CN114074751A - Selection method of marine equipment and ship - Google Patents
Selection method of marine equipment and ship Download PDFInfo
- Publication number
- CN114074751A CN114074751A CN202010814245.3A CN202010814245A CN114074751A CN 114074751 A CN114074751 A CN 114074751A CN 202010814245 A CN202010814245 A CN 202010814245A CN 114074751 A CN114074751 A CN 114074751A
- Authority
- CN
- China
- Prior art keywords
- power
- ship
- motor
- gas engine
- clutch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H21/00—Use of propulsion power plant or units on vessels
- B63H21/20—Use of propulsion power plant or units on vessels the vessels being powered by combinations of different types of propulsion units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/40—Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/53—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells in combination with an external power supply, e.g. from overhead contact lines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/20—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
- B60L53/22—Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L55/00—Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H21/00—Use of propulsion power plant or units on vessels
- B63H21/12—Use of propulsion power plant or units on vessels the vessels being motor-driven
- B63H21/17—Use of propulsion power plant or units on vessels the vessels being motor-driven by electric motor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H23/00—Transmitting power from propulsion power plant to propulsive elements
- B63H23/02—Transmitting power from propulsion power plant to propulsive elements with mechanical gearing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/32—Waterborne vessels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/10—DC to DC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H21/00—Use of propulsion power plant or units on vessels
- B63H21/20—Use of propulsion power plant or units on vessels the vessels being powered by combinations of different types of propulsion units
- B63H2021/202—Use of propulsion power plant or units on vessels the vessels being powered by combinations of different types of propulsion units of hybrid electric type
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T70/00—Maritime or waterways transport
- Y02T70/50—Measures to reduce greenhouse gas emissions related to the propulsion system
- Y02T70/5218—Less carbon-intensive fuels, e.g. natural gas, biofuels
- Y02T70/5236—Renewable or hybrid-electric solutions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Ocean & Marine Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Hybrid Electric Vehicles (AREA)
Abstract
Description
技术领域technical field
本发明涉及船舶领域,具体而言涉及船舶用设备的选型方法及船舶。The invention relates to the field of ships, in particular to a method for selecting equipment for ships and a ship.
背景技术Background technique
世界石油资源的日益短缺和船舶排放法规的逐步严格,促进了船舶动力新能源的发展。The increasing shortage of oil resources in the world and the gradually stricter regulations on ship emissions have promoted the development of new energy sources for ship power.
天然气作为一种新型气体燃料。其具有高热值、燃烧产物清洁,以及价格低等特点,因此天然气在船舶领域有着很广阔的发展前景。而对于使用天然气作为燃料的燃气发动机,由于其自身燃烧特性的原因,燃气发动机存在低负荷扭矩储备不足,动态工况响应速度慢等缺陷。这些缺陷制约了燃气发动机作为船舶的推进主机。Natural gas as a new type of gas fuel. It has the characteristics of high calorific value, clean combustion products, and low price, so natural gas has a very broad development prospect in the field of ships. For gas engines that use natural gas as fuel, due to their own combustion characteristics, gas engines have defects such as insufficient low-load torque reserves and slow response under dynamic conditions. These deficiencies restrict the use of gas engines as propulsion engines for ships.
对于采用纯电动力系统的船舶具有良好的经济性、环保性,以及舒适性。因此采用纯电动力系统的船舶是未来船舶发展的必然趋势。然而受到电能来源、功率密度等因素的影响,现阶段采用纯电动力系统的船舶的运行区域和船体的排量都受到了严重制约。It has good economy, environmental protection and comfort for ships using pure electric power system. Therefore, ships using pure electric power systems are the inevitable trend of future ship development. However, affected by factors such as power source and power density, the operating area and hull displacement of ships using pure electric power systems are severely restricted at this stage.
而气电混合动力系统(采用天然气和电能作为能源的系统)有助于解决新型技术应用与技术水平制约之间的矛盾,为船舶从传统的内燃机驱动直接推进过渡到纯电驱动提供了可行性方案。采用气电混合动力系统的船舶同时克服燃气发动机推进船舶低负荷扭矩储备不足,机动工况动态响应慢的缺陷,以及采用纯电动力系统的船舶的储能装置重量大、造价高、运行区域受限等缺陷。采用气电混合动力系统的船舶还具有冗余性好,以及可以根据航行需求选择最经济的推进模式等独特优势。The gas-electric hybrid power system (a system that uses natural gas and electric energy as energy sources) helps to solve the contradiction between the application of new technologies and the technical level constraints, and provides feasibility for the transition of ships from traditional internal combustion engine-driven direct propulsion to pure electric drive. Program. The ship using the gas-electric hybrid power system also overcomes the shortcomings of the gas engine propelled ship’s low-load torque reserve and slow dynamic response to maneuvering conditions, as well as the heavy weight, high cost, and limited operating area of the energy storage device of the ship using the pure electric power system. Limitations and other defects. Ships using gas-electric hybrid systems also have unique advantages such as good redundancy and the ability to select the most economical propulsion mode according to sailing needs.
目前,用于船舶的气电混合动力系统尚处于发展初期,相关性研究主要集中在理论研究,针对用于船舶的气电混合动力系统的设计方法的研究极少。用于船舶的气电混合动力系统的设计难点正是在于燃气发动机的功率与电机的功率的分配,以及蓄电池和超级电容的选型和容量确定等方面。因此,为设计人员提供一种能够满足用户需求的气电混合动力系统的燃气发动机和电机选型方法具有非常重大的意义。At present, the gas-electric hybrid power system for ships is still in the early stage of development, and the correlation research mainly focuses on theoretical research, and there are very few researches on the design method of the gas-electric hybrid power system for ships. The difficulty in the design of the gas-electric hybrid system for ships lies in the distribution of the power of the gas engine and the power of the motor, as well as the selection and capacity determination of the battery and super capacitor. Therefore, it is of great significance to provide designers with a gas engine and electric motor selection method for a gas-electric hybrid system that can meet user needs.
为此,本发明提供一种船舶用设备的选型方法及船舶,用以至少部分地解决上述问题。To this end, the present invention provides a method for selecting equipment for ships and a ship, so as to at least partially solve the above problems.
发明内容SUMMARY OF THE INVENTION
在发明内容部分中引入了一系列简化形式的概念,这将在具体实施例部分中进一步详细说明。本发明的发明内容部分并不意味着要试图限定出所要求保护的技术方案的关键特征和必要技术特征,更不意味着试图确定所要求保护的技术方案的保护范围。A series of concepts in simplified form have been introduced in the Summary section, which are described in further detail in the Detailed Description section. The Summary of the Invention section of the present invention is not intended to attempt to limit the key features and essential technical features of the claimed technical solution, nor is it intended to attempt to determine the protection scope of the claimed technical solution.
为至少部分地解决上述技术问题,本发明提供了一种船舶用设备的选型方法,船舶包括螺旋桨、电机,以及燃气发动机,电机和燃气发动机之间的连接方式包括并联方式和串联方式,电机和燃气发动机连接至螺旋桨,选型方法包括:In order to at least partially solve the above-mentioned technical problems, the present invention provides a method for selecting equipment for ships. The ship includes a propeller, a motor, and a gas engine. The connection mode between the motor and the gas engine includes a parallel mode and a series mode. And the gas engine is connected to the propeller, the selection methods include:
根据船舶的电机和燃气发动机的连接方式、船舶的驱动力和航速之间的功率曲线、运行模式、以及和运行模式对应的预定航速确定船舶的总推进功率;Determine the total propulsion power of the ship according to the connection mode of the motor and the gas engine of the ship, the power curve between the driving force and the speed of the ship, the operation mode, and the predetermined speed corresponding to the operation mode;
确定船舶的加速附加功率;determine the acceleration additional power of the ship;
根据总推进功率和加速附加功率确定燃气发动机的功率和电机的功率。The power of the gas engine and the power of the electric machine are determined from the total propulsion power and the acceleration additional power.
根据本发明的船舶用设备的选型方法,船舶由电机和/或燃气发动机提供动力航行,燃料的成本低,此外燃气发动机燃烧燃气的产物清洁环保,并且根据船舶的电机和燃气发动机的连接方式、船舶的驱动力和航速之间的功率曲线、运行模式、以及和运行模式对应的预定航速确定船舶的总推进功率,然后根据总推进功率和加速附加功率确定电机和燃气发动机的功率,可以使船舶更加适应各种工况和航行环境。According to the selection method of marine equipment of the present invention, the ship is powered by the motor and/or the gas engine to sail, the cost of fuel is low, and the product of burning gas by the gas engine is clean and environmentally friendly, and according to the connection method of the motor and the gas engine of the ship , the power curve between the driving force and the speed of the ship, the operation mode, and the predetermined speed corresponding to the operation mode to determine the total propulsion power of the ship, and then determine the power of the motor and the gas engine according to the total propulsion power and the additional power of acceleration, which can make Ships are more adaptable to various working conditions and navigation environments.
可选地,确定船舶的加速附加功率的步骤包括:Optionally, the step of determining the acceleration additional power of the vessel includes:
根据船舶的速度阻力曲线和燃气发动机的转速变化曲线确定船舶的加速附加功率。According to the speed resistance curve of the ship and the speed change curve of the gas engine, the acceleration additional power of the ship is determined.
可选地,电机的功率≥加速附加功率。Optionally, the power of the motor ≥ the acceleration additional power.
可选地,总推进功率-加速附加功率≤燃气发动机的功率。Optionally, total propulsion power-acceleration additional power≤gas engine power.
可选地,选型方法还用于选取蓄电池,在确定电机的功率后,选型方法还包括:Optionally, the selection method is also used to select a battery, and after the power of the motor is determined, the selection method further includes:
根据公式(1)确定蓄电池的容量Determine the capacity of the battery according to formula (1)
Eb=Pm×t1×ηb×ηd×ηm×ηs×ηL (1)E b =P m ×t 1 ×η b ×η d ×η m ×η s ×η L (1)
Eb为蓄电池的容量;E b is the capacity of the battery;
Pm为电机的功率;P m is the power of the motor;
t1为进出港所需的时间;t1 is the time required for entry and exit;
ηb为蓄电池效率;η b is the battery efficiency;
ηd为电力变换部件的效率; ηd is the efficiency of the power conversion component;
ηm为电机效率;η m is the motor efficiency;
ηs为传动效率;η s is the transmission efficiency;
ηL为电池寿命折减系数;η L is the battery life reduction factor;
并且/或者and/or
选型方法还用于选取超级电容,在确定电机的功率后,选型方法还包括:The selection method is also used to select the super capacitor. After determining the power of the motor, the selection method also includes:
根据公式(2)确定超级电容的容量Determine the capacity of the supercapacitor according to formula (2)
Ec=Pm×t2×ηc×ηd×ηm×ηs (2)E c =P m ×t 2 ×η c ×η d ×η m ×η s (2)
Ec为超级电容的容量;E c is the capacity of the super capacitor;
t2为船舶加速的时间;t 2 is the time for the ship to accelerate;
ηc为超级电容的效率。η c is the efficiency of the supercapacitor.
本发明还提供了一种船舶,船舶包括:螺旋桨;燃气发动机;电机,电机和燃气发动机之间的连接方式包括并联方式和串联方式,电机和燃气发动机均可断开地连接至螺旋桨;电源组件;切换控制组件,切换控制组件用于控制电机和螺旋桨之间的连接或断开,以及用于控制燃气发动机和螺旋桨之间的连接或断开;能量管理组件,能量管理组件用于控制电源组件向电机供电;其中,燃气发动机的功率和电机的功率根据前述的选型方法选取。The invention also provides a ship, the ship includes: a propeller; a gas engine; a motor, the connection mode between the motor and the gas engine includes a parallel mode and a series mode, and both the motor and the gas engine can be disconnected and connected to the propeller; a power supply assembly ;Switching control assembly, the switching control assembly is used to control the connection or disconnection between the motor and the propeller, and the connection or disconnection between the gas engine and the propeller; energy management assembly, the energy management assembly is used to control the power supply assembly Supply power to the motor; wherein, the power of the gas engine and the power of the motor are selected according to the aforementioned selection method.
根据本发明的船舶,燃气发动机的功率和电机的功率根据前述的选型方法选取,船舶由电机和/或燃气发动机提供动力航行,燃料的成本低,此外燃气发动机燃烧燃气的产物清洁环保,并且根据船舶的电机和燃气发动机的连接方式、船舶的驱动力和航速之间的功率曲线、运行模式、以及和运行模式对应的预定航速确定船舶的总推进功率,然后根据总推进功率和加速附加功率确定电机和燃气发动机的功率,可以使船舶更加适应各种工况和航行环境。According to the ship of the present invention, the power of the gas engine and the power of the motor are selected according to the aforementioned selection method, the ship is powered by the motor and/or the gas engine to sail, the cost of fuel is low, and the product of burning gas by the gas engine is clean and environmentally friendly, and Determine the total propulsion power of the ship according to the connection method of the motor and the gas engine of the ship, the power curve between the driving force and the speed of the ship, the operating mode, and the predetermined speed corresponding to the operating mode, and then according to the total propulsion power and acceleration additional power Determining the power of the electric motor and gas engine can make the ship more adaptable to various working conditions and sailing environments.
可选地,螺旋桨包括桨轴,电机包括转轴,燃气发动机包括输出轴,船舶还包括:Optionally, the propeller includes a propeller shaft, the motor includes a rotating shaft, the gas engine includes an output shaft, and the ship further includes:
第一离合器,第一离合器的第一端连接至燃气发动机的输出轴,切换控制组件电连接至第一离合器,以控制第一离合器接合或分离;a first clutch, the first end of the first clutch is connected to the output shaft of the gas engine, and the switching control assembly is electrically connected to the first clutch to control the engagement or disengagement of the first clutch;
开关组件,开关组件电连接至电机,电源组件电连接至开关组件,以通过开关组件向电机输送电能或存储电机提供的电能,能量管理组件电连接至开关组件,以控制开关组件的连通或断开;The switch assembly is electrically connected to the motor, the power supply assembly is electrically connected to the switch assembly to transmit electrical energy to the motor or store the electrical energy provided by the motor through the switch assembly, and the energy management assembly is electrically connected to the switch assembly to control the connection or disconnection of the switch assembly open;
其中,船舶还包括齿轮箱和第二离合器,齿轮箱的输出轴连接至桨轴,第二离合器的第一端连接至转轴的第一端,第二离合器的第二端连接至齿轮箱的输入轴,第一离合器的第二端连接至桨轴,以使电机和燃气发动机并联,切换控制组件电连接至第二离合器,以控制第二离合器接合或分离,或者The ship also includes a gearbox and a second clutch, the output shaft of the gearbox is connected to the propeller shaft, the first end of the second clutch is connected to the first end of the rotating shaft, and the second end of the second clutch is connected to the input of the gearbox a shaft, the second end of the first clutch is connected to the propeller shaft to connect the electric motor and the gas engine in parallel, the switching control assembly is electrically connected to the second clutch to control engagement or disengagement of the second clutch, or
第一离合器的第二端连接至转轴的第一端,转轴的第二端连接至桨轴,以使电机和燃气发动机串联。The second end of the first clutch is connected to the first end of the rotating shaft, and the second end of the rotating shaft is connected to the propeller shaft, so that the electric motor and the gas engine are connected in series.
可选地,船舶还包括电网,电源组件包括:Optionally, the ship further includes a power grid, and the power supply components include:
电力变换部件,电力变换部件的第一端连接至开关组件,电力变换部件的第二端连接至电网;a power conversion part, the first end of the power conversion part is connected to the switch assembly, and the second end of the power conversion part is connected to the grid;
蓄能部件,蓄能部件的输出端连接至电力变换部件的第三端,以向电力变换部件输送电能或存储电力变换部件提供的电能。The energy storage part, the output end of the energy storage part is connected to the third end of the power conversion part to transmit electric energy to the power conversion part or store the electric energy provided by the power conversion part.
可选地,电力变换部件包括:Optionally, the power conversion component includes:
整流器,整流器的第一端连接至电网;a rectifier, the first end of the rectifier is connected to the grid;
直流母排,直流母排连接至整流器的第二端,直流母排连接至蓄能部件的输出端;DC busbar, the DC busbar is connected to the second end of the rectifier, and the DC busbar is connected to the output end of the energy storage component;
逆变器,逆变器的第一端连接至直流母排,逆变器的第二端连接至开关组件。an inverter, the first end of the inverter is connected to the DC bus bar, and the second end of the inverter is connected to the switch assembly.
可选地,电力变换部件包括第一DC-DC变换器,第一DC-DC变换器的第一端连接至直流母排,蓄能部件的输出端包括电容输出端,电容输出端连接至第一DC-DC变换器的第二端;蓄能部件包括超级电容和超级电容管理系统,超级电容的第一端连接至电容输出端,超级电容管理系统连接至超级电容的第二端;Optionally, the power conversion component includes a first DC-DC converter, the first end of the first DC-DC converter is connected to the DC busbar, the output end of the energy storage component includes a capacitor output end, and the capacitor output end is connected to the first DC-DC converter. A second end of the DC-DC converter; the energy storage component includes a supercapacitor and a supercapacitor management system, the first end of the supercapacitor is connected to the capacitor output end, and the supercapacitor management system is connected to the second end of the supercapacitor;
并且/或者and/or
电力变换部件包括第二DC-DC变换器,第二DC-DC变换器的第一端连接至直流母排,蓄能部件的输出端包括电池输出端,电池输出端连接至第二DC-DC变换器的第二端;蓄能部件包括蓄电池和电池管理系统,蓄电池的第一端连接至电池输出端,电池管理系统连接至蓄电池的第二端。The power conversion component includes a second DC-DC converter, the first end of the second DC-DC converter is connected to the DC busbar, the output end of the energy storage component includes a battery output end, and the battery output end is connected to the second DC-DC The second end of the converter; the energy storage component includes a battery and a battery management system, the first end of the battery is connected to the battery output end, and the battery management system is connected to the second end of the battery.
附图说明Description of drawings
为了使本发明的优点更容易理解,将通过参考在附图中示出的具体实施方式更详细地描述上文简要描述的本发明。可以理解这些附图只描绘了本发明的典型实施方式,因此不应认为是对其保护范围的限制,通过附图以附加的特性和细节描述和解释本发明。In order that the advantages of the present invention may be more readily understood, the present invention briefly described above will be described in more detail by reference to specific embodiments shown in the accompanying drawings. Understanding that these drawings depict only typical embodiments of the invention and are therefore not to be considered limiting of its scope, the invention will be described and explained with additional specificity and detail.
图1为根据本发明的第一个优选实施方式的第一种类型的船舶的燃气发动机、第一离合器、螺旋桨、电机、第二离合器,齿轮箱以及电源组件连接在一起的示意图;FIG. 1 is a schematic diagram of a first type of marine gas engine, a first clutch, a propeller, a motor, a second clutch, a gearbox and a power supply assembly connected together according to a first preferred embodiment of the present invention;
图2为根据本发明的第一个优选实施方式的第二种类型的船舶的燃气发动机、第一离合器、螺旋桨、电机,以及电源组件连接在一起的示意图;FIG. 2 is a schematic diagram of connecting together a gas engine, a first clutch, a propeller, an electric motor, and a power supply assembly of a second type of ship according to the first preferred embodiment of the present invention;
图3为根据本发明的第一个优选实施方式的船舶用设备的选型方法的流程示意图;3 is a schematic flow chart of a method for selecting models of marine equipment according to the first preferred embodiment of the present invention;
图4为图3的选型方法的确定船舶的加速附加功率的步骤的流程示意图。FIG. 4 is a schematic flowchart of the step of determining the acceleration additional power of the ship in the model selection method of FIG. 3 .
附图标记说明Description of reference numerals
110:螺旋桨 111:桨轴110: Propeller 111: Propeller shaft
120:燃气发动机 121:输出轴120: Gas engine 121: Output shaft
130:第一离合器 140:电机130: First clutch 140: Motor
141:转轴 150:电源组件141: Rotary shaft 150: Power supply assembly
151:电力变换部件 152:整流器151: Power conversion part 152: Rectifier
153:直流母排 154:逆变器153: DC busbar 154: Inverter
155:蓄能部件 156:第一DC-DC变换器155: Energy storage part 156: First DC-DC converter
157:电容输出端 158:超级电容157: Capacitor output terminal 158: Super capacitor
159:超级电容管理系统 160:第二DC-DC变换器159: Super capacitor management system 160: Second DC-DC converter
161:电池输出端 162:蓄电池161: Battery output 162: Battery
163:电池管理系统 170:第二离合器163: Battery Management System 170: Second Clutch
180:齿轮箱 190:电网180: Gearbox 190: Grid
191:集合控制组件 192:切换控制组件191: Collection Control Component 192: Toggle Control Component
193:能量管理组件 210:螺旋桨193: Energy Management Components 210: Propellers
211:桨轴 220:燃气发动机211: propeller shaft 220: gas engine
221:输出轴 230:第一离合器221: Output shaft 230: First clutch
240:电机 241:转轴240: Motor 241: Spindle
250:电源组件 251:电力变换部件250: Power Components 251: Power Conversion Components
252:整流器 253:直流母排252: Rectifier 253: DC busbar
254:逆变器 255:蓄能部件254: Inverter 255: Energy Storage Components
256:第一DC-DC变换器 257:电容输出端256: First DC-DC converter 257: Capacitor output terminal
258:超级电容 259:超级电容管理系统258: Supercapacitors 259: Supercapacitor Management Systems
260:第二DC-DC变换器 261:电池输出端260: Second DC-DC converter 261: Battery output
262:蓄电池 263:电池管理系统262: Battery 263: Battery Management System
290:电网 291:集合控制组件290: Grid 291: Aggregate Control Components
292:切换控制组件 293:能量管理组件292: Switching Control Components 293: Energy Management Components
具体实施方式Detailed ways
在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员来说显而易见的是,本发明实施方式可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本发明实施方式发生混淆,对于本领域公知的一些技术特征未进行描述。In the following description, numerous specific details are set forth in order to provide a more thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that embodiments of the invention may be practiced without one or more of these details. In other instances, some technical features known in the art are not described in order to avoid confusion with the embodiments of the present invention.
以下参照附图对本发明的优选实施方式进行说明。需要说明的是,本文中所使用的术语“上”、“下”以及类似的表述只是为了说明的目的,并非限制。Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. It should be noted that the terms "upper", "lower" and similar expressions used herein are only for the purpose of illustration and not for limitation.
在本文中,本申请中所引用的诸如“第一”和“第二”的序数词仅仅是标识,而不具有任何其它含义,例如特定的顺序等。而且,例如,术语“第一部件”其本身不暗示“第二部件”的存在,术语“第二部件”本身不暗示“第一部件”的存在。Herein, ordinal numbers such as "first" and "second" referenced in this application are merely identifications and do not have any other meaning, such as a specific order, and the like. Also, for example, the term "first element" does not by itself imply the presence of a "second element," nor does the term "second element" by itself imply the presence of a "first element."
为了彻底了解本发明实施方式,将在下列的描述中提出详细的结构。显然,本发明实施方式的施行并不限定于本领域的技术人员所熟习的特殊细节。本发明的较佳实施方式详细描述如下,然而除了这些详细描述外,本发明还可以具有其他实施方式。For a thorough understanding of the embodiments of the present invention, detailed structures will be presented in the following description. Obviously, the implementation of the embodiments of the present invention is not limited to the specific details familiar to those skilled in the art. The preferred embodiments of the present invention are described in detail below, however, the present invention may have other embodiments in addition to these detailed descriptions.
本发明的实施方式提供了一种船舶用设备的选型方法。如图1所示,第一种类型的船舶可以是由电机140和/或燃气发动机120提供动力的混合动力船舶。该船舶的电机140也可以作为发电机使用,以为船舶输送电能。Embodiments of the present invention provide a method for selecting types of marine equipment. As shown in FIG. 1 , the first type of vessel may be a hybrid vessel powered by an
如图1所示,船舶包括螺旋桨110和轴系。螺旋桨110包括桨轴111。桨轴111可以通过轴系连接至后文的燃气发动机120和电机140。这样燃气发动机120和/或电机140可以驱动桨轴111转动,进而驱动船舶航行。As shown in Figure 1, the vessel includes a
船舶还包括燃气发动机120和第一离合器130。燃气发动机120用于通过燃烧可燃气(例如天然气或沼气),以将热能转换为机械能。燃气发动机120包括输出轴121。The vessel also includes a
第一离合器130的第一端连接至燃气发动机120的输出轴121。第一离合器130的第二端可以连接至轴系,以通过轴系连接至桨轴111。这样,第一离合器130接合时,燃气发动机120可以驱动螺旋桨110转动,进而驱动船舶航行。第一离合器130的第二端也可以通过轴系连接至后文的电机140,这样第一离合器130接合时,当后文的电源组件150不向电机140输送电能时,燃气发动机120可以驱动后文的电机140的转轴141转动,进而使电机140发电,以为船舶输送电能。The first end of the
船舶还包括电机140、第二离合器170和开关组件(未示出)。电机140包括转轴141。第二离合器170的第一端连接至转轴141的第一端,第二离合器170的第二端可以连接至轴系,以通过轴系连接至桨轴111。这样,第二离合器170接合时,电机140可以驱动螺旋桨110转动,以驱动船舶航行。第二离合器170接合时,当后文的电源组件150不向电机140输送电能时,燃气发动机120带动电机140的转轴141转动,以使电机140发电。此时电机140和燃气发动机120之间的连接方式为并联方式。The vessel also includes a
优选地,船舶还包括齿轮箱180。齿轮箱180的输出轴可以通过轴系连接至桨轴111,齿轮箱180的输入轴连接至第二离合器170的第二端。由此,齿轮箱180可以增加电机140向桨轴111传递的扭矩。Preferably, the vessel also includes a
船舶还包括电源组件150。电源组件150电连接至开关组件,以向电机140输送电能,进而使电机140为螺旋桨110的转动提供扭矩。当燃气发动机120带动电机140转动,以使电机140发电时,电源组件150可以存储电机140提供的电能。其中,开关组件用于控制电机140和电源组件150之间的电连接连通或断开。The vessel also includes a
船舶还包括集合控制组件191、切换控制组件192,以及能量管理组件193。集合控制组件191电连接切换控制组件192和能量管理组件193。这样,集合控制组件191可以和切换控制组件192通讯,以及可以和能量管理组件193通讯。集合控制组件191中预先存储有后文的燃气推进模式、PTH(POWER TAKE HOME)模式、PTI(POWER TAKE IN)模式,以及PTO(POWER TAKE OUT)模式。The vessel also includes a
切换控制组件192电连接第一离合器130和第二离合器170。这样,切换控制组件192可以控制第一离合器130和第二离合器170接合或分离。The switching
能量管理组件193电连接开关组件。这样,能量管理组件193可以控制开关组件导通或断开,进而控制电机140和电源组件150之间的电连接导通或断开。能量管理组件193还电连接至电源组件150,以控制电源组件150和电机140之间的电流方向。The
本实施方式中,船舶的运行模式包括燃气推进模式、PTH模式、PTI模式,以及PTO模式。In this embodiment, the operation modes of the ship include a gas propulsion mode, a PTH mode, a PTI mode, and a PTO mode.
燃气推进模式中,集合控制组件191向切换控制组件192和能量管理组件193发送燃气推进模式指令。这样,集合控制组件191通过切换控制组件192控制第一离合器130接合,以及控制第二离合器170分离。集合控制组件191通过能量管理组件193控制开关组件断开,以及控制电源组件150停止向电机140输送电能。此时燃气发动机120驱动螺旋桨110转动,电机140停止转动。这样,仅有燃气发动机120为驱动螺旋桨110的转动提供扭矩。燃气推进模式适用于顺流航行、逆流航行以及港口航行。In the gas propulsion mode, the
PTH模式中,集合控制组件191向切换控制组件192和能量管理组件193发送PTH模式指令。这样,集合控制组件191通过切换控制组件192控制第一离合器130分离,以及控制第二离合器170接合。集合控制组件191通过能量管理组件193控制开关组件导通,以及控制电源组件150向电机140输送电能。此时燃气发动机120停止转动,电机140转动。这样,仅有电机140为驱动螺旋桨110的转动提供扭矩。PTH模式适用于顺流航行和港口航行。In the PTH mode, the
PTI模式中,集合控制组件191向切换控制组件192和能量管理组件193发送PTI模式指令。这样,集合控制组件191通过切换控制组件192控制第一离合器130接合,以及控制第二离合器170接合。集合控制组件191通过能量管理组件193控制开关组件导通,以及控制电源组件150向电机140输送电能。此时燃气发动机120工作,同时电机140工作。在同一时刻,燃气发动机120和电机140共同为驱动螺旋桨110的转动提供扭矩。PTI模式适用于高速航行、激流航行以及逆流航行。In the PTI mode, the
PTO模式中,集合控制组件191向切换控制组件192和能量管理组件193发送PTO模式指令。这样,集合控制组件191通过切换控制组件192控制第一离合器130接合,以及控制第二离合器170接合。集合控制组件191通过能量管理组件193控制开关组件导通,以及控制电源组件150停止向电机140输送电能。此时燃气发动机120为驱动螺旋桨110的转动提供扭矩。同时燃气发动机120驱动电机140的转轴141转动,以使电机140发电,此时电源组件150和电机140电连接,以存储电机140提供的电能。PTO模式中,电机140提供的电能也可以输送至后文的电网190,以为船舶提供电能。PTO模式适用于顺流航行和港口航行。In the PTO mode, the
请参考图1,船舶还包括电网190。电网190包括发电机组。这样电网190可以为船舶供电。电源组件150包括电力变换部件151和蓄能部件155。电力变换部件151的第一端连接至开关组件。电力变换部件151的第二端连接电网190。蓄能部件155的输出端连接至电力变换部件151的第三端。这样电机140通过电力变换部件151连接至蓄能部件155。Referring to FIG. 1 , the vessel also includes an
电机140向电源组件150提供的电能经过电力变换部件151转换至预定存储电压或预定存储电流,然后电能被输送至存储部件,存储部件存储该电能。The electric energy provided by the
电机140通过电力变换部件151连接至电网190。这样电机140向电源组件150提供的电能经过电力变换部件151转换至预定电网电压或预定电网电流,然后电能被输送至电网190,以为船舶供电。The
优选地,电力变换部件151包括整流器152、直流母排153与逆变器154。整流器152的第一端连接至电网190。直流母排153连接至整流器152的第二端。直流母排153连接至蓄能部件155的输出端。逆变器154的第一端连接至直流母排153。逆变器154的第二端连接至开关组件。由此,经过逆变器154和整流器152的作用,电机140经过电力变换部件151输送至电网190的电压或电流稳定,并且电力变换部件151的结构简单。Preferably, the
优选地,电力变换部件151还包括第一DC-DC变换器(DC-DC converter)156和第二DC-DC变换器160。第一DC-DC变换器156的第一端连接至直流母排153。第二DC-DC变换器160的第一端连接至直流母排153。前述的电力变换部件151的第三端包括第一DC-DC变换器156的第二端和第二DC-DC变换器160的第二端。蓄能部件155的输出端包括电容输出端157和电池输出端161。电容输出端157连接至第一DC-DC变换器156的第二端。电池输出端161连接至第二DC-DC变换器160的第二端。由此,经过逆变器154、整流器152、第一DC-DC变换器156与第二DC-DC变换器160,电机140的电能转换成预定存储电压或预定存储电流,并存储至后文的蓄电池162和超级电容158。Preferably, the
蓄能部件155包括超级电容158和超级电容管理系统(CMS,Capacitor ManagementSystem)159。超级电容158的第一端连接至电容输出端157。超级电容管理系统159连接至超级电容158的第二端。由此超级电容管理系统159可以有效管理超级电容158的工作。超级电容158可以在船舶加速时增加对电机140的输出功率,以使电机140向螺旋桨110输出更大的扭矩,进而使船舶加速。当电机140充当发电机时,超级电容158可以存储部分电能。由此,超级电容158的设置可以增加后文的蓄电池162的使用寿命。The
蓄能部件155还包括蓄电池162和电池管理系统(BMS,Battery ManagementSystem)163。蓄电池162的第一端连接至电池输出端161,电池管理系统163连接至蓄电池162的第二端。由此电池管理系统163可以有效管理蓄电池162的工作。蓄电池162为电机140输送电能,以使电机140向螺旋桨110提供扭矩,进而使船舶航行。当电机140充当发电机时,蓄电池162可以存储部分电能。可以理解,蓄电池162也可以向电网190供电,此时可以断开开关组件,以断开电力变换部件151和电机140的电连接。The
船舶在PTH模式下航行时,可以由蓄电池162独立向电机140供电,以使电机140驱动螺旋桨110转动,实现零排放。When the ship sails in the PTH mode, the
本实施方式中,船舶由电机140和/或燃气发动机120提供动力航行,燃料的成本低,此外燃气发动机120燃烧燃气的产物清洁环保。In this embodiment, the ship is powered by the
第二种类型的船舶中,如图2所示,船舶不包括第二离合器和齿轮箱。电机240包括转轴241。转轴241的第二端可以通过轴系连接至桨轴211。转轴241的第一端可以通过轴系连接至第一离合器230的第二端。这样,第一离合器230接合时,燃气发动机220可以驱动转轴241转动,转动的转轴241带动螺旋桨210转动,以驱动船舶航行。此时电机140和燃气发动机220之间的连接方式为串联方式。In the second type of vessel, shown in Figure 2, the vessel does not include the second clutch and gearbox. The
第二种类型的船舶中,船舶的运行模式包括燃气推进模式、PTH模式、PTI模式,以及PTO模式。In the second type of ship, the operating modes of the ship include gas propulsion mode, PTH mode, PTI mode, and PTO mode.
第二种类型的船舶的燃气推进模式中,集合控制组件291向切换控制组件292和能量管理组件293发送燃气推进模式指令。这样,集合控制组件291通过切换控制组件292使第一离合器230接合。集合控制组件291通过能量管理组件293控制开关组件断开,以及控制电源组件250停止向电机240输送电能。此时燃气发动机220驱动螺旋桨210转动,电机240的转轴241随燃气发动机220转动。这样,仅有燃气发动机220为驱动螺旋桨210的转动提供扭矩,电机仅是起到传递扭矩的作用,并没有承担驱动螺旋桨210转动的扭矩。In the gas propulsion mode of the second type of vessel, the
第二种类型的船舶的PTH模式中,集合控制组件291向切换控制组件292和能量管理组件293发送PTH模式指令。这样,集合控制组件291通过切换控制组件292使第一离合器230分离。集合控制组件291通过能量管理组件293控制开关组件导通,以及控制电源组件250向电机240输送电能。此时燃气发动机220停止转动,电机240转动。这样,仅有电机240为驱动螺旋桨210的转动提供扭矩。In the PTH mode of the second type of vessel, the
第二种类型的船舶的PTI模式中,集合控制组件291向切换控制组件292和能量管理组件293发送PTI模式指令。这样,集合控制组件291通过切换控制组件292使第一离合器230接合。集合控制组件291通过能量管理组件293控制开关组件导通,以及控制电源组件250向电机240输送电能。此时燃气发动机220工作,同时电机240工作。在同一时刻,燃气发动机220和电机240共同为驱动螺旋桨210的转动提供扭矩。In the PTI mode of the second type of vessel, the
第二种类型的船舶的PTO模式中,集合控制组件291向切换控制组件292和能量管理组件293发送PTO模式指令。这样,集合控制组件291通过切换控制组件292使第一离合器230接合。集合控制组件291通过能量管理组件293控制开关组件导通,以及控制电源组件250停止向电机240输送电能。此时燃气发动机220为驱动螺旋桨210的转动提供扭矩。同时燃气发动机220驱动电机240的转轴241的转动,以使电机240发电,此时电源组件250和电机240电连接,以存储电机240提供的电能。PTO模式中,电机240提供的电能也可以输送至电网290,以为船舶提供电能。In the PTO mode of the second type of vessel, the
需要说明的是第二种类型的船舶中的燃气发动机220的输出轴221、电力变换部件251、整流器252、直流母排253、逆变器254、蓄能部件255、第一DC-DC变换器256、电容输出端257、超级电容258、超级电容管理系统259、第二DC-DC变换器260、电池输出端261、蓄电池262、电池管理系统263,以及电网290大致相同于第一种类型的船舶的燃气发动机120的输出轴121、电力变换部件151、整流器152、直流母排153、逆变器154、蓄能部件155、第一DC-DC变换器156、电容输出端157、超级电容158、超级电容管理系统159、第二DC-DC变换器160、电池输出端161、蓄电池162、电池管理系统163,以及电网190。第二种类型的船舶的其他设置也大致相同于第一种类型的船舶,这里不再赘述。It should be noted that in the second type of ship, the
本实施方式的船舶用设备的选型方法可以用于确定前述的电机的功率、燃气发动机的功率、蓄电池的容量,以及超级电容的容量(电容值)。The selection method for marine equipment in this embodiment can be used to determine the power of the aforementioned motor, the power of the gas engine, the capacity of the battery, and the capacity (capacitance value) of the super capacitor.
如图3所示,选型方法包括:As shown in Figure 3, the selection methods include:
S1、根据船舶的电机和燃气发动机的连接方式、船舶的驱动力和航速之间的功率曲线、运行模式、以及和运行模式对应的预定航速确定船舶的总推进功率;S1. Determine the total propulsion power of the ship according to the connection mode of the motor and the gas engine of the ship, the power curve between the driving force and the speed of the ship, the operation mode, and the predetermined speed corresponding to the operation mode;
S2、确定船舶的加速附加功率;S2. Determine the acceleration additional power of the ship;
S3、根据总推进功率和加速附加功率确定燃气发动机的功率和电机的功率。S3. Determine the power of the gas engine and the power of the motor according to the total propulsion power and the acceleration additional power.
选型方法具体包括:The selection methods include:
步骤1、确定船舶的电机和燃气发动机的连接方式是并联方式还是串联方式。Step 1. Determine whether the ship's motor and gas engine are connected in parallel or in series.
如上所述,一些船舶中电机和燃气发动机之间的连接方式为并联方式(第一种类型的船舶),另一些船舶中电机和燃气发动机之间的连接方式为串联方式(第二种类型的船舶)。在确定前述的电机的功率和燃气发动机的功率时,先确定船舶的电机和燃气发动机的连接方式为并联方式还是串联方式。然后根据船舶的电机和燃气发动机的连接方式以及后续的步骤确定电机的功率和燃气发动机的功率。需要说明的是,船舶的电机和燃气发动机的连接方式是并联方式还是串联方式可以根据船舶的具体使用情况进行选择。As mentioned above, the connection between the electric motor and the gas engine in some ships is in parallel (the first type of ships), and the connection between the electric motor and the gas engine in other ships is in series (the second type of ship). ship). When determining the power of the aforementioned electric motor and the power of the gas engine, first determine whether the connection mode of the electric motor and the gas engine of the ship is the parallel mode or the series mode. Then, the power of the motor and the power of the gas engine are determined according to the connection mode of the motor and the gas engine of the ship and the subsequent steps. It should be noted that whether the connection mode of the motor and the gas engine of the ship is the parallel mode or the series connection mode can be selected according to the specific usage of the ship.
步骤2、确定船舶的运行模式,以及和运行模式对应的预定航速。Step 2. Determine the operation mode of the ship and the predetermined speed corresponding to the operation mode.
如前所述,船舶的运行模式包括燃气推进模式、PTH模式、PTI模式,以及PTO模式。在确定船舶的电机的功率和燃气发动机的功率时,先确定船舶需要的运行模式。需要说明的是,本实施方式可以选择燃气推进模式、PTH模式、PTI模式,以及PTO模式中的一种或多种。对于每个所确定的运行模式,确定与之对应的预定航速。例如本实施方式中,船舶的运行模式需要包括燃气推进模式、PTH模式、PTI模式,以及PTO模式。此时确定船舶的运行模式,以及和运行模式对应的预定航速为:燃气推进模式、和燃气推进模式对应的第一预定航速、PTH模式、和PTH模式对应的第二预定航速、PTI模式、和PTI模式对应的第三预定航速、PTO模式,以及和PTO模式对应的第四预定航速。需要说明的是,船舶的运行模式和对应的预定航速可以根据需要进行选择。例如可以根据船舶的航行环境【航行环境包括航行距离(近海或远洋)、航行区域(太平洋、印度洋,大西洋或者内陆水域)、航行区域的风速,以及水速】确定船舶需要的运行模式,及对应的预定航速。As mentioned earlier, the ship's operating modes include gas propulsion mode, PTH mode, PTI mode, and PTO mode. When determining the power of the motor of the ship and the power of the gas engine, first determine the operation mode required by the ship. It should be noted that, in this embodiment, one or more of the gas propulsion mode, the PTH mode, the PTI mode, and the PTO mode can be selected. For each determined operating mode, the corresponding predetermined speed is determined. For example, in this embodiment, the operation mode of the ship needs to include a gas propulsion mode, a PTH mode, a PTI mode, and a PTO mode. At this time, the operation mode of the ship is determined, and the predetermined speed corresponding to the operation mode is: the gas propulsion mode, the first predetermined speed corresponding to the gas propulsion mode, the PTH mode, the second predetermined speed corresponding to the PTH mode, the PTI mode, and the The third predetermined speed corresponding to the PTI mode, the PTO mode, and the fourth predetermined speed corresponding to the PTO mode. It should be noted that the operation mode of the ship and the corresponding predetermined speed can be selected as required. For example, the operating mode required by the ship can be determined according to the navigation environment of the ship [the navigation environment includes the navigation distance (offshore or ocean), the navigation area (the Pacific Ocean, the Indian Ocean, the Atlantic Ocean or inland waters), the wind speed in the navigation area, and the water speed], and the corresponding predetermined speed.
步骤3、确定船舶的驱动力和航速之间的功率曲线。Step 3. Determine the power curve between the driving force and the speed of the ship.
在确定前述的电机的功率和燃气发动机的功率时,先确定船舶的驱动力和航速之间的功率曲线。船舶的驱动力和航速之间的功率曲线可以根据需要进行选择。例如该功率曲线大致相同于同等吨位、同等使用工况的现有船舶的驱动力和航速之间的功率曲线。When determining the power of the aforementioned electric motor and the power of the gas engine, first determine the power curve between the driving force and the speed of the ship. The power curve between the driving force and the speed of the ship can be selected as required. For example, the power curve is approximately the same as the power curve between the driving force and the speed of the existing ships of the same tonnage and the same operating conditions.
步骤4、根据连接方式、功率曲线、运行模式、以及预定航速确定船舶的总推进功率。Step 4. Determine the total propulsion power of the ship according to the connection mode, power curve, operation mode, and predetermined speed.
需要说明的是,在步骤4之前,步骤1至步骤3之间没有先后顺序要求,本领域技术人员可以根据需要设置步骤1至步骤3之间的先后顺序。It should be noted that, before step 4, there is no sequence requirement between steps 1 and 3, and those skilled in the art can set the sequence between steps 1 and 3 as required.
使用前述的船舶的电机和燃气发动机的连接方式、船舶的驱动力和航速之间的功率曲线、船舶的运行模式,以及和运行模式对应的预定航速作为输入条件。通过软件(例如中国船舶及海洋工程设计研究院的ShipPower软件、美国hydrocomp公司的PropCad/PropExpert/NavCad软件、澳大利亚的maxsurf软件、美国的freeship软件、荷兰的delftship软件等)计算,进而确定船舶的总推进功率,然后根据总推进功率确定电机的功率和燃气发动机的功率。The aforementioned connection method of the motor and the gas engine of the ship, the power curve between the driving force and the speed of the ship, the operation mode of the ship, and the predetermined speed corresponding to the operation mode are used as input conditions. Calculated by software (such as ShipPower software of China Ship and Offshore Engineering Design and Research Institute, PropCad/PropExpert/NavCad software of American hydrocomp company, maxsurf software of Australia, freeship software of the United States, delftship software of the Netherlands, etc.), and then determine the total number of ships. The propulsion power is then used to determine the power of the electric motor and the power of the gas engine based on the total propulsion power.
步骤4、确定船舶的加速附加功率。Step 4. Determine the acceleration additional power of the ship.
船舶航行的过程中,如果船舶需要进行加速,则需要向螺旋桨提供更大的功率(扭矩),以使船舶可以获得加速度。本实施方式中,船舶以前述的预定航速在与之对应的运行模式下航行时,由燃气发动机和/或电机承担船舶的驱动扭矩。当船舶需要进行加速时,由电机向螺旋桨提供加速所需要增加的加速附加功率。因此可以先确定船舶的加速附加功率,然后根据加速附加功率和前述的总推进功率确定电机的功率。When the ship is sailing, if the ship needs to be accelerated, it is necessary to provide more power (torque) to the propeller, so that the ship can obtain acceleration. In this embodiment, when the ship sails at the aforementioned predetermined speed in the corresponding operation mode, the gas engine and/or the electric motor bears the driving torque of the ship. When the ship needs to be accelerated, the motor provides the propeller with the increased acceleration additional power required for acceleration. Therefore, the acceleration additional power of the ship can be determined first, and then the motor power can be determined according to the acceleration additional power and the aforementioned total propulsion power.
优选地,根据船舶速度阻力曲线Rs=f(Vs)和燃气发动机的转速变化曲线ne=fe(t)确定船舶的加速附加功率。Preferably, the acceleration additional power of the ship is determined according to the ship speed resistance curve R s =f(V s ) and the speed change curve of the gas engine ne =f e ( t).
具体的,如图4所示,确定船舶的加速附加功率的步骤包括:Specifically, as shown in Figure 4, the step of determining the additional power for acceleration of the ship includes:
步骤S41、确定船舶速度阻力曲线、燃气发动机的转速变化曲线,以及燃气发动机的转速ne的转速初始值neo。Step S41 , determining the ship speed resistance curve, the rotational speed variation curve of the gas engine, and the initial rotational speed value ne eo of the rotational speed ne of the gas engine.
船舶速度阻力曲线(速度和阻力之间的曲线)可以根据需要预先确定。例如该船舶速度阻力曲线大致相同于同等吨位、同等使用工况的现有船舶的船舶速度阻力曲线。Vessel speed drag curves (the curve between speed and drag) can be predetermined as desired. For example, the ship speed resistance curve is substantially the same as the ship speed resistance curve of the existing ships of the same tonnage and the same working conditions.
燃气发动机的转速变化曲线(燃气发动机的输出轴的转速和时间之间的曲线)可以根据需要预先确定。例如燃气发动机的转速变化曲线大致相同于同等吨位、同等使用工况的现有船舶的内燃机的转速变化曲线。The speed change curve of the gas engine (the curve between the speed of the output shaft of the gas engine and the time) can be predetermined as required. For example, the speed change curve of a gas engine is substantially the same as the speed change curve of an internal combustion engine of an existing ship with the same tonnage and the same operating conditions.
转速初始值neo可以根据需要预先设置。例如转速初始值neo可以大致相同于同等吨位、同等使用工况的现有船舶以前述的预设航速匀速航行时,其内燃机的输出轴的转速。The initial value of the rotational speed neo can be preset as required. For example, the initial value of the rotational speed ne eo may be approximately the same as the rotational speed of the output shaft of the internal combustion engine of the existing ship of the same tonnage and the same operating conditions when sailing at the aforementioned preset speed at a constant speed.
步骤S42、根据燃气发动机的转速变化曲线确定当前的燃气发动机转速ne。Step S42: Determine the current gas engine speed ne according to the speed change curve of the gas engine.
本实施方式中,每间隔预设时长(例如1s)重新执行步骤S42至S58,以确定当前的燃气发动机转速ne、当前的船舶航速Vs,以及和当前的燃气发动机转速ne对应的当前加速功率△P。In this embodiment, steps S42 to S58 are re-executed every preset time period (for example, 1s) to determine the current gas engine speed ne , the current ship speed Vs , and the current gas engine speed ne corresponding to the current gas engine speed ne Acceleration power ΔP.
第一次执行步骤S42时,可以将转速初始值neo确定为当前的燃气发动机转速ne。后续每一次执行步骤S42时可以根据上一个燃气发动机转速ne和燃气发动机的转速变化曲线确定当前的燃气发动机转速ne。例如第二次执行步骤S42时,可以根据第一次确定的燃气发动机转速ne和燃气发动机的转速变化曲线确定当前的燃气发动机转速ne。When step S42 is performed for the first time, the initial rotational speed value ne eo may be determined as the current rotational speed ne of the gas engine. Each subsequent time step S42 is performed, the current gas engine speed ne may be determined according to the previous gas engine speed ne and the speed change curve of the gas engine. For example, when step S42 is executed for the second time, the current gas engine speed ne may be determined according to the first determined gas engine speed ne and the gas engine speed change curve.
步骤S43、根据当前的燃气发动机转速ne和轴系的传动比i(燃气发动机和螺旋桨之间的轴系的传动比)确定当前的螺旋桨转速np。Step S43: Determine the current propeller rotational speed np according to the current gas engine rotational speed ne and the transmission ratio i of the shafting (the transmission ratio of the shafting between the gas engine and the propeller).
优选地,可以根据公式(41)确定当前的螺旋桨转速np。Preferably, the current propeller rotational speed n p can be determined according to formula (41).
ne/i=np (41)n e /i=n p (41)
步骤S44、确定当前的船舶航速Vs。Step S44, determining the current ship speed V s .
在确定加速附加功率前,可以预先确定船舶航速Vs的航速初始值Vs0。例如航速初始值Vs0可以是前述的预设航速。第一次执行步骤S44时,可以将航速初始值Vs0确定为当前的船舶航速Vs。后续每一次执行步骤S44时,可以由上一次执行的后文的步骤S45至步骤S53重新确定的最新船舶航速Vs′,然后将该最新船舶航速Vs′确定为当前的船舶航速Vs。Before determining the additional power for acceleration, the initial value V s0 of the ship speed V s may be predetermined. For example, the initial value of the speed V s0 may be the aforementioned preset speed. When step S44 is executed for the first time, the initial value V s0 of the speed can be determined as the current speed V s of the ship. Each subsequent time step S44 is performed, the latest ship speed V s ′ may be re-determined from the following steps S45 to S53 performed last time, and then the latest ship speed V s ′ is determined as the current ship speed V s .
步骤S45、根据当前的船舶航速Vs确定当前的推力减额分数t和当前的半流分数ω。Step S45: Determine the current thrust derating fraction t and the current half-flow fraction ω according to the current ship speed V s .
推力减额分数t、半流分数ω与船舶航速Vs成函数关系。每一个船舶航速Vs都有与之对应的一个推力减额分数t和一个半流分数ω。该函数关系为现有技术,这里不再赘述。这样,可以通过当前的船舶航速Vs确定当前的推力减额分数t和当前的半流分数ω。The thrust derating fraction t and the half-flow fraction ω are a function of the ship's speed V s . Each ship speed V s has a thrust derating fraction t and a half-flow fraction ω corresponding to it. This functional relationship is in the prior art, and will not be repeated here. In this way, the current thrust derating fraction t and the current half-flow fraction ω can be determined from the current ship speed Vs.
步骤S46、通过公式(42),并且根据当前的半流分数ω和当前的船舶航速Vs确定当前的螺旋桨进速Vp。In step S46, formula (42) is used to determine the current propeller advance speed Vp according to the current half-flow fraction ω and the current ship speed Vs.
Vp=Vs(1-ω) (42)V p = V s (1-ω) (42)
步骤S47、通过公式(43),并且根据当前的螺旋桨进速Vp、当前的螺旋桨转速np,以及螺旋桨的直径尺寸D确定当前的船舶进速Rp。In step S47, formula (43) is used, and the current ship advance speed Rp is determined according to the current propeller advance speed Vp , the current propeller rotational speed np , and the diameter dimension D of the propeller.
步骤S48、通过公式(44),并且根据当前的螺旋桨进速Vp和当前的船舶进速Rp确定当前的进速系数μ。In step S48, formula (44) is used, and the current advance coefficient μ is determined according to the current propeller advance speed V p and the current ship advance speed R p .
μ=Vp/Rp (44)μ=V p /R p (44)
步骤S49、根据当前的进速系数μ确定与之对应的当前的螺旋桨推力系数CT和当前的螺旋桨扭矩系数CQ。Step S49: Determine the current propeller thrust coefficient C T and the current propeller torque coefficient C Q corresponding to the current advance coefficient μ.
螺旋桨推力系数CT、螺旋桨扭矩系数CQ与进速系数μ成函数关系。每一个进速系数μ都有与之对应的一个螺旋桨推力系数CT和一个螺旋桨扭矩系数CQ。该函数关系为现有技术,这里不再赘述。这样可以通过当前的进速系数μ确定与之对应的当前的螺旋桨推力系数CT和当前的螺旋桨扭矩系数CQ。The propeller thrust coefficient C T , the propeller torque coefficient C Q have a functional relationship with the advance coefficient μ. Each advance coefficient μ has a corresponding propeller thrust coefficient C T and a propeller torque coefficient C Q . This functional relationship is in the prior art, and will not be repeated here. In this way, the current propeller thrust coefficient C T and the current propeller torque coefficient C Q corresponding to the current advance coefficient μ can be determined.
步骤S50、通过公式(45),并且根据当前的螺旋桨推力系数CT、当前的船舶进速Rp、螺旋桨的直径尺寸D,以及承载船舶的水(例如海水)的密度ρ确定当前的螺旋桨推力Tp。Step S50, through formula (45), and according to the current propeller thrust coefficient C T , the current ship advance speed R p , the diameter dimension D of the propeller, and the density ρ of the water (such as sea water) carrying the ship to determine the current propeller thrust T p .
本实施方式中,步骤S50之后,执行后续的步骤S51至步骤S53以确定最新船舶航速Vs′。并返回执行步骤S44,以将该最新船舶航速Vs′确定为当前的船舶航速Vs。步骤S50之后,还执行后续的步骤S54至步骤S58,以确定和当前的燃气发动机转速ne对应的当前加速功率△P。步骤S58之后,执行步骤S59,以确定加速附加功率。In this embodiment, after step S50, subsequent steps S51 to S53 are performed to determine the latest ship speed V s ′. And return to step S44 to determine the latest ship speed V s ' as the current ship speed V s . After step S50, the subsequent steps S54 to S58 are also executed to determine the current acceleration power ΔP corresponding to the current gas engine speed ne . After step S58, step S59 is executed to determine the acceleration additional power.
步骤S51、通过公式(46),并且根据当前的螺旋桨推力Tp、当前的推力减额分数t、以及螺距系数tp确定当前的有效船舶推力T。In step S51, formula (46) is used to determine the current effective ship thrust T according to the current propeller thrust T p , the current thrust derating fraction t, and the pitch coefficient t p .
T=Tp(1-t·tp) (46)T=T p (1-t t p ) (46)
其中,螺距系数tp可以由公式(47)确定。Among them, the pitch coefficient t p can be determined by formula (47).
其中,H/D为螺旋桨的面螺距H和螺旋桨的直径尺寸D的比值(螺距比)。Wherein, H/D is the ratio of the surface pitch H of the propeller to the diameter dimension D of the propeller (pitch ratio).
步骤S52、根据船舶速度阻力曲线和当前的船舶航速Vs确定当前的船舶阻力Rs。Step S52: Determine the current ship resistance R s according to the ship speed resistance curve and the current ship speed V s .
步骤S53、通过公式(48),并且根据当前的船舶阻力Rs、当前的有效船舶推力T、以及船舶的质量m确定最新船舶航速Vs′。步骤S53之后返回步骤S44、以将最新船舶航速Vs′确定为当前的船舶航速Vs。In step S53, formula (48) is used, and the latest ship speed V s ′ is determined according to the current ship resistance R s , the current effective ship thrust T, and the mass m of the ship. After step S53, it returns to step S44 to determine the latest ship speed V s ' as the current ship speed V s .
步骤S54、通过公式(49),并且根据当前的螺旋桨扭矩系数CQ、当前的船舶进速Rp、螺旋桨的直径尺寸D,以及承载船舶的水的密度ρ确定当前的螺旋桨输出扭矩Mp。Step S54: Determine the current propeller output torque M p according to the current propeller torque coefficient C Q , the current ship advance speed R p , the diameter D of the propeller, and the density ρ of the water carrying the ship through formula (49).
步骤S55、通过公式(50),并且根据当前的螺旋桨输出扭矩Mp、效率η(前述的轴系的传动效率和回转效率的和),以及轴系的传动比i确定当前的燃气发动机输出扭矩Me。Step S55, through formula (50), and according to the current propeller output torque M p , the efficiency η (the sum of the transmission efficiency and the rotation efficiency of the aforementioned shafting), and the transmission ratio i of the shafting to determine the current gas engine output torque Me .
Me=Mp/η×i (50)Me = M p /η× i (50)
步骤S56、通过公式(51),并且根据当前的燃气发动机转速ne和当前的燃气发动机输出扭矩Me确定当前的燃气发动机输出功率Pe。Step S56 : Determine the current gas engine output power Pe according to the current gas engine speed ne and the current gas engine output torque Me through formula (51 ) .
Pe=2πneMe (51)P e = 2πn e Me (51)
步骤S57、通过公式(52),并且根据当前的燃气发动机转速ne和常数C确定当前的燃气发动机的稳态输出功率Pe′(船舶以当前的船舶航速Vs匀速航行时,燃气发动机的输出功率)。In step S57, formula (52) is used, and the current steady-state output power Pe' of the gas engine is determined according to the current gas engine speed n e and the constant C ( when the ship sails at a constant speed at the current ship speed V s , the Output Power).
Pe'=cne 3 (52)P e '=cn e 3 (52)
步骤S58、通过公式(53),并且根据当前的燃气发动机的稳态输出功率Pe′和当前的燃气发动机输出功率Pe确定当前的加速功率△P。In step S58, formula (53) is used, and the current acceleration power ΔP is determined according to the current steady-state output power Pe ' of the gas engine and the current gas engine output power Pe.
ΔP=Pe-Pe' (53)ΔP=P e -P e ' (53)
需要说明的是,对于每一次执行步骤S42至S58,均可以确定一个当前的加速功率△P。也就是说,经过多次反复执行步骤S42至S58,可以确定多个当前的加速功率△P。It should be noted that, for each execution of steps S42 to S58, a current acceleration power ΔP can be determined. That is, after repeatedly executing steps S42 to S58 for many times, a plurality of current acceleration powers ΔP can be determined.
步骤S59、将前述的所有加速功率△P中的最大值确定为加速附加功率。Step S59: Determine the maximum value among all the aforementioned acceleration powers ΔP as the acceleration additional power.
本实施方式中,根据船舶速度阻力曲线和燃气发动机的转速变化曲线确定船舶的加速附加功率。由此,根据船舶的速度的动态变化确定加速附加功率,可以更加准确的确定加速附加功率。In this embodiment, the acceleration additional power of the ship is determined according to the speed resistance curve of the ship and the rotation speed change curve of the gas engine. Thus, the additional power for acceleration is determined according to the dynamic change of the speed of the ship, and the additional power for acceleration can be determined more accurately.
前述的步骤S41至S59可以通过软件(例如AMESim),根据前述的步骤S41至S59中的公式建立的模型,进而确定加速附加功率。由此,可以更加方便的确定加速附加功率。In the aforementioned steps S41 to S59, software (eg, AMESim) can be used to determine the acceleration additional power according to the model established by the formulas in the aforementioned steps S41 to S59. Thus, the acceleration additional power can be determined more conveniently.
在未给出的实施方式中,本领域技术人员也可以根据试验确定船舶的加速附加功率。例如加速附加功率可以为现有的由内燃机驱动的船舶的正常航行时的功率和加速时的功率之差。In the embodiment not given, those skilled in the art can also determine the acceleration additional power of the ship according to experiments. For example, the additional power for acceleration may be the difference between the power during normal navigation and the power during acceleration of the existing ship powered by the internal combustion engine.
步骤5、根据总推进功率和加速附加功率确定船舶的燃气发动机的功率和电机的功率。Step 5: Determine the power of the gas engine and the power of the electric motor of the ship according to the total propulsion power and the additional power of acceleration.
电机的功率和燃气发动机的功率之和≥总推进功率。由此可以确定电机的功率和燃气发动机的功率,以使船舶可以适用于各种工况和航行环境。The sum of the power of the electric motor and the power of the gas engine ≥ the total propulsion power. From this, the power of the electric motor and the power of the gas engine can be determined, so that the ship can be suitable for various working conditions and sailing environments.
优选地,电机的功率≥加速附加功率。由此,电机可以提供船舶加速航行时需要的附加功率。Preferably, the power of the motor ≥ the acceleration additional power. As a result, the electric motor can provide the additional power required by the ship to speed up its sailing.
优选地,总推进功率和加速附加功率之差≤燃气发动机的功率。由此,燃气发动机的功率可以提供船舶以预定速度在和该预定速度对应的运行模式航行时需要的功率。Preferably, the difference between the total propulsion power and the acceleration additional power ≤ the power of the gas engine. Thereby, the power of the gas engine can provide the power required when the vessel sails at a predetermined speed in an operating mode corresponding to the predetermined speed.
优选地,燃气发动机的功率>电机的功率。由此,在PTI模式下,以和PTI模式对应的预定航速航行的船舶中,燃气发动机承担驱动螺旋桨转动的大部分扭矩。Preferably, the power of the gas engine>the power of the electric motor. Therefore, in the PTI mode, in a ship sailing at a predetermined speed corresponding to the PTI mode, the gas engine bears most of the torque that drives the propeller to rotate.
优选地,燃气发动机的功率和总推进功率的比值大于75%。由此,在PTI模式下,以和PTI模式对应的预定航速航行的船舶中,尽量增加燃气发动机承担驱动螺旋桨转动的扭矩的比例。Preferably, the ratio of the power of the gas engine to the total propulsion power is greater than 75%. Therefore, in the PTI mode, in a ship sailing at a predetermined speed corresponding to the PTI mode, the proportion of the torque that the gas engine bears to drive the rotation of the propeller is increased as much as possible.
优选地,若船舶在PTO模式下需要与船舶的发电机组长时间并网。则电机140的功率+船舶的发电机组的功率≥全船用电的负荷。若船舶在PTO模式下不需要与船舶的发电机组长时间并网,则电机140的功率≥全船用电的负荷。Preferably, if the ship needs to be connected to the grid with the ship's generator set for a long time in the PTO mode. Then the power of the
在确定燃气发动机的功率和电机的功率后,选型方法还包括:After determining the power of the gas engine and the power of the motor, the selection method also includes:
步骤6、根据公式(1)确定蓄电池的容量Step 6. Determine the capacity of the battery according to formula (1)
Eb=Pm×t1×ηb×ηd×ηm×ηs×ηL (1)E b =P m ×t 1 ×η b ×η d ×η m ×η s ×η L (1)
步骤7、根据公式(2)确定超级电容的容量Step 7. Determine the capacity of the super capacitor according to formula (2)
Ec=Pm×t2×ηc×ηd×ηm×ηs (2)E c =P m ×t 2 ×η c ×η d ×η m ×η s (2)
其中,in,
Eb为蓄电池的容量;E b is the capacity of the battery;
Ec为超级电容的容量;E c is the capacity of the super capacitor;
Pm为电机的功率;P m is the power of the motor;
t1为进出港所需的时间;t 1 is the time required for entering and leaving the port;
t2为船舶加速的时间;t 2 is the time for the ship to accelerate;
ηb为蓄电池效率;η b is the battery efficiency;
ηd为电力变换部件的效率; ηd is the efficiency of the power conversion component;
ηm为电机效率;η m is the motor efficiency;
ηs为传动效率;η s is the transmission efficiency;
ηL为电池寿命折减系数;以及η L is the battery life reduction factor; and
ηc为超级电容的效率。η c is the efficiency of the supercapacitor.
前述的t1、t2、ηb、ηd、ηm、ηs、ηL,以及ηc可以根据需要进行设置。The aforementioned t 1 , t 2 , η b , η d , η m , η s , η L , and η c can be set as desired.
在确定蓄电池的容量Eb后,可以根据蓄电池的容量Eb确定蓄电池的参数。然后根据直流母排的电压,以及电力变换部件的最大承受电流设置蓄电池的拓扑结构。After the capacity E b of the battery is determined, the parameters of the battery can be determined according to the capacity E b of the battery. Then set the topological structure of the battery according to the voltage of the DC busbar and the maximum withstand current of the power conversion components.
在确定超级电容的容量Ec后,可以根据超级电容的容量Ec确定超级电容参数。然后根据直流母排的电压,以及电力变换部件的最大承受电流设置超级电容的拓扑结构。After the capacity E c of the super capacitor is determined, the parameters of the super capacitor can be determined according to the capacity E c of the super capacitor. Then, the topology of the super capacitor is set according to the voltage of the DC busbar and the maximum withstand current of the power conversion components.
在步骤7之后,可以根据电机的功率和燃气发动机的功率确定和燃气推进模式、PTH模式、PTI模式,以及PTO模式一一对应的第一预定航速、第二预定航速、第三预定航速,以及第四预定航速。After step 7, the first predetermined speed, the second predetermined speed, the third predetermined speed, and the one-to-one correspondence with the gas propulsion mode, the PTH mode, the PTI mode, and the PTO mode may be determined according to the power of the electric motor and the power of the gas engine, and The fourth predetermined speed.
本实施方式中,船舶由电机和/或燃气发动机提供动力航行,燃料的成本低,此外燃气发动机燃烧燃气的产物清洁环保,并且根据船舶的电机和燃气发动机的连接方式、船舶的驱动力和航速之间的功率曲线、运行模式、以及和运行模式对应的预定航速确定船舶的总推进功率,然后根据总推进功率和加速附加功率确定电机和燃气发动机的功率,可以使船舶更加适应各种工况和航行环境。In this embodiment, the ship is powered by a motor and/or a gas engine to sail, and the cost of fuel is low. In addition, the product of burning gas by the gas engine is clean and environmentally friendly, and the ship's motor and gas engine are connected according to the connection method, the driving force of the ship and the speed of the ship. The total propulsion power of the ship is determined by the power curve, the operation mode, and the predetermined speed corresponding to the operation mode, and then the power of the motor and gas engine is determined according to the total propulsion power and the additional power of acceleration, which can make the ship more adaptable to various working conditions. and sailing environment.
本发明已经通过上述实施例进行了说明,但应当理解的是,上述实施例只是用于举例和说明的目的,而非意在将本发明限制于所描述的实施例范围内。此外本领域技术人员可以理解的是,本发明并不局限于上述实施例,根据本发明的教导还可以做出更多种的变型和修改,这些变型和修改均落在本发明所要求保护的范围以内。本发明的保护范围由附属的权利要求书及其等效范围所界定。The present invention has been described by the above-mentioned embodiments, but it should be understood that the above-mentioned embodiments are only for the purpose of illustration and description, and are not intended to limit the present invention to the scope of the described embodiments. In addition, those skilled in the art can understand that the present invention is not limited to the above-mentioned embodiments, and more variations and modifications can also be made according to the teachings of the present invention, and these variations and modifications all fall within the protection claimed in the present invention. within the range. The protection scope of the present invention is defined by the appended claims and their equivalents.
除非另有定义,本文中所使用的技术和科学术语与本发明的技术领域的技术人员通常理解的含义相同。本文中使用的术语只是为了描述具体的实施目的,不是旨在限制本发明。本文中出现的诸如“部件”等术语既可以表示单个的零件,也可以表示多个零件的组合。本文中出现的诸如“安装”、“设置”等术语既可以表示一个部件直接附接至另一个部件,也可以表示一个部件通过中间件附接至另一个部件。本文中在一个实施方式中描述的特征可以单独地或与其它特征结合地应用于另一个实施方式,除非该特征在该另一个实施方式中不适用或是另有说明。Unless otherwise defined, technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the technical field of this invention. The terminology used herein is for the purpose of describing a particular implementation only and is not intended to limit the present invention. Terms such as "component" appearing herein can refer to either a single part or a combination of parts. Terms such as "installed", "provided" and the like appearing herein can mean either the direct attachment of one component to another component or the attachment of one component to another component through an intermediate piece. A feature described herein in one embodiment may be used in another embodiment alone or in combination with other features, unless the feature is not applicable in the other embodiment or stated otherwise.
本发明已经通过上述实施方式进行了说明,但应当理解的是,上述实施方式只是用于举例和说明的目的,而非意在将本发明限制于所描述的实施方式范围内。本领域技术人员可以理解的是,根据本发明的教导还可以做出更多种的变型和修改,这些变型和修改均落在本发明所要求保护的范围以内。The present invention has been described by the above-described embodiments, but it should be understood that the above-described embodiments are only for the purpose of illustration and description, and are not intended to limit the present invention to the scope of the described embodiments. It will be appreciated by those skilled in the art that various variations and modifications can be made according to the teachings of the present invention, which all fall within the scope of the claimed protection of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010814245.3A CN114074751A (en) | 2020-08-13 | 2020-08-13 | Selection method of marine equipment and ship |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010814245.3A CN114074751A (en) | 2020-08-13 | 2020-08-13 | Selection method of marine equipment and ship |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114074751A true CN114074751A (en) | 2022-02-22 |
Family
ID=80281218
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010814245.3A Pending CN114074751A (en) | 2020-08-13 | 2020-08-13 | Selection method of marine equipment and ship |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114074751A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114735180A (en) * | 2022-04-13 | 2022-07-12 | 中国船舶重工集团公司第七一一研究所 | Multi-mode hybrid power system, ship, control method, and storage medium |
CN115195971A (en) * | 2022-07-15 | 2022-10-18 | 中国船舶重工集团公司第七一一研究所 | Ship energy efficiency management system, method and storage medium |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008024187A (en) * | 2006-07-21 | 2008-02-07 | National Maritime Research Institute | Marine electric propulsion system |
US20100167601A1 (en) * | 2007-06-01 | 2010-07-01 | Wolfgang Rzadki | Method and apparatus for operation of a marine vessel hybrid propulsion system |
CN202879782U (en) * | 2012-09-21 | 2013-04-17 | 中国船舶重工集团公司第七一一研究所 | Hybrid power system of ship |
CN205168484U (en) * | 2015-11-24 | 2016-04-20 | 广州汽车集团股份有限公司 | 4 wheel driven hybrid power system |
CN107748498A (en) * | 2017-10-09 | 2018-03-02 | 上海海事大学 | A kind of energy management method of the hybrid power ship based on Model Predictive Control |
CN108438189A (en) * | 2018-03-08 | 2018-08-24 | 哈尔滨工程大学 | A kind of twin axle pneumoelectric mixing ship power system |
CN108657407A (en) * | 2018-03-08 | 2018-10-16 | 哈尔滨工程大学 | A kind of three paddle pneumoelectric mixing ship power system of single machine |
CN109334934A (en) * | 2018-10-29 | 2019-02-15 | 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) | A kind of energy-efficient adjustable oar system of ship z-type propulsion control method |
CN212267818U (en) * | 2020-08-13 | 2021-01-01 | 中国船舶重工集团公司第七一一研究所 | Ship with a detachable cover |
-
2020
- 2020-08-13 CN CN202010814245.3A patent/CN114074751A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008024187A (en) * | 2006-07-21 | 2008-02-07 | National Maritime Research Institute | Marine electric propulsion system |
US20100167601A1 (en) * | 2007-06-01 | 2010-07-01 | Wolfgang Rzadki | Method and apparatus for operation of a marine vessel hybrid propulsion system |
CN202879782U (en) * | 2012-09-21 | 2013-04-17 | 中国船舶重工集团公司第七一一研究所 | Hybrid power system of ship |
CN205168484U (en) * | 2015-11-24 | 2016-04-20 | 广州汽车集团股份有限公司 | 4 wheel driven hybrid power system |
CN107748498A (en) * | 2017-10-09 | 2018-03-02 | 上海海事大学 | A kind of energy management method of the hybrid power ship based on Model Predictive Control |
CN108438189A (en) * | 2018-03-08 | 2018-08-24 | 哈尔滨工程大学 | A kind of twin axle pneumoelectric mixing ship power system |
CN108657407A (en) * | 2018-03-08 | 2018-10-16 | 哈尔滨工程大学 | A kind of three paddle pneumoelectric mixing ship power system of single machine |
CN109334934A (en) * | 2018-10-29 | 2019-02-15 | 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) | A kind of energy-efficient adjustable oar system of ship z-type propulsion control method |
CN212267818U (en) * | 2020-08-13 | 2021-01-01 | 中国船舶重工集团公司第七一一研究所 | Ship with a detachable cover |
Non-Patent Citations (1)
Title |
---|
何新英等: "便携式无人测量船混合动力系统设计", 机电工程技术, vol. 48, no. 11, 20 November 2019 (2019-11-20), pages 16 - 18 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114735180A (en) * | 2022-04-13 | 2022-07-12 | 中国船舶重工集团公司第七一一研究所 | Multi-mode hybrid power system, ship, control method, and storage medium |
CN115195971A (en) * | 2022-07-15 | 2022-10-18 | 中国船舶重工集团公司第七一一研究所 | Ship energy efficiency management system, method and storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104859828B (en) | Diesel-electric hybrid power ship propulsion system and energy management method of diesel-electric hybrid power ship propulsion system | |
CN101351381B (en) | Method for operating an energy system of a ship and energy system suitable therefore | |
CN202156534U (en) | Multi-power-resource hybrid-power ship power propulsion system | |
CN212267818U (en) | Ship with a detachable cover | |
KR102314973B1 (en) | Hybrid propulsion vessel with shaft generator and battery | |
CN102358412A (en) | Multi-energy-source hybrid ship electric propulsion system and implementation method thereof | |
US20120028516A1 (en) | Arrangement and method for improving load response in a marine vessel | |
CN101767645A (en) | Novel electric propulsion system | |
US20130293003A1 (en) | Propulsion system | |
CN114074751A (en) | Selection method of marine equipment and ship | |
CN109367750A (en) | Shaft generator control systems and marine hybrid systems | |
CN114834622A (en) | Ship diesel-electric hybrid power propulsion system based on fuzzy control | |
CN201694383U (en) | Electric power propulsion system | |
CN209467309U (en) | A ship electromechanical composite propulsion system | |
TW201249073A (en) | Enclosed energy multi-circulation system and operating method thereof | |
CN213323635U (en) | Efficient and energy-saving hybrid power system for ship | |
CN112572744A (en) | Double-shaft four-engine ship hybrid power system and propulsion control method thereof | |
CN201864035U (en) | Water surface equipment electric propulsion system | |
CN209351576U (en) | Shaft generator control system and ship hybrid power system | |
CN218431697U (en) | High-power direct current hybrid system and ship | |
WO2024037509A1 (en) | Power system of rotary drilling rig, control method for rotary drilling rig, and rotary drilling rig | |
CN117895708A (en) | Ship shaft belt power generation system and method | |
CN219277774U (en) | Tandem type hybrid power system suitable for harbor tugboat | |
CN112339963B (en) | Direct-current networking ship electric propulsion system and method | |
CN115912499A (en) | Mode control method of ship hybrid power system based on energy-saving design |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |