CN114057176B - Lithium iron phosphate and its preparation methods and applications - Google Patents
Lithium iron phosphate and its preparation methods and applications Download PDFInfo
- Publication number
- CN114057176B CN114057176B CN202111387890.2A CN202111387890A CN114057176B CN 114057176 B CN114057176 B CN 114057176B CN 202111387890 A CN202111387890 A CN 202111387890A CN 114057176 B CN114057176 B CN 114057176B
- Authority
- CN
- China
- Prior art keywords
- iron phosphate
- lithium
- lithium iron
- preparation
- phosphate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 title claims abstract description 49
- 238000002360 preparation method Methods 0.000 title claims abstract description 15
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 claims abstract description 37
- 239000002243 precursor Substances 0.000 claims abstract description 18
- IMQLKJBTEOYOSI-GPIVLXJGSA-N Inositol-hexakisphosphate Chemical compound OP(O)(=O)O[C@H]1[C@H](OP(O)(O)=O)[C@@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@@H]1OP(O)(O)=O IMQLKJBTEOYOSI-GPIVLXJGSA-N 0.000 claims abstract description 13
- IMQLKJBTEOYOSI-UHFFFAOYSA-N Phytic acid Natural products OP(O)(=O)OC1C(OP(O)(O)=O)C(OP(O)(O)=O)C(OP(O)(O)=O)C(OP(O)(O)=O)C1OP(O)(O)=O IMQLKJBTEOYOSI-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229940068041 phytic acid Drugs 0.000 claims abstract description 13
- 239000000467 phytic acid Substances 0.000 claims abstract description 13
- 235000002949 phytic acid Nutrition 0.000 claims abstract description 13
- 229910019142 PO4 Inorganic materials 0.000 claims abstract description 11
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims abstract description 10
- 239000010452 phosphate Substances 0.000 claims abstract description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000007788 liquid Substances 0.000 claims abstract description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 9
- 238000001914 filtration Methods 0.000 claims abstract description 8
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 5
- 229910003002 lithium salt Inorganic materials 0.000 claims abstract description 5
- 159000000002 lithium salts Chemical class 0.000 claims abstract description 5
- 238000001354 calcination Methods 0.000 claims abstract description 4
- 150000003839 salts Chemical class 0.000 claims abstract description 3
- 229910000398 iron phosphate Inorganic materials 0.000 claims description 28
- 239000000203 mixture Substances 0.000 claims description 16
- 238000006243 chemical reaction Methods 0.000 claims description 13
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 11
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 11
- 239000003513 alkali Substances 0.000 claims description 8
- 210000001124 body fluid Anatomy 0.000 claims description 8
- 239000010839 body fluid Substances 0.000 claims description 8
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 7
- 229910001416 lithium ion Inorganic materials 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 7
- 229910021578 Iron(III) chloride Inorganic materials 0.000 claims description 6
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 6
- 239000010406 cathode material Substances 0.000 claims description 6
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 claims description 6
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 claims description 6
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical class [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 claims description 5
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 5
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 5
- 239000008103 glucose Substances 0.000 claims description 5
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims description 5
- 229910052808 lithium carbonate Inorganic materials 0.000 claims description 5
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 claims description 4
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 claims description 2
- 239000005695 Ammonium acetate Substances 0.000 claims description 2
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 claims description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 2
- 229930006000 Sucrose Natural products 0.000 claims description 2
- 229940043376 ammonium acetate Drugs 0.000 claims description 2
- 235000019257 ammonium acetate Nutrition 0.000 claims description 2
- 239000002041 carbon nanotube Substances 0.000 claims description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 2
- YNQRWVCLAIUHHI-UHFFFAOYSA-L dilithium;oxalate Chemical compound [Li+].[Li+].[O-]C(=O)C([O-])=O YNQRWVCLAIUHHI-UHFFFAOYSA-L 0.000 claims description 2
- 229910021389 graphene Inorganic materials 0.000 claims description 2
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 claims description 2
- 229910000360 iron(III) sulfate Inorganic materials 0.000 claims description 2
- 239000001632 sodium acetate Substances 0.000 claims description 2
- 235000017281 sodium acetate Nutrition 0.000 claims description 2
- 239000005720 sucrose Substances 0.000 claims description 2
- 239000005955 Ferric phosphate Substances 0.000 abstract description 10
- 229940032958 ferric phosphate Drugs 0.000 abstract description 10
- 229910000399 iron(III) phosphate Inorganic materials 0.000 abstract description 10
- 238000001035 drying Methods 0.000 abstract 2
- 238000002156 mixing Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- 238000000227 grinding Methods 0.000 description 6
- 235000021317 phosphate Nutrition 0.000 description 6
- 238000005245 sintering Methods 0.000 description 6
- 238000001694 spray drying Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 230000032683 aging Effects 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 230000002431 foraging effect Effects 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 239000012066 reaction slurry Substances 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000011267 electrode slurry Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000007774 positive electrode material Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- QSNQXZYQEIKDPU-UHFFFAOYSA-N [Li].[Fe] Chemical compound [Li].[Fe] QSNQXZYQEIKDPU-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 239000011883 electrode binding agent Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000010450 olivine Substances 0.000 description 1
- 229910052609 olivine Inorganic materials 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/16—Oxyacids of phosphorus; Salts thereof
- C01B25/26—Phosphates
- C01B25/45—Phosphates containing plural metal, or metal and ammonium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
技术领域Technical field
本发明涉及电池技术领域,具体涉及一种磷酸铁锂及其制备方法和应用。The invention relates to the field of battery technology, and in particular to lithium iron phosphate and its preparation method and application.
背景技术Background technique
随着全世界石油资源的不断减少和汽车尾气对环境污染的日益严重,混合电动车(HEV)和电动车(EV)己成为将来燃油驱动汽车的替代者而备受关注,而移动电源系统是作为电动汽车的关键部件之一。因此,高性能(即高比能量、长寿命、安全性)、低成本和环境友好的电池将成为移动电源产业发展的重点和热点。锂离子电池正是为适应这一需求而发展起来的新一代绿色高能充电电池。它具有电压高、体积小、质量轻、比能量高、无记忆效应、无污染、自放电小、寿命长等突出优点。With the continuous reduction of oil resources around the world and the increasingly serious environmental pollution caused by automobile exhaust, hybrid electric vehicles (HEV) and electric vehicles (EV) have attracted much attention as substitutes for fuel-driven vehicles in the future, and mobile power systems are As one of the key components of electric vehicles. Therefore, high-performance (i.e. high specific energy, long life, safety), low-cost and environmentally friendly batteries will become the focus and hot spot of the development of the mobile power industry. Lithium-ion batteries are a new generation of green, high-energy rechargeable batteries developed to meet this demand. It has outstanding advantages such as high voltage, small size, light weight, high specific energy, no memory effect, no pollution, small self-discharge, and long life.
自1997年Padhi等人报道具有橄榄石结构的磷酸铁锂材料可以用作锂离子电池的正极材料,由于其价格便宜、环保无污染、不吸潮、热稳定性好等优点,成为目前最具潜力的正极材料之一,为广大科研机构和商业机构所关注。近年来,许多科研工作者对该材料做了大量的研究、开发和改进,目前该材料已经逐步走向商业化,并运用于高容量、高功率和长寿命型锂离子电池市场当中。磷酸铁锂代表着动力电池正极材料的未来发展方向。Since Padhi et al. reported in 1997 that lithium iron phosphate material with olivine structure can be used as the cathode material of lithium-ion batteries, it has become the most popular material at present due to its advantages such as low price, environmental protection and pollution-free, non-hygroscopicity and good thermal stability. One of the most promising cathode materials, it has attracted the attention of the majority of scientific research institutions and commercial institutions. In recent years, many scientific researchers have done a lot of research, development and improvement of this material. At present, this material has gradually moved towards commercialization and is used in the high-capacity, high-power and long-life lithium-ion battery market. Lithium iron phosphate represents the future development direction of power battery cathode materials.
目前,固相合成法是制备商业用磷酸铁锂的主要方法,但是由于二价铁源成本高、保存困难且合成的磷酸铁锂粒径大、均匀性差等缺陷难以满足动力型锂离子电池的需求。所以采用价廉且性能稳定的三价铁代替二价铁作铁源,合成磷酸铁为前驱体制备磷酸铁锂。合成磷酸铁的合成方法通常是用三氯化铁或硝酸铁溶液与磷酸反应,然后在高温下使氯化氢或硝酸分解挥发,得到磷酸铁。At present, solid-phase synthesis is the main method for preparing commercial lithium iron phosphate. However, due to the high cost of divalent iron sources, difficulty in preservation, and the large particle size and poor uniformity of the synthesized lithium iron phosphate, it is difficult to meet the requirements of power lithium-ion batteries. need. Therefore, cheap and stable ferric iron is used as the iron source instead of divalent iron, and ferric phosphate is synthesized as the precursor to prepare lithium iron phosphate. The synthesis method of ferric phosphate is usually to react ferric chloride or ferric nitrate solution with phosphoric acid, and then decompose and volatilize hydrogen chloride or nitric acid at high temperature to obtain ferric phosphate.
但是,磷酸铁锂由于其固有的特性(室温下其电子导电率和离子扩散速率低,分别为10-8-10-10S/cm和10-12-10-14cm2/s)导致磷酸铁锂作为正极材料的电池在低温下时充放电性能都有显著衰减。However , lithium iron phosphate causes phosphoric acid to be Batteries using lithium iron as the cathode material have significant attenuation in charge and discharge performance at low temperatures.
发明内容Contents of the invention
本发明的目的是提供一种磷酸铁锂及其制备方法和应用,能够显著提升其低温性能。The purpose of the present invention is to provide a lithium iron phosphate and its preparation method and application, which can significantly improve its low-temperature performance.
为了实现以上目的,本发明采用的技术方案:In order to achieve the above objects, the technical solution adopted by the present invention is:
本发明公开了一种磷酸铁锂的制备方法,包括以下步骤:The invention discloses a preparation method of lithium iron phosphate, which includes the following steps:
(1)将三价铁盐、植酸、磷酸盐在水中混合反应,得到磷酸铁前驱体液;(1) Mix and react ferric iron salts, phytic acid, and phosphate in water to obtain iron phosphate precursor body fluid;
(2)将步骤(1)得到的磷酸铁前驱体液过滤、干燥、煅烧,得到磷酸铁;(2) Filter, dry, and calcine the iron phosphate precursor body fluid obtained in step (1) to obtain iron phosphate;
(3)将步骤(2)得到的磷酸铁与锂盐、碳源在水中混合,然后干燥、煅烧,得到磷酸铁锂。(3) Mix the iron phosphate obtained in step (2) with lithium salt and carbon source in water, then dry and calcine to obtain lithium iron phosphate.
作为优选的技术方案,所述步骤(1)中,三价铁盐包括但不限于氯化铁、硝酸铁、硫酸铁中的一种或几种混合。As a preferred technical solution, in step (1), the trivalent iron salt includes but is not limited to one or a mixture of ferric chloride, ferric nitrate, and ferric sulfate.
作为优选的技术方案,所述步骤(1)中,磷酸盐包括但不限于H3PO4、(NH4)3PO4、(NH4)2HPO4、(NH4)H2PO4中的一种或几种混合。As a preferred technical solution, in step (1), phosphates include but are not limited to H 3 PO 4 , (NH 4 ) 3 PO 4 , (NH 4 ) 2 HPO 4 , (NH 4 )H 2 PO 4 One or a mixture of several.
作为优选的技术方案,所述步骤(1)中,植酸与磷酸盐的摩尔比为1:999-999:1。As a preferred technical solution, in the step (1), the molar ratio of phytic acid to phosphate is 1:999-999:1.
作为优选的技术方案,所述步骤(1)中,往反应体系中加入碱液,将pH值控制为小于7。As a preferred technical solution, in step (1), alkali solution is added to the reaction system to control the pH value to less than 7.
作为优选的技术方案,所述碱液包括但不限于氨水、氢氧化钠溶液、醋酸钠溶液、醋酸铵溶液中的一种或几种混合。As a preferred technical solution, the alkali solution includes but is not limited to one or a mixture of ammonia water, sodium hydroxide solution, sodium acetate solution, and ammonium acetate solution.
作为优选的技术方案,所述步骤(1)中,反应为常温反应。As a preferred technical solution, in step (1), the reaction is a room temperature reaction.
作为优选的技术方案,所述步骤(2)中,磷酸铁前驱体液过滤前加入碱液稀释或磷酸铁前驱体液过滤时加入碱液洗涤。As a preferred technical solution, in step (2), alkali solution is added to dilute the iron phosphate precursor body fluid before filtration or alkali solution is added to wash the iron phosphate precursor body fluid when filtering.
作为优选的技术方案,所述步骤(2)中,煅烧温度为100-800℃。As a preferred technical solution, in step (2), the calcination temperature is 100-800°C.
作为优选的技术方案,所述步骤(3)中,锂盐包括但不限于碳酸锂、氢氧化锂、硝酸锂、草酸锂中的一种或几种混合。As a preferred technical solution, in step (3), the lithium salt includes but is not limited to one or a mixture of lithium carbonate, lithium hydroxide, lithium nitrate, and lithium oxalate.
作为优选的技术方案,所述步骤(3)中,碳源包括但不限于葡萄糖、蔗糖、碳纳米管、石墨烯中的一种或几种的混合。As a preferred technical solution, in the step (3), the carbon source includes but is not limited to one or a mixture of glucose, sucrose, carbon nanotubes, and graphene.
本发明还公开了上述制备方法制备的磷酸铁锂在锂离子电池正极材料中的应用。The invention also discloses the application of the lithium iron phosphate prepared by the above preparation method in the cathode material of lithium ion battery.
本发明的有益效果:Beneficial effects of the present invention:
本发明利用植酸和磷酸盐形成磷酸基团作为磷源,与三价铁盐合成磷酸铁,然后将该磷酸铁为前驱体制备磷酸铁锂。本发明通过植酸和磷酸盐的搭配使用,使制备得到的磷酸铁锂的低温性能显著提升。The present invention uses phytic acid and phosphate to form a phosphate group as a phosphorus source, synthesizes iron phosphate with ferric iron salt, and then uses the iron phosphate as a precursor to prepare lithium iron phosphate. The present invention significantly improves the low-temperature performance of the prepared lithium iron phosphate through the combined use of phytic acid and phosphate.
附图说明Description of drawings
图1是由三价铁盐制备磷酸铁的工艺流程图;Figure 1 is a process flow chart for preparing iron phosphate from ferric salt;
图2是由三价铁盐制备磷酸铁的装置结构图;Figure 2 is a structural diagram of a device for preparing iron phosphate from ferric iron salt;
图3是由磷酸铁制备磷酸铁锂的工艺流程图;Figure 3 is a process flow chart for preparing lithium iron phosphate from iron phosphate;
图4是由磷酸铁制备磷酸铁锂的装置结构图;Figure 4 is a structural diagram of a device for preparing lithium iron phosphate from iron phosphate;
图5是实施例1制得的磷酸铁锂的SEM图;Figure 5 is an SEM image of lithium iron phosphate prepared in Example 1;
图6是实施例1的磷酸铁锂制成扣式电池在-20℃下0.2C放电比容量图;Figure 6 is a 0.2C discharge specific capacity diagram of the button battery made of lithium iron phosphate in Example 1 at -20°C;
图7是实施例2的磷酸铁锂制成扣式电池在-20℃下0.2C放电比容量图;Figure 7 is a 0.2C discharge specific capacity diagram of the button battery made of lithium iron phosphate in Example 2 at -20°C;
图8是对比例1的磷酸铁锂制成扣式电池在-20℃下0.2C放电比容量图。Figure 8 is a 0.2C discharge specific capacity diagram of the button battery made of lithium iron phosphate in Comparative Example 1 at -20°C.
具体实施方式Detailed ways
为了使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明作进一步阐述。In order to make the purpose, technical solutions and advantages of the present invention clearer, the present invention will be further described below in conjunction with the accompanying drawings.
实施例1Example 1
如图1至图4所示,采用如下步骤制备磷酸铁锂:As shown in Figures 1 to 4, the following steps are used to prepare lithium iron phosphate:
(1)将氯化铁溶液、植酸、(NH4)H2PO4、氨水加入反应釜中,控制植酸与(NH4)H2PO4的摩尔比为1:99,控制氨水的加入量将体系pH值调节至2左右,然后在反应釜内常温混合搅拌反应1小时;再将反应浆料泵入老化釜中陈化1小时,得到的磷酸铁前驱体液泵入成品罐中暂存。(1) Add ferric chloride solution, phytic acid, (NH 4 )H 2 PO 4 and ammonia water into the reaction kettle, control the molar ratio of phytic acid to (NH 4 )H 2 PO 4 to 1:99, and control the molar ratio of ammonia water Add the amount to adjust the pH value of the system to about 2, then mix and stir in the reaction kettle at room temperature for 1 hour; then pump the reaction slurry into the aging kettle for aging for 1 hour, and pump the obtained iron phosphate precursor liquid into the finished product tank temporarily. live.
(2)将步骤(1)得到的磷酸铁前驱体液加入氨水稀释,然后泵入板框过滤机中过滤,洗涤至中性;然后将湿物料加入闪蒸干燥机中闪蒸干燥,再加入回转窑中400℃下煅烧,得到磷酸铁。(2) Dilute the ferric phosphate precursor liquid obtained in step (1) with ammonia water, then pump it into a plate and frame filter for filtration, and wash until neutral; then add the wet material to a flash dryer to flash dry, and then add the rotary It is calcined in a kiln at 400°C to obtain iron phosphate.
(3)将步骤(2)得到的磷酸铁、碳酸锂、葡萄糖加入装有水的分散釜中充分分散,然后将浆料加入研磨罐中研磨,再经过喷雾干燥设备喷雾干燥、烧结炉烧结、气流粉碎机粉碎,得到磷酸铁锂。(3) Add the iron phosphate, lithium carbonate, and glucose obtained in step (2) to a dispersion kettle filled with water to fully disperse, then add the slurry to a grinding tank for grinding, and then spray drying with spray drying equipment and sintering in a sintering furnace. Crush it with a jet mill to obtain lithium iron phosphate.
实施例2Example 2
如图1至图4所示,采用如下步骤制备磷酸铁锂:As shown in Figures 1 to 4, the following steps are used to prepare lithium iron phosphate:
(1)将氯化铁溶液、植酸、H3PO4、氨水加入反应釜中,控制植酸与H3PO4的摩尔比为1:99,控制氨水的加入量将体系pH值调节至2左右,然后在反应釜内常温混合搅拌反应1小时;再将反应浆料泵入老化釜中陈化1小时,得到的磷酸铁前驱体液泵入成品罐中暂存。(1) Add ferric chloride solution, phytic acid, H 3 PO 4 and ammonia water into the reaction kettle, control the molar ratio of phytic acid and H 3 PO 4 to 1:99, control the addition amount of ammonia water and adjust the pH value of the system to About 2, then mix and stir the reaction at room temperature in the reaction kettle for 1 hour; then pump the reaction slurry into the aging kettle for aging for 1 hour, and the obtained iron phosphate precursor liquid is pumped into the finished product tank for temporary storage.
(2)将步骤(1)得到的磷酸铁前驱体液加入氨水稀释,然后泵入板框过滤机中过滤,洗涤至中性;然后将湿物料加入闪蒸干燥机中闪蒸干燥,再加入回转窑中400℃下煅烧,得到磷酸铁。(2) Dilute the ferric phosphate precursor liquid obtained in step (1) with ammonia water, then pump it into a plate and frame filter for filtration, and wash until neutral; then add the wet material to a flash dryer to flash dry, and then add the rotary It is calcined in a kiln at 400°C to obtain iron phosphate.
(3)将步骤(2)得到的磷酸铁、碳酸锂、葡萄糖加入装有水的分散釜中充分分散,然后将浆料加入研磨罐中研磨,再经过喷雾干燥设备喷雾干燥、烧结炉烧结、气流粉碎机粉碎,得到磷酸铁锂。(3) Add the iron phosphate, lithium carbonate, and glucose obtained in step (2) to a dispersion kettle filled with water to fully disperse, then add the slurry to a grinding tank for grinding, and then spray drying with spray drying equipment and sintering in a sintering furnace. Crush it with a jet mill to obtain lithium iron phosphate.
对比例1Comparative example 1
采用如下步骤制备磷酸铁锂:Use the following steps to prepare lithium iron phosphate:
(1)将氯化铁溶液、H3PO4、氨水加入反应釜中,控制氨水的加入量将体系pH值调节至2左右,然后在反应釜内常温混合搅拌反应1小时;再将反应浆料泵入老化釜中陈化1小时,得到的磷酸铁前驱体液泵入成品罐中暂存。(1) Add ferric chloride solution, H 3 PO 4 and ammonia water into the reaction kettle, control the amount of ammonia water added to adjust the pH value of the system to about 2, then mix and stir the reaction kettle at room temperature for 1 hour; then add the reaction slurry The material is pumped into the aging kettle for aging for 1 hour, and the obtained iron phosphate precursor liquid is pumped into the finished product tank for temporary storage.
(2)将步骤(1)得到的磷酸铁前驱体液加入氨水稀释,然后泵入板框过滤机中过滤,洗涤至中性;然后将湿物料加入闪蒸干燥机中闪蒸干燥,再加入回转窑中400℃下煅烧,得到磷酸铁。(2) Dilute the ferric phosphate precursor liquid obtained in step (1) with ammonia water, then pump it into a plate and frame filter for filtration, and wash until neutral; then add the wet material to a flash dryer to flash dry, and then add the rotary It is calcined in a kiln at 400°C to obtain iron phosphate.
(3)将步骤(2)得到的磷酸铁、碳酸锂、葡萄糖加入装有水的分散釜中充分分散,然后将浆料加入研磨罐中研磨,再经过喷雾干燥设备喷雾干燥、烧结炉烧结、气流粉碎机粉碎,得到磷酸铁锂。(3) Add the iron phosphate, lithium carbonate, and glucose obtained in step (2) to a dispersion kettle filled with water to fully disperse, then add the slurry to a grinding tank for grinding, and then spray drying with spray drying equipment and sintering in a sintering furnace. Crush it with a jet mill to obtain lithium iron phosphate.
图5是实施例1制得的磷酸铁锂的SEM图,从图中可见实施例1制得的磷酸铁锂粒径均匀。Figure 5 is an SEM image of the lithium iron phosphate prepared in Example 1. It can be seen from the figure that the particle size of the lithium iron phosphate prepared in Example 1 is uniform.
将实施例1、实施例2、对比例1制得的磷酸铁锂分别作为正极材料,先制作正极片:将正极材料、粘结剂、导电剂进行正极配料,获得均匀的正极浆料,将制备好的正极浆料均匀涂布在正极集流体铝箔上获得正极片。将正极片、负极片与隔膜卷绕制备锂离子电芯,注入电解液,制成扣式电池。The lithium iron phosphate prepared in Example 1, Example 2, and Comparative Example 1 was used as a positive electrode material. First, a positive electrode sheet was made: the positive electrode material, binder, and conductive agent were mixed into the positive electrode ingredients to obtain a uniform positive electrode slurry. The prepared positive electrode slurry is evenly coated on the positive electrode current collector aluminum foil to obtain a positive electrode sheet. The positive electrode sheet, the negative electrode sheet and the separator are wound to prepare a lithium-ion battery core, and the electrolyte is injected to form a button battery.
图6是实施例1的磷酸铁锂制成扣式电池在-20℃下0.2C放电比容量图,其-20℃放电比容量可以达到80mAh/g。Figure 6 is a diagram of the discharge specific capacity of the button battery made of lithium iron phosphate in Example 1 at 0.2C at -20°C. The specific discharge capacity at -20°C can reach 80mAh/g.
图7是实施例2的磷酸铁锂制成扣式电池在-20℃下0.2C放电比容量图,其-20℃放电比容量可以达到83mAh/g。Figure 7 is a diagram of the discharge specific capacity of the button battery made of lithium iron phosphate in Example 2 at -20°C at 0.2C. The -20°C discharge specific capacity can reach 83mAh/g.
图8是对比例1的磷酸铁锂制成扣式电池在-20℃下0.2C放电比容量图,其-20℃放电比容量可以达到54mAh/g。Figure 8 is a diagram of the discharge specific capacity of the button battery made of lithium iron phosphate in Comparative Example 1 at -20°C at 0.2C. The -20°C discharge specific capacity can reach 54mAh/g.
通过以上对比可以看出,相对于只使用磷酸的对比例,本发明通过植酸和磷酸盐的搭配使用,使制备得到的磷酸铁锂的低温性能显著提升。It can be seen from the above comparison that, compared with the comparative example of using only phosphoric acid, the present invention significantly improves the low-temperature performance of the prepared lithium iron phosphate through the combined use of phytic acid and phosphate.
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。The basic principles, main features and advantages of the present invention have been shown and described above. Those skilled in the industry should understand that the present invention is not limited by the above embodiments. The above embodiments and descriptions only illustrate the principles of the present invention. Without departing from the spirit and scope of the present invention, the present invention will also have other aspects. Various changes and modifications are possible, which fall within the scope of the claimed invention. The scope of protection of the present invention is defined by the appended claims and their equivalents.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111387890.2A CN114057176B (en) | 2021-11-22 | 2021-11-22 | Lithium iron phosphate and its preparation methods and applications |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111387890.2A CN114057176B (en) | 2021-11-22 | 2021-11-22 | Lithium iron phosphate and its preparation methods and applications |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114057176A CN114057176A (en) | 2022-02-18 |
CN114057176B true CN114057176B (en) | 2023-09-19 |
Family
ID=80279002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111387890.2A Active CN114057176B (en) | 2021-11-22 | 2021-11-22 | Lithium iron phosphate and its preparation methods and applications |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114057176B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114506832A (en) * | 2022-03-08 | 2022-05-17 | 青岛九环新越新能源科技股份有限公司 | Zero-emission recycling production method of iron phosphate and lithium iron phosphate |
CN116154152B (en) * | 2022-12-16 | 2023-12-26 | 贵州胜泽威化工有限公司 | Lithium iron phosphate battery positive electrode slurry and preparation method thereof |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1803590A (en) * | 2005-12-22 | 2006-07-19 | 上海交通大学 | Method for preparing lithium ion battery anode material lithium ion phosphate |
CN101993054A (en) * | 2010-11-17 | 2011-03-30 | 河北师范大学 | Method for preparing lithium ion phosphate material |
CN102173402A (en) * | 2011-01-17 | 2011-09-07 | 深圳科雷拉能源科技有限公司 | Low-temperature continuous production process for lithium iron phosphate and dedicated device therefor |
CN102208625A (en) * | 2011-05-04 | 2011-10-05 | 合肥国轩高科动力能源有限公司 | Preparation method of lithium iron phosphate lithium ion secondary battery cathode material |
KR20140090951A (en) * | 2013-01-10 | 2014-07-18 | 주식회사 엘지화학 | Method for preparing lithium iron phosphate nanopowder |
CN105789573A (en) * | 2016-03-04 | 2016-07-20 | 贵州安达科技能源股份有限公司 | Positive electrode active material of lithium ion battery, preparation method for positive electrode active material, lithium ion battery positive electrode, and lithium ion battery |
CN107565132A (en) * | 2017-08-24 | 2018-01-09 | 高延敏 | The preparation method of the ferric phosphate and its ferric phosphate of preparation, the LiFePO4 and lithium battery of the preparation method of LiFePO4 and its preparation |
CN108735997A (en) * | 2018-05-28 | 2018-11-02 | 深圳市贝特瑞纳米科技有限公司 | A kind of LiFePO4 based composites, preparation method and the usage more than LiFePO4 theoretical capacity |
CN111217347A (en) * | 2018-11-23 | 2020-06-02 | 深圳市贝特瑞纳米科技有限公司 | High-compaction lithium iron phosphate material and preparation method thereof |
CN112142030A (en) * | 2020-08-31 | 2020-12-29 | 合肥国轩高科动力能源有限公司 | Preparation method of low-cost low-temperature lithium iron phosphate |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5778774B2 (en) * | 2010-09-29 | 2015-09-16 | ▲海▼洋王照明科技股▲ふん▼有限公司 | Lithium iron phosphate composite material, its production method and application |
CN102683697B (en) * | 2012-05-14 | 2014-12-17 | 国光电器股份有限公司 | Preparation method of graphene-based LiFePO4/C composite material |
CN104716320B (en) * | 2015-03-10 | 2017-06-16 | 中国科学院过程工程研究所 | A kind of LiFePO4 of composite cladding, its preparation method and lithium ion battery |
US10957910B2 (en) * | 2019-05-01 | 2021-03-23 | Global Graphene Group, Inc. | Particulates of conducting polymer network-protected cathode active material particles for lithium batteries |
-
2021
- 2021-11-22 CN CN202111387890.2A patent/CN114057176B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1803590A (en) * | 2005-12-22 | 2006-07-19 | 上海交通大学 | Method for preparing lithium ion battery anode material lithium ion phosphate |
CN101993054A (en) * | 2010-11-17 | 2011-03-30 | 河北师范大学 | Method for preparing lithium ion phosphate material |
CN102173402A (en) * | 2011-01-17 | 2011-09-07 | 深圳科雷拉能源科技有限公司 | Low-temperature continuous production process for lithium iron phosphate and dedicated device therefor |
CN102208625A (en) * | 2011-05-04 | 2011-10-05 | 合肥国轩高科动力能源有限公司 | Preparation method of lithium iron phosphate lithium ion secondary battery cathode material |
KR20140090951A (en) * | 2013-01-10 | 2014-07-18 | 주식회사 엘지화학 | Method for preparing lithium iron phosphate nanopowder |
CN105789573A (en) * | 2016-03-04 | 2016-07-20 | 贵州安达科技能源股份有限公司 | Positive electrode active material of lithium ion battery, preparation method for positive electrode active material, lithium ion battery positive electrode, and lithium ion battery |
CN107565132A (en) * | 2017-08-24 | 2018-01-09 | 高延敏 | The preparation method of the ferric phosphate and its ferric phosphate of preparation, the LiFePO4 and lithium battery of the preparation method of LiFePO4 and its preparation |
CN108735997A (en) * | 2018-05-28 | 2018-11-02 | 深圳市贝特瑞纳米科技有限公司 | A kind of LiFePO4 based composites, preparation method and the usage more than LiFePO4 theoretical capacity |
CN111217347A (en) * | 2018-11-23 | 2020-06-02 | 深圳市贝特瑞纳米科技有限公司 | High-compaction lithium iron phosphate material and preparation method thereof |
CN112142030A (en) * | 2020-08-31 | 2020-12-29 | 合肥国轩高科动力能源有限公司 | Preparation method of low-cost low-temperature lithium iron phosphate |
Non-Patent Citations (4)
Title |
---|
LFP/C掺杂型PVDF-HFP隔膜及其电化学性能研究;赵虔等;化学研究与应用(07);158-164 * |
正极材料LiFePO_4掺碳改性研究进展;钟艳君等;材料导报(17);35-139 * |
磷酸铁锂微球制备及其电化学性能研究;葛权等;功能材料(13);84-86 * |
镁掺杂磷酸铁锂的碳热还原法制备及表征;李超等;有色金属(冶炼部分)(10);64-67 * |
Also Published As
Publication number | Publication date |
---|---|
CN114057176A (en) | 2022-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105742622A (en) | A kind of olivine structure LiMPO4 surface modified layered lithium-rich manganese-based positive electrode material and preparation method thereof | |
WO2024011862A1 (en) | Iron-based sodium ion full battery and preparation method therefor | |
CN101339992B (en) | Preparation method of lithium vanadium silicate lithium ion battery cathode material | |
CN109119624B (en) | Preparation method of lithium titanium phosphate coated lithium-rich manganese-based positive electrode material | |
CN115101738A (en) | Carbon-coated iron-vanadium bimetallic sodium pyrophosphate phosphate composite material and preparation method and application thereof | |
CN114057176B (en) | Lithium iron phosphate and its preparation methods and applications | |
WO2025077739A1 (en) | Sodium ion battery positive electrode material, preparation method therefor, and use thereof | |
CN114105115B (en) | Production methods and applications of iron phosphate and lithium iron phosphate | |
CN112864372B (en) | Lithium ion battery nickel-rich single crystal positive electrode material with double functional interfaces and preparation method thereof | |
CN111916703A (en) | In-situ synthesis method of lithium iron manganese phosphate/carbon @ graphene composite material | |
CN117727924A (en) | Double-site doped iron-based phosphate composite material and preparation method and application thereof | |
CN114566647B (en) | Calcium phosphate coated high-nickel ternary positive electrode material and preparation method and application thereof | |
CN110085854B (en) | Lithium vanadium phosphate cathode material and preparation method thereof | |
CN103413940B (en) | A kind of synthetic method of positive material nano lithium manganese phosphate of lithium ion battery | |
CN108321390B (en) | Three-dimensional flower-shaped single crystal lithium iron phosphate and preparation method thereof | |
CN114084879B (en) | Lithium iron phosphate and production method and application thereof | |
CN113321198B (en) | Binary metal phosphate cathode material, preparation method and application thereof | |
CN107170976A (en) | A kind of preparation method of cobalt doped lithium titanate nano composite material | |
CN114050250A (en) | A carbon-coated positive electrode material for sodium iron phosphate sodium ion battery, its preparation method and application | |
CN114464793A (en) | A composite cathode material, preparation method thereof, and lithium ion battery | |
CN113942988B (en) | Ferric phosphate and preparation method thereof | |
CN102769134B (en) | Preparation method of lithium ion battery anode composite material LiFePO4/C | |
CN108358249A (en) | A kind of preparation method of anode material for lithium-ion batteries nickel molybdate | |
CN107658438A (en) | Prepare fluorophosphoric acid Naferon porous spongy structural material and method | |
WO2024124694A1 (en) | Composite positive electrode material, as well as preparation method therefor, and use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |