SERK5. The amino acid sequences of SERK1 and SERK2 are very similar, and the double mutant serk1serk2 leads to abortion because it cannot form tapetum cells, indicating that SERK1 and SERK2 are very important for the formation of Arabidopsis anther tapetum. BRs can interact with auxin and other plant hormones to affect Arabidopsis root development. The triple mutant serk1bak1bkk1 can not only block the BR signaling pathway, but also affect auxin polar transport, cell cycle, endothelial development, and root development. Gene expression related to meristem differentiation was down-regulated, thereby affecting Arabidopsis root development. SERK1, SERK2, SERK3/BAK1, and SERK4/BKK1 are all involved in regulating stomatal development in Arabidopsis thaliana independently of BR signaling.
麦类作物是世界上重要的粮食作物,其功能基因组研究对于全球粮食安全有着极为重要的意义。大麦(Hordeum vulgare L.)属于禾本科大麦属植物,是世界第四大谷类作物,主要用作啤酒工业原料、畜牧业饲料和食品加工原料,也是遗传学和生理学研究的重要模式植物。但是干旱严重影响了大麦的种植,成为制约大麦增产的最主要的非生物因素之一,因此,迫切需要挖掘根毛相关基因,以培育多根毛长根毛多大麦品种。Wheat crops are important food crops in the world, and its functional genome research is of great significance to global food security. Barley (Hordeum vulgare L.) belongs to the Gramineae family and is the fourth largest cereal crop in the world. It is mainly used as raw material for beer industry, animal husbandry feed and food processing raw material. It is also an important model plant for genetics and physiology research. However, the drought has seriously affected the cultivation of barley and has become one of the most important abiotic factors restricting the increase of barley production. Therefore, it is urgent to excavate the genes related to root hairs to breed barley varieties with multiple root hairs and long root hairs.
发明内容Contents of the invention
本发明的目的在于提供大麦HvSERK1基因、大麦受体类激酶HvSERK1,含有所述大麦HvSERK1基因的重组表达载体,以及所述基因在促进拟南芥根毛生长中的应用。The object of the present invention is to provide barley HvSERK1 gene, barley receptor kinase HvSERK1, a recombinant expression vector containing the barley HvSERK1 gene, and the application of the gene in promoting the growth of Arabidopsis root hairs.
本发明的第一方面,提供大麦HvSERK1基因,所述基因的CDS区核苷酸序列如SEQID NO.1所示。The first aspect of the present invention provides the barley HvSERK1 gene, the nucleotide sequence of the CDS region of the gene is shown in SEQ ID NO.1.
本发明的第二方面,提供如上所述的大麦HvSERK1基因编码的蛋白,其氨基酸序列如SEQ ID NO.2所示。The second aspect of the present invention provides the protein encoded by the above barley HvSERK1 gene, the amino acid sequence of which is shown in SEQ ID NO.2.
HvSERK1基因的克隆与分析:本发明从栽培大麦“花30”中鉴定克隆到基因HvSERK1,该基因的CDS区全长1884bp,编码一个627aa的蛋白质序列,该蛋白分子量为69.0769KDa,等电点pI=5.70。Cloning and analysis of the HvSERK1 gene: the present invention identified and cloned the gene HvSERK1 from the cultivated barley "Hua 30". The CDS region of the gene is 1884bp in full length, encoding a protein sequence of 627aa, the molecular weight of the protein is 69.0769KDa, and the isoelectric point pI =5.70.
本发明的第三方面,提供用于扩增如上所述大麦HvSERK1基因的引物对,其核苷酸序列分别如SEQ ID NO.3和SEQ ID NO.4所示。The third aspect of the present invention provides a pair of primers for amplifying the aforementioned barley HvSERK1 gene, the nucleotide sequences of which are shown in SEQ ID NO.3 and SEQ ID NO.4 respectively.
本发明的第四方面,提供一种含有如上所述的大麦HvSERK1基因的重组表达载体。The fourth aspect of the present invention provides a recombinant expression vector containing the above-mentioned barley HvSERK1 gene.
进一步的,所述的重组表达载体包括原始载体和插入所述原始载体的目的基因,所述目的基因的碱基序列如SEQ ID NO.1所示。Further, the recombinant expression vector includes an original vector and a target gene inserted into the original vector, and the base sequence of the target gene is shown in SEQ ID NO.1.
进一步的,启动所述目的基因表达的启动子为35S强启动子。Further, the promoter for promoting the expression of the target gene is a strong 35S promoter.
进一步的,所述原始载体为pH2GW7。Further, the original vector is pH2GW7.
更进一步的,所述重组表达载体的构建:采用Gateway系统(Invitrogen公司)将大麦HvSERK1基因连入植物表达载体pH2GW7中。启动所述大麦HvSERK1基因表达的启动子为强启动子。强启动子能够启动大麦HvSERK1基因过量表达。作为优选,所述的强启动子为35S。Further, the construction of the recombinant expression vector: use the Gateway system (Invitrogen Company) to connect the barley HvSERK1 gene into the plant expression vector pH2GW7. The promoter that drives the expression of the barley HvSERK1 gene is a strong promoter. The strong promoter can promote the overexpression of barley HvSERK1 gene. Preferably, the strong promoter is 35S.
本发明的第五方面,提供一种含有如上所述的重组表达载体的转化子。The fifth aspect of the present invention provides a transformant containing the above-mentioned recombinant expression vector.
进一步的,所述转化子的宿主菌为农杆菌GV3101、LBA4404、AGL1或EHA105。Further, the host bacteria of the transformants are Agrobacterium GV3101, LBA4404, AGL1 or EHA105.
本发明的第六方面,提供上述大麦HvSERK1基因、上述大麦HvSERK1基因编码的蛋白、上述引物对、上述重组表达载体、或上述转化子在植物育种中的用途。The sixth aspect of the present invention provides the use of the above-mentioned barley HvSERK1 gene, the protein encoded by the above-mentioned barley HvSERK1 gene, the above-mentioned primer pair, the above-mentioned recombinant expression vector, or the above-mentioned transformant in plant breeding.
进一步的,所述植物育种为调控植物根毛生长。Further, the plant breeding is to regulate the growth of plant root hairs.
进一步的,所述植物育种为促进植物根毛生长。在本发明的一个实施方式中,所述的植物为拟南芥。Further, the plant breeding is to promote the growth of plant root hairs. In one embodiment of the present invention, the plant is Arabidopsis.
本发明提供了大麦HvSERK1基因在调控根毛生长方面的用途,本发明通过克隆大麦HvSERK1基因,并在拟南芥中进行遗传转化,过量表达外源大麦HvSERK1基因,能够显著提高拟南芥根毛长度。因此,HvSERK1可望用于基因工程育种,将其导入短根毛大麦品种中,有望提高大麦吸收水分和养分的能力。本发明为大麦耐干旱育种与生产提供了理论依据和相关基因。The invention provides the use of the barley HvSERK1 gene in regulating root hair growth. The invention clones the barley HvSERK1 gene and performs genetic transformation in Arabidopsis thaliana to overexpress the exogenous barley HvSERK1 gene, which can significantly increase the root hair length of the Arabidopsis thaliana. Therefore, HvSERK1 is expected to be used in genetic engineering breeding, and its introduction into short root hair barley varieties is expected to improve the ability of barley to absorb water and nutrients. The invention provides a theoretical basis and related genes for drought-resistant breeding and production of barley.
本发明优点在于:The present invention has the advantage that:
本发明通过对大麦HvSERK1基因的克隆和分析,并结合拟南芥中表型分析,证明大麦HvSERK1基因可显著增加拟南芥根毛长度。本发明为大麦长根毛育种与生产提供了理论依据和相关基因。The invention proves that the barley HvSERK1 gene can significantly increase the root hair length of the Arabidopsis through the cloning and analysis of the barley HvSERK1 gene and the analysis of the Arabidopsis phenotype. The invention provides a theoretical basis and related genes for barley long root hair breeding and production.
附图说明Description of drawings
图1为本发明所述过量表达HvSERK1基因的拟南芥转基因材料中HvSERK1基因表达量。Fig. 1 shows the expression level of HvSERK1 gene in the transgenic material of Arabidopsis thaliana overexpressing HvSERK1 gene according to the present invention.
图2为本发明所述过量表达HvSERK1基因的拟南芥转基因材料根毛长度显著增加。Fig. 2 shows that the root hair length of Arabidopsis thaliana transgenic material overexpressing HvSERK1 gene according to the present invention is significantly increased.
具体实施方式Detailed ways
下面结合实施例和附图对本发明提供的具体实施方式作详细说明。The specific implementation modes provided by the present invention will be described in detail below in conjunction with the embodiments and the accompanying drawings.
实施例1:大麦HvSERK1基因过量表达载体构建和拟南芥遗传转化Example 1: Construction of overexpression vector of barley HvSERK1 gene and genetic transformation of Arabidopsis thaliana
(1)取大麦“花30”幼胚,提取RNA,采用Trizol法(Invitrogen),操作步骤按说明书进行。取1μg RNA进行反转录获得cDNA。(1) The immature embryos of barley "Hua 30" were taken, and RNA was extracted by Trizol method (Invitrogen), and the operation steps were carried out according to the instructions. 1 μg of RNA was reverse-transcribed to obtain cDNA.
(2)根据HvSERK1基因序列设计特异性引物,分别在引物5’端加上限制性酶切位点,序列如下:(2) Design specific primers according to the HvSERK1 gene sequence, add a restriction enzyme site at the 5' end of the primers, the sequence is as follows:
HvSERK1-CDS-F:5’-CCATCGATCTGCGGCTTTGAGACGG-3’(SEQ ID NO.3);HvSERK1-CDS-F:5'-CCATCGATCTGCGGCTTTGAGACGG-3' (SEQ ID NO.3);
HvSERK1-CDS-R:5’-CCCCCGGGAGAAATTCTGCAACGAGGGG-3’(SEQ ID NO.4);HvSERK1-CDS-R: 5'-CCCCCGGGAGAAATTCTGCAACGAGGGG-3' (SEQ ID NO.4);
(3)以全长cDNA为模板进行PCR扩增。(3) Perform PCR amplification using the full-length cDNA as a template.
采用KOD高保真酶(TOYOBO)体系:Using KOD high-fidelity enzyme (TOYOBO) system:
灭菌蒸馏水加至总体积50μL。Add sterile distilled water to a total volume of 50 μL.
PCR循环条件为:94℃预变性2min,98℃变性10s,55℃退火30s,68℃延伸90s,扩增35个循环,最后68℃延伸5min,结束反应。The PCR cycling conditions were: pre-denaturation at 94°C for 2 min, denaturation at 98°C for 10 s, annealing at 55°C for 30 s, extension at 68°C for 90 s, amplification for 35 cycles, and finally extension at 68°C for 5 min to end the reaction.
(4)将PCR产物跑胶回收后,通过酶切连接到Gateway克隆系统入门载体NT007,转化大肠杆菌DH5α,将阳性克隆测序并分析,HvSERK1基因序列如SEQ ID NO.1所示。(4) After the PCR product was recovered by gel running, it was ligated to Gateway cloning system entry vector NT007 by enzyme digestion, transformed into Escherichia coli DH5α, and the positive clone was sequenced and analyzed. The HvSERK1 gene sequence is shown in SEQ ID NO.1.
(5)将测序正确的含有HvSERK1全长CDS的NT007质粒命名为HvSERK1-NT007,将该质粒与过量表达载体pH2GW7进行LR交换反应。(5) The correctly sequenced NT007 plasmid containing the full-length CDS of HvSERK1 was named HvSERK1-NT007, and the plasmid was subjected to LR exchange reaction with the overexpression vector pH2GW7.
使用Gateway LR Clonase TM Enzyme Mix(Invitrogen公司,Cat.No.11791-019),体系如下:Using Gateway LR Clonase™ Enzyme Mix (Invitrogen Company, Cat.No.11791-019), the system is as follows:
短暂涡旋两次混匀,轻微离心,于25℃水浴2h,然后加入1μL Proteinase Ksolution(蛋白酶K溶液)混匀,37℃放置10分钟结束反应。Briefly vortex twice to mix well, centrifuge slightly, place in 25°C water bath for 2h, then add 1 μL Proteinase Ksolution (proteinase K solution) to mix well, and place at 37°C for 10 minutes to end the reaction.
取5μL反应产物转化大肠杆菌DH5α,挑取PCR验证阳性克隆,将阳性克隆测序验证,测序正确后提取质粒,并命名为35S:HvSERK1。Take 5 μL of the reaction product to transform Escherichia coli DH5α, pick positive clones for PCR verification, and sequence the positive clones for verification. After the sequencing is correct, extract the plasmid and name it 35S:HvSERK1.
(6)从-80℃冰箱取出LBA4404感受态细胞,利用热激法转化农杆菌LBA4404。(6) The LBA4404 competent cells were taken out from the -80°C refrigerator, and Agrobacterium LBA4404 was transformed by the heat shock method.
将感受态细胞置于冰上解冻,取5μL目的质粒加到感受态细胞中,混匀后置于冰上30min;将离心管放置在液氮中冷冻1min,随后放入37℃中水浴至融化。加入1mL的LB液体营养基振荡培养2-3h,离心后,涂布于含有Rif(利福平)50mg/L,Spec(盐酸大观霉素)50mg/L的抗性YEP平板上,28℃倒置培养2个晚上以至长出单菌落。Thaw the competent cells on ice, add 5 μL of the target plasmid to the competent cells, mix well and place on ice for 30 minutes; place the centrifuge tube in liquid nitrogen to freeze for 1 minute, then put it in a water bath at 37°C until it melts . Add 1mL of LB liquid nutrient medium to shake and culture for 2-3h, after centrifugation, spread on the resistant YEP plate containing Rif (rifampicin) 50mg/L, Spec (spectinomycin hydrochloride) 50mg/L, and invert at 28°C Incubate for 2 nights to grow single colonies.
(7)挑取PCR验证后的农杆菌阳性单克隆,至含有相应抗生素的5ml YEP液体培养基中,28℃振荡培养48h。将摇好的菌按体积比1:50加入YEP液体培养基(含相应抗生素)中,28℃,培养至OD600=1.0-1.2。(7) Pick the Agrobacterium-positive single clones verified by PCR, put them into 5ml YEP liquid medium containing corresponding antibiotics, and culture them with shaking at 28°C for 48h. Add the shaken bacteria into YEP liquid medium (containing corresponding antibiotics) at a volume ratio of 1:50, and cultivate at 28°C until OD 600 =1.0-1.2.
(8)用拟南芥花浸法转化拟南芥。(8) Transform Arabidopsis thaliana by Arabidopsis flower dipping method.
将果荚去除干净、仅剩下花序的拟南芥整株与穴盘一起倒扣于已转化农杆菌的菌液里,浸苗5min,期间不断地摇晃菌液;Remove the fruit pods and place the whole Arabidopsis thaliana plant with only the inflorescence upside down together with the plug in the transformed Agrobacterium bacterium solution, soak the seedlings for 5 minutes, and shake the bacterium solution continuously during the period;
侵染之后,取出植株,侧放于托盘内,覆盖避光的黑色塑料布,放置在培养箱内,24h后揭开;After infestation, take out the plants, place them sideways in a tray, cover them with black plastic cloth to avoid light, place them in an incubator, and uncover them after 24 hours;
将拟南芥植株置于自然光照的条件下进行培养,每周浇1-2次水,待种子成熟后,收获T0代种子。The Arabidopsis plants were cultivated under natural light conditions, watered 1-2 times a week, and the T 0 generation seeds were harvested after the seeds matured.
实施例2:大麦HvSERK1过量表达转基因株系筛选Example 2: Screening of barley HvSERK1 overexpression transgenic lines
(1)将收获的T0代种子杀菌消毒后,种植在MS+35mg/L潮霉素的固体培养基内,4℃黑暗春化3d后,将培养皿置于人工气候箱内培养,观察拟南芥植株的生长状况。具有潮霉素抗性的转基因种子将会在筛选培养基内生长,而非转基因的种子萌发后不再生长。(1) After sterilizing the harvested T 0 generation seeds, they were planted in the solid medium of MS+35mg/L hygromycin, and after vernalization in the dark at 4°C for 3 days, the petri dishes were placed in an artificial climate box for cultivation, and observed Growth status of Arabidopsis plants. Transgenic seeds with hygromycin resistance will grow on the selection medium, while non-transgenic seeds will not grow after germinating.
(2)将筛选到的转基因植株移栽至营养土中,待植株抽薹时,剪取100mg左右拟南芥叶片置于1.5ml离心管中,提取DNA,进行PCR验证,检测所筛选的植株是否为阳性。(2) Transplant the screened transgenic plants into nutrient soil. When the plants are bolting, cut about 100 mg of Arabidopsis leaves and place them in a 1.5 ml centrifuge tube, extract DNA, and perform PCR verification to detect whether the screened plants are is positive.
(3)对检测阳性的植株单株收获T1代种子后,杀菌消毒,种植在MS+35mg/L潮霉素的固体培养基内,4℃黑暗春化3d后,将培养皿置于人工气候箱内培养。(3) Harvest the T1 generation seeds of the positive plants, sterilize them, plant them in the solid medium of MS+35mg/L hygromycin, and after vernalization in the dark at 4°C for 3 days, put the petri dishes in artificial Cultivated in a climate chamber.
(4)具有潮霉素抗性的转基因植株移栽至营养土中。待植株抽薹时,每个株系剪取100mg左右拟南芥叶片提取RNA,反转录获得cDNA。用SYBR green和PCR仪对不同拟南芥转基因株系中HvSERK1基因的表达进行荧光定量PCR分析,并用内参基因TUB2对表达值进行矫正处理。(4) Transgenic plants with hygromycin resistance were transplanted into nutrient soil. When the plants were bolting, about 100 mg of Arabidopsis leaves were cut from each line to extract RNA, and cDNA was obtained by reverse transcription. The expression of HvSERK1 gene in different transgenic lines of Arabidopsis thaliana was analyzed by fluorescent quantitative PCR using SYBR green and PCR instrument, and the expression value was corrected by the internal reference gene TUB2.
荧光定量PCR体系如下:The fluorescence quantitative PCR system is as follows:
PCR程序为:95℃1min,95℃5s,60℃20s,40个循环。每组实验重复三次,荧光定量PCR引物序列如下:The PCR program is: 95°C for 1min, 95°C for 5s, 60°C for 20s, 40 cycles. Each group of experiments was repeated three times, and the sequences of fluorescent quantitative PCR primers were as follows:
HvSERK1-RT-PCR-F:5’-CTTGGCAGACGGAACTCTTG-3’(SEQ ID NO.5);HvSERK1-RT-PCR-F: 5'-CTTGGCAGACGGAACTCTTG-3' (SEQ ID NO.5);
HvSERK1-RT-PCR-R:5’-TCTCGGTCGGTGTCATACAG-3’(SEQ ID NO.6);HvSERK1-RT-PCR-R: 5'-TCTCGGTCGGTGTCATACAG-3' (SEQ ID NO.6);
AtTUB2-F:5’-GTTCTCGATGTTGTTCGTAAG-3’(SEQ ID NO.7);AtTUB2-F: 5'-GTTCTCGATGTTGTTCGTAAG-3' (SEQ ID NO.7);
AtTUB2-R:5’-TGTAAGGCTCAACCACAGTAT-3’(SEQ ID NO.8)。AtTUB2-R: 5'-TGTAAGGCTCAACCACACAGTAT-3' (SEQ ID NO. 8).
(5)不同拟南芥转基因株系中HvSERK1的相对表达量,结果如图1所示。选取表达量最高的3个株系35S:HvSERK1-4、35S:HvSERK1-7、35S:HvSERK1-9,收获T2代种子。(5) The relative expression levels of HvSERK1 in different Arabidopsis transgenic lines, the results are shown in FIG. 1 . The three lines with the highest expression levels, 35S:HvSERK1-4, 35S:HvSERK1-7, and 35S:HvSERK1-9, were selected to harvest T2 generation seeds.
实施例3:拟南芥根毛表型观察Example 3: Observation of Arabidopsis root hair phenotype
(1)将拟南芥野生型和T2代HvSERK1转基因种子(35S:HvSERK1-4、35S:HvSERK1-7、35S:HvSERK1-9),杀菌消毒后,点播于MS固体培养基上,4℃黑暗春化3d后,将培养皿竖直培养,置于人工气候箱内培养(温度:20±2℃;光强90-120μmolm-2sec-1;光周期:16h光照/8h黑暗)。(1) Sterilize Arabidopsis wild-type and T2 generation HvSERK1 transgenic seeds (35S:HvSERK1-4, 35S:HvSERK1-7, 35S:HvSERK1-9), sow on MS solid medium at 4°C After 3 days of vernalization in the dark, the petri dishes were cultured vertically and placed in an artificial climate chamber (temperature: 20±2°C; light intensity 90-120 μmolm -2 sec -1 ; photoperiod: 16h light/8h dark).
(2)在人工气候箱培养7d后,用体式显微镜拍摄根尖向上4mm左右根毛表型。(2) After being cultured in an artificial climate box for 7 days, the root hair phenotypes about 4 mm above the root tip were photographed with a stereo microscope.
(3)采用Image pro plus软件,对根毛长度进行统计分析,每条根测量最长的20个根毛,每个株系至少测量20条根。如图2所示。结果发现过量表达HvSERK1能够促进根毛生长。(3) Statistical analysis was carried out on the length of root hairs using Image pro plus software, the longest 20 root hairs were measured for each root, and at least 20 roots were measured for each strain. as shown in picture 2. It was found that overexpression of HvSERK1 can promote root hair growth.
以上已对本发明创造的较佳实施例进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明创造精神的前提下还可做出种种的等同的变型或替换,这些等同的变型或替换均包含在本申请权利要求所限定的范围内。The preferred embodiments of the present invention have been specifically described above, but the present invention is not limited to the described embodiments, and those skilled in the art can also make various equivalents without violating the spirit of the present invention. These equivalent modifications or replacements are all included within the scope defined by the claims of the present application.
SEQUENCE LISTINGSEQUENCE LISTING
<110> 上海市农业科学院<110> Shanghai Academy of Agricultural Sciences
<120> 一种大麦受体类激酶HvSERK1在根毛生长中的应用<120> Application of a Barley Receptor Kinase HvSERK1 in Root Hair Growth
<130> /<130> /
<160> 8<160> 8
<170> PatentIn version 3.3<170> PatentIn version 3.3
<210> 1<210> 1
<211> 1884<211> 1884
<212> DNA<212>DNA
<213> 大麦(Hordeum vulgare)<213> Barley (Hordeum vulgare)
<400> 1<400> 1
atggctgcgt cgccggagat gctgcggagg tgctggtggg cggcggcggc ggtcctgtca 60atggctgcgt cgccggagat gctgcggagg tgctggtggg cggcggcggc ggtcctgtca 60
ctggtgctgg ccgtcagtcg ggtggccgcc aacacagagg gtgatgctct gtacagtctg 120ctggtgctgg ccgtcagtcg ggtggccgcc aacacagagg gtgatgctct gtacagtctg 120
cgccaaagcc ttaaagatgc taacaatgtg ctgcagagtt gggatcccac tctggttaat 180cgccaaagcc ttaaagatgc taacaatgtg ctgcagagtt gggatcccac tctggttaat 180
ccatgcacat ggttccatgt tacttgtaac accgacaaca gtgtaatcag agttgatctt 240ccatgcacat ggttccatgt tacttgtaac accgacaaca gtgtaatcag agttgatctt 240
ggaaacgcac aactgtcagg tgcattggtg tcccaacttg gacagttgaa aaatctacaa 300ggaaacgcac aactgtcagg tgcattggtg tcccaacttg gacagttgaa aaatctacaa 300
tatttggagc tgtacagcaa caatataagt gggataatac ctttggaact tgggaacttg 360tatttggagc tgtacagcaa caatataagt gggataatac ctttggaact tgggaacttg 360
acaaacctgg tcagtttgga tctgtacctg aacaaattca ctggcggtat tccagacaca 420acaaacctgg tcagtttgga tctgtacctg aacaaattca ctggcggtat tccagacaca 420
ttggggcaac tcttaaagtt gcgattcctc cgtcttaaca acaacagtct ttctggtcaa 480ttggggcaac tcttaaagtt gcgattcctc cgtcttaaca acaacagtct ttctggtcaa 480
attccacagt ccttgaccaa cattagcacc ctccaagttc tggatctatc aaacaacaat 540attccacagt ccttgaccaa cattagcacc ctccaagttc tggatctatc aaacaacaat 540
ctctctggag aggttccatc aactggctcg ttttcactct ttacccctat aagttttggt 600ctctctggag aggttccatc aactggctcg ttttcactct ttacccctat aagttttggt 600
aataatccaa atctttgtgg accgggtact acgaaaccat gtcctggggc acctcctttt 660aataatccaa atctttgtgg accgggtact acgaaaccat gtcctggggc acctcctttt 660
tctccgcctc ccccattcaa tcctccaaca ccagtcacga accaaggtga ctctaaaacc 720tctccgcctc ccccattcaa tcctccaaca ccagtcacga accaaggtga ctctaaaacc 720
ggggcaattg ctggaggtgt tgctgcgggt gctgcattga tatttgctgt tcctgcaatt 780ggggcaattg ctggaggtgt tgctgcgggt gctgcattga tatttgctgt tcctgcaatt 780
ggatttgcac tgtggcggcg acgtaaacct gaagagcatt tctttgatgt ccctgccgag 840ggatttgcac tgtggcggcg acgtaaacct gaagagcatt tctttgatgt ccctgccgag 840
gaggatccag aagtgcacct gggccagcta aagaggttct cactaaggga gcttcaagtt 900gaggatccag aagtgcacct gggccagcta aagaggttct cactaaggga gcttcaagtt 900
gctagcgata acttcagcaa taagaacatt ctaggaagag gtggctttgg aaaggtctac 960gctagcgata acttcagcaa taagaacatt ctaggaagag gtggctttgg aaaggtctac 960
aaggggagac tgacggatgg tacattggta gcagttaaaa gattaaaaga agaacgtact 1020aaggggagac tgacggatgg tacattggta gcagttaaaa gattaaaaga agaacgtact 1020
cctggtggcg aactccaatt ccaaacagaa gttgaaatga ttagtatggc agtgcatagg 1080cctggtggcg aactccaatt ccaaacagaa gttgaaatga ttagtatggc agtgcatagg 1080
aacctgcttc gactccgtgg attctgtatg acacctacag aacggctact agtctatcca 1140aacctgcttc gactccgtgg attctgtatg aacccctacag aacggctact agtctatcca 1140
tacatggcta atggtagcgt tgcatcacgt ttgcgagagc gagggccaaa tgagccagct 1200tacatggcta atggtagcgt tgcatcacgt ttgcgagagc gagggccaaa tgagccagct 1200
cttgagtggg aaaagagaac tcggatcgca ctgggatctg ccagaggact gtcttacttg 1260cttgagtggg aaaagagaac tcggatcgca ctgggatctg ccagaggact gtcttacttg 1260
catgatcact gtgatcccaa gatcattcat cgtgatgtca aagctgcaaa cattctcttg 1320catgatcact gtgatcccaa gatcattcat cgtgatgtca aagctgcaaa cattctcttg 1320
gatgaagact ttgaggcggt tgtgggcgac tttggactgg ccaagcttat ggactacaag 1380gatgaagact ttgaggcggt tgtgggcgac tttggactgg ccaagcttat ggactacaag 1380
gacactcatg taaccacagc tgtccgtgga acgatcgggc acattgctcc cgagtaccta 1440gacactcatg taaccacagc tgtccgtgga acgatcgggc aattgctcc cgagtaccta 1440
tccaccggga agtcctctga gaagacggat gttttcggtt acggcatcat gcttctggag 1500tccaccggga agtcctctga gaagacggat gttttcggtt acggcatcat gcttctggag 1500
cttatcactg gacagagggc gtttgacctc gcacgtcttg cgaatgacga cgatgtcatg 1560cttatcactg gacagagggc gtttgacctc gcacgtcttg cgaatgacga cgatgtcatg 1560
ctgcttgact gggtgaaagg gctgctgaaa gagaagaagg tggagatgct ggtggacccg 1620ctgcttgact gggtgaaagg gctgctgaaa gagaagaagg tggagatgct ggtggacccg 1620
gacctgcaga gcgtgtacgt ggagcacgag gtggaggcgc tgatccaggt ggcgctgctg 1680gacctgcaga gcgtgtacgt ggagcacgag gtggaggcgc tgatccaggt ggcgctgctg 1680
tgcacgcagg ggtcaccgat ggaccggccc aagatgtcgg aggtggtgag gatgctggag 1740tgcacgcagg ggtcaccgat ggaccggccc aagatgtcgg aggtggtgag gatgctggag 1740
ggcgacgggc tggcggagcg ctgggaggag tggcagaagg tggaggtggt ccggcaggag 1800ggcgacgggc tggcggagcg ctgggaggag tggcagaagg tggaggtggt ccggcaggag 1800
gcggagctgg ctccgcgaca caacgactgg atcgtcgact ccactttcaa cctccgggcg 1860gcggagctgg ctccgcgaca caacgactgg atcgtcgact ccactttcaa cctccgggcg 1860
gtggagctgt ccggcccgag gtaa 1884gtggagctgt ccggcccgag gtaa 1884
<210> 2<210> 2
<211> 627<211> 627
<212> PRT<212> PRT
<213> 大麦(Hordeum vulgare)<213> Barley (Hordeum vulgare)
<400> 2<400> 2
Met Ala Ala Ser Pro Glu Met Leu Arg Arg Cys Trp Trp Ala Ala AlaMet Ala Ala Ser Pro Glu Met Leu Arg Arg Cys Trp Trp Ala Ala Ala
1 5 10 151 5 10 15
Ala Val Leu Ser Leu Val Leu Ala Val Ser Arg Val Ala Ala Asn ThrAla Val Leu Ser Leu Val Leu Ala Val Ser Arg Val Ala Ala Asn Thr
20 25 30 20 25 30
Glu Gly Asp Ala Leu Tyr Ser Leu Arg Gln Ser Leu Lys Asp Ala AsnGlu Gly Asp Ala Leu Tyr Ser Leu Arg Gln Ser Leu Lys Asp Ala Asn
35 40 45 35 40 45
Asn Val Leu Gln Ser Trp Asp Pro Thr Leu Val Asn Pro Cys Thr TrpAsn Val Leu Gln Ser Trp Asp Pro Thr Leu Val Asn Pro Cys Thr Trp
50 55 60 50 55 60
Phe His Val Thr Cys Asn Thr Asp Asn Ser Val Ile Arg Val Asp LeuPhe His Val Thr Cys Asn Thr Asp Asn Ser Val Ile Arg Val Asp Leu
65 70 75 8065 70 75 80
Gly Asn Ala Gln Leu Ser Gly Ala Leu Val Ser Gln Leu Gly Gln LeuGly Asn Ala Gln Leu Ser Gly Ala Leu Val Ser Gln Leu Gly Gln Leu
85 90 95 85 90 95
Lys Asn Leu Gln Tyr Leu Glu Leu Tyr Ser Asn Asn Ile Ser Gly IleLys Asn Leu Gln Tyr Leu Glu Leu Tyr Ser Asn Asn Ile Ser Gly Ile
100 105 110 100 105 110
Ile Pro Leu Glu Leu Gly Asn Leu Thr Asn Leu Val Ser Leu Asp LeuIle Pro Leu Glu Leu Gly Asn Leu Thr Asn Leu Val Ser Leu Asp Leu
115 120 125 115 120 125
Tyr Leu Asn Lys Phe Thr Gly Gly Ile Pro Asp Thr Leu Gly Gln LeuTyr Leu Asn Lys Phe Thr Gly Gly Ile Pro Asp Thr Leu Gly Gln Leu
130 135 140 130 135 140
Leu Lys Leu Arg Phe Leu Arg Leu Asn Asn Asn Ser Leu Ser Gly GlnLeu Lys Leu Arg Phe Leu Arg Leu Asn Asn Asn Ser Leu Ser Gly Gln
145 150 155 160145 150 155 160
Ile Pro Gln Ser Leu Thr Asn Ile Ser Thr Leu Gln Val Leu Asp LeuIle Pro Gln Ser Leu Thr Asn Ile Ser Thr Leu Gln Val Leu Asp Leu
165 170 175 165 170 175
Ser Asn Asn Asn Leu Ser Gly Glu Val Pro Ser Thr Gly Ser Phe SerSer Asn Asn Asn Leu Ser Gly Glu Val Pro Ser Thr Gly Ser Phe Ser
180 185 190 180 185 190
Leu Phe Thr Pro Ile Ser Phe Gly Asn Asn Pro Asn Leu Cys Gly ProLeu Phe Thr Pro Ile Ser Phe Gly Asn Asn Pro Asn Leu Cys Gly Pro
195 200 205 195 200 205
Gly Thr Thr Lys Pro Cys Pro Gly Ala Pro Pro Phe Ser Pro Pro ProGly Thr Thr Lys Pro Cys Pro Gly Ala Pro Pro Phe Ser Pro Pro Pro
210 215 220 210 215 220
Pro Phe Asn Pro Pro Thr Pro Val Thr Asn Gln Gly Asp Ser Lys ThrPro Phe Asn Pro Pro Thr Pro Val Thr Asn Gln Gly Asp Ser Lys Thr
225 230 235 240225 230 235 240
Gly Ala Ile Ala Gly Gly Val Ala Ala Gly Ala Ala Leu Ile Phe AlaGly Ala Ile Ala Gly Gly Val Ala Ala Gly Ala Ala Leu Ile Phe Ala
245 250 255 245 250 255
Val Pro Ala Ile Gly Phe Ala Leu Trp Arg Arg Arg Lys Pro Glu GluVal Pro Ala Ile Gly Phe Ala Leu Trp Arg Arg Arg Lys Pro Glu Glu
260 265 270 260 265 270
His Phe Phe Asp Val Pro Ala Glu Glu Asp Pro Glu Val His Leu GlyHis Phe Phe Asp Val Pro Ala Glu Glu Asp Pro Glu Val His Leu Gly
275 280 285 275 280 285
Gln Leu Lys Arg Phe Ser Leu Arg Glu Leu Gln Val Ala Ser Asp AsnGln Leu Lys Arg Phe Ser Leu Arg Glu Leu Gln Val Ala Ser Asp Asn
290 295 300 290 295 300
Phe Ser Asn Lys Asn Ile Leu Gly Arg Gly Gly Phe Gly Lys Val TyrPhe Ser Asn Lys Asn Ile Leu Gly Arg Gly Gly Phe Gly Lys Val Tyr
305 310 315 320305 310 315 320
Lys Gly Arg Leu Thr Asp Gly Thr Leu Val Ala Val Lys Arg Leu LysLys Gly Arg Leu Thr Asp Gly Thr Leu Val Ala Val Lys Arg Leu Lys
325 330 335 325 330 335
Glu Glu Arg Thr Pro Gly Gly Glu Leu Gln Phe Gln Thr Glu Val GluGlu Glu Arg Thr Pro Gly Gly Glu Leu Gln Phe Gln Thr Glu Val Glu
340 345 350 340 345 350
Met Ile Ser Met Ala Val His Arg Asn Leu Leu Arg Leu Arg Gly PheMet Ile Ser Met Ala Val His Arg Asn Leu Leu Arg Leu Arg Gly Phe
355 360 365 355 360 365
Cys Met Thr Pro Thr Glu Arg Leu Leu Val Tyr Pro Tyr Met Ala AsnCys Met Thr Pro Thr Glu Arg Leu Leu Val Tyr Pro Tyr Met Ala Asn
370 375 380 370 375 380
Gly Ser Val Ala Ser Arg Leu Arg Glu Arg Gly Pro Asn Glu Pro AlaGly Ser Val Ala Ser Arg Leu Arg Glu Arg Gly Pro Asn Glu Pro Ala
385 390 395 400385 390 395 400
Leu Glu Trp Glu Lys Arg Thr Arg Ile Ala Leu Gly Ser Ala Arg GlyLeu Glu Trp Glu Lys Arg Thr Arg Ile Ala Leu Gly Ser Ala Arg Gly
405 410 415 405 410 415
Leu Ser Tyr Leu His Asp His Cys Asp Pro Lys Ile Ile His Arg AspLeu Ser Tyr Leu His Asp His Cys Asp Pro Lys Ile Ile His Arg Asp
420 425 430 420 425 430
Val Lys Ala Ala Asn Ile Leu Leu Asp Glu Asp Phe Glu Ala Val ValVal Lys Ala Ala Asn Ile Leu Leu Asp Glu Asp Phe Glu Ala Val Val
435 440 445 435 440 445
Gly Asp Phe Gly Leu Ala Lys Leu Met Asp Tyr Lys Asp Thr His ValGly Asp Phe Gly Leu Ala Lys Leu Met Asp Tyr Lys Asp Thr His Val
450 455 460 450 455 460
Thr Thr Ala Val Arg Gly Thr Ile Gly His Ile Ala Pro Glu Tyr LeuThr Thr Ala Val Arg Gly Thr Ile Gly His Ile Ala Pro Glu Tyr Leu
465 470 475 480465 470 475 480
Ser Thr Gly Lys Ser Ser Glu Lys Thr Asp Val Phe Gly Tyr Gly IleSer Thr Gly Lys Ser Ser Glu Lys Thr Asp Val Phe Gly Tyr Gly Ile
485 490 495 485 490 495
Met Leu Leu Glu Leu Ile Thr Gly Gln Arg Ala Phe Asp Leu Ala ArgMet Leu Leu Glu Leu Ile Thr Gly Gln Arg Ala Phe Asp Leu Ala Arg
500 505 510 500 505 510
Leu Ala Asn Asp Asp Asp Val Met Leu Leu Asp Trp Val Lys Gly LeuLeu Ala Asn Asp Asp Asp Val Met Leu Leu Asp Trp Val Lys Gly Leu
515 520 525 515 520 525
Leu Lys Glu Lys Lys Val Glu Met Leu Val Asp Pro Asp Leu Gln SerLeu Lys Glu Lys Lys Val Glu Met Leu Val Asp Pro Asp Leu Gln Ser
530 535 540 530 535 540
Val Tyr Val Glu His Glu Val Glu Ala Leu Ile Gln Val Ala Leu LeuVal Tyr Val Glu His Glu Val Glu Ala Leu Ile Gln Val Ala Leu Leu
545 550 555 560545 550 555 560
Cys Thr Gln Gly Ser Pro Met Asp Arg Pro Lys Met Ser Glu Val ValCys Thr Gln Gly Ser Pro Met Asp Arg Pro Lys Met Ser Glu Val Val
565 570 575 565 570 575
Arg Met Leu Glu Gly Asp Gly Leu Ala Glu Arg Trp Glu Glu Trp GlnArg Met Leu Glu Gly Asp Gly Leu Ala Glu Arg Trp Glu Glu Trp Gln
580 585 590 580 585 590
Lys Val Glu Val Val Arg Gln Glu Ala Glu Leu Ala Pro Arg His AsnLys Val Glu Val Val Arg Gln Glu Ala Glu Leu Ala Pro Arg His Asn
595 600 605 595 600 605
Asp Trp Ile Val Asp Ser Thr Phe Asn Leu Arg Ala Val Glu Leu SerAsp Trp Ile Val Asp Ser Thr Phe Asn Leu Arg Ala Val Glu Leu Ser
610 615 620 610 615 620
Gly Pro ArgGly Pro Arg
625625
<210> 3<210> 3
<211> 25<211> 25
<212> DNA<212>DNA
<213> 人工序列(Artificial)<213> Artificial sequence (Artificial)
<400> 3<400> 3
ccatcgatct gcggctttga gacgg 25ccatcgatct gcggctttga gacgg 25
<210> 4<210> 4
<211> 28<211> 28
<212> DNA<212>DNA
<213> 人工序列(Artificial)<213> Artificial sequence (Artificial)
<400> 4<400> 4
cccccgggag aaattctgca acgagggg 28cccccggggag aaattctgca acgagggg 28
<210> 5<210> 5
<211> 20<211> 20
<212> DNA<212>DNA
<213> 人工序列(Artificial)<213> Artificial sequence (Artificial)
<400> 5<400> 5
cttggcagac ggaactcttg 20
<210> 6<210> 6
<211> 20<211> 20
<212> DNA<212>DNA
<213> 人工序列(Artificial)<213> Artificial sequence (Artificial)
<400> 6<400> 6
tctcggtcgg tgtcatacag 20
<210> 7<210> 7
<211> 21<211> 21
<212> DNA<212>DNA
<213> 人工序列(Artificial)<213> Artificial sequence (Artificial)
<400> 7<400> 7
gttctcgatg ttgttcgtaa g 21gttctcgatg ttgttcgtaa g 21
<210> 8<210> 8
<211> 21<211> 21
<212> DNA<212>DNA
<213> 人工序列(Artificial)<213> Artificial sequence (Artificial)
<400> 8<400> 8
tgtaaggctc aaccacagta t 21tgtaaggctc aaccacagta t 21
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111253390.XA CN114107333B (en) | 2021-10-27 | 2021-10-27 | Application of barley receptor kinase HvSERK1 in root hair growth |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111253390.XA CN114107333B (en) | 2021-10-27 | 2021-10-27 | Application of barley receptor kinase HvSERK1 in root hair growth |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114107333A CN114107333A (en) | 2022-03-01 |
CN114107333B true CN114107333B (en) | 2023-05-30 |
Family
ID=80376990
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111253390.XA Active CN114107333B (en) | 2021-10-27 | 2021-10-27 | Application of barley receptor kinase HvSERK1 in root hair growth |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114107333B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118995806A (en) * | 2024-08-20 | 2024-11-22 | 上海市农业科学院 | Barley HvWOX gene and application thereof |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108085334B (en) * | 2016-11-17 | 2021-04-30 | 上海市农业科学院 | Improved method for transforming barley microspore by agrobacterium |
CN109280671B (en) * | 2018-09-07 | 2021-06-01 | 南京农业大学 | A wheat cell wall-associated receptor protein kinase gene and its expression vector and application |
CN109652424B (en) * | 2018-12-27 | 2019-11-08 | 山东农业大学 | A method and application for inducing direct generation of somatic embryos |
CN110128516B (en) * | 2019-04-16 | 2022-04-22 | 扬州大学 | Barley moisture-resistant regulatory gene HvERF2.11, protein and application thereof in breeding |
CN110129291B (en) * | 2019-04-16 | 2021-06-08 | 扬州大学 | Barley moisture-resistant regulatory gene HvACO1, protein and application thereof in breeding |
WO2021015616A1 (en) * | 2019-07-22 | 2021-01-28 | Wageningen Universiteit | Lrr-rlkii receptor kinase interaction domains |
CN110564737A (en) * | 2019-09-10 | 2019-12-13 | 上海市农业科学院 | Transcription factor HvTTG1 derived from barley genotype SLB and application thereof |
CN110982835A (en) * | 2019-11-14 | 2020-04-10 | 上海市农业科学院 | Method for reducing callus pollution of barley and highland barley microspores in agrobacterium transformation process |
-
2021
- 2021-10-27 CN CN202111253390.XA patent/CN114107333B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN114107333A (en) | 2022-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110904071B (en) | Application of RAF49 protein and encoding gene thereof in regulation and control of plant drought resistance | |
CN106868019A (en) | Control rice tillering gene OsHT1 and its application | |
CN111018959B (en) | Application of BMDR protein and its encoding gene in regulating plant drought resistance | |
WO2020221029A1 (en) | Zea mays receptor-like kinase gene zmrlk7 and use thereof | |
CN114150013B (en) | Application of SlHDA4 gene in cultivation of top dominance-enhanced tomato germplasm | |
WO2014069339A1 (en) | Nucleic acid imparting high-yielding property to plant, method for producing transgenic plant with increased yield, and method for increasing plant yield | |
CN111763251A (en) | A kind of white clover transcription factor TrNAC and its coding sequence and application | |
CN118147175B (en) | Application of MtCOMT13 gene in regulating salt and drought tolerance in plants | |
CN114107333B (en) | Application of barley receptor kinase HvSERK1 in root hair growth | |
CN112342219B (en) | Cassava gene MeSCL30 and application thereof in drought stress resistance | |
CN118726410A (en) | WRKY40 transcription factor of peanut for promoting drought tolerance and early flowering in plants and its application | |
CN111423500B (en) | SiMYB56 protein and application of encoding gene thereof in regulation and control of plant drought resistance | |
CN113234131A (en) | Application of tumorous stem mustard BjuA036398 gene in regulation and control of plant lateral root development | |
CN109096380B (en) | Application of OsBICs gene in regulation and control of plant height and flowering time | |
CN115807006B (en) | Application of gene segment B in cultivation of new plant material | |
US20230313151A1 (en) | Use of Gene Encoding Gibberellin 3Beta-Hydroxylase of Glycine Max, GmGA3ox1 | |
CN107973844B (en) | Wheat heading period related protein Ta-Hd4A and application thereof | |
CN107988233B (en) | Application of soybean GmCRY1b gene in regulating plant height and flowering time | |
CN117402227A (en) | LEA gene and protein for regulating plant height and drought resistance and application thereof | |
CN113416238B (en) | ZmbHLH148 protein and application of coding gene thereof in regulation and control of plant drought resistance | |
CN107354140B (en) | Plant anti-drought protein GmNARK and its coding gene and application | |
NL2030997B1 (en) | Zea mays receptor-like kinase 7 (zmrlk7) gene related to kernel and plant type development of maize and use thereof | |
CN116003551B (en) | Application of gene segment A in cultivation of new plant material | |
CN116536286B (en) | Application of rice OsCTK1 protein and its encoding gene | |
CN114606244B (en) | Milk vetch AGL18 gene and its application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |