CN114035268B - Optical cross waveguide unit - Google Patents
Optical cross waveguide unit Download PDFInfo
- Publication number
- CN114035268B CN114035268B CN202111550624.7A CN202111550624A CN114035268B CN 114035268 B CN114035268 B CN 114035268B CN 202111550624 A CN202111550624 A CN 202111550624A CN 114035268 B CN114035268 B CN 114035268B
- Authority
- CN
- China
- Prior art keywords
- optical waveguide
- shaped optical
- strip
- internal reflection
- total internal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 328
- 238000005253 cladding Methods 0.000 claims description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 235000012239 silicon dioxide Nutrition 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 230000008859 change Effects 0.000 claims description 2
- 230000008878 coupling Effects 0.000 description 12
- 238000010168 coupling process Methods 0.000 description 12
- 238000005859 coupling reaction Methods 0.000 description 12
- 239000010410 layer Substances 0.000 description 7
- 238000004891 communication Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000013307 optical fiber Substances 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000001902 propagating effect Effects 0.000 description 3
- 239000012792 core layer Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000012887 quadratic function Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/122—Basic optical elements, e.g. light-guiding paths
- G02B6/125—Bends, branchings or intersections
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12083—Constructional arrangements
- G02B2006/12104—Mirror; Reflectors or the like
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Integrated Circuits (AREA)
Abstract
Description
技术领域technical field
本发明属于集成光子器件领域,特别涉及一种光交叉波导单元。The invention belongs to the field of integrated photonic devices, in particular to an optical cross waveguide unit.
背景技术Background technique
光波导作为光集成电路中最基本的单元,连接着不同的光器件,引导着光信号的传播。根据光波导几何形状的不同,光波导可分为平板光波导和条形光波导,当光波在条形光波导内传播时,其传播模式在波导内的横向方向和纵向方向均有折射率差,光波在芯层内沿条形光波导的长度方向传播,而平板型光波导传播光波时,光波在芯层内传播时仅在纵向方向被限制。在光集成电路中通常将各种光器件集成在单层空间上。现有的交叉波导大多是基于侧壁较为粗糙的条形光波导,光波在X方向能量损失较大,当两根光波导直接交叉摆放时,由于侧壁宽度突变引起衍射,近一半的光波能量将被损失。As the most basic unit in an optical integrated circuit, an optical waveguide connects different optical devices and guides the propagation of optical signals. According to the different geometric shapes of the optical waveguide, the optical waveguide can be divided into a flat optical waveguide and a strip optical waveguide. When the light wave propagates in the strip optical waveguide, the propagation mode of the optical waveguide has a refractive index difference in the lateral and longitudinal directions of the waveguide. , the light wave propagates along the length direction of the strip-shaped optical waveguide in the core layer, while when the plate-shaped optical waveguide propagates the light wave, the light wave is only confined in the longitudinal direction when propagating in the core layer. In optical integrated circuits, various optical devices are usually integrated on a single-layer space. Most of the existing crossed waveguides are based on strip-shaped optical waveguides with rough sidewalls, and the energy loss of the light wave in the X direction is relatively large. Energy will be lost.
因此,现有技术有待改进和发展。Therefore, the existing technology needs to be improved and developed.
发明内容SUMMARY OF THE INVENTION
本申请的目的在于提供了一种光交叉波导单元,旨在解决现有交叉波传输过程中大量的光波能量损失,从而保证交叉波导的低能量损耗。The purpose of the present application is to provide an optical cross-wave guide unit, which aims to solve a large amount of light wave energy loss in the existing cross-wave transmission process, thereby ensuring low energy loss of the cross-wave guide.
为了达到上述目的,本发明采取了以下技术方案:一种光交叉波导单元,包括平板形光波导和至少两个条形光波导组,每个所述条形光波导组包括两个条形光波导,两个所述条形光波导分别为输入条形光波导和输出条形光波导;In order to achieve the above object, the present invention adopts the following technical scheme: an optical cross-waveguide unit, comprising a flat-shaped optical waveguide and at least two strip-shaped optical waveguide groups, each of the strip-shaped optical waveguide groups includes two strip-shaped optical waveguides a waveguide, the two strip-shaped optical waveguides are respectively an input strip-shaped optical waveguide and an output strip-shaped optical waveguide;
所述平板形光波导包括至少两个全内反射镜组,所述全内反射镜组与所述条形光波导组一一对应设置,每个所述全内反射镜组包括多个全内反射镜,每个所述全内反射镜组用于把对应的条形光波导组中的所述输入条形光波导输入的光波全部引导至相应的所述输出条形光波导;The plate-shaped optical waveguide includes at least two total internal reflection mirror groups, and the total internal reflection mirror groups are arranged in a one-to-one correspondence with the strip-shaped optical waveguide groups, and each of the total internal reflection mirror groups includes a plurality of total internal reflection mirror groups. reflecting mirrors, each of the total internal reflection mirror groups is used to guide all the light waves input by the input strip-shaped optical waveguides in the corresponding strip-shaped optical waveguide group to the corresponding output strip-shaped optical waveguides;
所述输入条形光波导的输出端和所述输出条形光波导的输入端伸入所述平板形光波导的下方且与所述平板形光波导之间具有间隙,所述间隙的厚度为0.01μm -0.2μm。The output end of the input strip-shaped optical waveguide and the input end of the output strip-shaped optical waveguide protrude below the plate-shaped optical waveguide and have a gap with the plate-shaped optical waveguide, and the thickness of the gap is 0.01μm -0.2μm.
本申请提供的光交叉波导单元,通过至少两个条形光波导组和平板形光波导组成的双层结构,条形光波导组与平板形光波导组之间具有间隙,间隙的厚度为0.01μm -0.2μm,可以使光波从条形光波导组耦合到平板形光波导时的耦合效率高;当光波从输入条形光波导输入,在输入条形光波导的输出端耦合到平板形光波导,此时全内反射镜组将输入的光波全部引导至相应的输出条形光波导,由于全内反射镜组的作用,光波在平板形光波导中传播时未接触侧面粗糙壁,大大减少了光波能量的损失,保证了交叉波导的低能量损耗,以此提高光集成芯片内光信号的传播效率和整体性能。The optical cross waveguide unit provided by the present application has a double-layer structure composed of at least two strip-shaped optical waveguide groups and a flat-shaped optical waveguide group, and there is a gap between the strip-shaped optical waveguide group and the flat-shaped optical waveguide group, and the thickness of the gap is 0.01 μm -0.2μm, high coupling efficiency can be achieved when the light wave is coupled from the strip-shaped optical waveguide group to the flat-shaped optical waveguide; when the light wave is input from the input strip-shaped optical waveguide, it is coupled to the flat-shaped optical waveguide at the output end of the input strip-shaped optical waveguide At this time, the total internal reflection mirror group guides all the input light waves to the corresponding output strip optical waveguides. Due to the function of the total internal reflection mirror group, the light waves do not touch the rough side walls when propagating in the flat optical waveguide, which greatly reduces the The loss of light wave energy is reduced, and the low energy loss of the cross waveguide is ensured, thereby improving the propagation efficiency and overall performance of the optical signal in the optical integrated chip.
进一步地,所述平板形光波导包括四个直线边沿,四个所述直线边沿分别为第一直线边沿、第二直线边沿、第三直线边沿和第四直线边沿,所述第一直线边沿与所述第三直线边沿平行,所述第二直线边沿与所述第四直线边沿平行;其中一个所述条形光波导组的两个所述条形光波导分别正对所述第一直线边沿和所述第三直线边沿设置,另一个所述条形光波导组的两个所述条形光波导分别正对所述第二直线边沿和所述第四直线边沿设置。Further, the plate-shaped optical waveguide includes four straight edges, the four straight edges are respectively a first straight edge, a second straight edge, a third straight edge and a fourth straight edge, the first straight line The edge is parallel to the edge of the third straight line, and the edge of the second straight line is parallel to the edge of the fourth straight line; wherein the two strip-shaped optical waveguides of one of the strip-shaped optical waveguide groups are respectively facing the first The straight edge and the third straight edge are disposed, and the two strip-shaped optical waveguides of the other strip-shaped optical waveguide group are respectively disposed opposite to the second straight edge and the fourth straight edge.
本申请的平板形光波导设置有四个直线边沿,一个条形光波导组的两个条形光波导分别正对第一直线边沿和第三直线边沿,另一个条形光波导组的两个条形光波导分别正对第二直线边沿和第四直线边沿,由于两个条形光波导组之间是分开设置,并不会像其他条形光波导直接交叉而存在信号串扰,实现了交叉波的信号低串扰。The flat-shaped optical waveguide of the present application is provided with four straight edges. The two strip-shaped optical waveguides face the second straight edge and the fourth straight-line edge respectively. Since the two strip-shaped optical waveguide groups are set apart, there will be no signal crosstalk like other strip-shaped optical waveguides directly intersecting. Cross-wave signals with low crosstalk.
进一步地,所述条形光波导包括远离所述平板形光波导一端的等宽部和靠近所述平板形光波导一端的变宽部,沿所述条形光波导的轴向,所述等宽部的宽度不变,所述变宽部从背向所述平板形光波导的一端到指向所述平板形光波导的一端,宽度逐渐增大。Further, the strip-shaped optical waveguide includes an equal-width portion away from one end of the flat-shaped optical waveguide and a widened portion close to one end of the flat-shaped optical waveguide. Along the axial direction of the strip-shaped optical waveguide, the equal-width portion The width of the wide portion remains unchanged, and the width of the widened portion gradually increases from the end facing away from the plate-shaped optical waveguide to the end facing the plate-shaped optical waveguide.
本申请中的条形光波导远离平板形光波导一端的等宽部的宽度不变,当使用单模光纤通信常用的高斯光束作为入射光波时,等宽部与光波模场可以很好的相匹配,设置条形光波导靠近平板形光波导一端的变宽部,变宽部从背向平板形光波导的一端到指向平板形光波导的一端,宽度逐渐增大,是为了降低衍射效应,从而进一步降低损耗。In this application, the width of the equal-width part at the end of the strip-shaped optical waveguide away from the flat-shaped optical waveguide remains unchanged. When the Gaussian beam commonly used in single-mode fiber communication is used as the incident light wave, the equal-width part can be well matched with the optical mode field. Matching, set the widened part of the strip optical waveguide close to one end of the flat optical waveguide. The widened part gradually increases from the end facing away from the flat optical waveguide to the end pointing to the flat optical waveguide, in order to reduce the diffraction effect. This further reduces losses.
进一步地,所述全内反射镜为曲面镜,所述曲面镜为凹面镜。Further, the total internal reflection mirror is a curved mirror, and the curved mirror is a concave mirror.
本申请中,全内反射镜为曲面镜,该曲面镜为凹面镜,由于凹面镜具有聚光作用,可以使平行光线会聚于焦点,还能使焦点发出的光线反射成平行光,进一步降低光波能量的损耗。In this application, the total internal reflection mirror is a curved mirror, and the curved mirror is a concave mirror. Because the concave mirror has a light-gathering effect, it can make parallel light rays converge at the focus, and can also reflect the light emitted from the focus into parallel light, further reducing the light wave loss of energy.
进一步地,所述平板形光波导为矩形,两个所述全内反射镜组设置在所述矩形内,每个所述全内反射镜组包括两个全内反射镜,分别为第一全内反射镜和第二全内反射镜,所述第一全内反射镜用于把对应的所述输入条形光波导的入射光波全部反射至对应的所述第二全内反射镜,所述第二全内反射镜用于把对应的所述第一全内反射镜的反射光波全部反射至对应的所述输出条形光波导。Further, the plate-shaped optical waveguide is rectangular, and the two total internal reflection mirror groups are arranged in the rectangle, and each of the total internal reflection mirror groups includes two total internal reflection mirrors, which are the first total internal reflection mirror respectively. an internal reflection mirror and a second total internal reflection mirror, the first total internal reflection mirror is used to reflect all the incident light waves of the corresponding input strip-shaped optical waveguide to the corresponding second total internal reflection mirror, the The second total internal reflection mirror is used for reflecting all the reflected light waves of the corresponding first total internal reflection mirror to the corresponding output strip light waveguide.
进一步地,所述平板形光波导的输入光波的起点到对应的所述第一全内反射镜的反射点的距离等于高斯光波的瑞利距离;所述第一全内反射镜的反射点到对应的第二全内反射镜的反射点的距离等于两倍高斯光波的瑞利距离。Further, the distance from the starting point of the input light wave of the flat optical waveguide to the corresponding reflection point of the first total internal reflection mirror is equal to the Rayleigh distance of the Gaussian light wave; the reflection point of the first total internal reflection mirror is The distance of the reflection point of the corresponding second total internal reflection mirror is equal to twice the Rayleigh distance of the Gaussian light wave.
进一步地,所述条形光波导和平板形光波导均具有外包层,所述外包层为二氧化硅。Further, both the strip-shaped optical waveguide and the flat-shaped optical waveguide have an outer cladding, and the outer cladding is silicon dioxide.
进一步地,所述条形光波导的厚度为0.22μm,所述等宽部的宽度为0.45μm,所述变宽部的靠近所述平板形光波导一端的端面的宽度为1.5μm。Further, the thickness of the strip-shaped optical waveguide is 0.22 μm, the width of the equal-width portion is 0.45 μm, and the width of the end face of the widened portion close to one end of the flat-shaped optical waveguide is 1.5 μm.
进一步地,所述变宽部长度为5μm -7μm。Further, the length of the widened portion is 5 μm-7 μm.
进一步地,所述全内反射镜的反射面为圆弧面,所述圆弧面半径为,F为高 斯光波的瑞利距离。 Further, the reflection surface of the total internal reflection mirror is an arc surface, and the radius of the arc surface is , F is the Rayleigh distance of the Gaussian light wave.
有益效果,本发明的光交叉波导单元,通过设置至少两个条形光波导组和平板形光波导构成的双层结构,平板形光波导包括至少两个全内反射镜组,每个条形光波导组包括一个输入条形光波导和一个输出条形光波导,每个全内反射镜组包括多个全内反射镜,并且输入条形光波导的输出端和输出条形光波导的输入端伸入平板形光波导的下方且与所述平板形光波导之间具有间隙,间隙的厚度为0.01μm -0.2μm,使光波耦合的效率高。当光波从输入条形光波导的输入端输入,从输入条形光波的输出端耦合到平板形光波导上,此时进入平板形光波导的光波全部由全内反射镜组经过多次反射全部引导到输出条形光波导。由于全内反射镜的作用,光波在平板形光波导中传播时未接触侧面粗糙壁,大大减少了光波能量的损失,保证了交叉波导的低能量损耗;并且条形光波导组之间不是直接交叉的,可以大大减少光波信号的串扰,以此提高光集成芯片内光信号的传播效率和整体性能。Beneficial effects, the optical cross waveguide unit of the present invention is provided with a double-layer structure composed of at least two strip-shaped optical waveguide groups and a flat-shaped optical waveguide. The flat-shaped optical waveguide includes at least two total internal reflection mirror groups, each of which is The optical waveguide group includes an input strip optical waveguide and an output strip optical waveguide, each total internal reflection mirror group includes a plurality of total internal reflection mirrors, and the output end of the input strip optical waveguide and the input of the output strip optical waveguide The end protrudes below the plate-shaped optical waveguide and has a gap between the plate-shaped optical waveguide and the plate-shaped optical waveguide, and the thickness of the gap is 0.01 μm-0.2 μm, so that the light wave coupling efficiency is high. When the light wave is input from the input end of the input strip-shaped optical waveguide, and coupled from the output end of the input strip-shaped light wave to the flat-shaped optical waveguide, all the light waves entering the flat-shaped optical waveguide are all reflected by the total internal reflection mirror group for multiple times. guide to the output strip light guide. Due to the function of the total internal reflection mirror, the light wave does not contact the rough side wall when propagating in the flat optical waveguide, which greatly reduces the loss of light wave energy and ensures the low energy loss of the cross waveguide; and there is no direct connection between the strip optical waveguide groups. Crosstalk can greatly reduce the crosstalk of the optical signal, thereby improving the propagation efficiency and overall performance of the optical signal in the optical integrated chip.
附图说明Description of drawings
图1为本申请提供的一种光交叉波导单元的俯视图结构示意图。FIG. 1 is a schematic structural diagram of a top view of an optical cross waveguide unit provided by the present application.
图2为本申请提供的一种光交叉波导单元的主视图结构示意图。FIG. 2 is a schematic structural diagram of a front view of an optical cross waveguide unit provided by the present application.
图3为本申请提供的一种光交叉波导单元的另一种结构的俯视图。FIG. 3 is a top view of another structure of an optical cross waveguide unit provided by the present application.
标号说明:1、条形光波导;100、等宽部;101、变宽部;102、重叠部分;110、输入条形光波导;111、输出条形光波导;2、平板形光波导;201、第一直线边沿;202、第二直线边沿;203、第三直线边沿;204、第四直线边沿;211、第一弧形侧面、212、第二弧形侧面;213、第三弧形侧面;214、第四弧形侧面;3、全内反射镜;311、第一全内反射镜;312、第二全内反射镜。Numeral description: 1, strip-shaped optical waveguide; 100, equal-width part; 101, widened part; 102, overlapping part; 110, input strip-shaped optical waveguide; 111, output strip-shaped optical waveguide; 2, flat-shaped optical waveguide; 201, the first straight edge; 202, the second straight edge; 203, the third straight edge; 204, the fourth straight edge; 211, the first arc side, 212, the second arc side; 213, the
具体实施方式Detailed ways
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。Embodiments of the present invention are described in detail below, examples of which are illustrated in the accompanying drawings, wherein the same or similar reference numerals refer to the same or similar elements or elements having the same or similar functions throughout. The embodiments described below with reference to the accompanying drawings are exemplary, only used to explain the present invention, and should not be construed as a limitation of the present invention.
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“背向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。In the description of the present invention, it should be understood that the terms "center", "longitudinal", "lateral", "length", "width", "thickness", "upper", "lower", "backward", etc. The indicated orientation or positional relationship is based on the orientation or positional relationship shown in the accompanying drawings, which is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the indicated device or element must have a specific orientation or a specific orientation. construction and operation, and therefore should not be construed as limiting the invention. In addition, the terms "first" and "second" are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, features defined as "first", "second" may expressly or implicitly include one or more of said features. In the description of the present invention, "plurality" means two or more, unless otherwise expressly and specifically defined.
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。The following disclosure provides many different embodiments or examples for implementing different structures of the present invention. In order to simplify the disclosure of the present invention, the components and arrangements of specific examples are described below. Of course, they are only examples and are not intended to limit the invention. Furthermore, the present disclosure may repeat reference numerals and/or reference letters in different instances for the purpose of simplicity and clarity and not in itself indicative of a relationship between the various embodiments and/or arrangements discussed.
如图1、图2所示,本发明一种光交叉波导单元,包括平板形光波导2和至少两个条形光波导组,每个条形光波导组包括两个条形光波导1,两个条形光波导1分别为输入条形光波导110和输出条形光波导111;平板形光波导2包括至少两个全内反射镜组,全内反射镜组与条形光波导组一一对应设置,每个全内反射镜组包括多个全内反射镜3,每个全内反射镜组用于把对应的条形光波导组中的输入条形光波导110输入的光波全部引导至相应的输出条形光波导111;As shown in FIG. 1 and FIG. 2, an optical cross waveguide unit of the present invention includes a flat-shaped
输入条形光波导110的输出端和输出条形光波导111的输入端伸入平板形光波导2的下方且与平板形光波导2之间具有间隙,间隙的厚度a为0.01μm -0.2μm。The output end of the input strip-shaped
为了方便描述,见图2,输入条形光波导110的输出端和输出条形光波导111的输入端伸入平板形光波导2的下方,是指条形光波导1在平板形光波导2下表面所在平面的投影与该在平板形光波导2下表面部分重叠(重叠部分102分别为输入条形光波导110的输出端和输出条形光波导111的输入端)。一般地,入射光波多采用单模光纤通信常用的波长1.55μm的高斯光束。For the convenience of description, see FIG. 2 , the output end of the input strip-shaped
具体地,一种光交叉波导单元包括平板形光波导2和至少两个条形光波导组,平板形光波导2包括至少两个全内反射镜组,其中条形光波导组和全内反射镜组均具有至少两个,可以是三个或者四个条形光波导组和全内反射镜组,但不限于此,在本实施例中,优选一种交叉波导单元包括平板形光波导2和两个条形光波导组,平板形光波导包括两个全内反射镜组来作举例。Specifically, an optical cross waveguide unit includes a flat-shaped
实际应用中,两个条形光波导组和平板形光波导组成双层结构,由于输入条形光波导110的输出端和输出条形光波导111的输入端伸入平板形光波导2的下方,该重叠部分102受条形光波导组与平板形光波导2之间的间隙的厚度(即耦合距离)影响,耦合距离的不同影响这个重叠部分102的长度,一般而言,耦合距离越小,重叠部分102的长度(指条形光波导从伸入平板形光波导的伸入点到指向平板形光波导的另一端的距离)就越小,且条形光波导组与平板形光波导2之间间隙的厚度a为0.01μm -0.2μm,那么对应的重叠部分102的长度L4具体范围为:0.2μm -12μm;因而入射光波从输入条形光波导110耦合到平板形光波导2时的耦合效率高;当入射光波在输入条形光波导110的输出端耦合到平板形光波导2后,其中一个全内反射镜3将平板形光波导2输入的光波全部反射,经另一个全内反射镜3反射后,再次汇集耦合到输出条形光波导111,通过设置两个条形光波导组及两个全内反射镜组,使两个入射光波在平板形光波导2中形成交叉波,入射光波在平板形光波导2内传播时,其传播模式仅在纵向方向(厚度方向)被限制,入射光波在横向方向可自由传播,由于全内反射镜组的作用,光波在平板形光波导2中传播时未接触侧面粗糙壁,大大减少了光波能量的损失,保证了交叉波导的低能量损耗,以此提高光集成芯片内光信号的传播效率和整体性能。In practical applications, the two strip-shaped optical waveguide groups and the flat-shaped optical waveguide form a double-layer structure, because the output end of the input strip-shaped
在一些实施例中,如图1、图3,本申请的平板形光波导2设置有四个直线边沿,四个直线边沿分别为第一直线边沿201、第二直线边沿202、第三直线边沿203和第四直线边沿204,第一直线边沿201与第三直线边沿203平行,第二直线边沿202与第四直线边沿204平行;一个条形光波导组的两个条形光波导1分别正对第一直线边沿201和第三直线边沿203(此处,条形光波导1正对直线边沿设置,是指该条形光波导1在该直线边沿处沿垂直于该直线边沿的方向伸入平板形光波导2的下方),即是输入条形光波导110正对第一直线边沿201,输出条形光波导111正对第三直线边沿203(也可以是输入条形光波导110正对第三直线边沿203,输出条形光波导111正对第一直线边沿201),其工作原理是:入射光波从第一直线边沿201的输入条形光波导110输入,经输入条形光波导110输出端耦合到平板形光波导2,全内反射镜3将平板形光波导2的入射光波全部引导至第三直线边沿203的输出条形光波导111,从而实现入射光波的传播。另一个条形光波导组的两个条形光波导1分别正对第二直线边沿202和第四直线边沿204,即是输入条形光波导110正对第二直线边沿202,输出条形光波导111正对第四直线边沿204(也可以是输入条形光波导110正对第四直线边沿204,输出条形光波导111正对第二直线边沿202),其工作原理是:入射光波从第二直线边沿202的输入条形光波导110输入,经输入条形光波导110输出端耦合到平板形光波导2,全内反射镜3将平板形光波导2的入射光波全部引导至第四直线边沿204的输出条形光波导111。若将两个条形光波导组直接交叉时,由于其结构是单层结构,条形光波导组交叉处的宽度变大,入射光波从输入条形光波导110输入时,由于两个条形光波导组交叉的中心侧壁突变引起大量的光波衍射,无法全部对应输出相同的入射光波,并且在交叉中心两个入射光波的衍射会导致信号串扰。本发明将两个条形光波导组之间分开设置,并且条形光波导组与平板形光波导2是双层结构,两个入射光波不会在条形光波导组之间出现串扰,其入射光波在平板形光波导2中形成交叉波,该结构并不会像其他条形光波导直接交叉存在的信号串扰,实现了交叉波的信号低串扰。In some embodiments, as shown in FIGS. 1 and 3 , the flat-shaped
一般地,第一直线边沿201与第三直线边沿203垂直于第二直线边沿202和第四直线边沿204,从而,同一个条形光波导组的两个条形光波导1之间相互平行,两个条形光波导组的条形光波导1之间相互垂直;但不限于此。Generally, the first
在一些实施例方式中,如图2,本申请中的条形光波导1远离平板形光波导2一端的等宽部100的宽度不变,当使用单模光纤通信常用的高斯光束作为入射光波时,等宽部100与光波模场可以很好的相匹配,设置条形光波导1靠近平板形光波导2一端的变宽部101,变宽部101从背向平板形光波导2的一端到指向平板形光波导2的一端,宽度逐渐增大,是为了降低衍射效应,从而进一步降低损耗;其中变宽部101的两侧边沿线可以为直线、抛物线、其它二次函数型曲线或不规则形状曲线。In some embodiments, as shown in FIG. 2 , the width of the equal-
具体地,全内反射镜3为曲面镜,该曲面镜为凹面镜。由于凹面镜具有聚光作用,可以使平行光线会聚于焦点,还能使焦点发出的光线反射成平行光,当入射光波从平板形光波导2输入时,入射光波被一个全内反射镜3聚焦后全部以平行光反射到另一个全内反射镜3,另一个全内反射镜3聚焦后再次以平行光反射到输出条形光波导111,进一步降低光波能量在传播过程中的损耗。Specifically, the total
在一些实施例方式中,如图1,若平板形光波导2为矩形时,两个全内反射镜组设置在矩形内,每个全内反射镜组与每个条形光波导组一一对应设置,每个全内反射镜组包括两个全内反射镜,分别为第一全内反射镜311和第二全内反射镜312,当入射光波从输入条形光波导110输入,第一全内反射镜311用于把对应的输入条形光波导110的入射光波全部反射至对应的第二全内反射镜312,第二全内反射镜312用于把对应的第一全内反射镜311的反射光波全部反射至对应的输出条形光波导111,从而形成两个入射光波在平板形光波导2内交叉,由于光波在平板形光波导2内并未直接接触粗糙的侧壁,入射光波可以大大降低衍射,并且该交叉波之间的干扰度比较低。In some embodiments, as shown in FIG. 1 , if the plate-shaped
在实际应用中,平板形光波导2不限于是矩形,例如图3中,在另一些实施方式中,平板形光波导2还包括四个弧形侧面,四个弧形侧面分别为第一弧形侧面211、第二弧形侧面212、第三弧形侧面213、第四弧形侧面214,每个弧形侧面上包覆有反射层,该包覆的反射层厚度不小于光波的全反射透射深度,从而每个弧形侧面作为全内反射镜3,其中,第一弧形侧面211和第三弧形侧面213分别相当于同一全内反射镜组的第一全内反射镜311和第二全内反射镜312;第二弧形侧面212和第四弧形侧面214分别相当于同一全内反射镜组的第一全内反射镜311和第二全内反射镜312。与矩形的平板形光波导2相比,这种平板形光波导2更节省材料,有利于降低成本。In practical applications, the plate-shaped
在一些实施例方式中,如图1,使用单模光纤通信常用的高斯光束作为输入光波时,平板形光波导2的输入光波的起点到对应的第一全内反射镜311的距离等于高斯光波的瑞利距离(即输入光波的瑞利距离),平板形光波导2的输入光波对于全内反射镜3的入射角和反射角均为45°,这时高斯光束可以得到最高的激光增益;设置第一全内反射镜311的反射点到对应的第二全内反射镜312的反射点的距离等于两倍高斯光波的瑞利距离,此时全内反射镜组与条形光波导组在平板形光波导2上为旋转对称形状。In some embodiments, as shown in FIG. 1 , when a Gaussian beam commonly used in single-mode optical fiber communication is used as the input light wave, the distance from the starting point of the input light wave of the slab
具体地,条形光波导1和平板形光波导2均具有外包层,外包层为二氧化硅,外包层分别指条形光波导1和平板形光波导2的上表面和下表面。Specifically, both the strip-shaped
在一些实施例方式中,对于波长1.55μm的高斯光束,其交叉波导元件的接口标准尺寸为0.45μm*0.22μm,当使用波长1.55μm的高斯光束作为输入光波时,条形光波导1的厚度为0.22μm,等宽部宽度L1为0.45μm,使其等宽部100的横截面尺寸为标准尺寸,从而提高该光交叉波导元件的适用性,设置变宽部102的靠近平板形光波导2一端的端面的宽度L2为1.5μm,保证入射光波在平板形光波导2入射时,可以很好的被全内反射镜3明显汇集。In some embodiments, for a Gaussian beam with a wavelength of 1.55 μm, the standard size of the interface of the crossed waveguide element is 0.45 μm*0.22 μm. When a Gaussian beam with a wavelength of 1.55 μm is used as the input light wave, the thickness of the strip
在一些实施例方式中,考虑到光波导实际制造时的制造容差,变宽部长度L3为5μm-7μm的时候,可以提高入射光波的耦合效率,当变宽部长度L3为5μm时,入射光波的耦合效率达到93%,当变宽部长度L3为6μm时,入射光波的耦合效率达到97%,当变宽部长度L3为7μm时,入射光波的耦合效率可以达到99%。In some embodiments, considering the manufacturing tolerance of the optical waveguide in actual manufacturing, when the length L3 of the widened portion is 5 μm-7 μm, the coupling efficiency of the incident light wave can be improved, and when the length L3 of the widened portion is 5 μm, the incident The coupling efficiency of the light wave reaches 93%. When the length L3 of the widening portion is 6 μm, the coupling efficiency of the incident light wave reaches 97%. When the length L3 of the widening portion is 7 μm, the coupling efficiency of the incident light wave can reach 99%.
在具体应用中,考虑到光波导实际制造时的制造容差,全内反射镜3的反射面为圆
弧面,圆弧面半径为,F为高斯光波的瑞利距离(对于波长1.55μm的高斯光束,圆弧面
半径为9μm),可以进一步提高入射光波能量的聚焦能力。
In a specific application, considering the manufacturing tolerance of the optical waveguide in actual manufacturing, the reflection surface of the total
以下通过具体实施例进行进一步说明:The following is further described by specific examples:
在第一种具体实施方式中,使用单模光纤通信常用的波长1.55μm的高斯光束作为输入光波,通过仿真计算发现,其中一组入射光波在该结构中传播时,其光波的损失的能量比较少。In the first specific embodiment, a Gaussian beam with a wavelength of 1.55 μm commonly used in single-mode optical fiber communication is used as the input light wave. It is found through simulation calculation that when a group of incident light waves propagate in the structure, the energy loss of the light waves is compared. few.
如图2,其中条形光波导1的厚度为0.22μm,等宽部宽度L1为0.45μm,变宽部101靠近平板形光波导2一端的端面的宽度L2为1.5μm,变宽部长度L3为7μm,输入条形光波导110的输出端和输出条形光波导111的输出端分别投影在平板形光波导2的底面上的重叠部分102的长度L4均为0.4μm,条形光波导组与平板形光波导2之间的间隙厚度a为0.02μm。入射光波从输入条形光波导110的等宽部100输入,从输入光波导110的输出端(即变宽部101端面)输出,使其入射光波的耦合效率高。As shown in FIG. 2 , the thickness of the strip-shaped
其中平板形光波导2为矩形,如图1,两个全内反射镜组设置在矩形内,全内反射镜
3的反射面均为圆弧面,圆弧面半径为,F为高斯光波的瑞利距离,即圆弧面半径为9μ
m;且平板形光波导2的输入光波的起点到对应的第一全内反射镜311的反射点的距离F等于
输入高斯光波的瑞利距离,即3.27μm,第一全内反射镜311的反射点到对应的第二全内反射
镜312的反射点的距离等于两倍高斯光波的瑞利距离,即6.54μm。此时两个条形光波导组与
矩形内的两个全内反射镜组的俯视图为旋转对称形状。平板形光波导2的入射光波经第一
全内反射镜311汇集后全部以平行光反射至对应的第二全内反射镜312,第二全内反射镜
312将对应的第一全内反射镜311的反射光全部汇集后再次以平行光反射至对应的输出条
形光波导111,另一个条形光波导组和另一个全内反射镜组以同样的工作方式完成,从而在
平板形光波导2内形成交叉波,且交叉波在平板形光波导2内未直接接触粗糙侧壁,交叉波
在平板形光波导2内仅由全内反射镜3引导传播,大大减少了光波能量的损失,保证了交叉
波导的低能量损耗;并且条形光波导组之间不是直接交叉的,可以大大减少光波信号的串
扰。
The plate-shaped
在第二种具体实施方式中,如图2、图3,其中条形光波导的厚度为0.22μm,等宽部宽度L1为0.45μm,变宽部102靠近平板形光波导2一端的端面的宽度L2为1.5μm,变宽部长度L3为7μm,输入条形光波导110的输出端和输出条形光波导111的输出端分别投影在平板形光波导2的底面上的重叠部分102的长度L4均为0.4μm,条形光波导组与平板形光波导之间的间隙厚度a为0.02μm。入射光波从输入条形光波导110的等宽部100输入,从输入条形光波导110的输出端(即变宽部101端面)输出,使其入射光波的耦合效率高。In the second specific embodiment, as shown in FIGS. 2 and 3 , the thickness of the strip-shaped optical waveguide is 0.22 μm, the width L1 of the equal-width portion is 0.45 μm, and the width of the widened
其中平板形光波导2包括四个直线边沿和四个弧形侧面,且每个弧形侧面均为圆弧形侧面,四个直线边沿分别为第一直线边沿201、第二直线边沿202、第三直线边沿203和第四直线边沿204,第一直线边沿201与第三直线边沿203平行,第二直线边沿202与第四直线边沿204平行;四个弧形侧面分别为第一弧形侧面211、第二弧形侧面212、第三弧形侧面213、第四弧形侧面214,每个弧形侧面作为全内反射镜3,其圆弧面半径为9μm,每个弧形侧面上包覆有反射层,该包覆的反射层厚度不小于光波的全反射透射深度。因为,光波在发生全反射时,会在反射介质中存在一定透射深度。其中第一弧形侧面211与第一直线边沿201连接,第二弧形侧面212与第二直线边沿202连接,第三弧形侧面213与第三直线边沿203连接,第四弧形侧面214与第四直线边沿204连接;其中,第一弧形侧面211和第三弧形侧面213分别相当于同一全内反射镜组的第一全内反射镜311和第二全内反射镜312;第二弧形侧面212和第四弧形侧面214分别相当于同一全内反射镜组的第一全内反射镜311和第二全内反射镜312;其中一个条形光波导组的两个条形光波导1分别正对第一直线边沿201和第三直线边沿203设置,另一个条形光波导组的两个条形光波导1分别正对第二直线边沿202和第四直线边沿204设置。The plate-shaped
其中平板形光波导2的输入光波的起点到对应的第一弧形侧面211的反射点的距离等于输入高斯光波的瑞利距离,即3.27μm,第一弧形侧面211的反射点到第三弧形侧面213的反射点的距离以及第二弧形侧面212的反射点到第四弧形侧面214的反射点的距离等于两倍高斯光波的瑞利距离,即6.54μm。The distance from the starting point of the input light wave of the flat
当入射光波从输入条形光波导110输入,耦合至平板形光波导2,平板形光波导2的入射光波被第一弧形侧面211全部反射至第三弧形侧面213,第三弧形侧面213将第一弧形侧面211的反射光波全部反射至对应的输出条形光波导111,平板形光波导2的另一个入射光波被第二弧形侧面212全部反射至第四弧形侧面214,第四弧形侧面214将第二弧形侧面212的反射光波全部反射至对应的输出条形光波111。该结构同样可以大大减少了光波能量的损失,保证了交叉波导的低能量损耗;并且条形光波导组之间不是直接交叉的,可以大大减少光波信号的串扰。另外与矩形的平板形光波导2相比,这种平板形光波导2更节省材料,有利于降低成本。When the incident light wave is input from the input strip-shaped
在本说明书的描述中,参考术语“ 第一种具体实施方式中”、“第二种具体实施方式中”、“ 一些实施例方式中”、“示例”、“具体地”、或“在实际应用中”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。In the description of this specification, reference is made to the terms "in the first embodiment," "in the second embodiment," "in some embodiments," "example," "specifically," or "in practice" The description of "in use" or the like means that a particular feature, structure, material, or characteristic described in connection with the described embodiment or example is included in at least one embodiment or example of the present invention. In this specification, schematic representations of the above terms do not necessarily refer to the same embodiment or example. Furthermore, the particular features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
以上所述的仅是本发明的一些实施方式。对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。The foregoing are merely some of the embodiments of the present invention. For those of ordinary skill in the art, without departing from the inventive concept of the present invention, several modifications and improvements can be made, which all belong to the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111550624.7A CN114035268B (en) | 2021-12-17 | 2021-12-17 | Optical cross waveguide unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111550624.7A CN114035268B (en) | 2021-12-17 | 2021-12-17 | Optical cross waveguide unit |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114035268A CN114035268A (en) | 2022-02-11 |
CN114035268B true CN114035268B (en) | 2022-06-28 |
Family
ID=80140881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111550624.7A Active CN114035268B (en) | 2021-12-17 | 2021-12-17 | Optical cross waveguide unit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114035268B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101248379A (en) * | 2004-03-24 | 2008-08-20 | 斯欧普迪克尔股份有限公司 | Optical crossover region in thin silicon |
CN201707515U (en) * | 2010-03-03 | 2011-01-12 | 李淑萍 | Non-collinear Bragg diffraction waveguide acousto-optic device structure |
CN112180507A (en) * | 2020-09-25 | 2021-01-05 | 联合微电子中心有限责任公司 | Multi-waveguide cross device, waveguide chip and forming method thereof |
CN112346175A (en) * | 2021-01-06 | 2021-02-09 | 季华实验室 | A 3dB Lightwave Power Beam Splitter |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004295138A (en) * | 2002-05-27 | 2004-10-21 | Keio Gijuku | Waveguide type optical functional device |
JP5692865B2 (en) * | 2012-04-11 | 2015-04-01 | 独立行政法人産業技術総合研究所 | Wavelength cross-connect equipment |
-
2021
- 2021-12-17 CN CN202111550624.7A patent/CN114035268B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101248379A (en) * | 2004-03-24 | 2008-08-20 | 斯欧普迪克尔股份有限公司 | Optical crossover region in thin silicon |
CN201707515U (en) * | 2010-03-03 | 2011-01-12 | 李淑萍 | Non-collinear Bragg diffraction waveguide acousto-optic device structure |
CN112180507A (en) * | 2020-09-25 | 2021-01-05 | 联合微电子中心有限责任公司 | Multi-waveguide cross device, waveguide chip and forming method thereof |
CN112346175A (en) * | 2021-01-06 | 2021-02-09 | 季华实验室 | A 3dB Lightwave Power Beam Splitter |
Also Published As
Publication number | Publication date |
---|---|
CN114035268A (en) | 2022-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6012085Y2 (en) | In-plane crossover of optical channels | |
US7058259B2 (en) | Optical device having a waveguide lens with multimode interference | |
CN112346175B (en) | 3dB light wave power beam splitter | |
JP6811448B2 (en) | Grating coupler | |
CN114047578B (en) | A waveguide layer and cross waveguide | |
CN114114565B (en) | Semiconductor laser collimating device | |
KR100602288B1 (en) | Light reflector | |
TWI442117B (en) | Optical waveguide circuit and multi-core central processing unit using the same | |
US7164824B2 (en) | Waveguide turn for a waveguide circuit | |
CN114035268B (en) | Optical cross waveguide unit | |
JPH04360105A (en) | Spot width converter for light wave | |
CN112649918B (en) | Edge coupler | |
JP4948185B2 (en) | Planar lightwave circuit | |
CN107221831A (en) | A kind of total reflection type prism ring laser | |
CN118011558A (en) | A bilinear etching factor apodized E-shaped grating coupler | |
CN108333681B (en) | On-chip integrated partial reflector based on partial transmission type angular reflector group | |
CN115201970B (en) | Silicon-based optical chip with grating coupler | |
CN114153023B (en) | an optical waveguide filter | |
WO2023106167A1 (en) | Optical connecting circuit device | |
JP2005182038A (en) | Optical mode converter using an omnidirectional reflector. | |
JP4549949B2 (en) | Optical element | |
JP2024538463A (en) | End face coupler and optical communication device | |
Baba et al. | A novel 3-dimensional ARROW by thin film patterning—Stripe lateral confinement of ARROW— | |
JPS5851244B2 (en) | Shuyuusekihikarihanshiyasouchi | |
CN220526107U (en) | Head-up display system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |