CN114093684B - beta-Ni (OH) 2 beta-NiOOH polyaniline composite electrode and preparation method and application thereof - Google Patents
beta-Ni (OH) 2 beta-NiOOH polyaniline composite electrode and preparation method and application thereof Download PDFInfo
- Publication number
- CN114093684B CN114093684B CN202111401952.0A CN202111401952A CN114093684B CN 114093684 B CN114093684 B CN 114093684B CN 202111401952 A CN202111401952 A CN 202111401952A CN 114093684 B CN114093684 B CN 114093684B
- Authority
- CN
- China
- Prior art keywords
- electrode
- beta
- niooh
- conductive substrate
- array
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920000767 polyaniline Polymers 0.000 title claims abstract description 36
- 229910003160 β-NiOOH Inorganic materials 0.000 title claims abstract description 35
- 239000002131 composite material Substances 0.000 title claims abstract description 20
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- 239000000758 substrate Substances 0.000 claims abstract description 49
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 claims abstract description 40
- 238000000034 method Methods 0.000 claims abstract description 24
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 18
- 238000002484 cyclic voltammetry Methods 0.000 claims abstract description 14
- 239000007864 aqueous solution Substances 0.000 claims abstract description 12
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical class Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 claims abstract description 12
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims abstract description 8
- 229910021607 Silver chloride Inorganic materials 0.000 claims abstract description 5
- 239000003575 carbonaceous material Substances 0.000 claims abstract description 5
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 claims abstract description 5
- 239000007769 metal material Substances 0.000 claims abstract description 4
- 239000003990 capacitor Substances 0.000 claims abstract 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 66
- 229910052759 nickel Inorganic materials 0.000 claims description 25
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 19
- 239000008367 deionised water Substances 0.000 claims description 16
- 229910021641 deionized water Inorganic materials 0.000 claims description 16
- 239000006260 foam Substances 0.000 claims description 13
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical group [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 claims description 12
- 239000001103 potassium chloride Substances 0.000 claims description 6
- 235000011164 potassium chloride Nutrition 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 238000004070 electrodeposition Methods 0.000 claims description 4
- 229910002640 NiOOH Inorganic materials 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- 239000004744 fabric Substances 0.000 claims description 2
- 239000011780 sodium chloride Substances 0.000 claims description 2
- 229910001220 stainless steel Inorganic materials 0.000 claims description 2
- 239000010935 stainless steel Substances 0.000 claims description 2
- 230000010355 oscillation Effects 0.000 claims 1
- 238000002791 soaking Methods 0.000 claims 1
- 238000005406 washing Methods 0.000 claims 1
- 238000011031 large-scale manufacturing process Methods 0.000 abstract 1
- 229910018661 Ni(OH) Inorganic materials 0.000 description 62
- 238000003491 array Methods 0.000 description 13
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 description 6
- 239000011259 mixed solution Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 5
- 238000009210 therapy by ultrasound Methods 0.000 description 5
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 3
- 238000005234 chemical deposition Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000006056 electrooxidation reaction Methods 0.000 description 2
- 238000001027 hydrothermal synthesis Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000004729 solvothermal method Methods 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
- H01G11/86—Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/48—Conductive polymers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种β-Ni(OH)2/β-NiOOH聚苯胺复合电极及其制备方法和应用,属于超级电容器领域。The invention relates to a β-Ni(OH) 2 /β-NiOOH polyaniline composite electrode and a preparation method and application thereof, belonging to the field of supercapacitors.
背景技术Background technique
随着经济的发展和人们生活水平的不断提高,近年来,环境污染和气候变化问题越来越受到国家的重视。为了减少雾霾,应对全球变暖,有必要控制化石能源的消耗,代替以风能、潮汐等清洁能源。而这些能源都要以电能的方式进行传输或存储。因此,近年来,不同形式的电池如锂离子电池、燃料电池、铅蓄电池、物氢电池等受到了极大的关注。然而电池的功率密度一般较低,无法满足高功率输出的需求,如电动汽车的加速过程。超级电容器因其功率密度大,能够弥补电池的缺陷,越来越受到人们的重视。作为一种赝电容材料,β-Ni(OH)2的理论比容量较大,但与传统碳材料相比,其导电率较低,拉低了其倍率性能,并且循环稳定性稍差。因此,对β-Ni(OH)2进行结构和表面的改性尤为重要,可以有效改善β-Ni(OH)2的循环性能。With the development of the economy and the continuous improvement of people's living standards, the problems of environmental pollution and climate change have been paid more and more attention by the state in recent years. In order to reduce smog and cope with global warming, it is necessary to control the consumption of fossil energy and replace it with clean energy such as wind energy and tides. These energies must be transmitted or stored in the form of electrical energy. Therefore, in recent years, different forms of batteries such as lithium-ion batteries, fuel cells, lead storage batteries, and hydrogen batteries have received great attention. However, the power density of batteries is generally low, which cannot meet the needs of high power output, such as the acceleration process of electric vehicles. Due to its high power density and ability to compensate for the defects of batteries, supercapacitors have attracted more and more attention. As a pseudocapacitive material, β-Ni(OH) 2 has a large theoretical specific capacity, but compared with traditional carbon materials, its electrical conductivity is lower, which lowers its rate performance and its cycle stability is slightly worse. Therefore, it is particularly important to modify the structure and surface of β-Ni(OH) 2 , which can effectively improve the cycle performance of β-Ni(OH) 2 .
发明内容Contents of the invention
本发明通过简单的室温合成路线,辅助以电化学手段,在调控β-Ni(OH)2中的电荷比例的同时,将苯胺聚合到β-Ni(OH)2的表面,得到一种β-Ni(OH)2/β-NiOOH聚苯胺复合电极。本发明通过溶液浸泡法得到Ni(OH)2阵列,通过电化学氧化沉积法将β-Ni(OH)2电极氧化和与聚苯胺的复合,可以提供一种简单有效的制备β-Ni(OH)2/β-NiOOH聚苯胺复合电极的方法,所得的β-Ni(OH)2/β-NiOOH聚苯胺复合电极具有较大的应用前景。In the present invention, through a simple synthetic route at room temperature and assisted by electrochemical means, aniline is polymerized onto the surface of β-Ni(OH) 2 while regulating the charge ratio in β-Ni(OH) 2 to obtain a β-Ni(OH) 2 Ni(OH) 2 /β-NiOOH polyaniline composite electrode. The present invention obtains Ni(OH) 2 array by solution immersion method, β-Ni(OH) 2 electrode is oxidized and compounded with polyaniline by electrochemical oxidation deposition method, can provide a kind of simple and effective preparation β-Ni(OH) ) 2 /β-NiOOH polyaniline composite electrode, the resulting β-Ni(OH) 2 /β-NiOOH polyaniline composite electrode has great application prospects.
本发明的目的是为了解决现有超级电容器循环稳定性差的技术问题,而提供一种β-Ni(OH)2/β-NiOOH聚苯胺复合电极及其制备方法和应用。The purpose of the present invention is to solve the technical problem of poor cycle stability of existing supercapacitors, and provide a β-Ni(OH) 2 /β-NiOOH polyaniline composite electrode and its preparation method and application.
一种β-Ni(OH)2/β-NiOOH聚苯胺复合电极的制备方法,包括下述工艺步骤:A method for preparing a β-Ni(OH) 2 /β-NiOOH polyaniline composite electrode, comprising the following process steps:
(1)制备表面生长有β-Ni(OH)2阵列的导电基底;(2)在三电极体系下,以步骤(1)所得表面生长有β-Ni(OH)2阵列的导电基底为工作电极,以金属材料或碳材料为对电极,饱和甘汞电极、Ag/AgCl电极或HgO/Hg电极为参比电极,于氯化物、乙醇和苯胺的水溶液中,以循环伏安法制备β-Ni(OH)2/β-NiOOH聚苯胺复合电极,其中,所述氯化物浓度为0.5~3mol/L,苯胺浓度为2~5mg/L,乙醇与水的体积比为1:20(1) Prepare a conductive substrate with β-Ni(OH) 2 arrays grown on its surface; (2) Under the three-electrode system, use the conductive substrate with β-Ni(OH) 2 arrays grown on the surface obtained in step (1) as the work Electrode, with metal material or carbon material as counter electrode, saturated calomel electrode, Ag/AgCl electrode or HgO/Hg electrode as reference electrode, in the aqueous solution of chloride, ethanol and aniline, prepare β- Ni(OH) 2 /β-NiOOH polyaniline composite electrode, wherein the chloride concentration is 0.5-3mol/L, the aniline concentration is 2-5mg/L, and the volume ratio of ethanol to water is 1:20
上述技术方案中,所述的β-Ni(OH)2阵列的制备方法没有特殊限制,采用本领域技术人员熟知的室温化学溶液法,水热法、溶剂热法、化学沉积法或电沉积法即可,优选为室温化学溶液法。In the above technical scheme, the preparation method of the β-Ni(OH) 2 array is not particularly limited, and the room temperature chemical solution method, hydrothermal method, solvothermal method, chemical deposition method or electrodeposition method well known to those skilled in the art are used That is, the chemical solution method at room temperature is preferred.
优选为,将镍导电基底完全浸入浓度为0.01~13mol/L的盐酸中超声振荡5~30分钟,用去离子水反复冲洗后在去离子水中浸泡若干天,即得到表面生长有β-Ni(OH)2阵列的导电基底;Preferably, the nickel conductive substrate is completely immersed in hydrochloric acid with a concentration of 0.01 to 13 mol/L and ultrasonically oscillated for 5 to 30 minutes, rinsed repeatedly with deionized water and soaked in deionized water for several days to obtain β-Ni ( OH) Conductive substrate of the array ;
进一步地,将镍导电基底完全浸入浓度为0.01~13mol/L的盐酸中超声振荡5~30分钟,用去离子水反复冲洗后在去离子水中浸泡七天,即得到表面生长有β-Ni(OH)2阵列的导电基底。Further, the nickel conductive substrate is completely immersed in hydrochloric acid with a concentration of 0.01-13mol/L and ultrasonically oscillated for 5-30 minutes, rinsed repeatedly with deionized water, and then soaked in deionized water for seven days, that is, β-Ni(OH) grown on the surface ) 2 arrays of conductive substrates.
上述技术方案中,盐酸的用量能够满足将镍导电基底全部浸入其中即可。In the above technical solution, the amount of hydrochloric acid is enough to fully immerse the nickel conductive substrate therein.
上述技术方案中,所述苯胺纯度大于99%;所述盐酸纯度为>99.5%。In the above technical solution, the purity of the aniline is greater than 99%; the purity of the hydrochloric acid is >99.5%.
上述技术方案中,所述镍导电基底为镍质导电基底,优选为泡沫镍。In the above technical solution, the nickel conductive substrate is a nickel conductive substrate, preferably nickel foam.
上述技术方案中,优选所述电沉积条件为:在三电极体系下,以5~50mV/s的扫描速度在循环伏安模式下循环10~20圈,电位范围~1.2~1.0V相对饱和甘汞电极。In the above technical solution, the electrodeposition conditions are preferably as follows: under the three-electrode system, cycle 10 to 20 cycles in the cyclic voltammetry mode at a scanning speed of 5 to 50 mV/s, and the potential range is ∼1.2 to 1.0 V relative to saturation. mercury electrode.
上述技术方案中,优选所述氯化物为氯化钾或氯化钠。In the above technical solution, preferably the chloride is potassium chloride or sodium chloride.
上述技术方案中,优选所述对电极为Pt片,Pt丝,Pt网,碳布、碳纸、泡沫物、铜网、钛网、不锈钢网或钛片。In the above technical solution, preferably, the counter electrode is a Pt sheet, Pt wire, Pt mesh, carbon cloth, carbon paper, foam, copper mesh, titanium mesh, stainless steel mesh or titanium sheet.
本发明另一目的是提供由上述方法制得的β-Ni(OH)2/β-NiOOH聚苯胺复合电极。Another object of the present invention is to provide a β-Ni(OH) 2 /β-NiOOH polyaniline composite electrode prepared by the above method.
一种β-Ni(OH)2/β-NiOOH聚苯胺复合电极,按下述方法制得:A β-Ni(OH) 2 /β-NiOOH polyaniline composite electrode is prepared as follows:
(1)将镍导电基底完全浸入浓度为0.01~13mol/L的盐酸中超声振荡5~30分钟,用去离子水反复冲洗后在去离子水中浸泡若干天,即得到表面生长有β-Ni(OH)2阵列的导电基底;(1) Completely immerse the nickel conductive substrate in hydrochloric acid with a concentration of 0.01-13mol/L and ultrasonically vibrate for 5-30 minutes, rinse it repeatedly with deionized water, and then soak it in deionized water for several days to obtain β-Ni ( OH) Conductive substrate of the array ;
(2)在三电极体系下,以步骤(1)所得表面生长有β-Ni(OH)2阵列的导电基底为工作电极,以金属材料或碳材料为对电极,饱和甘汞电极、Ag/AgCl电极或HgO/Hg电极为参比电极,于氯化物、乙醇和苯胺的水溶液中,以循环伏安法制备β-Ni(OH)2/β-NiOOH聚苯胺复合电极,其中,所述氯化物浓度为0.5~3mol/L,苯胺浓度为2~5mg/L,乙醇与水的体积比为1:20。(2) Under the three-electrode system, the conductive substrate with the β-Ni(OH) 2 array grown on the surface obtained in step (1) is used as the working electrode, and the metal material or carbon material is used as the counter electrode, saturated calomel electrode, Ag/ The AgCl electrode or the HgO/Hg electrode is used as a reference electrode, and the β-Ni(OH) 2 /β-NiOOH polyaniline composite electrode is prepared by cyclic voltammetry in an aqueous solution of chloride, ethanol and aniline, wherein the chlorine The compound concentration is 0.5-3mol/L, the aniline concentration is 2-5mg/L, and the volume ratio of ethanol to water is 1:20.
本发明的又一目的是提供上述β-Ni(OH)2/β-NiOOH聚苯胺复合电极在超级电容器方面的应用。Another object of the present invention is to provide the application of the above-mentioned β-Ni(OH) 2 /β-NiOOH polyaniline composite electrode in supercapacitors.
本发明的有益效果为:本发明提供一种β-Ni(OH)2/β-NiOOH聚苯胺电极及其制备方法和应用,该电极是先制备β-Ni(OH)2阵列;再将所得Ni(OH)2阵列通过电化学法制备β-Ni(OH)2/β-NiOOH聚苯胺阵列;上述制备方法简单、可大规模生产,所制备得到的电极应用在超级电容器中,比容量高,且具有优异的循环稳定性。The beneficial effect of the present invention is: the present invention provides a kind of β-Ni(OH) 2 /β-NiOOH polyaniline electrode and its preparation method and application, this electrode is to prepare β-Ni(OH) 2 array first; β-Ni(OH) 2 /β-NiOOH polyaniline arrays are prepared by electrochemical method of Ni(OH) 2 arrays; the above preparation method is simple and can be mass-produced, and the prepared electrodes are used in supercapacitors with high specific capacity , and has excellent cycle stability.
附图说明Description of drawings
图1为实施例1制备得到的β-Ni(OH)2/β-NiOOH聚苯胺阵列的扫描电镜照片图;Figure 1 is a scanning electron micrograph of the β-Ni(OH) 2 /β-NiOOH polyaniline array prepared in Example 1;
图2为实施例1制备得到的β-Ni(OH)2阵列的扫描电镜照片图;Fig. 2 is the beta-Ni (OH) that embodiment 1 prepares The scanning electron micrograph figure of array;
图3为β-Ni(OH)2/β-NiOOH聚苯胺电极的循环曲线。Fig. 3 is the cycle curve of the β-Ni(OH) 2 /β-NiOOH polyaniline electrode.
具体实施方式Detailed ways
下述非限定性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。The following non-limiting examples can enable those skilled in the art to understand the present invention more fully, but do not limit the present invention in any way.
步骤一:制备表面生长有β-Ni(OH)2阵列的导电基底;Step 1: preparing a conductive substrate with β-Ni(OH) arrays grown on the surface;
步骤二:将步骤一制备得到的β-Ni(OH)2阵列通过电化学循环伏安法制备β-Ni(OH)2/β-NiOOH聚苯胺阵列;Step 2: Prepare the β-Ni(OH) 2 /β-NiOOH polyaniline array by electrochemical cyclic voltammetry from the β-Ni(OH) 2 array prepared in
按照本发明,先制备表面生长有β-Ni(OH)2阵列的导电基底,所述β-Ni(OH)2阵列的制备方法没有特殊限制,采用本领域技术人员熟知的室温化学溶液法,水热法、溶剂热法、化学沉积法或电沉积法即可,优选为室温化学溶液法。According to the present invention, a conductive substrate with a β-Ni(OH) 2 array grown on the surface is first prepared, and the preparation method of the β-Ni(OH) 2 array is not particularly limited, and the room temperature chemical solution method well known to those skilled in the art is adopted, Hydrothermal method, solvothermal method, chemical deposition method or electrodeposition method can be used, preferably room temperature chemical solution method.
所述的室温化学溶液法优选在1mol/L的HCl水溶液中,将导电基底(泡沫镍)超声处理30分钟;之后基底用去离子水冲洗3次,然后浸泡一周得到β-Ni(OH)2阵列。所述的导电基底只能为镍基底。The room temperature chemical solution method is preferably in 1mol/L HCl aqueous solution, the conductive substrate (foam nickel) is ultrasonically treated for 30 minutes; then the substrate is rinsed 3 times with deionized water, and then soaked for a week to obtain β-Ni(OH) 2 array. The conductive substrate can only be a nickel substrate.
按照本发明,将上述制备得到的β-Ni(OH)2阵列通过电化学氧化沉积法制备β-Ni(OH)2/β-NiOOH聚苯胺阵列;具体优选为:将所得Ni(OH)2阵列作为工作电极,饱和甘汞电极作为参比电极,铂丝作为对电极,在1mol/L KCl,5mg/L苯胺水-乙醇(20:1)混合液中,在5mV/s的扫速下,以循环伏安法,在电位范围-1.2~1.0V下循环5圈,即得到β-Ni(OH)2/β-NiOOH聚苯胺阵列。According to the present invention, β-Ni(OH) 2 /β-NiOOH polyaniline arrays are prepared by the β-Ni(OH) 2 array prepared above by electrochemical oxidation deposition method; specifically, the obtained Ni(OH) 2 The array is used as the working electrode, the saturated calomel electrode is used as the reference electrode, and the platinum wire is used as the counter electrode. In 1mol/L KCl, 5mg/L aniline water-ethanol (20:1) mixture, at a scan rate of 5mV/s , using cyclic voltammetry to cycle 5 cycles in the potential range of -1.2 to 1.0 V to obtain a polyaniline array of β-Ni(OH) 2 /β-NiOOH.
本发明还提供上述方法制备得到的β-Ni(OH)2/β-NiOOH聚苯胺阵列电极。The present invention also provides the β-Ni(OH) 2 /β-NiOOH polyaniline array electrode prepared by the above method.
本发明还提供上述β-Ni(OH)2/β-NiOOH聚苯胺电极在超级电容器方面的应用,将上述β-Ni(OH)2/β-NiOOH聚苯胺作为阴极、铂片作为阳极组装成全电池,利用CHI660E型电化学工作站测试其在碱性电解液中的超级电容性能。The present invention also provides the application of the above-mentioned β-Ni(OH) 2 /β-NiOOH polyaniline electrode in a supercapacitor, and the above-mentioned β-Ni(OH) 2 /β-NiOOH polyaniline is used as the cathode and the platinum sheet is used as the anode to assemble the whole Battery, using CHI660E electrochemical workstation to test its supercapacitor performance in alkaline electrolyte.
下面结合实施例对本发明做进一步详细的说明,实施例中涉及到的原料均为商购获得。The present invention will be described in further detail below in conjunction with the examples, and the raw materials involved in the examples are all commercially available.
实施例1Example 1
将1cm×3cm的泡沫镍置于50毫升1mol/L的HCl水溶液中,超声处理30分钟;之后基底用去离子水冲洗3次,然后浸泡一周得到表面生长有β-Ni(OH)2阵列的导电基底。图2为实施例1制备得到的β-Ni(OH)2阵列的扫描电镜照片图,该图显示了泡沫镍被β-Ni(OH)2完全覆盖。Put 1cm×3cm foam nickel in 50ml of 1mol/L HCl aqueous solution, ultrasonic treatment for 30 minutes; after that, the substrate was rinsed with deionized water for 3 times, and then soaked for a week to obtain β-Ni(OH) 2 arrays grown on the surface. conductive substrate. Figure 2 is a scanning electron micrograph of the β-Ni(OH) 2 array prepared in Example 1, which shows that the nickel foam is completely covered by β-Ni(OH) 2 .
实施例2Example 2
将实施例1得到的表面生长有β-Ni(OH)2阵列的导电基底作为工作电极,饱和甘汞电极作为参比电极,铂丝作为对电极,在1mol/LKCl,5mg/L苯胺水-乙醇(20:1)混合液中,在5mV/s的扫速下,以循环伏安法,在电位范围-1.2~1.0V下循环5圈,即得到β-Ni(OH)2/β-NiOOH聚苯胺阵列。The surface growth that
图1为实施例2制备得到的β-Ni(OH)2/β-NiOOH聚苯胺阵列的扫描电镜照片图,该图显示了泡沫镍被复合物阵列完全覆盖。图3为β-Ni(OH)2/β-NiOOH聚苯胺电极的循环曲线,可以看出其最高比电容值可达1000F/g,经过1000次循环后,还有500F/g的保留值。Figure 1 is a scanning electron micrograph of the β-Ni(OH) 2 /β-NiOOH polyaniline array prepared in Example 2, which shows that the nickel foam is completely covered by the composite array. Figure 3 is the cycle curve of the β-Ni(OH) 2 /β-NiOOH polyaniline electrode. It can be seen that its highest specific capacitance value can reach 1000F/g, and after 1000 cycles, there is still a retention value of 500F/g.
实施例3Example 3
将1cm×3cm的泡沫镍置于50毫升2mol/L的HCl水溶液中,超声处理30分钟;之后基底用去离子水冲洗3次,然后浸泡一周得到表面生长有β-Ni(OH)2阵列的导电基底。Put 1cm×3cm foam nickel in 50ml 2mol/L HCl aqueous solution, ultrasonic treatment for 30 minutes; after that, the substrate was washed 3 times with deionized water, and then soaked for a week to obtain β-Ni(OH) 2 arrays grown on the surface. conductive substrate.
实施例4Example 4
将实施例3得到的表面生长有β-Ni(OH)2阵列的导电基底为工作电极,饱和甘汞电极作为参比电极,铂丝作为对电极,在1mol/LKCl,5mg/L苯胺水-乙醇(20:1)混合液中,在5mV/s的扫速下,以循环伏安法,在电位范围-1.2~1.0V下循环10圈,即得到β-Ni(OH)2/β-NiOOH聚苯胺阵列。The surface growth that embodiment 3 obtains has β-Ni (OH) The conduction substrate of array is working electrode, and saturated calomel electrode is as reference electrode, and platinum wire is as counter electrode, in 1mol/LKCl, 5mg/L aniline water- In ethanol (20:1) mixed solution, at a scan rate of 5mV/s, by cyclic voltammetry, cycle 10 times in the potential range of -1.2 to 1.0V, that is, β-Ni(OH) 2 /β- NiOOH polyaniline array.
实施例5Example 5
将1cm×3cm的泡沫镍置于50毫升1mol/L的HCl水溶液中,超声处理30分钟;之后基底用去离子水冲洗3次,然后浸泡一周得到表面生长有β-Ni(OH)2阵列的导电基底。Put 1cm×3cm foam nickel in 50ml of 1mol/L HCl aqueous solution, ultrasonic treatment for 30 minutes; after that, the substrate was rinsed with deionized water for 3 times, and then soaked for a week to obtain β-Ni(OH) 2 arrays grown on the surface. conductive substrate.
将得到的表面生长有β-Ni(OH)2阵列的导电基底作为工作电极,饱和甘汞电极作为参比电极,铂丝作为对电极,在1mol/LKCl,5mg/L苯胺水-乙醇(20:1)混合液中,在10mV/s的扫速下,以循环伏安法,在电位范围-1.2~1.0V下循环5圈,即得到β-Ni(OH)2/β-NiOOH聚苯胺阵列。The obtained surface is grown with β-Ni(OH) The conductive substrate of array is used as working electrode, and saturated calomel electrode is used as reference electrode, and platinum wire is used as counter electrode, in 1mol/LKCl, 5mg/L aniline water-ethanol (20 :1) In the mixed solution, at a scan rate of 10mV/s, cyclic voltammetry is used to cycle 5 times in the potential range of -1.2 to 1.0V to obtain β-Ni(OH) 2 /β-NiOOH polyaniline array.
实施例6Example 6
将1cm×3cm的泡沫镍置于50毫升1mol/L的HCl水溶液中,超声处理30分钟;之后基底用去离子水冲洗3次,然后浸泡一周得到表面生长有β-Ni(OH)2阵列的导电基底。Put 1cm×3cm foam nickel in 50ml of 1mol/L HCl aqueous solution, ultrasonic treatment for 30 minutes; after that, the substrate was rinsed with deionized water for 3 times, and then soaked for a week to obtain β-Ni(OH) 2 arrays grown on the surface. conductive substrate.
将得到的表面生长有β-Ni(OH)2阵列的导电基底作为工作电极,饱和甘汞电极作为参比电极,泡沫镍作为对电极,在1mol/LKCl,5mg/L苯胺水-乙醇(20:1)混合液中,在5mV/s的扫速下,以循环伏安法,在电位范围-1.2~1.0V下循环5圈,即得到β-Ni(OH)2/β-NiOOH聚苯胺阵列。The obtained surface growth has β-Ni (OH) Conductive substrate of array as working electrode, saturated calomel electrode as reference electrode, nickel foam as counter electrode, in 1mol/LKCl, 5mg/L aniline water-ethanol (20 :1) In the mixed solution, at a scan rate of 5mV/s, cyclic voltammetry is used to cycle 5 times in the potential range of -1.2 to 1.0V to obtain β-Ni(OH) 2 /β-NiOOH polyaniline array.
实施例7Example 7
将1cm×3cm的泡沫镍置于50毫升1mol/L的HCl水溶液中,超声处理30分钟;之后基底用去离子水冲洗3次,然后浸泡一周得到表面生长有β-Ni(OH)2阵列的导电基底。Put 1cm×3cm foam nickel in 50ml of 1mol/L HCl aqueous solution, ultrasonic treatment for 30 minutes; after that, the substrate was rinsed with deionized water for 3 times, and then soaked for a week to obtain β-Ni(OH) 2 arrays grown on the surface. conductive substrate.
将得到的表面生长有β-Ni(OH)2阵列的导电基底作为工作电极,Ag/AgCl电极作为参比电极,铂丝作为对电极,在1mol/L KCl,5mg/L苯胺水-乙醇(20:1)混合液中,在5mV/s的扫速下,以循环伏安法,在电位范围-1.2~1.0V下循环5圈,即得到β-Ni(OH)2/β-NiOOH聚苯胺阵列。The obtained surface growth has β-Ni (OH) Conductive substrate of array as working electrode, Ag/AgCl electrode is as reference electrode, and platinum wire is as counter electrode, in 1mol/L KCl, 5mg/L aniline water-ethanol ( 20:1) in the mixed solution, under the scan rate of 5mV/s, by cyclic voltammetry, cycle 5 times in the potential range of -1.2 ~ 1.0V, that is, β-Ni(OH) 2 /β-NiOOH polymer Aniline array.
实施例8Example 8
将1cm×3cm的镍片置于50毫升1mol/L的HCl水溶液中,超声处理30分钟;之后基底用去离子水冲洗3次,然后浸泡一周得到表面生长有β-Ni(OH)2阵列的导电基底。A nickel sheet of 1 cm × 3 cm was placed in 50 ml of 1mol/L HCl aqueous solution, and ultrasonically treated for 30 minutes; then the substrate was rinsed with deionized water three times, and then soaked for a week to obtain a β-Ni(OH) 2 array grown on the surface. conductive substrate.
将得到的表面生长有β-Ni(OH)2阵列的导电基底作为工作电极,饱和甘汞电极作为参比电极,铂丝作为对电极,在1mol/L KCl,5mg/L苯胺水-乙醇(20:1)混合液中,在10mV/s的扫速下,以循环伏安法,在电位范围-1.2~1.0V下循环5圈,即得到β-Ni(OH)2/β-NiOOH聚苯胺阵列。The obtained surface growth has β-Ni (OH) Conductive substrate of array as working electrode, saturated calomel electrode as reference electrode, platinum wire as counter electrode, in 1mol/L KCl, 5mg/L aniline water-ethanol ( 20:1) in the mixed solution, at a scan rate of 10mV/s, by cyclic voltammetry, cycled 5 times in the potential range of -1.2 to 1.0V to obtain β-Ni(OH) 2 /β-NiOOH polymer Aniline array.
实施例9Example 9
将1cm×3cm的泡沫镍置于100毫升1mol/L的HCl水溶液中,超声处理30分钟;之后基底用去离子水冲洗3次,然后浸泡一周得到表面生长有β-Ni(OH)2阵列的导电基底。Put a 1cm×3cm nickel foam in 100ml of 1mol/L HCl aqueous solution, and ultrasonically treat it for 30 minutes; then rinse the substrate with deionized water for 3 times, and then soak it for a week to obtain a substrate with β-Ni(OH) 2 arrays grown on the surface. conductive substrate.
将得到的表面生长有β-Ni(OH)2阵列的导电基底作为工作电极,饱和甘汞电极作为参比电极,铂丝作为对电极,在1mol/L KCl,5mg/L苯胺水-乙醇(20:1)混合液中,在5mV/s的扫速下,以循环伏安法,在电位范围-1.2~1.0V下循环5圈,即得到β-Ni(OH)2/β-NiOOH聚苯胺阵列。The obtained surface growth has β-Ni (OH) Conductive substrate of array as working electrode, saturated calomel electrode as reference electrode, platinum wire as counter electrode, in 1mol/L KCl, 5mg/L aniline water-ethanol ( 20:1) in the mixed solution, under the scan rate of 5mV/s, by cyclic voltammetry, cycle 5 times in the potential range of -1.2 ~ 1.0V, that is, β-Ni(OH) 2 /β-NiOOH polymer Aniline array.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111401952.0A CN114093684B (en) | 2021-11-19 | 2021-11-19 | beta-Ni (OH) 2 beta-NiOOH polyaniline composite electrode and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111401952.0A CN114093684B (en) | 2021-11-19 | 2021-11-19 | beta-Ni (OH) 2 beta-NiOOH polyaniline composite electrode and preparation method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114093684A CN114093684A (en) | 2022-02-25 |
CN114093684B true CN114093684B (en) | 2023-04-07 |
Family
ID=80303796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111401952.0A Active CN114093684B (en) | 2021-11-19 | 2021-11-19 | beta-Ni (OH) 2 beta-NiOOH polyaniline composite electrode and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114093684B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107722264A (en) * | 2017-11-23 | 2018-02-23 | 清远初曲智能科技有限公司 | A kind of colloidal sol polyaniline composite graphite alkene conductive material and preparation method thereof |
CN107903427A (en) * | 2017-10-26 | 2018-04-13 | 江汉大学 | A kind of preparation method of polyaniline nanofiber array material |
CN111415822A (en) * | 2020-03-05 | 2020-07-14 | 沈阳农业大学 | A kind of onion carbon/manganese dioxide array electrode and preparation method and application thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120200308A1 (en) * | 2009-10-02 | 2012-08-09 | Newcastle Innovation Limited | Supercapacitor electrodes |
US11891406B2 (en) * | 2019-03-14 | 2024-02-06 | King Fahd University Of Petroleum And Minerals | Conductivity enhancement of MOFs via development of MOFpolymer composite material |
-
2021
- 2021-11-19 CN CN202111401952.0A patent/CN114093684B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107903427A (en) * | 2017-10-26 | 2018-04-13 | 江汉大学 | A kind of preparation method of polyaniline nanofiber array material |
CN107722264A (en) * | 2017-11-23 | 2018-02-23 | 清远初曲智能科技有限公司 | A kind of colloidal sol polyaniline composite graphite alkene conductive material and preparation method thereof |
CN111415822A (en) * | 2020-03-05 | 2020-07-14 | 沈阳农业大学 | A kind of onion carbon/manganese dioxide array electrode and preparation method and application thereof |
Non-Patent Citations (1)
Title |
---|
张秦怡 ; 唐水花 ; 张洁 ; 黄朋肖 ; 李星 ; .超级电容器复合电极材料Ni(OH)_2/石墨烯的研究进展.电子元件与材料.(第12期),第5-11页. * |
Also Published As
Publication number | Publication date |
---|---|
CN114093684A (en) | 2022-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112342565B (en) | High-efficiency Fe-Co layered double hydroxide coupled nickel-molybdenum hydroxide hydrogen evolution electrode and preparation method thereof | |
CN104846397B (en) | One kind being used for electrochemical reduction CO2The electrode and its preparation method and application of formic acid processed | |
CN107326392B (en) | A kind of preparation method of hydrogen evolution and oxygen evolution catalyst | |
CN110129825B (en) | High-efficiency Ni/Ni (OH)2Hydrogen evolution electrode and preparation method thereof | |
CN113512731B (en) | Oxygen evolution electrocatalyst and its preparation method, application and water electrolysis device | |
CN112044458A (en) | A kind of multi-level metal phosphide and its preparation method and application | |
CN109126825B (en) | A nickel-doped Co9S8 nanosheet bifunctional electrocatalyst and preparation method thereof | |
CN108425144B (en) | Preparation method of karst foam nickel for producing oxygen by electrocatalytic total decomposition of hydrogen in water | |
CN102806093B (en) | Preparation method of high-efficiency low-platinum catalyst for direct methanol fuel cell | |
CN103227057B (en) | A kind of method preparing manganese dioxide electrode of super capacitor | |
CN111334820A (en) | A kind of low-cost and high-efficiency Ni-P system hydrogen evolution electrode and preparation method thereof | |
CN112647092A (en) | Supported nickel-based composite hydrogen evolution catalyst and preparation method and application thereof | |
CN110711597A (en) | A kind of Co-Mo-P-O electrocatalyst and its preparation method and application | |
CN114059082A (en) | N, P codoped NF @ NiMoO4Hollow nanowire composite material and preparation method and application thereof | |
CN110504107B (en) | A kind of nanocomposite electrode material and its preparation method and supercapacitor | |
CN108220991A (en) | A kind of method of the porous cobalt selenides of electrodeposited nanocrystalline in eutectic type ionic liquid | |
CN107974691A (en) | A kind of phosphide/oxidation copper electrode and preparation method thereof | |
CN114959768A (en) | Nickel-based oxygen evolution electrode, and preparation method and application thereof | |
CN114855205A (en) | Preparation method of ternary metal sulfide three-dimensional electrode with multilevel structure | |
CN108265283A (en) | The In-situ sulphiding preparation Ni of Ni substrate in eutectic type ionic liquid3S2Method | |
CN114093684B (en) | beta-Ni (OH) 2 beta-NiOOH polyaniline composite electrode and preparation method and application thereof | |
CN111569884A (en) | A kind of Ni-Fe catalyst and its preparation method and application | |
CN106098395B (en) | A kind of manganese dioxide fiber electrode and its preparation method and application | |
CN114694979A (en) | A kind of fluorinated reconstituted electrode material and its preparation method and application | |
CN114457369B (en) | A kind of preparation method and application of CP@MoS2-PtNi catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |