CN114069185B - A tunable magnetostatic wave resonator - Google Patents
A tunable magnetostatic wave resonator Download PDFInfo
- Publication number
- CN114069185B CN114069185B CN202210061911.XA CN202210061911A CN114069185B CN 114069185 B CN114069185 B CN 114069185B CN 202210061911 A CN202210061911 A CN 202210061911A CN 114069185 B CN114069185 B CN 114069185B
- Authority
- CN
- China
- Prior art keywords
- microstrip line
- substrate
- cavity
- section
- lower substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000758 substrate Substances 0.000 claims abstract description 87
- 230000005291 magnetic effect Effects 0.000 claims abstract description 17
- 230000007704 transition Effects 0.000 claims description 19
- 239000010408 film Substances 0.000 claims description 9
- 230000008878 coupling Effects 0.000 claims description 7
- 238000010168 coupling process Methods 0.000 claims description 7
- 238000005859 coupling reaction Methods 0.000 claims description 7
- 239000003292 glue Substances 0.000 claims description 3
- 239000012212 insulator Substances 0.000 claims description 3
- 239000010409 thin film Substances 0.000 claims description 3
- 238000004943 liquid phase epitaxy Methods 0.000 claims description 2
- 239000002223 garnet Substances 0.000 abstract description 14
- MTRJKZUDDJZTLA-UHFFFAOYSA-N iron yttrium Chemical compound [Fe].[Y] MTRJKZUDDJZTLA-UHFFFAOYSA-N 0.000 abstract description 14
- 238000012545 processing Methods 0.000 abstract description 7
- 238000005516 engineering process Methods 0.000 abstract description 3
- 230000003068 static effect Effects 0.000 abstract 2
- 238000010923 batch production Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 3
- 230000005350 ferromagnetic resonance Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- ZPDRQAVGXHVGTB-UHFFFAOYSA-N gallium;gadolinium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Gd+3] ZPDRQAVGXHVGTB-UHFFFAOYSA-N 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P7/00—Resonators of the waveguide type
- H01P7/06—Cavity resonators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P7/00—Resonators of the waveguide type
- H01P7/08—Strip line resonators
- H01P7/082—Microstripline resonators
Landscapes
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
Description
技术领域technical field
本发明属于微波射频器件技术领域,具体涉及一种可调静磁波谐振器。The invention belongs to the technical field of microwave radio frequency devices, and in particular relates to a tunable magnetostatic wave resonator.
背景技术Background technique
为适应通信设备小型轻量化的发展,对信号源提出了低相位噪声以及宽调谐带宽的要求,目前常见的微波固态信号源为介质谐振振荡器(DRO)、压控振荡器(VCO)或者二者的结合,以及以钇铁石榴石(YIG)谐振器为基础制成的可调静磁波谐振器。In order to adapt to the development of small and lightweight communication equipment, low phase noise and wide tuning bandwidth are required for signal sources. At present, the common microwave solid-state signal sources are dielectric resonant oscillator (DRO), voltage controlled oscillator (VCO) or two. A combination of yttrium iron garnet (YIG) resonators and tunable magnetostatic wave resonators based on yttrium iron garnet (YIG) resonators.
目前,以钇铁石榴石(YIG)为基础制成的可调静磁波谐振器主要是利用了钇铁石榴石材料的铁磁共振特性而制成。传统的谐振结构,一般采用钇铁石榴石小球作为谐振子,利用环耦合结构,实现谐振器的激励。然而,这类谐振器的谐振腔中的钇铁石榴石小球需要经过复杂且高精度的抛光工艺制备,工艺难度大,对应采用的加工设备也相对昂贵。同时,由于钇铁石榴石小球需要微调晶向才能使用,使得谐振器的调试装配更加复杂。At present, tunable magnetostatic wave resonators based on yttrium iron garnet (YIG) are mainly made by utilizing the ferromagnetic resonance properties of yttrium iron garnet materials. In the traditional resonant structure, yttrium iron garnet balls are generally used as the resonator, and the ring coupling structure is used to realize the excitation of the resonator. However, the yttrium iron garnet spheres in the resonator cavity of this type of resonator need to be prepared through a complex and high-precision polishing process, which is difficult and the corresponding processing equipment is relatively expensive. At the same time, since the yttrium iron garnet ball needs to be fine-tuned to use, the debugging and assembly of the resonator is more complicated.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于,针对背景技术存在的缺陷,提出了一种可调静磁波谐振器。The purpose of the present invention is to propose a tunable magnetostatic wave resonator in view of the defects existing in the background art.
为实现上述目的,本发明采用的技术方案如下:For achieving the above object, the technical scheme adopted in the present invention is as follows:
一种可调静磁波谐振器,其特征在于,包括:A tunable magnetostatic wave resonator, comprising:
谐振器主体1,所述谐振器主体1包括谐振腔、设于谐振腔内的下基板7、设于谐振腔一侧的射频输入端2和设于谐振腔顶部的射频输出端3;Resonator main body 1, the resonator main body 1 includes a resonant cavity, a
第一微带线4,所述第一微带线4位于下基板7之上、并与伸入谐振腔内的射频输入端2连接;a
第二微带线5,所述第二微带线5位于下基板7之上、并与第一微带线4耦合;a
圆盘31,所述圆盘31与从谐振腔顶部伸入谐振腔内的射频输出端3连接;a
YIG基片6,所述YIG基片6包括GGG基片61和生长于GGG基片61表面的YIG薄膜62;所述YIG基片6位于第一微带线4和第二微带线5之上,且完全覆盖第一微带线4和第二微带线5的耦合区域;所述YIG基片6位于圆盘31正下方。YIG substrate 6, the YIG substrate 6 includes a
进一步的,所述第一微带线4沿下基板7长度方向设置,第一微带线4包括依次连接的输入段41、第一过渡段42、U型段43,输入段41连接射频输入端2;所述第二微带线5包括依次连接的叉型段51、第二过渡段52、接地覆盖段53。所述U型段43的两个分支位于叉型段51的两个内凹中、且U型段43与叉型段51不接触,所述接地覆盖段53上设有接地导通孔54,接地导通孔54贯通下基板7并与下基板7底面设置的接地层71连接;所述GGG基片61位于U型段43和叉型段51上方、并与U型段43和叉型段51接触,所述GGG基片61完全覆盖U型段43和叉型段51、且不接触接地覆盖段53。Further, the
进一步的,所述接地覆盖段53呈U型,包括与第二过渡段52垂直连接的第一接地段、以及分别垂直连接于第一接地段两端的两个第二接地段,第二接地段位于下基板7长度方向两侧,所述第二接地段的长度等于下基板7的长度,第一接地段的长度等于下基板7的宽度。Further, the
进一步的,所述输入段41宽度大于第一过渡段42宽度,第一过渡段42宽度与第二过渡段52宽度相等。Further, the width of the
进一步的,所述第一微带线4和第二微带线5关于下基板7长度方向的中线轴对称。Further, the
进一步的,所述谐振器主体1处于外置磁场8中,外置磁场8的方向平行于下基板7宽度方向。Further, the resonator body 1 is in an external
进一步的,所述射频输入端2和射频输出端3采用射频绝缘子,射频输入端2通过焊接与第一微带线4连接,射频输出端3通过导电胶与圆盘31连接。Further, the radio
进一步的,所述谐振腔包括:Further, the resonant cavity includes:
第一腔10,下基板7、第一微带线4、第二微带线5和YIG基片6均位于第一腔10中;The
第二腔11,所述第二腔11是第一腔10顶部向上凸出形成的,YIG基片6的顶面位于第二腔内,YIG基片6的两侧面与第二腔11的侧面之间有间距;The
第三腔12,所述第三腔12是第二腔11顶部向上凸出形成的,圆盘31位于第三腔12内。The
进一步的,所述YIG基片6位于圆盘31的正下方,即YIG基片6的中心正对圆盘31中心。Further, the YIG substrate 6 is located directly below the
进一步的,所述YIG薄膜62通过液相外延技术生长于GGG基片61上。Further, the YIG
与现有技术相比,本发明的有益效果为:Compared with the prior art, the beneficial effects of the present invention are:
1、本发明采用钇铁石榴石薄膜替代钇铁石榴石小球作为谐振子,采用微带线结构替代复杂的耦合电路结构,得到的可调静磁波谐振器可实现从4GHz-12GHz频段内可调谐,3dB带宽极窄,Q值范围为2000~4500,不仅有效提高了谐振器的组装调测效率,还简化了加工工艺,降低了加工成本,更有利于实现对钇铁石榴石调谐谐振器的批量化生产。1. The present invention adopts the yttrium iron garnet film to replace the yttrium iron garnet ball as the resonator, adopts the microstrip line structure to replace the complex coupling circuit structure, and the obtained adjustable magnetostatic wave resonator can be tunable from the 4GHz-12GHz frequency band, The 3dB bandwidth is extremely narrow, and the Q value ranges from 2000 to 4500, which not only effectively improves the assembly and commissioning efficiency of the resonator, but also simplifies the processing technology, reduces the processing cost, and is more conducive to the realization of batches of yttrium iron garnet tuning resonators production.
2、本发明提供的一种可调静磁波谐振器,通过对腔体结构的设计,以及微带线、圆盘、YIG基片的布局,使得水平输入的射频信号在腔内耦合后,转为垂直向上输出,增加了输入与输出之间的隔离度。2. A tunable magnetostatic wave resonator provided by the present invention, through the design of the cavity structure, and the layout of the microstrip line, the disc, and the YIG substrate, so that the horizontally input radio frequency signal is coupled in the cavity, and then rotates. For vertical upward output, the isolation between input and output is increased.
3、本发明提供的一种可调静磁波谐振器,通过第一微带线和第二微带线的结构设计,实现向YIG薄膜耦合射频信号;同时对U型段与叉型段的间隙、以及微带线宽度的设置,调整耦合到YIG薄膜材料上的射频磁场最强,得到更好的响应波形;并通过控制圆盘大小以及圆盘与YIG薄膜材料之间的距离,对整体谐振器的响应波形进行调整。3. A tunable magnetostatic wave resonator provided by the present invention realizes coupling of radio frequency signals to the YIG film through the structural design of the first microstrip line and the second microstrip line; , and the setting of the width of the microstrip line, adjust the RF magnetic field coupled to the YIG film material to be the strongest, and obtain a better response waveform; and by controlling the size of the disk and the distance between the disk and the YIG film material, the overall resonance adjust the response waveform of the controller.
4、本发明提供的一种可调静磁波谐振器,通过第二微带线的第二过渡段、接地覆盖段,实现了微带线的良好接地,同时接地覆盖段整体呈U型,从与输入端相对的一端形成从外围对YIG基片的包裹,利用导通至下基板背面的接地层实现接地,具有减小基板谐振的效果。4. The tunable magnetostatic wave resonator provided by the present invention realizes the good grounding of the microstrip line through the second transition section and the grounding covering section of the second microstrip line. The end opposite to the input end forms a wrapping of the YIG substrate from the periphery, and the grounding layer conducted to the backside of the lower substrate is used to realize the grounding, which has the effect of reducing the resonance of the substrate.
附图说明Description of drawings
图1为本发明实施例的可调静磁波谐振器的立体结构图。FIG. 1 is a three-dimensional structural diagram of a tunable magnetostatic wave resonator according to an embodiment of the present invention.
图2为本发明实施例的可调静磁波谐振器的正视图;2 is a front view of a tunable magnetostatic wave resonator according to an embodiment of the present invention;
图3为本发明实施例的可调静磁波谐振器的下基板及YIG基片的结构示意图;3 is a schematic structural diagram of a lower substrate and a YIG substrate of a tunable magnetostatic wave resonator according to an embodiment of the present invention;
图4为本发明实施例的可调静磁波谐振器的下基板的背部视图;4 is a back view of a lower substrate of a tunable magnetostatic wave resonator according to an embodiment of the present invention;
图5为本发明实施例的可调静磁波谐振器的第一微带线和第二微带线结构图;5 is a structural diagram of a first microstrip line and a second microstrip line of a tunable magnetostatic wave resonator according to an embodiment of the present invention;
图6为本发明实施例的可调静磁波谐振器在外置磁场为2512Oe时的三维电磁仿真结果。FIG. 6 is a three-dimensional electromagnetic simulation result of the tunable magnetostatic wave resonator according to the embodiment of the present invention when the external magnetic field is 2512 Oe.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面结合附图对本发明的实施方式进行详细说明,但本发明所描述的实施例是本发明一部分实施例,而不是全部的实施例。In order to make the purposes, technical solutions and advantages of the embodiments of the present invention clearer, the embodiments of the present invention will be described in detail below with reference to the accompanying drawings, but the embodiments described in the present invention are a part of the embodiments of the present invention, not all of the embodiments. .
实施例Example
实施例提供的一种可调静磁波谐振器,如图1~图2所示,包括:A tunable magnetostatic wave resonator provided by the embodiment, as shown in FIG. 1 to FIG. 2 , includes:
谐振器主体1,所述谐振器主体1包括谐振腔、设于谐振腔内的下基板7、设于谐振腔一侧的射频输入端2和设于谐振腔顶部的射频输出端3;Resonator main body 1, the resonator main body 1 includes a resonant cavity, a
第一微带线4,所述第一微带线4位于下基板7之上、并与伸入谐振腔内的射频输入端2连接;a
第二微带线5,所述第二微带线5位于下基板7之上、并与第一微带线4耦合;a
圆盘31,所述圆盘31与从谐振腔顶部伸入谐振腔内的射频输出端3连接;a
YIG基片6,所述YIG基片6包括连接第一微带线4的GGG(即钆镓石榴石)基片61和生长于GGG基片61表面的YIG薄膜62;所述YIG基片6位于第一微带线4和第二微带线5之上,且完全覆盖第一微带线4和第二微带线5的耦合区域;所述YIG基片6位于圆盘31正下方。YIG substrate 6, the YIG substrate 6 includes a GGG (ie gadolinium gallium garnet)
具体的,射频输入端2和射频输出端3采用射频绝缘子,射频输入端2通过焊接与第一微带线4连接,用于输入射频信号,射频输出端3通过导电胶与圆盘31连接,用于输出射频信号。Specifically, the radio
具体的,谐振腔由金属铝制成,包括:第一腔10,下基板7、第一微带线4、第二微带线5和YIG基片6均位于第一腔10中;第二腔11,所述第二腔11是第一腔10顶部向上凸出形成的,YIG基片6的顶面位于第二腔内,YIG基片6的两侧面与第二腔11的侧面之间有间距;第三腔12,所述第三腔12是第二腔11顶部向上凸出形成的,圆盘31位于第三腔12内,射频输出端3下部伸入第三腔12内并连接圆盘31。Specifically, the resonant cavity is made of metal aluminum, and includes: a
如图3~图5所示,第一微带线4沿下基板7长度方向设置,第一微带线4包括依次连接的输入段41、第一过渡段42、U型段43,输入段41连接射频输入端2;所述第二微带线5包括依次连接的叉型段51、第二过渡段52、接地覆盖段53,叉型段51呈山字型,具有两个内凹处。所述U型段43的两个分支位于叉型段51的两个内凹中、且U型段43与叉型段51不接触,所述接地覆盖段53上设有接地导通孔54,接地导通孔54贯通下基板7并与下基板7底面设置的接地层71连接;所述GGG基片61位于U型段43和叉型段51上方、并与U型段43和叉型段51接触,所述GGG基片61完全覆盖U型段43和叉型段51、且不接触接地覆盖段53。As shown in FIG. 3 to FIG. 5 , the
如图5所示,接地覆盖段53呈U型,包括与第二过渡段52垂直连接的第一接地段、以及分别垂直连接于第一接地段两端的两个第二接地段,第二接地段位于下基板7长度方向两侧,所述第二接地段的长度等于下基板7的长度,第一接地段的长度等于下基板7的宽度。输入段41宽度大于第一过渡段42宽度,第一过渡段42宽度与第二过渡段52宽度相等。第一微带线4和第二微带线5关于下基板7长度方向的中线轴对称。As shown in FIG. 5 , the
如图2所示,所述谐振器主体1处于外置磁场8中,外置磁场8的两个磁极分别位于谐振器主体1的两侧,方向平行于下基板7宽度方向。As shown in FIG. 2 , the resonator body 1 is in an external
实施例提供的一种可调静磁波谐振器,在外置磁场8的作用下,当输入射频信号频率与YIG薄膜62的铁磁共振频率相等时,射频输入端2的第一微带线4将水平入射的射频信号耦合到与下基板7相连的YIG基片6上,再耦合到圆盘31,经射频输出端3向上垂直输出。随着外置磁场大小的变化,YIG薄膜62铁磁共振频率发生变化,从而实现可调谐特性。In the tunable magnetostatic wave resonator provided by the embodiment, under the action of the external
图6为本发明实施例的可调静磁波谐振器在外置磁场为2512Oe时的三维电磁仿真结果;外置磁场8的磁场大小范围设置为816Oe到3555Oe。由图6可知,当外置磁场8的大小为2512Oe时,本发明实施例的谐振器的3dB带宽为6.7MHz,Q值达到4300左右。6 is a three-dimensional electromagnetic simulation result of the tunable magnetostatic wave resonator according to the embodiment of the present invention when the external magnetic field is 2512 Oe; the magnetic field size range of the external
因此,本发明采用钇铁石榴石薄膜替代钇铁石榴石小球作为谐振子,采用微带线结构替代复杂的耦合电路结构,得到的可调静磁波谐振器可实现从4GHz-12GHz频段内可调谐,3dB带宽极窄,Q值范围为2000~4500,不仅有效提高了谐振器的组装调测效率,还简化了加工工艺,降低了加工成本,更有利于实现对钇铁石榴石调谐谐振器的批量化生产。Therefore, in the present invention, the yttrium iron garnet film is used to replace the yttrium iron garnet ball as the resonator, and the microstrip line structure is used to replace the complex coupling circuit structure, and the obtained tunable magnetostatic wave resonator can be tunable in the frequency band of 4GHz-12GHz, The 3dB bandwidth is extremely narrow, and the Q value ranges from 2000 to 4500, which not only effectively improves the assembly and commissioning efficiency of the resonator, but also simplifies the processing technology, reduces the processing cost, and is more conducive to the realization of batches of yttrium iron garnet tuning resonators production.
以上仅为本发明的优选实施例,并不表示是唯一的或是限制本发明。本领域技术人员应理解,在不脱离本发明的范围情况下,对本发明进行的各种改变或同等替换,均属于本发明保护的范围。The above are only preferred embodiments of the present invention, and are not intended to be the only or limit the present invention. Those skilled in the art should understand that, without departing from the scope of the present invention, various changes or equivalent substitutions made to the present invention all belong to the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210061911.XA CN114069185B (en) | 2022-01-19 | 2022-01-19 | A tunable magnetostatic wave resonator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210061911.XA CN114069185B (en) | 2022-01-19 | 2022-01-19 | A tunable magnetostatic wave resonator |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114069185A CN114069185A (en) | 2022-02-18 |
CN114069185B true CN114069185B (en) | 2022-05-03 |
Family
ID=80231325
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210061911.XA Active CN114069185B (en) | 2022-01-19 | 2022-01-19 | A tunable magnetostatic wave resonator |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114069185B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114865254B (en) * | 2022-06-27 | 2023-06-02 | 成都威频科技有限公司 | Waveguide type adjustable band-pass filter |
CN115911797B (en) * | 2023-03-10 | 2023-07-28 | 成都威频科技有限公司 | Up-down coupling adjustable band-pass filter |
CN115939708B (en) * | 2023-03-10 | 2023-06-02 | 成都威频科技有限公司 | Up-down coupling wide-bandwidth adjustable band-pass filter |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA950055A (en) * | 1970-08-17 | 1974-06-25 | Westinghouse Electric Corporation | Yig filter having a single substrate with all transmission line means located on a common surface thereof |
CN1300438A (en) * | 1999-04-22 | 2001-06-20 | Tdk株式会社 | Magnetostatic wave device |
CN101017922A (en) * | 2006-12-11 | 2007-08-15 | 电子科技大学 | Static magnetic surface wave band pass filter |
CN104112895A (en) * | 2014-07-09 | 2014-10-22 | 电子科技大学 | Microwave-frequency-band adjustable microstrip directional coupler |
CN104466338A (en) * | 2014-09-18 | 2015-03-25 | 电子科技大学 | YIG magnetic static wave resonator |
CN104919647A (en) * | 2012-11-16 | 2015-09-16 | 深圳市大富科技股份有限公司 | Tunable coupling device and radio frequency communication device |
CN107181029A (en) * | 2017-05-27 | 2017-09-19 | 中国电子科技集团公司第四十研究所 | A kind of wide-band double-tuned YIG-filter quickly tuned |
CN113540717A (en) * | 2021-09-15 | 2021-10-22 | 成都威频科技有限公司 | Adjustable band-pass filter |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004056256A1 (en) * | 2004-11-22 | 2006-05-24 | Rohde & Schwarz Gmbh & Co. Kg | Basic body for a YIG filter with eddy current suppression |
EP3609077A1 (en) * | 2018-08-09 | 2020-02-12 | Rohde & Schwarz GmbH & Co. KG | High frequency yttrium iron garnet oscillator as well as method of manufacturing a high frequency yttrium iron garnet oscillator |
-
2022
- 2022-01-19 CN CN202210061911.XA patent/CN114069185B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA950055A (en) * | 1970-08-17 | 1974-06-25 | Westinghouse Electric Corporation | Yig filter having a single substrate with all transmission line means located on a common surface thereof |
CN1300438A (en) * | 1999-04-22 | 2001-06-20 | Tdk株式会社 | Magnetostatic wave device |
CN101017922A (en) * | 2006-12-11 | 2007-08-15 | 电子科技大学 | Static magnetic surface wave band pass filter |
CN104919647A (en) * | 2012-11-16 | 2015-09-16 | 深圳市大富科技股份有限公司 | Tunable coupling device and radio frequency communication device |
CN104112895A (en) * | 2014-07-09 | 2014-10-22 | 电子科技大学 | Microwave-frequency-band adjustable microstrip directional coupler |
CN104466338A (en) * | 2014-09-18 | 2015-03-25 | 电子科技大学 | YIG magnetic static wave resonator |
CN107181029A (en) * | 2017-05-27 | 2017-09-19 | 中国电子科技集团公司第四十研究所 | A kind of wide-band double-tuned YIG-filter quickly tuned |
CN113540717A (en) * | 2021-09-15 | 2021-10-22 | 成都威频科技有限公司 | Adjustable band-pass filter |
Non-Patent Citations (3)
Title |
---|
MSFVW DIMENSIONAL RESONANCES OF A YIG-FILM CAVITY;J Chewnpu等;《IEEE 1988 Ultrasonics Symposium Proceedings》;19881231;全文 * |
微波器件应用的两个YIG平行层间的电磁耦合;昌贵;《磁性材料及器件》;19751001;全文 * |
静磁表面波各向异性对带通滤波器带宽的影响;杨青慧;《电子科技大学学报》;20060831;第35卷(第4期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN114069185A (en) | 2022-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114069185B (en) | A tunable magnetostatic wave resonator | |
CN113540717B (en) | Adjustable band-pass filter | |
US4626800A (en) | YIG thin film tuned MIC oscillator | |
CN115995664B (en) | YIG thin film resonator based on coplanar waveguide | |
US5418507A (en) | Yig tuned high performance filters using full loop, nonreciprocal coupling | |
CN219436960U (en) | YIG thin film resonator | |
CN103715486B (en) | Symmetric form function alternative spatial magnetoelectricity-amicrowave microwave filter and method | |
US3448409A (en) | Integrated microwave circulator and filter | |
CN104466338B (en) | YIG magnetic static wave resonator | |
Du et al. | A magnetically tunable bandpass filter with high out-of-band suppression | |
US4188594A (en) | Fixed frequency filters using epitaxial ferrite films | |
US3748605A (en) | Tunable microwave filters | |
WO1998052276A1 (en) | Microwave linear oscillator/amplifier utilizing a multicoupled ferrite resonator | |
CN114914647A (en) | A Tunable Broadband Band Stop Filter Based on Ferrite Materials | |
US4992760A (en) | Magnetostatic wave device and chip therefor | |
CN220042243U (en) | Double Y-shaped distributed ferrite circulator | |
CN107919517B (en) | Planarized High-Q Tunable Magnetostatic Wave Resonator | |
US4789844A (en) | Broad-band non-reciprocal microwave devices | |
US4983936A (en) | Ferromagnetic resonance device | |
CN115863946A (en) | High-isolation adjustable band-pass filter | |
CN116526104B (en) | Planarization YIG coupled resonance structure based on 3D integration process | |
Kinoshita et al. | Planar resonator and integrated oscillator using magnetostatic waves | |
CN114865254B (en) | Waveguide type adjustable band-pass filter | |
CN115036660B (en) | A working bandwidth dynamically tunable microstrip filter and its adjustment method | |
Arabi et al. | A planar and tunable bandpass filter on a ferrite substrate with integrated windings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |