[go: up one dir, main page]

CN114106129B - Application of rape SWEET15 sugar transporter gene in improving rape yield - Google Patents

Application of rape SWEET15 sugar transporter gene in improving rape yield Download PDF

Info

Publication number
CN114106129B
CN114106129B CN202111526489.2A CN202111526489A CN114106129B CN 114106129 B CN114106129 B CN 114106129B CN 202111526489 A CN202111526489 A CN 202111526489A CN 114106129 B CN114106129 B CN 114106129B
Authority
CN
China
Prior art keywords
sweet15
rape
yield
gene
val
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111526489.2A
Other languages
Chinese (zh)
Other versions
CN114106129A (en
Inventor
师家勤
梁华兵
王汉中
王新发
刘贵华
詹杰鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oil Crops Research Institute of Chinese Academy of Agriculture Sciences
Original Assignee
Oil Crops Research Institute of Chinese Academy of Agriculture Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oil Crops Research Institute of Chinese Academy of Agriculture Sciences filed Critical Oil Crops Research Institute of Chinese Academy of Agriculture Sciences
Priority to CN202111526489.2A priority Critical patent/CN114106129B/en
Publication of CN114106129A publication Critical patent/CN114106129A/en
Application granted granted Critical
Publication of CN114106129B publication Critical patent/CN114106129B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

The invention belongs to the field of plant genetic engineering, and particularly relates to application of a rape SWEET15 sugar transporter gene in improving the yield of rape. The rapeBnaA2.SWEET15The nucleotide sequence of the gene is shown as SEQ ID NO. 1, and the coding protein is shown as SEQ ID NO. 2. The gene is over-expressed in Arabidopsis thaliana, and the grain length and grain weight of all transgenic lines are obviously increased, while the grain width and seed yield of partial transgenic lines are also obviously increased, so the invention has good application prospect in high-yield breeding of rape and other crops.

Description

油菜SWEET15糖转运蛋白基因在提高油菜产量中的应用Application of rape SWEET15 sugar transporter gene in improving rape yield

技术领域technical field

本发明属于植物基因工程领域,更具体涉及油菜SWEET15糖转运蛋白在提高油菜产量中的应用。The invention belongs to the field of plant genetic engineering, and more particularly relates to the application of rapeseed SWEET15 sugar transporter in improving rapeseed yield.

背景技术Background technique

在植物生活史中,种子大小是一个重要的适应性特征。种子的散布、萌发、幼苗定居以及种群的分布格局皆与种子重量(大小)有关(Zhu et al.,2012;Zhao et al.,2013)。在作物的性状中,种子大小处于中心地位,是植物生活史的一个核心特征。而驯化作为一种特殊的选择方式,在很多作物的形成过程中发挥重要的作用。种子重量(大小)是作物驯化和人工育种的重要目标性状之一(Harlan et al.,1973)。Seed size is an important adaptive trait in plant life history. Seed dispersal, germination, seedling settlement, and population distribution patterns are all related to seed weight (size) (Zhu et al., 2012; Zhao et al., 2013). Among crop traits, seed size is central and a central feature of plant life history. As a special selection method, domestication plays an important role in the formation of many crops. Seed weight (size) is one of the important target traits in crop domestication and artificial breeding (Harlan et al., 1973).

粒重作为油菜单株产量的三个构成因子之一,对最终产量的形成有着重要的作用。虽然油菜产量的三个构成因子(全株角果数、每角粒数和千粒重)之间呈现不同程度的负相关,但其相关系数往往不是很大(Gupta et al.,2006),这意味着可以通过提高单个产量构成因子(如千粒重)来增加最终的产量。近20年中国冬油菜区域汇总资料显示,近年来产量的增加主要归功于粒重的增加,其次是每角粒数(祝利霞等,2010)。2000-2009年双低油菜产量的提高,主要归功于单株结角数和千粒重的增加(俞琦英等,2010)。2001到2010年油菜产量增幅达11.12%,产量构成因子之一千粒重的增幅最大,达到7.10%,表明粒重的增加是这些年产量提高的主要原因(王健胜等,2012;张芳等,2012)。因此,近年来中国油菜千粒重呈逐年增加趋势,并且产量的增加主要归功于千粒重的增加。目前,中国甘蓝型油菜区试品种千粒重一般不超过4g,而在油菜种质资源中千粒重最大可稳定在7.5g左右(Li etal.,2014),因此粒重的改良还有较大空间。Grain weight, as one of the three constituent factors of rapeseed yield, plays an important role in the formation of final yield. Although the three components of rapeseed yield (the number of whole plant pods, the number of pods per pod, and the thousand-seed weight) have different degrees of negative correlation, the correlation coefficients are often not very large (Gupta et al., 2006), which means It is possible to increase the final yield by increasing individual yield components such as thousand kernel weight. The regional summary data of winter rapeseed in China in the past 20 years shows that the increase in yield in recent years is mainly due to the increase in grain weight, followed by the number of grains per horn (Zhu Lixia et al., 2010). The increase in canola yield from 2000 to 2009 was mainly attributed to the increase in the number of knots per plant and the thousand-grain weight (Yu Qiying et al., 2010). From 2001 to 2010, rapeseed yield increased by 11.12%, and one thousand grain weight, one of the yield components, increased the most, reaching 7.10%, indicating that the increase in grain weight was the main reason for the increase in yield in these years (Wang Jiansheng et al., 2012; Zhang Fang et al., 2012) . Therefore, in recent years, the thousand-kernel weight of rapeseed in China has been increasing year by year, and the increase in yield is mainly due to the increase in thousand-kernel weight. At present, the 1000-grain weight of regional test varieties of Chinese cabbage type rapeseed is generally not more than 4g, while the maximum 1000-grain weight of rapeseed germplasm resources can be stabilized at about 7.5g (Li et al., 2014), so there is still more room for improvement of grain weight.

油菜粒重是典型的数量性状,表型连续分布且容易受到环境条件的影响,由众多数量性状位点(quantitative trait loci,QTL)控制。随着分子标记技术的发展,利用连锁或关联分析的方法目前已定位了一百多个油菜粒重的QTL(Bailey-Wilson et al.,2005;Quijada et al.,2006;Udall et al.,2006;易斌等,2006;Radoev et al.,2008;Shi etal.,2009;Basunanda et al.,2010a,b;Fan et al.,2010;王峰等,2010;Zhang et al.,2011;Yang et al.,2012;朱恒星等,2012;Li et al.,2014;Qi et al.,2014)。这些粒重QTL在甘蓝型油菜所有19个染色体上都有分布,将其中连锁标记序列信息已知的整合到基因组物理图谱上就有134个(Zhou et al.,2014),而且只在A7(Basunanda et al.,2010;Fan et al.,2010;Shi et al.,2009)和A9(Li et al.,2014;Qi et al.,2014;Yang etal.,2012;朱恒星等,2012)染色体上检测到了少数几个主效QTL。这极有力地说明了油菜粒重是多基因控制的数量性状,遗传基础十分复杂。Grain weight of rapeseed is a typical quantitative trait, and its phenotypes are distributed continuously and easily affected by environmental conditions. It is controlled by numerous quantitative trait loci (QTL). With the development of molecular marker technology, more than 100 QTLs of rapeseed weight have been located by linkage or association analysis (Bailey-Wilson et al., 2005; Quijada et al., 2006; Udall et al., 2006; Yi Bin et al., 2006; Radoev et al., 2008; Shi et al., 2009; Basunanda et al., 2010a,b; Fan et al., 2010; Wang Feng et al., 2010; Zhang et al., 2011; Yang et al., 2012; Zhu Hengxing et al., 2012; Li et al., 2014; Qi et al., 2014). These grain weight QTLs are distributed on all 19 chromosomes of Brassica napus, and 134 of them have been integrated into the physical genome map for which the linked marker sequence information is known (Zhou et al., 2014), and only in A7 ( Basunanda et al., 2010; Fan et al., 2010; Shi et al., 2009) and A9 (Li et al., 2014; Qi et al., 2014; Yang et al., 2012; Zhu Hengxing et al., 2012) A few major QTLs were detected on chromosomes. This strongly indicates that rapeseed grain weight is a quantitative trait controlled by multiple genes, and the genetic basis is very complex.

虽然油菜中已定位到一百多个粒重QTL,但仅有三个主效基因被克隆,包括BnaA9.AR F18(Liu et al.,2015),BnaA9.CYP78A9(Shi et al.,2019)和BnaUPL3.C03(Miller et al.,2019)。另外,利用反向遗传学手段在油菜中还鉴定到几个影响粒重的基因看,包括BnWRI 1(Liu et al,2010),BnGRF2(Liu et al.,2012),BnDA1(Wang et al.,2017)和BnRBC S(Wu et al.,2017)。然而在主要农作物(主要是水稻)和模式植物(拟南芥)中已克隆到一百多个影响种子重量(大小)的基因(李娜,2015),主要是通过突变体分析得到的,其次是图位克隆。Although more than one hundred grain weight QTLs have been mapped in rapeseed, only three major genes have been cloned, including BnaA9.AR F18 (Liu et al., 2015), BnaA9.CYP78A9 (Shi et al., 2019) and BnaUPL3.C03 (Miller et al., 2019). In addition, several genes affecting grain weight were identified in rapeseed by reverse genetics, including BnWRI 1 (Liu et al, 2010), BnGRF2 (Liu et al., 2012), BnDA1 (Wang et al. , 2017) and BnRBC S (Wu et al., 2017). However, more than one hundred genes affecting seed weight (size) have been cloned in major crops (mainly rice) and model plants (Arabidopsis thaliana) (Li Na, 2015), mainly by mutant analysis, followed by Site cloning.

申请人发现将油菜SWEET15糖转运蛋白(本发明或称为BnaA2.SWEET15基因)通过在拟南芥中过表达能显著增加粒重和种子产量,目前该基因调控种子重量和最终产量的功能尚未有报道。属于调控粒重和产量的新基因,因而将其应用到作物育种中,可以提高粒重和产量。The applicant found that the rapeseed SWEET15 sugar transporter (the present invention or called BnaA2.SWEET15 gene) can significantly increase grain weight and seed yield by over-expression in Arabidopsis thaliana. At present, the function of this gene to regulate seed weight and final yield has not yet been found. report. It belongs to a new gene that regulates grain weight and yield, so it can be applied to crop breeding to improve grain weight and yield.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于提供了油菜SWEET15糖转运蛋白基因在提高油菜产量中的应用,所述的油菜SWEET15糖转运蛋白为SEQ ID NO.2所示,本发明的基因可用于拟南芥和甘蓝型油菜。通过模式植物拟南芥证实,BnaA2.SWEET15主要通过增加粒长来增加粒重和最终产量。The object of the present invention is to provide the application of rape SWEET15 sugar transporter gene in improving rape yield, the rape SWEET15 sugar transporter is shown in SEQ ID NO.2, and the gene of the present invention can be used for Arabidopsis and Brassica napus rape. It was confirmed by the model plant Arabidopsis that BnaA2.SWEET15 increased grain weight and final yield mainly by increasing grain length.

为了实现上述目的,本发明采用以下技术措施:In order to achieve the above object, the present invention adopts the following technical measures:

油菜BnaA2.SWEET15基因(基因序列链接:http://cbi.hzau.edu.cn/cgi-bin/bnapus/gene?org=ZS11&locus=BnaA02G0046800ZS)在提高油菜产量中的应用,包括利用本领域的常规方式,将BnaA2.SWEET15基因在植物中进行过表达,可筛选得到种子粒长或/和粒宽以及粒重提高的转基因植株,因此可用于提高植物的种子产量。Application of rape BnaA2.SWEET15 gene (gene sequence link: http://cbi.hzau.edu.cn/cgi-bin/bnapus/gene?org=ZS11&locus=BnaA02G0046800ZS) in improving rape yield, including the use of conventional methods in the field In this way, the BnaA2.SWEET15 gene is overexpressed in plants, and transgenic plants with increased seed grain length or/and grain width and grain weight can be obtained by screening, and thus can be used to improve the seed yield of plants.

以上所述的植物为甘蓝型油菜或拟南芥。The above-mentioned plants are Brassica napus or Arabidopsis thaliana.

与现有技术相比,本发明具有以下优点:Compared with the prior art, the present invention has the following advantages:

本发明首次公开了油菜基因BnaA2.SWEET15在调控种子重量和产量的功能中的应用。利用拟南芥为受体的转基因结果证实,过表达BnaA2.SWEET15基因的种子大小、粒重和产量与野生型受体相比均有显著的提高。因此本发明提出可利用BnaA2.SWEET15的过量表达来增加粒重和产量。The invention discloses for the first time the application of the rape gene BnaA2.SWEET15 in regulating the function of seed weight and yield. The transgenic results using Arabidopsis thaliana as receptors confirmed that the seed size, grain weight and yield of overexpressing BnaA2.SWEET15 gene were significantly improved compared with wild-type receptors. The present invention therefore proposes that overexpression of BnaA2.SWEET15 can be used to increase grain weight and yield.

附图说明Description of drawings

图1为BnaA2.SWEET15基因转基因阳性株的表型情况示意图;Figure 1 is a schematic diagram of the phenotype of the BnaA2.SWEET15 gene transgenic positive strain;

其中,A为BnaA2.SWEET15不同的转基因单株的中BnaA2.SWEET15的相对表达水平。Wherein, A is the relative expression level of BnaA2.SWEET15 in transgenic individual plants with different BnaA2.SWEET15.

B-D为各阳性转基因株系及阴性对照(Col)的千粒重,每角粒数,角果长的表型数据;图中数据为至少3个生物学重复的均值±SD,a表示在P<0.05水平差异显著,b表示在P<0.01水平差异显著,c表示在P<0.001水平差异显著。B-D are the 1000-grain weight of each positive transgenic line and the negative control (Col), the number of grains per silique, and the phenotypic data of silique length; the data in the figure are the mean ± SD of at least 3 biological replicates, and a represents at P<0.05 Level difference is significant, b means significant difference at P<0.01 level, c means significant difference at P<0.001 level.

图2为BnaA2.SWEET15基因转基因阳性株的表型情况示意图;Figure 2 is a schematic diagram of the phenotype of the BnaA2.SWEET15 gene transgenic positive strain;

其中,A为各阳性转基因株系及阴性对照(Col)的粒长。图中数据为至少3个生物学重复的均值±SD,c表示在P<0.001水平差异显著;Among them, A is the grain length of each positive transgenic line and negative control (Col). The data in the figure are the mean ± SD of at least 3 biological replicates, and c indicates a significant difference at the P<0.001 level;

B为各阳性转基因株系及阴性对照(Col)的粒宽,图中数据为至少3个生物学重复的均值±SD,a表示在P<0.05水平差异显著,b表示在P<0.01水平差异显著,c表示在P<0.001水平差异显著。B is the grain width of each positive transgenic line and negative control (Col), the data in the figure are the mean ± SD of at least 3 biological replicates, a means significant difference at P<0.05 level, b means difference at P<0.01 level Significant, c means significant difference at P<0.001 level.

具体实施方式Detailed ways

本发明所述技术方案,如未特别说明,均为本领域的常规方案;所述试剂或材料,如未特别说明,均来源于商业渠道。The technical solutions of the present invention, unless otherwise specified, are conventional solutions in the art; the reagents or materials, unless otherwise specified, are all derived from commercial channels.

实施例1:油菜BnaA2.SWEET15基因编码区的克隆Example 1: Cloning of the coding region of the rape BnaA2.SWEET15 gene

以甘蓝型油菜(Brassica napus L.)中双11号的cDNA第一链为模板对BnaA2.SWEET 15基因进行PCR扩增,BnaA2.SWEET15正向引物:5’-ctggtaccatgggcgtcatggtcaatcacc-3’,反向引物:5’-atgggatcctcaaattcgagacggggcagtc-3’,最终获得包含SEQ ID NO:1所示的核苷酸序列,编码SEQ ID NO:2所示的蛋白。The BnaA2.SWEET 15 gene was amplified by PCR using the first strand of Shuang 11 cDNA in Brassica napus L. as a template, BnaA2.SWEET15 forward primer: 5'-ctggtaccatgggcgtcatggtcaatcacc-3', reverse primer : 5'-atgggatcctcaaattcgagacggggcagtc-3', and finally obtain a nucleotide sequence comprising the nucleotide sequence shown in SEQ ID NO: 1, encoding the protein shown in SEQ ID NO: 2.

以上方案中,为了实现和载体的连接,在正向和反向引物的5’端分别加了KpnⅠ酶切位点(5’-GGTACC-3’)和BamHⅠ酶切位点(5’-GGATCC-3’)和相应的保护碱基。In the above scheme, in order to realize the connection with the vector, a KpnI restriction site (5'-GGTACC-3') and a BamHI restriction site (5'-GGATCC) were added to the 5' ends of the forward and reverse primers, respectively. -3') and corresponding protected bases.

实施例2:过表达载体的构建Example 2: Construction of overexpression vector

将克隆得到的油菜BnaA2.SWEET15的PCR产物和质粒表达载体pCAMBIA2300S(即在pCAMBIA2300载体骨架的基础上在其多克隆位点处添加了35S启动子)均进行双酶切,其反应体系如下:The PCR product of the cloned rape BnaA2.SWEET15 and the plasmid expression vector pCAMBIA2300S (that is, on the basis of the pCAMBIA2300 vector skeleton, the 35S promoter was added at its multi-cloning site) were all subjected to double restriction digestion, and the reaction system was as follows:

BamHⅠ:2μL,KpnⅠ:2μL,10*cut smart buffer:5μL,DNA:25μL,灭菌水:16μL;总计50μL。BamHI: 2 μL, KpnI: 2 μL, 10*cut smart buffer: 5 μL, DNA: 25 μL, sterilized water: 16 μL; total 50 μL.

37℃反应2h。37 ℃ reaction 2h.

然后,双酶切质粒与PCR产物分别利用试剂盒按照说明书进行纯化回收,回收结果利用1%琼脂糖凝胶检测其浓度。Then, the double-enzyme-digested plasmid and the PCR product were purified and recovered using a kit according to the instructions, respectively, and the concentration of the recovery results was detected by 1% agarose gel.

目标基因与表达质粒载体的连接与转化,具体步骤如下:The connection and transformation of the target gene and the expression plasmid vector, the specific steps are as follows:

a.配置连接反应体系(10μL)a. Configure the ligation reaction system (10 μL)

10×T4 DNA ligase Buffer 1μL10×T4 DNA ligase Buffer 1μL

T4 DNA ligase 1μLT4 DNA ligase 1μL

DNA片段(DNA片段的摩尔数控制在载体DNA的3-10倍载体DNA)DNA fragments (the number of moles of DNA fragments is controlled at 3-10 times the carrier DNA)

ddH2O至 10μLddH 2 O to 10 μL

b.16℃培养箱反应>12h;b.16℃ incubator reaction>12h;

c.以上连接产物全部加入100μL DH5α感受态细胞中,冰中放置20min;c. All the above ligation products were added to 100 μL of DH5α competent cells and placed in ice for 20 min;

d.42℃加热90s后,冰水浴放置3min;d. After heating at 42°C for 90s, place in an ice-water bath for 3min;

e.加入400μL LB液体培养基,37℃,150rpm/min振荡培养60min;e. Add 400μL of LB liquid medium, 37°C, 150rpm/min shaking culture for 60min;

f.在含有卡那霉素(Kan,50mg/L)的LB固体培养基上培养过夜;f. Culture overnight on LB solid medium containing kanamycin (Kan, 50 mg/L);

g.挑取单菌落于划板的LB固体培养基(Kan,50mg/L)培养12h左右,同时PCR菌落检测阳性克隆。g. Pick a single colony and cultivate it in LB solid medium (Kan, 50 mg/L) on the plate for about 12 hours, and at the same time, PCR colonies detect positive clones.

实施例3:根瘤农杆菌GV3101的转化Example 3: Transformation of Agrobacterium tumefaciens GV3101

质粒的提取利用质粒提取试剂盒操作参照说明书进行。利用双酶切检测目标片段是否与表达载体成功连接。Plasmid extraction was performed using the plasmid extraction kit according to the instructions. Double-enzyme digestion was used to detect whether the target fragment was successfully ligated with the expression vector.

冰融法转化农杆菌,方法步骤如下:The ice-melting method is used to transform Agrobacterium, and the method steps are as follows:

(1)将2μg纯化的质粒加入到100μL感受态农杆菌GV3101中,轻轻振荡混匀;(1) Add 2 μg of purified plasmid to 100 μL of competent Agrobacterium GV3101, gently shake and mix;

(2)冰上放置5min,立即置入液氮中,5min;(2) Place on ice for 5 minutes, immediately place in liquid nitrogen for 5 minutes;

(3)37℃水浴5min;(3) 37℃ water bath for 5min;

(4)加800μL的LB培养基,在28℃的摇床上200rpm/min振荡培养1h;(4) Add 800 μL of LB medium, and shake for 1 hour on a shaker at 28°C at 200 rpm/min;

(5)离心去大部分上清,沉淀,用枪轻轻吸附混匀,取下部约100μL菌液,涂于含50mg/L的Rif、Gen和Kan的LB平板上;(5) Centrifuge to remove most of the supernatant, precipitate, gently absorb and mix with a gun, take about 100 μL of bacterial liquid from the bottom, and apply it to the LB plate containing 50 mg/L Rif, Gen and Kan;

(6)28℃培养48h,可见有抗性菌落长出。挑单菌落接种至2mL LB培养基(Rif、Gen、Kan均50mg/L)中,28℃振荡培养过夜;(6) After culturing at 28°C for 48h, resistant colonies can be seen to grow. A single colony was inoculated into 2 mL of LB medium (50 mg/L for Rif, Gen, and Kan), and cultured overnight at 28°C with shaking;

(7)PCR鉴定阳性菌落。(7) PCR identified positive colonies.

实施例4:农杆菌介导的浸花法转化拟南芥Example 4: Transformation of Arabidopsis thaliana by Agrobacterium-mediated flower dip method

浸染液配置:5%蔗糖+0.015%表面活性剂;Dyeing solution configuration: 5% sucrose + 0.015% surfactant;

YEP培养基配制:酵母提取物:10g/L,蛋白胨:10g/L,NaCl:5g/L;121℃,18min高压灭菌。YEP medium preparation: yeast extract: 10g/L, peptone: 10g/L, NaCl: 5g/L; 121°C, 18min autoclaving.

转化具体步骤如下:The specific steps of conversion are as follows:

(1)挑取单菌落于10mL YEP培养基(Kan+:50mg/L,Gen+:25mg/L,Rif+:25mg/L)中,28℃,200rpm/min振荡培养8h;(1) Pick a single colony in 10mL YEP medium (Kan + : 50mg/L, Gen + : 25mg/L, Rif + : 25mg/L), 28°C, 200rpm/min shaking culture for 8h;

(2)取(1)中500μL菌液+200ml YEP培养基(Kan:50mg/L,Gen:25mg/L,Rif:25mg/L),于28℃,200rpm/min振荡培养至OD600=1.5-2.0;(2) Take 500 μL of bacterial liquid in (1) + 200 ml of YEP medium (Kan: 50 mg/L, Gen: 25 mg/L, Rif: 25 mg/L), and shake at 28° C., 200 rpm/min to OD 600 =1.5 -2.0;

(3)6000rpm/min离心(2)中的菌液10min。沉淀用转化浸染液充分悬浮,并使最终OD600在1.5-2.0之间;(3) Centrifuge the bacterial liquid in (2) at 6000 rpm/min for 10 min. The precipitation is fully suspended with the transformation dip solution, and the final OD 600 is between 1.5-2.0;

(4)转化前把开过花的角果剪掉;(4) Cut off the flowered siliques before transformation;

(5)浸染花序,浸染30s-1min,于黑暗中培养24h后转为正常培养。(5) Dipping inflorescences for 30s-1min, cultured in the dark for 24h and then transferred to normal culture.

(6)一周后再浸染花序转化一次,正常培养至开花结果,收获种子记为T0代。(6) After one week, the dipped inflorescence was transformed once, and it was cultivated normally until flowering and fruiting, and the harvested seeds were recorded as T 0 generation.

实施例5:筛选阳性转基因拟南芥:Example 5: Screening for positive transgenic Arabidopsis:

1/2MS固体培养基配置:1/2MS+24%蔗糖+0.8%琼脂(微生物培养专用)配制:1/2MS solid medium configuration: 1/2MS+24% sucrose+0.8% agar (special for microbial culture):

(1)称取2.215g MS(Murashing&Skoog basal mediun w/vitamins),加纯水溶解(少量);(1) Weigh 2.215g MS (Murashing & Skoog basal mediun w/vitamins), add pure water to dissolve (a small amount);

(2)称取24g蔗糖,溶解,定容至1L;(2) Weigh 24g of sucrose, dissolve, and dilute to 1L;

(3)称取8g Phytagel;(3) take by weighing 8g Phytagel;

(4)调节pH为5.8;(4) adjust pH to 5.8;

(5)分装,高压灭菌(120℃,20min)。(5) Subpackage and autoclave (120°C, 20min).

拟南芥种子消毒,具体步骤如下:Arabidopsis thaliana seed disinfection, the specific steps are as follows:

(1)75%乙醇洗1遍,3-5min;(1) Wash once with 75% ethanol, 3-5min;

(2)ddH2O洗3遍;(2) Wash 3 times with ddH 2 O;

(3)10%次氯酸钠洗一遍,3-5min;(3) Wash once with 10% sodium hypochlorite, 3-5min;

(4)ddH2O洗3遍;(4) Wash 3 times with ddH 2 O;

(5)加少量的0.1%琼脂悬浮。(5) Add a small amount of 0.1% agar to suspend.

抗性筛选转基因拟南芥及PCR阳性鉴定:Resistance screening of transgenic Arabidopsis and PCR positive identification:

将收获的T0拟南芥种子消毒后,在含有卡那霉素(50mg/L)和Meropen(抑菌作用25mg/L)的抗性平板上筛选,7-10天后,未转化的拟南芥种子不生根,黄化死亡,而转化的拟南芥幼苗能够正常生长。待开花结种后,单株系收取种子,记为T1代。将T1代拟南芥抗性苗所结的T1种子再次进行抗性筛选,获得T2代抗性苗,T2代每个株系(共挑选了15个株系,分别命名为SWEET15-1、SWEET15-2、SWEET15-3、SWEET15-4、SWEET15-6、SWEET15-7、SWEET15-8、SWEET15-12、SWEET15-13、SWEET15-16、SWEET15-18、SWEET15-19、SWEET15-20、SWEET15-24、SWEET15-28)挑选至少8个单株,提取叶片全基因组DNA,然后对这些植株进行PCR阳性鉴定。The harvested T 0 Arabidopsis seeds were sterilized and screened on resistant plates containing kanamycin (50 mg/L) and Meropen (25 mg/L bacteriostatic effect). After 7-10 days, untransformed Arabidopsis The mustard seeds did not take root and turned yellow and died, while the transformed Arabidopsis seedlings could grow normally. After flowering and seeding, the seeds of a single line were collected and recorded as T 1 generation. The T 1 seeds produced by the T 1 generation Arabidopsis resistant seedlings were screened again for resistance to obtain T 2 generation resistant seedlings. 1. SWEET15-2, SWEET15-3, SWEET15-4, SWEET15-6, SWEET15-7, SWEET15-8, SWEET15-12, SWEET15-13, SWEET15-16, SWEET15-18, SWEET15-19, SWEET15-20, SWEET15-24, SWEET15-28) select at least 8 individual plants, extract the whole genome DNA of leaves, and then carry out PCR positive identification on these plants.

鉴定引物如下:载体反向引物:pC2300s-R:5’–gagaaactcgagcttgcatgc-3’目的片段正向引物BST-Kpn-F:5’–ctggtaccatgggcgtcatggtcaatcacc-3’扩增体系及方法如下:The identification primers are as follows: Vector reverse primer: pC2300s-R: 5’–gagaaactcgagcttgcatgc-3’ target fragment forward primer BST-Kpn-F: 5’–ctggtaccatgggcgtcatggtcaatcacc-3’ The amplification system and method are as follows:

20μL反应体系如表1:The 20 μL reaction system is shown in Table 1:

表1阳性植株的PCR反应体系Table 1 PCR reaction system of positive plants

Figure BDA0003409171340000061
Figure BDA0003409171340000061

PCR反应程序:PCR reaction program:

扩增反应程序如下:94℃预变性2min;94℃变性30s,58℃退火30s,72℃退火延伸1min(依据片段长短调整时间,约1min扩增1kb),34个循环;72℃延伸10min,4℃保存备用。然后对以上PCR产物进行1%琼脂糖凝胶电泳检测,结果显示,大部分经过抗性筛选的单株均为阳性。The amplification reaction procedure was as follows: pre-denaturation at 94 °C for 2 min; denaturation at 94 °C for 30 s, annealing at 58 °C for 30 s, annealing and extension at 72 °C for 1 min (adjust the time according to the length of the fragment, about 1 min to amplify 1 kb), 34 cycles; extension at 72 °C for 10 min, Store at 4°C for later use. The above PCR products were then detected by 1% agarose gel electrophoresis, and the results showed that most of the individual strains screened for resistance were positive.

实施例6:实时荧光定量RCR检测转化基因的表达情况Example 6: Real-time fluorescent quantitative RCR detects the expression of transformed genes

实施例5中转化超表达载体的15个T2代株系的所有单株经过阳性鉴定后,每个株系选取阳性单株的混合叶片进行RNA的提取并进行反转录及实时荧光定量PCR来检测该基因的表达情况。After all the individual plants of the 15 T 2 generation strains transformed with the overexpression vector in Example 5 were positively identified, the mixed leaves of the positive individual strains were selected from each strain for RNA extraction, reverse transcription and real-time fluorescence quantitative PCR. to detect the expression of the gene.

拟南芥β-actin1(at2g37620)(Rus et al.,2006)为内参基因。BnaA2.SWEET15基因正向引物为5’–cagttgatgtcacggtgacg-3’,反向引物为5’–tcaaattcgagacggggcag-3’。Arabidopsis β-actin1 (at2g37620) (Rus et al., 2006) was the internal reference gene. The forward primer of BnaA2.SWEET15 gene was 5’–cagttgatgtcacggtgacg-3’, and the reverse primer was 5’–tcaaattcgagacggggcag-3’.

拟南芥叶片RNA提取、反转录cDNA第一链、荧光定量PCR均利用试剂盒参照说明书进行。其结果如图1中A所示,BnaA2.SWEET15在这些转基因株系中均有较高表达。RNA extraction from Arabidopsis thaliana leaves, reverse transcription of the first strand of cDNA, and real-time quantitative PCR were performed using the kit according to the instructions. As a result, as shown in A in Figure 1, BnaA2.SWEET15 was highly expressed in these transgenic lines.

实施例7:T2代转基因株系表型鉴定Example 7: Phenotypic identification of T 2 generation transgenic lines

实施例6中所用的T2代拟南芥种子,千粒重性状考查使用SC-G型考种及千粒重自动分析仪(万深)进行,1200pbi的分辨率。每个株系取10个角果,数出数量,称重,计算出千粒重和每角粒数。For the T 2 generation Arabidopsis thaliana seeds used in Example 6, the 1000-grain weight trait was tested using SC-G type testing and 1000-grain weight automatic analyzer (Wan Shen), with a resolution of 1200 pbi. Take 10 siliques from each strain, count the number, weigh, and calculate the thousand-grain weight and the number of grains per silique.

结果如图1和图2所示:SWEET15-1、SWEET15-2、SWEET15-3、SWEET15-4、SWEET15-6、SWEET15-7、SWEET15-8、SWEET15-12、SWEET15-13、SWEET15-16、SWEET15-18、SWEET15-19、SWEET15-20、SWEET15-24、SWEET15-28的转基因株系粒重显著增加(图1中B),增幅从25%-81%。这些株系中53%的株系每角粒数相比于Col没有显著变化或显著降低(图1中C),部分株系主序产量相比于Col显著提高(图1中D),另外,种子主要是粒长显著增加(图2中A),少量株系种子的粒宽显著增加(图2中B)。说明粒重主要是由于粒长增加而导致,且粒重的增加可以不以每角粒数的减少作为补偿,说明这个基因可通过增加粒重来提高产量。The results are shown in Figure 1 and Figure 2: SWEET15-1, SWEET15-2, SWEET15-3, SWEET15-4, SWEET15-6, SWEET15-7, SWEET15-8, SWEET15-12, SWEET15-13, SWEET15-16, The grain weight of the transgenic lines of SWEET15-18, SWEET15-19, SWEET15-20, SWEET15-24, and SWEET15-28 was significantly increased (B in Figure 1), and the increase was from 25% to 81%. 53% of these lines showed no significant change or a significant decrease in the number of grains per horn compared to Col (C in Fig. 1), some lines showed a significant increase in main sequence yield compared with Col (D in Fig. 1), and in addition , the main grain length of seeds increased significantly (A in Figure 2), and the grain width of seeds of a few lines increased significantly (B in Figure 2). It shows that the grain weight is mainly caused by the increase of grain length, and the increase of grain weight may not be compensated by the decrease of the number of grains per horn, indicating that this gene can increase the yield by increasing the grain weight.

序列表sequence listing

<110> 中国农业科学院油料作物研究所<110> Oil Crops Research Institute, Chinese Academy of Agricultural Sciences

<120> 油菜SWEET15糖转运蛋白基因在提高油菜产量中的应用<120> Application of rape SWEET15 sugar transporter gene in improving rape yield

<160> 8<160> 8

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 894<211> 894

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 1<400> 1

atgggcgtca tggtcaatca ccacttgctc gctatcatct tcggcatctt aggaaacgca 60atgggcgtca tggtcaatca ccacttgctc gctatcatct tcggcatctt aggaaacgca 60

atatccttcc ttgtattcct ggctcccgtg ccgacgtttt atagaatata caagaacaaa 120atatccttcc ttgtattcct ggctcccgtg ccgacgtttt atagaatata caagaacaaa 120

tcgactgaaa gtttccagtc tctaccgtac caagtgtcac tatttagctg catgctatgg 180tcgactgaaa gtttccagtc tctaccgtac caagtgtcac tatttagctg catgctatgg 180

ctctattacg cattgactaa gcaagacgct tttctcctaa ttaccatcaa ctctttcggc 240ctctattacg cattgactaa gcaagacgct tttctcctaa ttaccatcaa ctctttcggc 240

tgcgttgtgg agactatcta cattgccatg ttcttcactt acgctaccaa ggagaaaaag 300tgcgttgtgg agactatcta cattgccatg ttcttcactt acgctaccaa ggagaaaaag 300

atggcggcta ttaagttgtt cttgacgatg aatgttgctt tcttctcgtt gattataatg 360atggcggcta ttaagttgtt cttgacgatg aatgttgctt tcttctcgtt gattataatg 360

gttacacatt ttgcggttaa acgccctagc ctccaagtct ctgtcatcgg ctggatttgc 420gttacacatt ttgcggttaa acgccctagc ctccaagtct ctgtcatcgg ctggatttgc 420

gttgctatat ctgtttctgt tttcgctgcc cctctaatga ttgtggctcg tgtgataaag 480gttgctatat ctgtttctgt tttcgctgcc cctctaatga ttgtggctcg tgtgataaag 480

accaagagtg tggagttcat gcccttcacg ctttctttct tcctcactat aagcgctgtt 540accaagagtg tggagttcat gcccttcacg ctttctttct tcctcactat aagcgctgtt 540

atgtggttcg catatggcgc atttctccac gacatatgca ttgctattcc aaacgtggtg 600atgtggttcg catatggcgc atttctccac gacatatgca ttgctattcc aaacgtggtg 600

ggattcatac tagggttggt acaaatggtt ttgtatggag tttacagaaa ctcaggggag 660ggattcatac tagggttggt acaaatggtt ttgtatggag tttacagaaa ctcaggggag 660

aaattagata ttgggaaaaa gaataacagt tcatcagaac aacttaagac tattgttgtg 720aaattagata ttgggaaaaa gaataacagt tcatcagaac aacttaagac tattgttgtg 720

atgagtccgt taggtttgtc ggaaatgcac ccagttgatg tcacggtgac ggaaccggtg 780atgagtccgt taggtttgtc ggaaatgcac ccagttgatg tcacggtgac ggaaccggtg 780

attccactct cttacactgt tcatcatgaa gatccatcca aaattactaa agaggaggag 840attccactct cttacactgt tcatcatgaa gatccatcca aaattactaa agaggaggag 840

acgtcaactg aagccgcaca aagccatgtg gagactgccc cgtctcgaat ttga 894acgtcaactg aagccgcaca aagccatgtg gagactgccc cgtctcgaat ttga 894

<210> 2<210> 2

<211> 297<211> 297

<212> PRT<212> PRT

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 2<400> 2

Met Gly Val Met Val Asn His His Leu Leu Ala Ile Ile Phe Gly IleMet Gly Val Met Val Asn His His Leu Leu Ala Ile Ile Phe Gly Ile

1 5 10 151 5 10 15

Leu Gly Asn Ala Ile Ser Phe Leu Val Phe Leu Ala Pro Val Pro ThrLeu Gly Asn Ala Ile Ser Phe Leu Val Phe Leu Ala Pro Val Pro Thr

20 25 30 20 25 30

Phe Tyr Arg Ile Tyr Lys Asn Lys Ser Thr Glu Ser Phe Gln Ser LeuPhe Tyr Arg Ile Tyr Lys Asn Lys Ser Thr Glu Ser Phe Gln Ser Leu

35 40 45 35 40 45

Pro Tyr Gln Val Ser Leu Phe Ser Cys Met Leu Trp Leu Tyr Tyr AlaPro Tyr Gln Val Ser Leu Phe Ser Cys Met Leu Trp Leu Tyr Tyr Ala

50 55 60 50 55 60

Leu Thr Lys Gln Asp Ala Phe Leu Leu Ile Thr Ile Asn Ser Phe GlyLeu Thr Lys Gln Asp Ala Phe Leu Leu Ile Thr Ile Asn Ser Phe Gly

65 70 75 8065 70 75 80

Cys Val Val Glu Thr Ile Tyr Ile Ala Met Phe Phe Thr Tyr Ala ThrCys Val Val Glu Thr Ile Tyr Ile Ala Met Phe Phe Thr Tyr Ala Thr

85 90 95 85 90 95

Lys Glu Lys Lys Met Ala Ala Ile Lys Leu Phe Leu Thr Met Asn ValLys Glu Lys Lys Met Ala Ala Ile Lys Leu Phe Leu Thr Met Asn Val

100 105 110 100 105 110

Ala Phe Phe Ser Leu Ile Ile Met Val Thr His Phe Ala Val Lys ArgAla Phe Phe Ser Leu Ile Ile Met Val Thr His Phe Ala Val Lys Arg

115 120 125 115 120 125

Pro Ser Leu Gln Val Ser Val Ile Gly Trp Ile Cys Val Ala Ile SerPro Ser Leu Gln Val Ser Val Ile Gly Trp Ile Cys Val Ala Ile Ser

130 135 140 130 135 140

Val Ser Val Phe Ala Ala Pro Leu Met Ile Val Ala Arg Val Ile LysVal Ser Val Phe Ala Ala Pro Leu Met Ile Val Ala Arg Val Ile Lys

145 150 155 160145 150 155 160

Thr Lys Ser Val Glu Phe Met Pro Phe Thr Leu Ser Phe Phe Leu ThrThr Lys Ser Val Glu Phe Met Pro Phe Thr Leu Ser Phe Phe Leu Thr

165 170 175 165 170 175

Ile Ser Ala Val Met Trp Phe Ala Tyr Gly Ala Phe Leu His Asp IleIle Ser Ala Val Met Trp Phe Ala Tyr Gly Ala Phe Leu His Asp Ile

180 185 190 180 185 190

Cys Ile Ala Ile Pro Asn Val Val Gly Phe Ile Leu Gly Leu Val GlnCys Ile Ala Ile Pro Asn Val Val Gly Phe Ile Leu Gly Leu Val Gln

195 200 205 195 200 205

Met Val Leu Tyr Gly Val Tyr Arg Asn Ser Gly Glu Lys Leu Asp IleMet Val Leu Tyr Gly Val Tyr Arg Asn Ser Gly Glu Lys Leu Asp Ile

210 215 220 210 215 220

Gly Lys Lys Asn Asn Ser Ser Ser Glu Gln Leu Lys Thr Ile Val ValGly Lys Lys Asn Asn Ser Ser Ser Glu Gln Leu Lys Thr Ile Val Val

225 230 235 240225 230 235 240

Met Ser Pro Leu Gly Leu Ser Glu Met His Pro Val Asp Val Thr ValMet Ser Pro Leu Gly Leu Ser Glu Met His Pro Val Asp Val Thr Val

245 250 255 245 250 255

Thr Glu Pro Val Ile Pro Leu Ser Tyr Thr Val His His Glu Asp ProThr Glu Pro Val Ile Pro Leu Ser Tyr Thr Val His His His Glu Asp Pro

260 265 270 260 265 270

Ser Lys Ile Thr Lys Glu Glu Glu Thr Ser Thr Glu Ala Ala Gln SerSer Lys Ile Thr Lys Glu Glu Glu Thr Ser Thr Glu Ala Ala Gln Ser

275 280 285 275 280 285

His Val Glu Thr Ala Pro Ser Arg IleHis Val Glu Thr Ala Pro Ser Arg Ile

290 295 290 295

<210> 3<210> 3

<211> 30<211> 30

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 3<400> 3

ctggtaccat gggcgtcatg gtcaatcacc 30ctggtaccat gggcgtcatg gtcaatcacc 30

<210> 4<210> 4

<211> 31<211> 31

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 4<400> 4

atgggatcct caaattcgag acggggcagt c 31atgggatcct caaattcgag acggggcagt c 31

<210> 5<210> 5

<211> 21<211> 21

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 5<400> 5

gagaaactcg agcttgcatg c 21gagaaactcg agcttgcatg c 21

<210> 6<210> 6

<211> 30<211> 30

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 6<400> 6

ctggtaccat gggcgtcatg gtcaatcacc 30ctggtaccat gggcgtcatg gtcaatcacc 30

<210> 7<210> 7

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 7<400> 7

cagttgatgt cacggtgacg 20cagttgatgt cacggtgacg 20

<210> 8<210> 8

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 8<400> 8

tcaaattcga gacggggcag 20tcaaattcga gacggggcag 20

Claims (3)

  1. The application of the protein shown in SEQ ID NO.2 or the gene for coding the protein in improving the yield of arabidopsis thaliana.
  2. 2. The use of claim 1, wherein the increase in yield of Arabidopsis thaliana is achieved by increasing the seed weight of Arabidopsis thaliana by using the protein of SEQ ID No.2 or a gene encoding the protein.
  3. 3. The use of claim 1, wherein the protein of SEQ ID No.2 or the gene encoding the protein increases Arabidopsis yield by increasing Arabidopsis seed length and/or seed width.
CN202111526489.2A 2021-12-14 2021-12-14 Application of rape SWEET15 sugar transporter gene in improving rape yield Active CN114106129B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111526489.2A CN114106129B (en) 2021-12-14 2021-12-14 Application of rape SWEET15 sugar transporter gene in improving rape yield

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111526489.2A CN114106129B (en) 2021-12-14 2021-12-14 Application of rape SWEET15 sugar transporter gene in improving rape yield

Publications (2)

Publication Number Publication Date
CN114106129A CN114106129A (en) 2022-03-01
CN114106129B true CN114106129B (en) 2022-07-29

Family

ID=80364486

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111526489.2A Active CN114106129B (en) 2021-12-14 2021-12-14 Application of rape SWEET15 sugar transporter gene in improving rape yield

Country Status (1)

Country Link
CN (1) CN114106129B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115011613A (en) * 2022-06-29 2022-09-06 浙江大学 Arabidopsis sclerotinia resistance candidate gene AtSWEET15 and its application
CN118064496B (en) * 2024-02-19 2024-10-15 中国农业科学院油料作物研究所 Application of BnaNADK3 gene related to lateral root number in rapeseed breeding

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080092629A (en) * 2007-04-12 2008-10-16 이화여자대학교 산학협력단 How to change the seed yield of plants by controlling the levels of ATSP3 in plants
CN106317211A (en) * 2015-07-02 2017-01-11 中国农业科学院油料作物研究所 Rape grain weight related gene ARF 18 and application thereof

Also Published As

Publication number Publication date
CN114106129A (en) 2022-03-01

Similar Documents

Publication Publication Date Title
US8426677B2 (en) Method of controlling plant growth and architecture by controlling expression of gibberellin 2-oxidase
US8034992B2 (en) Gibberellin 2-oxidase genes and uses thereof
JP5779619B2 (en) Plant height regulatory genes and uses thereof
US9556422B2 (en) Highly glyphosate-resistant mutated gene, method of modification and use thereof
CN106868021B (en) Gene OsNAC1 for controlling rice seed size and application thereof
CN110628808B (en) Arabidopsis AtTCP5 gene and application thereof in regulating plant height
CN106868019A (en) Control rice tillering gene OsHT1 and its application
CN114106129B (en) Application of rape SWEET15 sugar transporter gene in improving rape yield
CN106148390B (en) CHY zinc finger protein transcription activation cofactor and its application
CN113025627A (en) Rice tillering control gene OsMYB27 and application thereof in breeding
WO2014069339A1 (en) Nucleic acid imparting high-yielding property to plant, method for producing transgenic plant with increased yield, and method for increasing plant yield
CN117264964A (en) Application of wheat TaGSKB protein and encoding gene thereof in regulation and control of plant stress tolerance
CN102250226A (en) Paddy rice output related protein, and coding gene and application thereof
CN112899302B (en) Application of rape alpha-6 tubulin gene in improving rape yield
CN108841797A (en) The protein and its encoding gene of a kind of adjusting and controlling rice Chlorophyll synthesis and application
CN107903311B (en) Rice leaf rolling control gene LRRK1 and its application
CN102250228B (en) Method for improving rice potassium ion efflux antiporter
CN101781363B (en) Protein regulating development of plants and encoding gene and application thereof
CN112877326B (en) Application of aluminum ion receptor ALR1 gene or protein for regulating and controlling aluminum resistance of plants
CN111499709B (en) RGN1 protein related to grain number per ear and its encoding gene and application
CN111394500B (en) A method for identifying whether a plant sample to be tested is derived from the SbSNAC1-382 event or its progeny
CN115141842A (en) Application of GmABI5 gene in regulating plant grain weight
CN114085854A (en) Rice drought-resistant and salt-tolerant gene OsSKL2 and application thereof
CN106987569B (en) The application of soybean phosphatase GmWIN2 and its encoding gene in regulation plant seed production
CN106434740A (en) Application of oilseed rape BnbHLH60 gene to oilseed rape yield improvement

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant