[go: up one dir, main page]

CN114037017B - Data fusion method based on error distribution fitting - Google Patents

Data fusion method based on error distribution fitting Download PDF

Info

Publication number
CN114037017B
CN114037017B CN202111415720.0A CN202111415720A CN114037017B CN 114037017 B CN114037017 B CN 114037017B CN 202111415720 A CN202111415720 A CN 202111415720A CN 114037017 B CN114037017 B CN 114037017B
Authority
CN
China
Prior art keywords
error
distribution
data
sequence
flight test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111415720.0A
Other languages
Chinese (zh)
Other versions
CN114037017A (en
Inventor
左磊
李治国
禄晓飞
赵政
刘佳琪
徐竟翔
李明
李亚超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN202111415720.0A priority Critical patent/CN114037017B/en
Publication of CN114037017A publication Critical patent/CN114037017A/en
Application granted granted Critical
Publication of CN114037017B publication Critical patent/CN114037017B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/25Fusion techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/277Analysis of motion involving stochastic approaches, e.g. using Kalman filters

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Artificial Intelligence (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了一种基于误差分布拟合的数据融合方法,主要解决现有技术在不同测量数据误差分布不一致的条件下,对多组数据融合准确度低的问题。其方案包括:获取测量的地面试验序列和雷达接收机接收目标的飞行试验序列,并对这两组试验序列求差,得到误差数据;对误差数据进行分布拟合,统计分布拟合后的误差数据,计算其偏度和峰度得到正态分布的误差数据;求解正态分布的未知参数,并将拟合后符合未知参数的正态分布误差数据叠加到地面试验序列,得到融合后的飞行试验序列;对融合后的飞行试验序列进行卡尔曼滤波提高准确度。本发明能判断多组测量数据之间的误差分布特性,提高了融合后的测量数据准确度,可用于通信中对多传感器测量数据的处理。

Figure 202111415720

The invention discloses a data fusion method based on error distribution fitting, which mainly solves the problem of low accuracy of fusion of multiple groups of data in the prior art under the condition of inconsistent error distributions of different measurement data. The scheme includes: acquiring the measured ground test sequence and the flight test sequence of the radar receiver receiving the target, and calculating the difference between these two groups of test sequences to obtain error data; performing distribution fitting on the error data, and statistical distribution of the fitted error data, calculate its skewness and kurtosis to obtain the error data of the normal distribution; solve the unknown parameters of the normal distribution, and superimpose the normal distribution error data conforming to the unknown parameters after fitting to the ground test sequence to obtain the fused flight Test sequence; Kalman filtering is performed on the fused flight test sequence to improve the accuracy. The invention can judge the error distribution characteristics among multiple sets of measurement data, improve the accuracy of the fusion measurement data, and can be used for processing multi-sensor measurement data in communication.

Figure 202111415720

Description

基于误差分布拟合的数据融合方法Data fusion method based on error distribution fitting

技术领域technical field

本发明属于信号处理技术领域,进一步涉及一种数据融合方法,可用于在通信中对多传感器测量数据的处理。The invention belongs to the technical field of signal processing, and further relates to a data fusion method, which can be used for processing multi-sensor measurement data in communication.

背景技术Background technique

随着传感器测量技术的发展,多传感器数据融合技术无论是在军事领域还是民事领域都得到的广泛的应用。单一传感器测量到的实验数据难以反映所需测量对象的完整信息,而在实验中由于需要得到测量对象准确的观测数据,因此出现了许多基于多传感器的数据融合方法。在基于测量数据的误差分布状态下也有着相应的数据融合方法。With the development of sensor measurement technology, multi-sensor data fusion technology has been widely used in both military and civil fields. The experimental data measured by a single sensor is difficult to reflect the complete information of the object to be measured, and in the experiment, due to the need to obtain accurate observation data of the object to be measured, many data fusion methods based on multi-sensors have appeared. There is also a corresponding data fusion method in the state of error distribution based on measurement data.

随着数据分布拟合技术的发展与广泛的应用,多传感器测量的数据存在一定误差分布,使得数据在融合过程中会进一步产生不可预估的误差从而增大融合结果的误差,因此也出现了许多针对测量数据误差处理的办法。在针对数据融合过程中误差的降低也出现相应的误差降低方法。With the development and wide application of data distribution fitting technology, there is a certain error distribution in the data measured by multi-sensors, which will further generate unpredictable errors in the data fusion process and increase the error of fusion results. There are many ways to deal with measurement data errors. There are also corresponding error reduction methods for the reduction of errors in the process of data fusion.

魏利胜等人在“利用数据融合减少陀螺测试数据处理中的误差[J].战术导制技术,2004,(2):47-49.DOI:10.3969/j.issn.1009-1300-B.2004.02.012”中,提出了一种基于自适应加权的数据融合方法,使测量数据方差最小,并且将该方法与基于多次测量去平均值的方法做了比较。最终在测试数据处理中具有较好的结果。但是此方法在实现时由于不要求知道测量数据的任何先验知识,且需要通过测量数据设置相应的权值,其结果对权重的设置有着较高的要求。Wei Lisheng et al. in "Using Data Fusion to Reduce Errors in Gyro Test Data Processing [J]. Tactical Guidance Technology, 2004, (2): 47-49. DOI: 10.3969/j.issn.1009-1300-B.2004.02 .012", a data fusion method based on adaptive weighting is proposed to minimize the variance of the measurement data, and this method is compared with the method based on multiple measurement de-averaging. Finally, it has better results in test data processing. However, since this method does not require any prior knowledge of the measurement data and needs to set the corresponding weights through the measurement data, the result has higher requirements for the weight setting.

耿峰、祝小平等人在“基于模糊多传感器数据融合的目标跟踪系统[J].火力与指挥控制,2008,33(3):93-96.doi:10.3969/j.issn.1002-0640.2008.03.026.”中,为了克服单个传感器的局限性,引入了多传感器数据融合算法MSDF,其不仅可以减小传感器测量的噪声,还可以排除估计过程中的无效测量量。但是此方法缺乏目标运动及估计过程中所包含的传感器前期统计信息。Geng Feng, Zhu Xiaoping and others in "Target Tracking System Based on Fuzzy Multi-sensor Data Fusion [J]. Firepower and Command and Control, 2008, 33(3): 93-96.doi:10.3969/j.issn.1002-0640.2008 .03.026.", in order to overcome the limitations of a single sensor, a multi-sensor data fusion algorithm MSDF is introduced, which can not only reduce the noise of sensor measurements, but also eliminate invalid measurements in the estimation process. However, this method lacks target motion and sensor pre-statistical information included in the estimation process.

上述两种方法在当雷达测量目标信号中包含相应的误差以及地面内场测量目标信息同样存在一定的误差时,其对数据的融合不仅不会降低测量过程中存在的误差,同时还会增大数据融合后的数据误差。When the radar measurement target signal contains corresponding errors and the ground infield measurement target information also has certain errors, the above two methods will not only reduce the errors in the measurement process, but also increase the data fusion. Data error after data fusion.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于针对上述现有技术的不足,提出一种基于误差分布拟合的数据融合方法,用在不同测量条件下对传感器测量数据进行数据融合,降低测量过程中存在的误差,提高融合后的数据准确率。The purpose of the present invention is to propose a data fusion method based on error distribution fitting in view of the above-mentioned shortcomings of the prior art, which is used to perform data fusion on sensor measurement data under different measurement conditions, reduce errors in the measurement process, and improve fusion. The accuracy of the data after.

为实现上述目的,本发明的技术方案包括:To achieve the above purpose, the technical scheme of the present invention includes:

(1)获取雷达接收机接收目标散射随角度变换的序列σ(θ),其中,σ表示目标的散射截面积,θ表示雷达与目标之间的照射视角;(1) Obtain the sequence σ(θ) that the radar receiver receives the target scattering as a function of the angle, where σ represents the scattering cross-sectional area of the target, and θ represents the illumination angle between the radar and the target;

(2)测量目标在运动过程中的飞行试验数据序列σ1(θ)和地面试验数据序列σ2(θ),并计算两者之差Errori(θ),i∈{1,…,i,…,n}表示目标上第i个散射点,n表示目标上的散射点个数;(2) Measure the flight test data sequence σ 1 (θ) and the ground test data sequence σ 2 (θ) during the movement of the target, and calculate the difference Error i (θ), i∈{1,…,i ,...,n} represents the ith scattering point on the target, and n represents the number of scattering points on the target;

(3)计算误差数据的偏度Skew(X)和峰度Kurt(X),利用偏度衡量误差数据分布的方向和程度,利用峰度判断误差数据的分布特性;(3) Calculate the skewness Skew(X) and the kurtosis Kurt(X) of the error data, use the skewness to measure the direction and degree of the error data distribution, and use the kurtosis to judge the distribution characteristics of the error data;

(4)利用概率类方法对(3)中得出的正态分布误差数据进行参数估计:(4) Use the probability class method to estimate the parameters of the normally distributed error data obtained in (3):

(4a)将未知参数

Figure BDA0003375679480000021
看作随机变量,在随机变量被给定的条件下,设飞行试验数据σ1(θ)和地面试验数据σ2(θ)的总体误差x的条件分布为
Figure BDA0003375679480000022
由先验信息得出的先验分布为
Figure BDA0003375679480000023
从总体误差x的条件分布中抽取样本容量为n的样本Z=(x1,x2,…,xi,…,xn)得到样本Z和未知参数
Figure BDA0003375679480000024
的联合概率密度函数
Figure BDA0003375679480000025
(4a) put the unknown parameters
Figure BDA0003375679480000021
As a random variable, under the condition that the random variable is given, the conditional distribution of the overall error x of the flight test data σ 1 (θ) and the ground test data σ 2 (θ) is
Figure BDA0003375679480000022
The prior distribution derived from the prior information is
Figure BDA0003375679480000023
Draw a sample Z=(x 1 ,x 2 ,..., xi ,...,x n ) from the conditional distribution of the overall error x to obtain the sample Z and unknown parameters
Figure BDA0003375679480000024
The joint probability density function of
Figure BDA0003375679480000025

(4b)利用贝叶斯理论公式得样本Z及未知参数

Figure BDA0003375679480000026
的联合分布为:(4b) Using the Bayesian formula to obtain the sample Z and unknown parameters
Figure BDA0003375679480000026
The joint distribution of is:

Figure BDA0003375679480000027
Figure BDA0003375679480000027

(4c)根据联合概率密度函数

Figure BDA0003375679480000028
和后验分布
Figure BDA0003375679480000029
得到样本Z的边缘密度函数m(Z)为:(4c) According to the joint probability density function
Figure BDA0003375679480000028
and the posterior distribution
Figure BDA0003375679480000029
The edge density function m(Z) of the sample Z is obtained as:

Figure BDA00033756794800000210
Figure BDA00033756794800000210

(4d)根据联合分布

Figure BDA00033756794800000211
和边缘密度函数m(Z)得到后验分布
Figure BDA00033756794800000212
(4d) According to the joint distribution
Figure BDA00033756794800000211
and the edge density function m(Z) to get the posterior distribution
Figure BDA00033756794800000212

Figure BDA00033756794800000213
Figure BDA00033756794800000213

其中,

Figure BDA00033756794800000214
为关于未知参数
Figure BDA00033756794800000215
的似然函数;in,
Figure BDA00033756794800000214
for the unknown parameter
Figure BDA00033756794800000215
the likelihood function of ;

(4e)根据极大似然估计原理对似然函数

Figure BDA00033756794800000216
求解,得未知参数
Figure BDA00033756794800000217
为:(4e) According to the principle of maximum likelihood estimation, the likelihood function
Figure BDA00033756794800000216
Solve, get unknown parameters
Figure BDA00033756794800000217
for:

Figure BDA00033756794800000218
Figure BDA00033756794800000218

(5)根据参数

Figure BDA00033756794800000219
将误差数据Error(θ)的拟合结果叠加到地面试验数据,得到到融合后的RCS飞行试验粗序列Locki(θ):(5) According to the parameters
Figure BDA00033756794800000219
The fitting result of the error data Error(θ) is superimposed on the ground test data, and the fused RCS flight test rough sequence Lock i (θ) is obtained:

Locki(θ)=σ2(θ)+histfit[(Error(θ))]Lock i (θ)=σ 2 (θ)+histfit[(Error(θ))]

其中,histfit表示对Error(θ)的分布数据进行拟合;Among them, histfit means fitting the distribution data of Error(θ);

(6)对上述粗序列Lock(θ)依次进行卡尔曼滤波和平滑处理,得到最终的融合后RCS飞行试验序列newLocki(θ):(6) Perform Kalman filtering and smoothing on the above-mentioned coarse sequence Lock(θ) in turn to obtain the final fused RCS flight test sequence newLock i (θ):

newLocki(θ)=AnewLock(i-1)(θ)+BLocki(θ)newLock i (θ)=AnewLock (i-1) (θ)+BLock i (θ)

其中,newLocki(θ)表示i时刻卡尔曼滤波最优估计值,newLock(i-1)为上一刻的最优估计值,A为设定的状态转移矩阵,B为取值为1的单位矩阵,Locki(θ)表示RCS飞行试验粗序列。Among them, newLock i (θ) represents the optimal estimated value of Kalman filter at time i, newLock(i-1) is the optimal estimated value of the previous moment, A is the set state transition matrix, and B is a unit with a value of 1 matrix, Lock i (θ) represents the RCS flight test coarse sequence.

本发明与现有技术相比,具有如下优点:Compared with the prior art, the present invention has the following advantages:

第一、本发明针对在不同测量条件下的测量数据,根据偏度和峰度得到飞行试验序列和地面试验序列之间的误差分布特性为正态分布,根据两者之间的分布特性为正态分布对飞行试验序列和地面试验序列进行处理,降低了两者在融合过程中的误差,提升了融合后飞行试验序列的准确度。First, for the measurement data under different measurement conditions, the present invention obtains that the error distribution between the flight test sequence and the ground test sequence is a normal distribution according to the skewness and kurtosis, and is positive according to the distribution between the two. The state distribution is used to process the flight test sequence and the ground test sequence, which reduces the error of the two during the fusion process and improves the accuracy of the flight test sequence after fusion.

第二、本发明针对飞行试验序列和地面试验序列之间的误差分布为正态分布的特性,对飞行试验序列和地面试验序列先进行数据融合得到RCS飞行试验粗序列,再进一步对其进行卡尔曼滤波,得到准确度较高的RCS飞行试验序列,不仅可以降低飞行试验序列和地面实验序列中的测量误差,而且减小了融合过程中产生的误差。Second, the present invention aims at the characteristic that the error distribution between the flight test sequence and the ground test sequence is a normal distribution, first perform data fusion on the flight test sequence and the ground test sequence to obtain the RCS flight test rough sequence, and then further carry out the Karl Mann filtering can obtain the RCS flight test sequence with high accuracy, which can not only reduce the measurement error in the flight test sequence and the ground test sequence, but also reduce the error generated in the fusion process.

第三、本发明利用概率类估计方法估计误差分布特性的参数时,通过联合概率密度函数

Figure BDA0003375679480000031
和后验分布
Figure BDA0003375679480000032
的乘积得到后验分布
Figure BDA0003375679480000033
可以大幅度减少参数估计过程中的计算量。Third, when the present invention uses the probability class estimation method to estimate the parameters of the error distribution characteristics, the joint probability density function is used to estimate the parameters of the error distribution.
Figure BDA0003375679480000031
and the posterior distribution
Figure BDA0003375679480000032
The product of the posterior distribution is obtained
Figure BDA0003375679480000033
The amount of computation in the parameter estimation process can be greatly reduced.

附图说明Description of drawings

图1为本发明的实现流程图;Fig. 1 is the realization flow chart of the present invention;

图2为雷达测量得到的飞行试验目标散射截面RCS角度序列;Fig. 2 is the RCS angle sequence of the scattering cross section of the flight test target obtained by radar measurement;

图3为在特定内场测量得到的地面试验目标散射截面RCS角度序列;Fig. 3 is the RCS angle sequence of the scattering cross section of the ground test target measured in a specific inner field;

图4为本发明中飞行试验序列和地面试验序列的误差分布直方图;Fig. 4 is the error distribution histogram of flight test sequence and ground test sequence in the present invention;

图5为本发明中通过拟合得到的RCS误差分布直方图;Fig. 5 is the RCS error distribution histogram obtained by fitting in the present invention;

图6为本发明中融合后得到的飞行试验RCS角度序列;Fig. 6 is the flight test RCS angle sequence obtained after fusion in the present invention;

图7为本发明中通过卡尔曼滤波后得到的RCS角度序列。FIG. 7 is an RCS angle sequence obtained by Kalman filtering in the present invention.

具体实施方式Detailed ways

下面结合附图对本发明的实例和效果作进一步详细描述。The examples and effects of the present invention will be described in further detail below in conjunction with the accompanying drawings.

本实例的工作场景包括飞行目标和雷达,雷达上安装有发射天线和接收机。The working scenario of this example includes a flying target and a radar, and the radar is equipped with a transmitting antenna and a receiver.

参照图1,本实例基于误差分布拟合的数据融合方法,实现步骤如下:Referring to Figure 1, this example is based on the data fusion method of error distribution fitting, and the implementation steps are as follows:

步骤1,获取目标的飞行试验序列和地面试验序列。Step 1, obtain the flight test sequence and ground test sequence of the target.

雷达天线发射信号跟踪空中的飞行目标,雷达接收机接收目标飞行过程中的飞行试验序列,表示形式如下:The radar antenna transmits signals to track the flying target in the air, and the radar receiver receives the flight test sequence during the flight of the target. The representation is as follows:

Figure BDA0003375679480000041
Figure BDA0003375679480000041

在地面场内试验测量得到的目标地面试验序列,表示形式如下:The target ground test sequence obtained by the test measurement in the ground field is expressed as follows:

Figure BDA0003375679480000042
Figure BDA0003375679480000042

其中,σ1i表示飞行试验序列中目标第i个散射点的散射截面积,L1i表示飞行试验序列第i个散射点与雷达之间的距离,σ2i表示地面试验序列中目标第i个散射点的散射截面积,L2i表示地面试验序列目标第i个散射点与雷达之间的距离,θ表示雷达与目标之间的照射视角,i∈{1,…,n}表示目标上的散射点个数,n表示目标上共有n个散射点。Among them, σ 1i represents the scattering cross-sectional area of the ith scattering point of the target in the flight test sequence, L 1i represents the distance between the ith scattering point of the flight test sequence and the radar, and σ 2i represents the ith scattering point of the target in the ground test sequence. The scattering cross-sectional area of the point, L 2i is the distance between the ith scattering point of the ground test sequence target and the radar, θ is the illumination angle between the radar and the target, i∈{1,…,n} is the scattering on the target The number of points, n represents a total of n scattering points on the target.

步骤2,计算飞行试验序列和地面试验序列求两者之差,得两者的误差序列。Step 2: Calculate the difference between the flight test sequence and the ground test sequence to obtain the error sequence of the two.

对飞行试验序列和地面实验序列上n个散射点相对应的数值求差得Error(θ):Error(θ) is obtained by calculating the difference between the values corresponding to the n scattering points on the flight test sequence and the ground test sequence:

Error(θ)=(σ11(θ)-σ21(θ))+…+(σ1i(θ)-σ2i(θ))+…(σ1n(θ)+σ2n(θ))Error(θ)=(σ 11 (θ)-σ 21 (θ))+…+(σ 1i (θ)-σ 2i (θ))+…(σ 1n (θ)+σ 2n (θ))

其中,σ1i(θ)表示飞行试验序列上第i个散射点,σ2i(θ)表示地面试验序列上第i个散射点,i∈{1,…,n}。Among them, σ 1i (θ) represents the ith scattering point on the flight test sequence, σ 2i (θ) represents the ith scattering point on the ground test sequence, i∈{1,…,n}.

步骤3,求解误差序列的偏度和峰度。Step 3, solve the skewness and kurtosis of the error series.

3.1)对误差序列Error(θ)进行统计分布,得到服从均值为μ,方差为σ的序列X:3.1) Statistically distribute the error sequence Error(θ) to obtain a sequence X with mean μ and variance σ:

X~NError(θ)(μ,σ2);X~N Error(θ) (μ,σ 2 );

3.2)求解序列X的均值和方差,公式如下:3.2) To solve the mean and variance of the sequence X, the formula is as follows:

Figure BDA0003375679480000043
Figure BDA0003375679480000043

Figure BDA0003375679480000044
Figure BDA0003375679480000044

其中,Xi表示经过统计分布后的第i个数据,n表示统计分布后共n个数据;Among them, Xi represents the i -th data after statistical distribution, and n represents a total of n data after statistical distribution;

3.3)根据序列X和序列X的均值μ和方差σ,计算序列X的偏度Skew(X)和峰度Kurt(X):3.3) Calculate the skewness Skew(X) and the kurtosis Kurt(X) of the sequence X according to the mean μ and variance σ of the sequence X and the sequence X:

Figure BDA0003375679480000051
Figure BDA0003375679480000051

Figure BDA0003375679480000052
Figure BDA0003375679480000052

步骤4,利用偏度衡量误差数据分布的方向和程度,利用峰度判断误差数据的分布特性。Step 4: Use skewness to measure the direction and degree of error data distribution, and use kurtosis to judge the distribution characteristics of error data.

4.1)设定衡量阈值为0,利用偏度衡量误差数据分布的方向和程度:4.1) Set the measurement threshold to 0, and use skewness to measure the direction and degree of error data distribution:

若X的偏度为0,则表示误差数据的方向和程度为居中分布;If the skewness of X is 0, it means that the direction and degree of the error data are centered;

若X的偏度大于0,则表示误差数据的方向和程度为右偏分布;If the skewness of X is greater than 0, it means that the direction and degree of the error data is a right-skewed distribution;

若X的偏度小于0,则表示误差数据的方向和程度为左偏分布。If the skewness of X is less than 0, it means that the direction and degree of the error data are left skewed distribution.

4.2)设定判断阈值为3,利用峰度判断误差数据的分布特性:4.2) Set the judgment threshold to 3, and use the kurtosis to judge the distribution characteristics of the error data:

若X的峰度Kurt(X)为3,则表示误差数据的分布特性为正态分布;If the kurtosis Kurt(X) of X is 3, it means that the distribution characteristics of the error data are normal distribution;

若X的峰度Kurt(X)大于3,则表示误差数据的曲线峰值大于正态分布;If the kurtosis Kurt(X) of X is greater than 3, it means that the peak value of the curve of the error data is greater than the normal distribution;

若X的峰度Kurt(X)小于3,则表示误差数据的曲线峰值小于正态分布。If the kurtosis Kurt(X) of X is less than 3, it means that the peak value of the curve of the error data is smaller than the normal distribution.

步骤5,运用概率法估计符合正态分布的未知参数。Step 5, use the probability method to estimate the unknown parameters that conform to the normal distribution.

5.1)将未知参数

Figure BDA0003375679480000053
看作随机变量,在随机变量被给定的条件下,设飞行试验数据σ1(θ)和地面试验数据σ2(θ)的总体误差x的条件分布为
Figure BDA0003375679480000054
由先验信息得出的先验分布为
Figure BDA0003375679480000055
5.1) Put unknown parameters
Figure BDA0003375679480000053
As a random variable, under the condition that the random variable is given, let the conditional distribution of the overall error x of the flight test data σ 1 (θ) and the ground test data σ 2 (θ) be
Figure BDA0003375679480000054
The prior distribution derived from the prior information is
Figure BDA0003375679480000055

5.2)从总体误差x的条件分布中抽取样本容量为n的样本Z=(x1,x2,…,xi,…,xn)得到样本Z和未知参数

Figure BDA0003375679480000056
的联合概率密度函数
Figure BDA0003375679480000057
5.2) From the conditional distribution of the overall error x, extract a sample Z=(x 1 ,x 2 ,..., xi ,...,x n ) with a sample size of n to obtain the sample Z and unknown parameters
Figure BDA0003375679480000056
The joint probability density function of
Figure BDA0003375679480000057

Figure BDA0003375679480000058
Figure BDA0003375679480000058

其中,xi表示样本Z中的第i个样本;Among them, x i represents the ith sample in sample Z;

5.3)根据上述联合概率密度函数

Figure BDA0003375679480000059
和先验分布
Figure BDA00033756794800000510
利用贝叶斯理论公式得样本Z及未知参数
Figure BDA00033756794800000511
的联合分布为:5.3) According to the above joint probability density function
Figure BDA0003375679480000059
and the prior distribution
Figure BDA00033756794800000510
Using the Bayesian formula to obtain the sample Z and unknown parameters
Figure BDA00033756794800000511
The joint distribution of is:

Figure BDA00033756794800000512
Figure BDA00033756794800000512

5.4)根据联合概率密度函数

Figure BDA00033756794800000513
和后验分布
Figure BDA00033756794800000514
得到样本Z的边缘密度函数m(Z)为:5.4) According to the joint probability density function
Figure BDA00033756794800000513
and the posterior distribution
Figure BDA00033756794800000514
The edge density function m(Z) of the sample Z is obtained as:

Figure BDA00033756794800000515
Figure BDA00033756794800000515

5.5)由上述联合分布

Figure BDA00033756794800000516
和边缘密度函数m(Z)得后验分布
Figure BDA00033756794800000517
5.5) by the above joint distribution
Figure BDA00033756794800000516
and the edge density function m(Z) to get the posterior distribution
Figure BDA00033756794800000517

Figure BDA0003375679480000061
Figure BDA0003375679480000061

其中,

Figure BDA0003375679480000062
为关于未知参数
Figure BDA0003375679480000063
的似然函数,根据极大似然估计原理对似然函数
Figure BDA0003375679480000064
求解,得未知参数
Figure BDA0003375679480000065
in,
Figure BDA0003375679480000062
for the unknown parameter
Figure BDA0003375679480000063
The likelihood function of , according to the principle of maximum likelihood estimation, the likelihood function
Figure BDA0003375679480000064
Solve, get unknown parameters
Figure BDA0003375679480000065

Figure BDA0003375679480000066
Figure BDA0003375679480000066

步骤6,在地面试验序列上叠加误差分布特性序列数据,得到准确度较高的融合后的飞行试验序列Lock(θ):Step 6, superimpose the sequence data of error distribution characteristics on the ground test sequence to obtain the fused flight test sequence Lock(θ) with high accuracy:

Lock(θ)=σ2(θ)+histfit[(Error(θ))]Lock(θ)=σ 2 (θ)+histfit[(Error(θ))]

其中,histfit表示对Error(θ)进行拟合。Among them, histfit represents fitting Error(θ).

步骤7,对融合后得到的飞行试验RCS数据进行卡尔曼滤波,以降低其融合过程存在的误差,滤波过程表示如下:Step 7: Kalman filtering is performed on the flight test RCS data obtained after fusion to reduce errors in the fusion process. The filtering process is expressed as follows:

newLock(i|i-1)(θ)=AnewLock(i-1|i-1)(θ)+BLocki(θ)newLock (i|i-1) (θ)=AnewLock (i-1|i-1) (θ)+BLock i (θ)

其中,newLock(i-1|i-1)表示前一时刻卡尔曼滤波最优估计值,newLock(i|i-1)表示当前时刻滤波的最优估计值,A为设定的状态转移矩阵,B为取值为1的矩阵。Among them, newLock(i-1|i-1) represents the optimal estimated value of Kalman filtering at the previous moment, newLock(i|i-1) represents the optimal estimated value of filtering at the current moment, and A is the set state transition matrix , B is a matrix whose value is 1.

下面结合仿真实验对本发明的效果作进一步的说明:The effect of the present invention is further described below in conjunction with simulation experiments:

一.仿真实验环境1. Simulation experiment environment

实验环境:MATLAB R2016b,11th Gen Intel(R)Core(TM)i7-11800H@2.30GHz2.30GHz,Windows 10。Experimental environment: MATLAB R2016b, 11th Gen Intel(R)Core(TM)i7-11800H@2.30GHz2.30GHz, Windows 10.

仿真软件MATLAB R2016b,操作系统Windows 10,电脑处理器11th Gen Intel(R)Core(TM)i7-11800H@2.30GHz,Simulation software MATLAB R2016b, operating system Windows 10, computer processor 11th Gen Intel(R)Core(TM)i7-11800H@2.30GHz,

仿真使用的飞行试验序列如图2所示,地面试验序列如图3所示。The flight test sequence used in the simulation is shown in Figure 2, and the ground test sequence is shown in Figure 3.

二.仿真实验内容:2. Simulation experiment content:

仿真实验1,在上述实验环境下,对飞行试验序列和地面试验序列求两者之差,绘制误差序列分布直方图,结果如图4所示。从图4可见,误差序列的直方图数据分布基本符合正态分布的分布状态,其分布状况为较多数据居中,左右两侧数据依次减少。In simulation experiment 1, in the above experimental environment, the difference between the flight test sequence and the ground test sequence is calculated, and the distribution histogram of the error sequence is drawn. The results are shown in Figure 4. It can be seen from Figure 4 that the histogram data distribution of the error series basically conforms to the distribution state of the normal distribution, and its distribution state is that more data are centered, and the data on the left and right sides decrease in turn.

仿真实验2,对飞行试验序列和地面试验序列的误差序列进行拟合,得到符合误差分布特性的正态分布直方图,结果如图5所示。从图5可见,拟合后的曲线符合正态分布特性,表示飞行试验序列和地面试验序列的误差序列分布特性为正态分布特性。In simulation experiment 2, the error sequences of the flight test sequence and the ground test sequence are fitted, and a normal distribution histogram that conforms to the error distribution characteristics is obtained. The results are shown in Figure 5. It can be seen from Figure 5 that the fitted curve conforms to the normal distribution characteristics, indicating that the error sequence distribution characteristics of the flight test sequence and the ground test sequence are normal distribution characteristics.

仿真实验3,将拟合后的正态分布直方图与地面试验序列进行融合,得到融合后的飞行试验序列,如图6所示,从图6可见,融合后的飞行试验序列相比融合前的飞行试验序列和地面试验序列其准确度有着明显的提升。In simulation experiment 3, the fitted normal distribution histogram is fused with the ground test sequence to obtain the fused flight test sequence, as shown in Figure 6. It can be seen from Figure 6 that the fused flight test sequence is compared with that before fusion. The accuracy of the flight test sequence and ground test sequence has been significantly improved.

仿真实验4,对融合后的飞行试验序列进行卡尔曼滤波,得到准确度较高的飞行试验序列,如图7所示。从图7可见,卡尔曼滤波后的飞行试验序列相对于融合后的飞行试验序列其准确度又有了进一步的提升。In simulation experiment 4, Kalman filtering is performed on the fused flight test sequence to obtain a flight test sequence with high accuracy, as shown in Figure 7. It can be seen from Figure 7 that the accuracy of the flight test sequence after Kalman filtering has been further improved compared to the fused flight test sequence.

上述实验结果表明:The above experimental results show that:

第一,本发明提出的基于误差分布拟合的数据融合方法有着良好的拟合误差分布特性和融合性能。可对实际中利用统计学知识获取内场测量得到准确度较高的那一组到地面RCS序列和由多部雷达测量得到目标的多组RCS序列这些多组数据,进一步进行误差分布拟合以及数据融合,得到准确度较高的飞行试验序列。First, the data fusion method based on error distribution fitting proposed by the present invention has good fitting error distribution characteristics and fusion performance. In practice, statistical knowledge can be used to obtain the set of RCS sequences to the ground with higher accuracy obtained by infield measurements, and the multiple sets of RCS sequences obtained by multiple radar measurements to obtain the target, and further perform error distribution fitting and Data fusion to obtain a flight test sequence with high accuracy.

第二,本发明不仅对符合正态分布的误差序列进行中拟合,也可对符合其他分布特性的误差序列进行拟合。Second, the present invention not only performs mid-fit for error sequences conforming to normal distribution, but also fits error sequences conforming to other distribution characteristics.

上述仿真分析并且证明了本发明所提方法的正确性与有效性。The above simulation analyses and proves the correctness and effectiveness of the method proposed in the present invention.

本发明未详细说明部分属于本领域技术人员公知常识。The parts of the present invention that are not described in detail belong to the common knowledge of those skilled in the art.

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,显然对于本领域的专业人员来说,在了解了本发明内容和原理后,都可能在不背离本发明原理、结构的情况下,进行形式和细节上的各种修正和改变,但是这些基于本发明思想的修正和改变仍在本发明的权利要求保护范围之内。The above are only preferred embodiments of the present invention, and are not intended to limit the present invention. Obviously, for those skilled in the art, after understanding the content and principles of the present invention, they may not deviate from the principles of the present invention, In the case of the structure, various corrections and changes in form and details are made, but these corrections and changes based on the idea of the present invention are still within the scope of protection of the claims of the present invention.

Claims (7)

1.一种基于误差分布拟合的数据融合方法,其特征在于,包括:1. a data fusion method based on error distribution fitting, is characterized in that, comprises: (1)获取雷达接收机接收目标散射随角度变换的序列σ(θ),其中,σ表示目标的散射截面积,θ表示雷达与目标之间的照射视角;(1) Obtain the sequence σ(θ) that the radar receiver receives the target scattering as a function of the angle, where σ represents the scattering cross-sectional area of the target, and θ represents the illumination angle between the radar and the target; (2)测量目标在运动过程中的飞行试验数据序列σ1(θ)和地面试验数据序列σ2(θ),并计算两者之差Errori(θ),i∈{1,…,i,…,n}表示目标上第i个散射点,n表示目标上的散射点个数;(2) Measure the flight test data sequence σ 1 (θ) and the ground test data sequence σ 2 (θ) during the movement of the target, and calculate the difference Error i (θ), i∈{1,…,i ,...,n} represents the ith scattering point on the target, and n represents the number of scattering points on the target; (3)计算误差数据的偏度Skew(X)和峰度Kurt(X),利用偏度衡量误差数据分布的方向和程度,利用峰度判断误差数据的分布特性;(3) Calculate the skewness Skew(X) and the kurtosis Kurt(X) of the error data, use the skewness to measure the direction and degree of the error data distribution, and use the kurtosis to judge the distribution characteristics of the error data; (4)利用概率类方法对(3)中得出的正态分布误差数据进行参数估计:(4) Use the probability class method to estimate the parameters of the normally distributed error data obtained in (3): (4a)将未知参数
Figure FDA0003830792230000011
看作随机变量,在随机变量被给定的条件下,设飞行试验数据σ1(θ)和地面试验数据σ2(θ)的总体误差x的条件分布为
Figure FDA0003830792230000012
由先验信息得出的先验分布为
Figure FDA0003830792230000013
从总体误差x的条件分布中抽取样本容量为n的样本Z=(x1,x2,…,xi,…,xn)得到样本Z和未知参数
Figure FDA0003830792230000014
的联合概率密度函数
Figure FDA0003830792230000015
(4a) put the unknown parameters
Figure FDA0003830792230000011
As a random variable, under the condition that the random variable is given, the conditional distribution of the overall error x of the flight test data σ 1 (θ) and the ground test data σ 2 (θ) is
Figure FDA0003830792230000012
The prior distribution derived from the prior information is
Figure FDA0003830792230000013
Draw a sample Z=(x 1 ,x 2 ,..., xi ,...,x n ) from the conditional distribution of the overall error x to obtain the sample Z and unknown parameters
Figure FDA0003830792230000014
The joint probability density function of
Figure FDA0003830792230000015
(4b)利用贝叶斯理论公式得样本Z及未知参数
Figure FDA0003830792230000016
的联合分布为:
(4b) Using the Bayesian formula to obtain the sample Z and unknown parameters
Figure FDA0003830792230000016
The joint distribution of is:
Figure FDA0003830792230000017
Figure FDA0003830792230000017
(4c)根据联合概率密度函数
Figure FDA0003830792230000018
和先验分布
Figure FDA0003830792230000019
得到样本Z的边缘密度函数m(Z)为:
(4c) According to the joint probability density function
Figure FDA0003830792230000018
and the prior distribution
Figure FDA0003830792230000019
The edge density function m(Z) of the sample Z is obtained as:
Figure FDA00038307922300000110
Figure FDA00038307922300000110
(4d)根据联合分布
Figure FDA00038307922300000111
和边缘密度函数m(Z)得到后验分布
Figure FDA00038307922300000112
(4d) According to the joint distribution
Figure FDA00038307922300000111
and the edge density function m(Z) to get the posterior distribution
Figure FDA00038307922300000112
Figure FDA00038307922300000113
Figure FDA00038307922300000113
其中,
Figure FDA00038307922300000114
为关于未知参数
Figure FDA00038307922300000115
的似然函数;
in,
Figure FDA00038307922300000114
for the unknown parameter
Figure FDA00038307922300000115
the likelihood function of ;
(4e)根据极大似然估计原理对似然函数
Figure FDA00038307922300000116
求解,得未知参数
Figure FDA00038307922300000117
为:
(4e) According to the principle of maximum likelihood estimation, the likelihood function
Figure FDA00038307922300000116
Solve, get unknown parameters
Figure FDA00038307922300000117
for:
Figure FDA00038307922300000118
Figure FDA00038307922300000118
(5)根据参数
Figure FDA00038307922300000119
将误差数据Error(θ)的拟合结果叠加到地面试验数据,得到融合后的飞行试验粗序列Locki(θ):
(5) According to the parameters
Figure FDA00038307922300000119
The fitting result of the error data Error(θ) is superimposed on the ground test data, and the fused flight test rough sequence Lock i (θ) is obtained:
Locki(θ)=σ2(θ)+histfit[(Error(θ))]Lock i (θ)=σ 2 (θ)+histfit[(Error(θ))] 其中,histfit表示对Error(θ)的分布数据进行拟合;Among them, histfit means fitting the distribution data of Error(θ); (6)对上述粗序列Lock(θ)依次进行卡尔曼滤波和平滑处理,得到最终的融合后飞行试验序列newLocki(θ):(6) Perform Kalman filtering and smoothing on the above-mentioned coarse sequence Lock(θ) in turn to obtain the final fusion flight test sequence newLock i (θ): newLocki(θ)=AnewLock(i-1)(θ)+BLocki(θ)newLock i (θ)=AnewLock (i-1) (θ)+BLock i (θ) 其中,newLocki(θ)表示i时刻卡尔曼滤波最优估计值,newLock(i-1)为上一刻的最优估计值,A为设定的状态转移矩阵,B为取值为1的单位矩阵,Locki(θ)表示飞行试验粗序列。Among them, newLock i (θ) represents the optimal estimated value of Kalman filter at time i, newLock(i-1) is the optimal estimated value of the previous moment, A is the set state transition matrix, and B is a unit with a value of 1 matrix, Lock i (θ) represents the flight test coarse sequence.
2.根据权利要求1所述的方法,其特征在于:(2)中飞行试验数据序列σ1(θ)和地面试验数据序列σ2(θ),分别表示如下:2. method according to claim 1, is characterized in that: (2) in flight test data sequence σ 1 (θ) and ground test data sequence σ 2 (θ), respectively represent as follows:
Figure FDA0003830792230000021
Figure FDA0003830792230000021
Figure FDA0003830792230000022
Figure FDA0003830792230000022
其中,al表示飞行试验数据序列σ1(θ)的第l项的系数,bl表示地面试验数据序列σ2(θ)第l项的系数,l∈{0,1,…,n},σ1i(θ)表示飞行试验上第i个散射点,σ2i(θ)表示地面试验上第i个散射点,i∈{1,…,n}。Among them, a l represents the coefficient of the l-th item of the flight test data sequence σ 1 (θ), b l represents the coefficient of the l-th item of the ground test data sequence σ 2 (θ), and l∈{0,1,…,n} , σ 1i (θ) represents the ith scattering point on the flight test, σ 2i (θ) represents the ith scattering point on the ground test, i∈{1,…,n}.
3.根据权利要求1所述的方法,其特征在于:(2)中飞行试验数据序列σ1(θ)与地面试验数据序列σ2(θ)之差Error(θ),表示如下:3. method according to claim 1 is characterized in that: (2) the difference Error (θ) of flight test data sequence σ 1 (θ) and ground test data sequence σ 2 (θ) is expressed as follows: Error(θ)=(σ11(θ)-σ21(θ))+…+(σ1i(θ)-σ2i(θ))+…(σ1n(θ)+σ2n(θ))Error(θ)=(σ 11 (θ)-σ 21 (θ))+…+(σ 1i (θ)-σ 2i (θ))+…(σ 1n (θ)+σ 2n (θ)) 其中,σ1i(θ)表示飞行试验序列上第i个散射点,σ2i(θ)表示地面试验序列上第i个散射点,i∈{1,…,i,…,n}。Among them, σ 1i (θ) represents the ith scattering point on the flight test sequence, σ 2i (θ) represents the ith scattering point on the ground test sequence, i∈{1,…,i,…,n}. 4.根据权利要求1所述的方法,其特征在于:(3)中计算误差数据的偏度Skew(X)和峰度Kurt(X),公式如下:4. method according to claim 1 is characterized in that: in (3), the skewness Skew (X) and kurtosis Kurt (X) of calculating error data, formula is as follows:
Figure FDA0003830792230000023
Figure FDA0003830792230000023
Figure FDA0003830792230000024
Figure FDA0003830792230000024
其中,X表示经过统计分布后的误差数据Error(θ),μ和σ分别表示Error(θ)的均值和方差。Among them, X represents the error data Error(θ) after statistical distribution, and μ and σ represent the mean and variance of Error(θ), respectively.
5.根据权利要求1所述的方法,其特征在于:所述(3)中利用峰度判断误差数据的分布特性,是设定判断阈值为3,通过将X的峰度Kurt(X)与该阈值比较得出判断结果:5. method according to claim 1 is characterized in that: in described (3), utilize kurtosis to judge the distribution characteristic of error data, is to set judgment threshold value as 3, by combining the kurtosis of X Kurt (X) with The threshold comparison results in the judgment result: 若X的峰度Kurt(X)为3,则表示误差数据的分布特性为正态分布;If the kurtosis Kurt(X) of X is 3, it means that the distribution characteristics of the error data are normal distribution; 若X的峰度Kurt(X)大于3,则表示误差数据的曲线峰值大于正态分布;If the kurtosis Kurt(X) of X is greater than 3, it means that the peak value of the curve of the error data is greater than the normal distribution; 若X的峰度Kurt(X)小于3,则表示误差数据的曲线峰值小于正态分布。If the kurtosis Kurt(X) of X is less than 3, it means that the peak value of the curve of the error data is smaller than the normal distribution. 6.根据权利要求1所述的方法,其特征在于:(4a)中得到的样本Z和未知参数
Figure FDA0003830792230000031
的联合概率密度函数
Figure FDA0003830792230000032
表示如下:
6. method according to claim 1 is characterized in that: sample Z and unknown parameter obtained in (4a)
Figure FDA0003830792230000031
The joint probability density function of
Figure FDA0003830792230000032
It is expressed as follows:
Figure FDA0003830792230000033
Figure FDA0003830792230000033
其中,Π为连乘符号,xi表示样本Z中的第i个体,
Figure FDA0003830792230000034
表示未知参数
Figure FDA0003830792230000035
的似然函数。
Among them, Π is the symbol of multiplication, x i represents the i-th individual in the sample Z,
Figure FDA0003830792230000034
Indicates an unknown parameter
Figure FDA0003830792230000035
Likelihood function of .
7.根据权利要求1所述的方法,其特征在于:(5)中的histfit[(Error(θ))],表示如下:7. The method according to claim 1, wherein: histfit[(Error(θ))] in (5) is expressed as follows: histfit[(Error(θ))]=c0+c1histfit[(Error1(θ))]+…+cl(histfit[(Errori(θ))])i+…+cn(histfit[(Errorn(θ))])n histfit[(Error(θ))]=c 0 +c 1 histfit[(Error 1 (θ))]+…+c l (histfit[(Error i (θ))]) i +…+c n (histfit [(Error n (θ))]) n 其中,cl表示拟合后的误差数据histfit[(Error(θ))]中第l项的系数,l∈{0,1,…,n},histfit[(Errori(θ))]表示第i个拟合后的误差数据i∈{1,…,n}。Among them, c l represents the coefficient of the lth item in the fitted error data histfit[(Error(θ))], l∈{0,1,…,n}, histfit[(Error i (θ))] represents The i-th fitted error data i∈{1,…,n}.
CN202111415720.0A 2021-11-25 2021-11-25 Data fusion method based on error distribution fitting Active CN114037017B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111415720.0A CN114037017B (en) 2021-11-25 2021-11-25 Data fusion method based on error distribution fitting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111415720.0A CN114037017B (en) 2021-11-25 2021-11-25 Data fusion method based on error distribution fitting

Publications (2)

Publication Number Publication Date
CN114037017A CN114037017A (en) 2022-02-11
CN114037017B true CN114037017B (en) 2022-10-21

Family

ID=80138883

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111415720.0A Active CN114037017B (en) 2021-11-25 2021-11-25 Data fusion method based on error distribution fitting

Country Status (1)

Country Link
CN (1) CN114037017B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115238836B (en) * 2022-09-23 2023-04-28 中国空气动力研究与发展中心计算空气动力研究所 Fusion method based on correlation degree of pneumatic data and physical model

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013095A (en) * 2010-12-09 2011-04-13 哈尔滨工业大学 Distribution transform-based multi-sensor image fusion method
CN106033643A (en) * 2015-03-10 2016-10-19 中国移动通信集团辽宁有限公司 A data processing method and device
CN107918166A (en) * 2016-10-09 2018-04-17 清华大学 More satellite fusion precipitation methods and system
CN109932721A (en) * 2017-12-15 2019-06-25 财团法人车辆研究测试中心 An error and detection probability analysis method for multi-sensor fusion
CN110567421A (en) * 2019-09-05 2019-12-13 上海应用技术大学 A Dynamic Evaluation Method of Roundness Uncertainty Based on Bayesian Principle
CN112066993A (en) * 2020-09-10 2020-12-11 南京航空航天大学 Gaussian particle filter data processing method based on error quaternion three-dimensional vector distribution
CN112526508A (en) * 2020-11-26 2021-03-19 上海机电工程研究所 Double-station radar combined target positioning method and system
WO2021063136A1 (en) * 2019-09-30 2021-04-08 江苏大学 Data-driven high-precision integrated navigation data fusion method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112214880B (en) * 2020-09-17 2022-12-20 中国人民解放军国防科技大学 A Multi-Stage Maintainability Evaluation Method Based on Virtual Reality Fusion

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013095A (en) * 2010-12-09 2011-04-13 哈尔滨工业大学 Distribution transform-based multi-sensor image fusion method
CN106033643A (en) * 2015-03-10 2016-10-19 中国移动通信集团辽宁有限公司 A data processing method and device
CN107918166A (en) * 2016-10-09 2018-04-17 清华大学 More satellite fusion precipitation methods and system
CN109932721A (en) * 2017-12-15 2019-06-25 财团法人车辆研究测试中心 An error and detection probability analysis method for multi-sensor fusion
CN110567421A (en) * 2019-09-05 2019-12-13 上海应用技术大学 A Dynamic Evaluation Method of Roundness Uncertainty Based on Bayesian Principle
WO2021063136A1 (en) * 2019-09-30 2021-04-08 江苏大学 Data-driven high-precision integrated navigation data fusion method
CN112066993A (en) * 2020-09-10 2020-12-11 南京航空航天大学 Gaussian particle filter data processing method based on error quaternion three-dimensional vector distribution
CN112526508A (en) * 2020-11-26 2021-03-19 上海机电工程研究所 Double-station radar combined target positioning method and system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
The Effect of Linear Approximation and Gaussian Noise Assumption in Multi-Sensor Positioning Through Experimental Evaluation;Jelena Gabela et al.;《IEEE SENSORS JOURNAL》;20191115;第19卷(第22期);第10719-10727页 *
基于方差分量估计的正则化配置法及其在多源重力数据融合中的应用;孙文 等;《武汉大学学报.信息科学版》;20160831;第41卷(第8期);第1087-1092页 *
多源DEM融合的高差拟合神经网络方法;沈焕锋 等;《测绘学报》;20180630;第47卷(第6期);第854-863页 *

Also Published As

Publication number Publication date
CN114037017A (en) 2022-02-11

Similar Documents

Publication Publication Date Title
CN113064155B (en) Optimization method for track association under multi-target tracking of air radar
CN107688179B (en) Comprehensive probability data interconnection method based on Doppler information assistance
Kim Development of track to track fusion algorithms
CN109002835A (en) A kind of particle filter data correlation method based on maximum entropy fuzzy clustering
CN105137418B (en) Multiple target tracking and data interconnection method based on complete adjacent fuzzy clustering
CN110058222B (en) A dual-layer particle filter detection-before-tracking method based on sensor selection
CN110516193B (en) Maneuvering target tracking method based on transformation Rayleigh filter under Cartesian coordinate system
CN114037017B (en) Data fusion method based on error distribution fitting
CN110376282B (en) A Lamb Wave Damage Localization Method Based on Elliptic Probability and Bayesian Estimation
CN114509750A (en) A Water Target Tracking Method Based on Multi-Navigation Radar
CN106405510A (en) Pseudo sliding window L judgment rule-based flight trajectory deletion method
CN109407086B (en) Aircraft trajectory generation method and system and trapping system target guiding method
CN112328959A (en) Multi-target tracking method based on adaptive extended Kalman probability hypothesis density filter
CN110889862A (en) Combined measurement method for multi-target tracking in network transmission attack environment
CN110233608B (en) Weight self-adaption-based particle filtering method and radar system
CN106291530B (en) A kind of probabilistic data association optimization method based on nearest neighbor method
CN109190647B (en) Active and passive data fusion method
CN109188422B (en) Kalman filtering target tracking method based on LU decomposition
CN111693051B (en) Multi-target data association method based on photoelectric sensor
CN113240065A (en) Passive radar station distribution method based on improved particle swarm optimization algorithm
CN115327503B (en) Fixed single station passive positioning method and related device based on Gaussian particle filtering
CN111562737A (en) Improved AGIMM tracking method controlled by fuzzy logic
CN112816971B (en) Method and device for estimating target position in separated MIMO radar wave system
CN110673132B (en) Real-time filtering method for trace point sequence for multi-frame joint detection and tracking
CN114839615A (en) Target course angle fitting method for 4D millimeter wave radar and storage medium

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant