CN114039605B - A Sigma-Delta Modulator with Adjustable Gain - Google Patents
A Sigma-Delta Modulator with Adjustable Gain Download PDFInfo
- Publication number
- CN114039605B CN114039605B CN202111424020.8A CN202111424020A CN114039605B CN 114039605 B CN114039605 B CN 114039605B CN 202111424020 A CN202111424020 A CN 202111424020A CN 114039605 B CN114039605 B CN 114039605B
- Authority
- CN
- China
- Prior art keywords
- switch
- capacitor
- sub
- gain amplifier
- adder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000012546 transfer Methods 0.000 claims abstract description 13
- 239000003990 capacitor Substances 0.000 claims description 117
- 238000005070 sampling Methods 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 3
- 238000013139 quantization Methods 0.000 claims description 2
- 238000012545 processing Methods 0.000 abstract description 2
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M3/00—Conversion of analogue values to or from differential modulation
- H03M3/30—Delta-sigma modulation
- H03M3/322—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M3/368—Continuously compensating for, or preventing, undesired influence of physical parameters of noise other than the quantisation noise already being shaped inherently by delta-sigma modulators
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
Abstract
本发明属于信号处理技术领域,具体涉及一种增益可调节的Sigma‑Delta调制器。本发明采用带有前馈通路的二阶CIFB Discrete‑Time Sigma‑Delta调制器结构,包括:第一积分器、第二积分器、增益控制开关、量化器、反馈DAC,加法器。所述第一积分器的输入端接输入信号和反馈DAC的输出,所述第二积分器的输入端接第一积分器输出、输入信号和反馈DAC的输出,所述量化器的输出经过反馈DAC反馈回第一积分器和第二积分器输入,所述输入信号经过增益控制开关进行信号缩放,所述加法器功能分别在第一积分器、第二积分器和量化器电路上一起实现。在本发明中,通过控制增益放大器的系数实现三种不同组合,实现信号传递函数(STF)的缩放,而噪声传递函数(NTF)保持不变,增大了输入信号的动态范围。
The invention belongs to the technical field of signal processing, and in particular relates to a Sigma-Delta modulator with adjustable gain. The present invention adopts a second-order CIFB Discrete-Time Sigma-Delta modulator structure with a feedforward path, including: a first integrator, a second integrator, a gain control switch, a quantizer, a feedback DAC, and an adder. The input terminal of the first integrator is connected to the input signal and the output of the feedback DAC, the input terminal of the second integrator is connected to the output of the first integrator output, the input signal and the feedback DAC, and the output of the quantizer is fed back The DAC feeds back the input of the first integrator and the second integrator, and the input signal is scaled through a gain control switch, and the function of the adder is implemented on the first integrator, the second integrator and the quantizer circuit respectively. In the present invention, three different combinations are realized by controlling the coefficients of the gain amplifier to realize scaling of the signal transfer function (STF), while the noise transfer function (NTF) remains unchanged, thereby increasing the dynamic range of the input signal.
Description
技术领域technical field
本发明属于信号处理技术领域,具体涉及一种增益可调节的Sigma-Delta调制器。The invention belongs to the technical field of signal processing, in particular to a Sigma-Delta modulator with adjustable gain.
背景技术Background technique
模数转换器(Analog to Digital Converters,ADC)是连接模拟信号和数字信号的桥梁,在现代通信领域中有着广泛的应用。因为自然界的信号本质上是模拟的,所以在集成电路中模数转换器越来越显出其重要性。Sigma-Delta调制器利用噪声整形(Noise-Shaping)和过采样(Oversampling)技术将所关心频带内的噪声搬移到更高的频率并且整形,使得有效带宽内的噪声被有效的抑制,从而提高了ADC的性能。亚微米技术的利用使得较低电源电压的利用,使得Sigma-Delta调制器的研究发展朝着低压低功耗、高精度、高速等方面,以适应在生物、医疗等方面领域的应用。随着输入信号的减小,Sigma-Delta调制器的动态性能急剧减小,为了减轻输入信号减小带来的性能降低,需要对输入信号作放大处理。Analog to Digital Converters (ADC) is a bridge connecting analog signals and digital signals, and has a wide range of applications in the field of modern communications. Because signals in nature are analog in nature, analog-to-digital converters are becoming more and more important in integrated circuits. The Sigma-Delta modulator uses Noise-Shaping and Oversampling technology to move the noise in the frequency band of interest to a higher frequency and shape it, so that the noise in the effective bandwidth is effectively suppressed, thereby improving the ADC performance. The use of sub-micron technology makes the use of lower power supply voltage, making the research and development of Sigma-Delta modulators towards low voltage, low power consumption, high precision, high speed, etc., so as to adapt to the application in the fields of biology and medical treatment. As the input signal decreases, the dynamic performance of the Sigma-Delta modulator decreases sharply. In order to alleviate the performance degradation caused by the decrease of the input signal, the input signal needs to be amplified.
传统带有前馈通路的二阶CIFB Discrete-Time Sigma-Delta调制器的信号传递函数(STF)在参数确定好后,就不会在改变。表达式如下述(1)式:The signal transfer function (STF) of the traditional second-order CIFB Discrete-Time Sigma-Delta modulator with a feedforward path will not change after the parameters are determined. The expression is as follows (1):
传统带有前馈通路的二阶CIFB Discrete-Time Sigma-Delta调制器的噪声传递函数(NTF)在参数确定好后,就不会再改变。表达式如下述(2)式:The noise transfer function (NTF) of the traditional second-order CIFB Discrete-Time Sigma-Delta modulator with a feedforward path will not change after the parameters are determined. The expression is as follows (2):
从上述(1)、(2)式中得出,改变系数b3、b2、b1会改变STF,但是不会改变NTF,所以调制器的噪声整形功能不变。在b3=1、b2=a2,b1=a1的情况,STF=1。From the above formulas (1) and (2), it can be concluded that changing the coefficients b3, b2, and b1 will change the STF, but will not change the NTF, so the noise shaping function of the modulator remains unchanged. In the case of b3=1, b2=a2, and b1=a1, STF=1.
发明内容Contents of the invention
本发明针对现有技术的Sigma-Delta调制器因随着输入信号的减小,Sigma-Delta调制器的动态性能急剧减小,提出一种增益可调节的Sigma-Delta调制器能在调制器部分完成信号放大,减轻了对输入信号幅度的要求。The present invention aims at the Sigma-Delta modulator of prior art because along with the reduction of input signal, the dynamic performance of Sigma-Delta modulator reduces sharply, proposes a kind of gain-adjustable Sigma-Delta modulator can be in the modulator part The signal amplification is completed, which reduces the requirement on the input signal amplitude.
本发明的技术方案为:Technical scheme of the present invention is:
一种增益可调节的Sigma-Delta调制器,包括第一开关、第二开关、第三开关、第一加法器、第二加法器、第三加法器、第一积分器、第二积分器、量化器、反馈DAC、第一增益放大器、第二增益放大器、第三增益放大器、第四增益放大器、第五增益放大器、第六增益放大器、第七增益放大器;其中,第一增益放大器的输入端通过第一开关后接输入信号,第一增益放大器的输出端接第一加法器的一个输入端,第一加法器的另一个输入端接第六增益放大器的输出端,第一加法器的输出端接第一积分器的输入端,第一积分器的输出端接第四增益放大器的输入端;第四增益放大器的输出端接第二加法器的第一输入端,第二加法器的第二输入端接第二增益放大器的输出端,第二加法器的第三输入端接第七增益放大器的输出端,第二加法器的输出端接第二积分器的输入端;第二增益放大器的输入端通过第二开关后接输入信号,第六增益放大器和第七增益放大器的输入端接反馈DAC的反馈输出;第二积分器的输出接第五增益放大器的输入端,第五增益放大器的输出接第三加法器的一个输入端;第三加法器的另一个输入端接第三增益放大器的输出端,第三增益放大器的输入端通过第三开关后接输入信号;第三加法器的输出端接量化器的一个输入端,量化噪声E(z)在量化器输入,量化器的输出为Sigma-Delta调制器的输出,同时量化器的输出接反馈DAC的输入端;所述第一增益放大器(b11、b12、b14)、第二增益放大器(b21、b22、b24)、第三增益放大器(b31、b32、b34)在第一开关、第二开关、第三开关的控制下具有三种不同的增益组合,使得信号传递函数变化,而噪声传递函数不会改变。A Sigma-Delta modulator with adjustable gain, comprising a first switch, a second switch, a third switch, a first adder, a second adder, a third adder, a first integrator, a second integrator, Quantizer, feedback DAC, first gain amplifier, second gain amplifier, third gain amplifier, fourth gain amplifier, fifth gain amplifier, sixth gain amplifier, seventh gain amplifier; wherein, the input end of the first gain amplifier The input signal is connected after the first switch, the output of the first gain amplifier is connected to an input of the first adder, the other input of the first adder is connected to the output of the sixth gain amplifier, and the output of the first adder The terminal is connected to the input terminal of the first integrator, and the output terminal of the first integrator is connected to the input terminal of the fourth gain amplifier; the output terminal of the fourth gain amplifier is connected to the first input terminal of the second adder, and the first input terminal of the second adder Two input ends connect the output end of the second gain amplifier, the third input end of the second adder connects the output end of the seventh gain amplifier, the output end of the second adder connects the input end of the second integrator; the second gain amplifier The input terminal of the second integrator is connected to the input signal after the second switch, and the input terminals of the sixth gain amplifier and the seventh gain amplifier are connected to the feedback output of the feedback DAC; the output of the second integrator is connected to the input terminal of the fifth gain amplifier, and the fifth gain amplifier The output of the third adder is connected to an input end of the third adder; the other input end of the third adder is connected to the output end of the third gain amplifier, and the input end of the third gain amplifier is connected to the input signal after the third switch; the third adder The output terminal of the quantizer is connected to an input terminal of the quantizer, and the quantization noise E (z) is input to the quantizer, and the output of the quantizer is the output of the Sigma-Delta modulator, and the output of the quantizer is connected to the input end of the feedback DAC simultaneously; A gain amplifier (b11, b12, b14), a second gain amplifier (b21, b22, b24), and a third gain amplifier (b31, b32, b34) have the following functions under the control of the first switch, the second switch, and the third switch Three different gain combinations make the signal transfer function change while the noise transfer function does not change.
如图2所示,第一开关、第一增益放大器、第一加法器和第一积分器由开关电容电路实现,具体包括:第一子开关、第二子开关、第三子开关、第四子开关、第五子开关、第六子开关、第七子开关、第八子开关、第九子开关、第十子开关、第十一子开关、第十二子开关、第十三子开关、第十四子开关、第十五子开关、第十六子开关、第一电容、第二电容、第三电容、第四电容、第五电容、第六电容、第七电容、第八电容和跨导放大器;定义增益控制信号为s1和s0、差分输入信号为up和un、共模信号为Vcom、DAC反馈信号为Vrefp和Vrefn、两相不交叠时钟信号φ1和φ2;其中,第一子开关的控制信号为φ2,其一端接Vcom,另一端接第一电容的一端,第一电容为增益电容;第二子开关的控制信号为φ2,其一端接Vcom,另一端接第二电容的一端,第二电容为增益电容;第三子开关的控制信号为φ1·s1,其一端接up,另一端接第一电容的一端;第四子开关的控制信号为φ1·s0,其一端接up,另一端接第二电容的一端;第五子开关的控制信号为φ1,其一端接up,另一端接第三电容的一端,第三电容为采样电容;第六子开关的控制信号为φ2,其一端接Vrefp,另一端接第三电容的一端;第七子开关的控制信号为φ2,其一端接Vrefn,另一端接第四电容的一端,第四电容为采样电容;第八子开关的控制信号为φ1,其一端接un,另一端接第四电容的一端;第九子开关的控制信号为φ1·s0,其一端接un,另一端接第五电容的一端,第五电容为增益电容;第十子开关的控制信号为φ1·s1,其一端接un,另一端接第六电容的一端,第六电容为增益电容;第十一子开关的控制信号为φ2,其一端接Vcom,另一端接第五电容的一端;第十二子开关的控制信号为φ2,其一端接Vcom,另一端接第六电容的一端;第十三子开关的一端接第一电容的另一端、第二电容的另一端、第三电容的另一端,第十三子开关的另一端接跨导放大器的负输入端和第七电容的一端,第七电容的另一端接跨导放大器的正输出端;第十四子开关的一端接第十三子开关的一端,第十四子开关的另一端接Vcom和第十五子开关的一端,第十五子开关的另一端接第四电容的另一端、第五电容的另一端、第六电容的另一端和第十六子开关的一端;第十六子开关的另一端接跨导放大器的正输入端和第八电容的一端,第八电容的另一端接跨导放大器的负输出端;第七电容和第八电容为积分电容;As shown in Figure 2, the first switch, the first gain amplifier, the first adder and the first integrator are implemented by switched capacitor circuits, which specifically include: a first sub-switch, a second sub-switch, a third sub-switch, a fourth Sub-switch, fifth sub-switch, sixth sub-switch, seventh sub-switch, eighth sub-switch, ninth sub-switch, tenth sub-switch, eleventh sub-switch, twelfth sub-switch, thirteenth sub-switch , fourteenth sub-switch, fifteenth sub-switch, sixteenth sub-switch, first capacitor, second capacitor, third capacitor, fourth capacitor, fifth capacitor, sixth capacitor, seventh capacitor, eighth capacitor and transconductance amplifier; define the gain control signal as s 1 and s 0 , the differential input signal as up and un , the common mode signal as V com , the DAC feedback signal as V refp and V refn , and the two-phase non-overlapping clock signal φ 1 and φ 2 ; wherein, the control signal of the first sub-switch is φ 2 , one end of which is connected to V com , and the other end is connected to one end of the first capacitor, the first capacitor is a gain capacitor; the control signal of the second sub-switch is φ 2 , one end of which is connected to V com , the other end is connected to one end of the second capacitor, the second capacitor is a gain capacitor; the control signal of the third sub-switch is φ 1 ·s 1 , one end is connected to up , and the other end is connected to the first capacitor One terminal of the fourth sub-switch is φ 1 ·s 0 , one terminal of which is connected to up and the other terminal is connected to one terminal of the second capacitor; the control signal of the fifth sub-switch is φ 1 , one terminal of which is connected to up and the other One end is connected to one end of the third capacitor, and the third capacitor is a sampling capacitor; the control signal of the sixth sub-switch is φ 2 , one end of which is connected to V refp , and the other end is connected to one end of the third capacitor; the control signal of the seventh sub-switch is φ 2 , one end of which is connected to V refn , the other end is connected to one end of the fourth capacitor, and the fourth capacitor is a sampling capacitor; the control signal of the eighth sub-switch is φ 1 , one end is connected to un , and the other end is connected to one end of the fourth capacitor; The control signal of the ninth sub-switch is φ 1 ·s 0 , one end of which is connected to un and the other end is connected to one end of the fifth capacitor, which is a gain capacitor; the control signal of the tenth sub-switch is φ 1 ·s 1 , One end of it is connected to un , the other end is connected to one end of the sixth capacitor, and the sixth capacitor is a gain capacitor; the control signal of the eleventh sub-switch is φ 2 , one end is connected to V com , and the other end is connected to one end of the fifth capacitor; The control signal of the twelve sub-switches is φ 2 , one end of which is connected to V com , and the other end is connected to one end of the sixth capacitor; one end of the thirteenth sub-switch is connected to the other end of the first capacitor, the other end of the second capacitor, and the third capacitor. The other end of the capacitor, the other end of the thirteenth sub-switch is connected to the negative input end of the transconductance amplifier and one end of the seventh capacitor, and the other end of the seventh capacitor is connected to the positive output end of the transconductance amplifier; one end of the fourteenth sub-switch One end of the thirteenth sub-switch is connected, the other end of the fourteenth sub-switch is connected to V com and one end of the fifteenth sub-switch, the other end of the fifteenth sub-switch is connected to the other end of the fourth capacitor and the other end of the fifth capacitor One end, the other end of the sixth capacitor and one end of the sixteenth sub-switch; the other end of the sixteenth sub-switch is connected to the positive input end of the transconductance amplifier and one end of the eighth capacitor, and the other end of the eighth capacitor is connected to the transconductance amplifier negative output terminal; the seventh capacitor and the eighth capacitor are integral capacitors;
第二开关、第二增益放大器、第二加法器和第二积分器由开关电容电路实现,结构与第一开关、第一增益放大器、第一加法器和第一积分器的开关电容电路相同;第三开关、第三增益放大器和第三加法器由开关电容电路实现,结构与第一开关、第一增益放大器、第一加法器和第一积分器的开关电容电路相同。The second switch, the second gain amplifier, the second adder and the second integrator are realized by a switched capacitor circuit, and the structure is the same as the switched capacitor circuit of the first switch, the first gain amplifier, the first adder and the first integrator; The third switch, the third gain amplifier and the third adder are realized by a switched capacitor circuit, and the structure is the same as that of the first switch, the first gain amplifier, the first adder and the first integrator.
通过增益控制开关,控制系数b11 b21 b31、b12 b22 b32、b14 b24 b34三种组合,使得信号传递函数(STF)变化,可选择的增益有1、2、4倍。而噪声传递函数(NTF)不会改变。其中,系数b11 b21 b31对应信号传递函数(STF)1倍缩放,系数b12 b22 b32对应信号传递函数(STF)2倍缩放,系数b14 b24 b34对应信号传递函数(STF)4倍缩放。Through the gain control switch, the three combinations of control coefficients b11 b21 b31, b12 b22 b32, b14 b24 b34 make the signal transfer function (STF) change, and the selectable gains are 1, 2, and 4 times. The noise transfer function (NTF) does not change. Among them, the coefficient b11 b21 b31 corresponds to the signal transfer function (STF) 1 times scaling, the coefficient b12 b22 b32 corresponds to the signal transfer function (STF) 2 times scaling, and the coefficient b14 b24 b34 corresponds to the signal transfer function (STF) 4 times scaling.
本发明的有益效果为,本发明减小了Sigma-Delta调制器对输入信号幅度的要求,增大了输入信号的动态范围。The beneficial effect of the invention is that the invention reduces the requirement of the Sigma-Delta modulator on the amplitude of the input signal and increases the dynamic range of the input signal.
附图说明Description of drawings
图1为带有前馈通路的二阶CIFB Discrete-Time Sigma-Delta调制器结构。Figure 1 shows the structure of a second-order CIFB Discrete-Time Sigma-Delta modulator with a feedforward path.
图2为调制器增益控制开关电容电路实现。Figure 2 is the realization of the modulator gain control switched capacitor circuit.
图3为时钟信号。Figure 3 is the clock signal.
具体实施方式Detailed ways
下面结合附图,对本发明的具体实施方式作进一步详细描述。The specific implementation manners of the present invention will be further described in detail below in conjunction with the accompanying drawings.
如图1所示,带有前馈通路的二阶CIFB Discrete-Time Sigma-Delta调制器结构包括:第一积分器104、第二积分器105、增益控制开关101、102和103、量化器106、反馈DAC107。As shown in Figure 1, the structure of the second-order CIFB Discrete-Time Sigma-Delta modulator with feed-forward path includes:
所述第一积分器104的输入端接输入信号和反馈DAC107的输出,所述第二积分器105的输入端接第一积分器输出104、输入信号和反馈DAC107的输出,所述量化器106的输出经过反馈DAC107反馈回第一积分器104和第二积分器105输入,所述输入信号经过增益控制开关101、102和103进行信号缩放。The input terminal of the
其中,量化器采用3bits的flash ADC结构,反馈DAC采用3bits的电容形式。Among them, the quantizer adopts a 3bits flash ADC structure, and the feedback DAC adopts a 3bits capacitor form.
图2示出了调制器控制增益的实现方式,其中s1和s0是增益控制信号,up和un是输入信号,Vrefp和Vrefn是DAC反馈信号,Vcom是输入共模信号,Cs0和Cs1是增益电容,Cs是采样电容,Cf是积分电容,φ1和φ2是两相不交叠时钟信号,OTA是跨导运算放大器。Figure 2 shows the implementation of modulator control gain, where s 1 and s 0 are the gain control signals, u p and u n are the input signals, V refp and V refn are the DAC feedback signals, and V com is the input common mode signal , C s0 and C s1 are gain capacitors, C s is a sampling capacitor, C f is an integrating capacitor, φ 1 and φ 2 are two-phase non-overlapping clock signals, and OTA is a transconductance operational amplifier.
具体控制方法如下:The specific control method is as follows:
φ1为高电平时,采样电容Cs对输入信号up和un进行采样,此时φ2为低电平。When φ 1 is high level, the sampling capacitor C s samples the input signals up and un , and φ 2 is low level at this time.
φ1为高电平时,此时φ2为低电平。s1和s0是增益控制信号,当s1和s0均为0时,增益电容Cs0和Cs1此时不对输入信号进行采样,此情况下,当φ2为高电平,φ1为低电平时,积分电容Cf通过OTA作用,对采样电容Cs存储的输入信号进行积分,同时对反馈信号Vrefp和Vrefn进行积分。采样电容Cs对输入信号up、un和反馈信号Vrefp、Vrefn都起作用。对应的系数为:When φ 1 is high level, φ 2 is low level at this time. s 1 and s 0 are gain control signals. When both s 1 and s 0 are 0, the gain capacitors C s0 and C s1 do not sample the input signal at this time. In this case, when φ 2 is high level, φ 1 When the level is low, the integration capacitor C f integrates the input signal stored in the sampling capacitor C s through the OTA function, and integrates the feedback signals V refp and V refn at the same time. The sampling capacitor C s works on both the input signals up , un and the feedback signals V refp , V refn . The corresponding coefficients are:
当s1为0,s0为1时,φ1为高电平时,此时φ2为低电平,增益电容Cs0对输入信号采样。此情况下,当φ2为高电平,φ1为低电平时,积分电容Cf通过OTA作用,对增益电容Cs0存储的输入信号进行积分。增益电容Cs0只对输入信号up、un起作用,对反馈信号Vrefp、Vrefn不起作用。即系数b改变,系数a不变,分别为:When s 1 is 0, s 0 is 1, and φ 1 is high level, φ 2 is low level at this time, and the gain capacitor C s0 samples the input signal. In this case, when φ 2 is high level and φ 1 is low level, the integration capacitor C f acts through OTA to integrate the input signal stored in the gain capacitor C s0 . The gain capacitor C s0 only works on the input signals up and un , and has no effect on the feedback signals V refp and V refn . That is, the coefficient b changes and the coefficient a does not change, respectively:
取Cs0=Cs,此时b=2a,实现了STF的2倍增益,而NTF不变。 Taking C s0 =C s , and b=2a at this time, the double gain of STF is realized, while the NTF remains unchanged.
当s1和s0均为1时,φ1为高电平时,此时φ2为低电平,增益电容Cs0和Cs1对输入信号采样。此情况下,当φ2为高电平,φ1为低电平时,积分电容Cf通过OTA作用,对增益电容Cs0和Cs1存储的输入信号进行积分。增益电容Cs0和Cs1只对输入信号up、un起作用,对反馈信号Vrefp、Vrefn不起作用。即系数b改变,系数a不变,分别为:When s 1 and s 0 are both 1, φ 1 is high level, and φ 2 is low level at this time, gain capacitors C s0 and C s1 sample the input signal. In this case, when φ 2 is at high level and φ 1 is at low level, the integrating capacitor C f acts through OTA to integrate the input signal stored in gain capacitors C s0 and C s1 . The gain capacitors C s0 and C s1 only work on the input signals up and un , and have no effect on the feedback signals V refp and V refn . That is, the coefficient b changes and the coefficient a does not change, respectively:
取Cs0=Cs,Cs1=2Cs,此时b=4a,实现了STF的4倍增益,而NTF不变。 Taking C s0 =C s , C s1 =2C s , and b=4a at this time, a 4-fold gain of the STF is realized, while the NTF remains unchanged.
图3示出了φ1和φ2两相不交叠的时钟信号。Figure 3 shows two non-overlapping clock signals of φ1 and φ2 .
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111424020.8A CN114039605B (en) | 2021-11-26 | 2021-11-26 | A Sigma-Delta Modulator with Adjustable Gain |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111424020.8A CN114039605B (en) | 2021-11-26 | 2021-11-26 | A Sigma-Delta Modulator with Adjustable Gain |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114039605A CN114039605A (en) | 2022-02-11 |
CN114039605B true CN114039605B (en) | 2023-04-25 |
Family
ID=80138977
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111424020.8A Expired - Fee Related CN114039605B (en) | 2021-11-26 | 2021-11-26 | A Sigma-Delta Modulator with Adjustable Gain |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114039605B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014233141A (en) * | 2013-05-29 | 2014-12-11 | 旭化成エレクトロニクス株式会社 | Switching power supply circuit |
CN108832933A (en) * | 2018-05-28 | 2018-11-16 | 全球能源互联网研究院有限公司 | A kind of modulator and its signal output method |
CN111224669A (en) * | 2020-03-10 | 2020-06-02 | 西安电子科技大学 | Design method of sigma-delta modulator for realizing wide input |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4122325B2 (en) * | 2004-10-01 | 2008-07-23 | 松下電器産業株式会社 | Delta-sigma modulation circuit with gain control function |
-
2021
- 2021-11-26 CN CN202111424020.8A patent/CN114039605B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014233141A (en) * | 2013-05-29 | 2014-12-11 | 旭化成エレクトロニクス株式会社 | Switching power supply circuit |
CN108832933A (en) * | 2018-05-28 | 2018-11-16 | 全球能源互联网研究院有限公司 | A kind of modulator and its signal output method |
CN111224669A (en) * | 2020-03-10 | 2020-06-02 | 西安电子科技大学 | Design method of sigma-delta modulator for realizing wide input |
Non-Patent Citations (2)
Title |
---|
Guiping Cao等."An 18-bit sigma–delta switched-capacitor modulator using 4- order single-loop CIFB architecture".《Journal of Semiconductors》.2020,第41卷(第6期),1-9. * |
江帆."基于真分式噪声传递函数的长环路延时连续时间Sigma Delta调制器的研究与设计".《中国优秀硕士学位论文全文数据库 信息科技辑》.2016,I135-1398. * |
Also Published As
Publication number | Publication date |
---|---|
CN114039605A (en) | 2022-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111327323B (en) | Passive Noise Shaping Oversampling Successive Approximation Analog-to-Digital Converter and Control Method | |
US8502719B2 (en) | Continuous-time oversampled converter having passive filter | |
Hu et al. | A 2.87 μW 1kHz-BW 94.0 dB-SNDR 2-0 MASH ADC using FIA with dynamic-body-biasing assisted CLS technique | |
CN115051713B (en) | Integrator and Delta-Sigma Modulator Based on Full Dynamic Amplifier | |
CN104639168A (en) | Sigma-Delta type analog-to-digital converter analog front end circuit | |
CN114157304A (en) | Feedforward type multi-bit quantization sigma-delta modulator | |
CN101599767B (en) | Fourth-order single-loop local negative feedback Sigma-Delta modulator | |
Meng et al. | A partially feedback NSSAR embedded third-order delta–sigma modulator with gain-boosted two-stage FIAs | |
CN114039605B (en) | A Sigma-Delta Modulator with Adjustable Gain | |
Cho | A single op-amp resonator-based continuous-time sigma–delta modulator with time-division switching for excess loop delay compensation | |
CN114900189A (en) | MASH delta-sigma modulator with low noise leakage | |
Fazli Yeknami et al. | A 2.1 μW 80 dB SNR DT ΔΣ modulator for medical implant devices in 65 nm CMOS | |
EP1483834A1 (en) | Delta-sigma modulator with feed-forward path | |
KR102119472B1 (en) | A hybrid delta-sigma modulator compensated with a single low gain amplifier | |
Essawy et al. | A low voltage inverter-based continuous-time sigma delta analog-to-digital converter in 65nm CMOS technology | |
CN111711452B (en) | An Active-Passive Noise Shaping Successive Approximation ADC | |
Tang et al. | A 108-dB SNDR 2–1 MASH $\Delta\Sigma $ Modulator with First-Stage Multibit for Audio Application | |
CN204559547U (en) | A kind of high Two-orders structure Sigma-Delta modulator system | |
CN116961602A (en) | Signal amplifying circuit, signal processing system comprising same and analog-to-digital conversion system | |
CN111865307B (en) | Noise-Shaping Analog-to-Digital Converter | |
CN107612552A (en) | A kind of low power consumption high-precision Sigma_Delta modulators | |
WO2019057990A1 (en) | Continuous-time delta-sigma modulator with inverting-amplifying chains | |
Kozlov et al. | Design process of the MASH 2-2 sigma-delta modulator | |
Tsang et al. | A 1.2 V, 10.8 mW, 500kHz sigma-delta modulator with 84dB SNDR and 96dB SFDR | |
Shen et al. | An 18-Bit 183.9 dB-FoM S, DR MES/Calibration-Free Scalable Zoom ADC Using Fully Passive Coarse Modulator and Gain-Linearity-Enhanced FIA with Sub-1ppm-THD at Full Scale Input in 65-nm CMOS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20230425 |