CN114023124B - In-situ self-triggering film-forming while-drilling quality-guaranteeing coring simulation device and coring method - Google Patents
In-situ self-triggering film-forming while-drilling quality-guaranteeing coring simulation device and coring method Download PDFInfo
- Publication number
- CN114023124B CN114023124B CN202111158168.1A CN202111158168A CN114023124B CN 114023124 B CN114023124 B CN 114023124B CN 202111158168 A CN202111158168 A CN 202111158168A CN 114023124 B CN114023124 B CN 114023124B
- Authority
- CN
- China
- Prior art keywords
- liquid
- coring
- film
- forming
- core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09B—EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
- G09B9/00—Simulators for teaching or training purposes
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Business, Economics & Management (AREA)
- Physics & Mathematics (AREA)
- Educational Administration (AREA)
- Educational Technology (AREA)
- General Physics & Mathematics (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
本发明公开一种原位自触发随钻成膜保质取心模拟装置及取心方法,能够模拟原位深部底层的高温高压取心环境,随钻进取心动态过程中,成膜液在岩心表面均匀完整覆盖,通过交联固化反应形成一层具备高阻隔性能的固态保质密封膜,保护岩心免受钻井液污染,并防止岩心内部物质散失,使所取岩心能真实反映原位地层状态,为深部资源勘探与开发作业提供指导、为深部岩石科学、深部生物学探索研究奠定基础。
The invention discloses an in-situ self-triggering film-forming and quality-preserving coring simulation device and a coring method, which can simulate the high-temperature and high-pressure coring environment of the in-situ deep bottom layer. It covers evenly and completely, and forms a solid-state sealing film with high barrier properties through the cross-linking and curing reaction, which protects the core from drilling fluid contamination and prevents the material inside the core from escaping, so that the core can truly reflect the in-situ formation state. Provide guidance for deep resource exploration and development operations, and lay the foundation for deep rock science and deep biology exploration and research.
Description
技术领域technical field
本发明涉及岩石的科学钻探技术领域,具体而言,涉及一种原位自触发随钻成膜保质取心模拟装置及取心方法。The invention relates to the technical field of scientific drilling of rocks, in particular to an in-situ self-triggering while drilling film-forming and quality-guaranteed coring simulation device and a coring method.
背景技术Background technique
在钻进岩层取心及取出岩心过程中,岩心会受到井底地层水或钻井液等的污染而造成岩心原位品质、油气含量及湿度等受到影响,并且岩心取出后会由于空气、光照等影响导致微生物生存环境改变而影响科学研究;同时,岩心内部油气资源的丧失会导致资源评估失真,由此,深部岩石钻探取心的保质基本采用密闭取心技术以实现原位保质取心,即采用高分子基的密闭液,在所取岩心表面形成一层液态膜,以减少钻井液对岩心的浸染。During the process of core drilling and core removal, the core will be polluted by bottom-hole formation water or drilling fluid, etc., which will affect the in-situ quality, oil and gas content and humidity of the core. The influence leads to changes in the living environment of microorganisms and affects scientific research; at the same time, the loss of oil and gas resources in the core will lead to distortion of resource evaluation. Therefore, the quality assurance of deep rock drilling and coring basically adopts closed coring technology to achieve in-situ coring with guaranteed quality, namely A polymer-based sealing fluid is used to form a liquid film on the surface of the core to reduce the infiltration of the core by the drilling fluid.
密闭取心技术在岩石钻探技术领域进行了大量研究,但现有岩石取心技术无法做到完全保质取心,究其原因在于传统密闭取心技术中,取心筒完全注满密闭液,由销钉固定取心筒下部的密闭活塞,钻进取心过程中,由于钻压作用,销钉被剪断,密闭液被挤出,在井底形成保护区,防止岩心被钻井液污染,这样密闭取心生成的是液态膜,无法保证岩心中成分散失;这对于探知原位环境、油气资源勘探、深地医学研究都十分不利,因此,急需要一种能随钻在岩心表面形成固态密封膜,实时封存岩心中原始成分信息的保质随钻成膜模拟装置及取心方法。A lot of research has been done on the closed coring technology in the field of rock drilling technology, but the existing rock coring technology cannot achieve complete quality coring. The pin fixes the sealed piston at the bottom of the coring barrel. During the drilling and coring process, the pin is sheared due to the action of the WOB, the sealing fluid is squeezed out, and a protection zone is formed at the bottom of the hole to prevent the core from being polluted by the drilling fluid. It is a liquid film, which cannot guarantee the loss of the core composition; this is very unfavorable for the exploration of the in-situ environment, oil and gas resource exploration, and deep medical research. Therefore, there is an urgent need for a solid sealing film that can form a solid sealing film on the surface of the core while drilling, and seal it in real time. A film-forming-while-drilling simulation device and coring method for quality-preserving original composition information in cores.
发明内容SUMMARY OF THE INVENTION
本发明旨在提供一种原位自触发随钻成膜保质取心模拟装置及取心方法,能够模拟原位深部底层的高温高压取心环境,随钻进取心动态过程中,成膜单液触发释放经过静态混合搅拌器形成成膜液,成膜液在岩心表面均匀完整覆盖,通过交联固化作用形成一层具备高阻隔性能的固态保质密封膜,保护岩心免受钻井液污染,并防止岩心内部物质散失,使所取岩心能真实反映原位地层状态,为深部资源勘探与开发作业提供指导、为深部岩石科学、深部生物学探索研究奠定基础。The invention aims to provide an in-situ self-triggering coring-while-drilling film-forming and quality-preserving coring simulation device and coring method, which can simulate the high-temperature and high-pressure coring environment of the in-situ deep bottom layer. Triggered release forms film-forming fluid through static mixing agitator. The film-forming fluid covers the core surface evenly and completely, and forms a solid-state sealing film with high barrier properties through cross-linking and curing, which protects the core from drilling fluid contamination and prevents The material inside the core is lost, so that the core can truly reflect the in-situ stratum state, provide guidance for deep resource exploration and development operations, and lay a foundation for deep rock science and deep biology exploration and research.
本发明的实施例是这样实现的:Embodiments of the present invention are implemented as follows:
一种原位自触发随钻成膜保质取心模拟装置,包括模拟舱和设置在所述模拟舱内的成膜装置和用于盛放岩心的岩心底座,所述岩心底座设置在所述成膜装置底部,所述成膜装置内有取心筒和中心杆,所述中心杆密封伸缩设置在所述取心筒内,所述取心筒靠近所述岩心底座的一端设置有用于取岩心的取样腔,所述中心杆上固定有压缩部,所述压缩部与取心筒的内壁滑动密封连接,进而中心杆、取心筒和压缩部围合形成挤压腔,所述挤压腔内设置有分别用于储存液体A和液体B的储液盘管A和储液盘管B,所述取心筒上还设置有成膜液释放机构和混合盘管,所述成膜液释放机构包括与混合盘管连通的调节腔,所述调节腔另一端还连通有储液盘管A和储液盘管B,所述调节腔内设置有用于控制调节腔通断的弹簧活动组件;所述混合盘管用于混合液体A和液体B形成混合后的成膜液,并输出成膜液到岩石样品外表面;所述模拟舱内还设置有用于调节所述中心杆和取心筒相对距离的位移调节装置。An in-situ self-triggering-while-drilling film-forming and quality-guaranteed coring simulation device, comprising a simulation cabin, a film-forming device arranged in the simulation cabin, and a core base for holding a core, the core base being arranged in the formation At the bottom of the membrane device, there is a coring barrel and a center rod in the film-forming device, the center rod is sealed and telescopically arranged in the coring barrel, and one end of the coring barrel close to the core base is provided with a core for taking the core. There is a compression part fixed on the central rod, the compression part is slidably and sealedly connected with the inner wall of the coring barrel, and then the central rod, the coring barrel and the compression part are enclosed to form an extrusion cavity, the extrusion cavity There are liquid storage coil A and liquid storage coil B respectively used for storing liquid A and liquid B, and the film-forming liquid release mechanism and the mixing coil are also arranged on the coring cylinder, and the film-forming liquid is released. The mechanism includes an adjustment cavity communicated with the mixing coil, the other end of the adjustment cavity is also connected with a liquid storage coil A and a liquid storage coil B, and a spring movable assembly for controlling the opening and closing of the adjustment cavity is arranged in the adjustment cavity; The mixing coil is used to mix liquid A and liquid B to form a mixed film-forming liquid, and output the film-forming liquid to the outer surface of the rock sample; the simulation cabin is also provided with a center rod and a coring cylinder for adjusting the center rod Displacement adjustment device for relative distance.
优选的,所述位移调节装置包括用于推动所述取心筒上下运动的环形活塞,所述环形活塞套设在所述中心杆延伸出所述取心筒的一端,所述中心杆与所述模拟舱固定,且所述环形活塞与所述取心筒固定连接,所述环形活塞与所述中心杆滑动连接,所述环形活塞与注液泵连接。Preferably, the displacement adjusting device includes an annular piston for pushing the coring barrel to move up and down, the annular piston is sleeved on one end of the central rod extending out of the coring barrel, and the central rod is connected to the coring barrel. The simulation cabin is fixed, and the annular piston is fixedly connected to the coring barrel, the annular piston is slidably connected to the central rod, and the annular piston is connected to a liquid injection pump.
优选的,所述位移调节装置包括用于推动所述取心筒上下运动的推杆,所述推杆一端伸出模拟舱外,另一端与所述取心筒连接,所述推杆与所述中心杆滑动连接,所述推杆与注液泵连接,所述中心杆与所述模拟舱固定。Preferably, the displacement adjusting device includes a push rod for pushing the core barrel to move up and down, one end of the push rod extends out of the simulation cabin, and the other end is connected to the core barrel, and the push rod is connected to the core barrel. The center rod is slidably connected, the push rod is connected with the liquid injection pump, and the center rod is fixed with the simulation cabin.
优选的,所述位移调节装置包括用于连接中心杆和岩心的连杆,所述中心杆远离岩心的一端伸出所述模拟舱,所述中心杆与注液泵连接,所述取心筒与所述模拟舱固定。Preferably, the displacement adjusting device includes a connecting rod for connecting a central rod and a core, the end of the central rod away from the core extends out of the simulation cabin, the central rod is connected to a liquid injection pump, and the coring barrel Fixed with the simulation cabin.
优选的,所述模拟舱包括外壳,所述外壳设置在取心筒外,所述外壳的顶部设置有上法兰盘、底部设置有下法兰盘,所述外壳外还套设有用于对模拟舱进行加热的加热套。Preferably, the simulation cabin includes a casing, the casing is arranged outside the coring cylinder, an upper flange is arranged on the top of the casing, and a lower flange is arranged at the bottom, and the casing is also sleeved with a Heating jacket for heating the simulation cabin.
优选的,所述外壳靠近所述上法兰盘的一端设置有用于注入介质液的注液口,所述外壳靠近所述下法兰盘的一端设置有用于排出介质液的排液口。Preferably, an end of the casing close to the upper flange is provided with a liquid injection port for injecting medium liquid, and an end of the casing close to the lower flange is provided with a liquid discharge port for discharging the medium liquid.
优选的,所述储液盘管A和储液盘管B交错盘绕设置在所述挤压腔内,所述成膜液释放机构的数量为两个,一个用于单独连通储液盘管A和混合盘管、另一个用于单独连通储液盘管B和混合盘管。Preferably, the liquid storage coil A and the liquid storage coil B are alternately and coiled in the extrusion cavity, and the number of the film-forming liquid releasing mechanisms is two, and one is used to communicate with the liquid storage coil A alone. And the mixing coil, the other is used to connect the liquid storage coil B and the mixing coil separately.
优选的,所述成膜液释放机构设置在挤压腔上方,所述储液盘管A和储液盘管B的底部无开口,顶部设置有与所述成膜液释放机构连通的开口,所述混合盘管设置在所述压缩部的底部且固定在所述取心筒上,所述取心筒上设置有用于连通所述混合盘管和调节腔的第一输液管。Preferably, the film-forming liquid release mechanism is arranged above the extrusion cavity, the bottom of the liquid storage coil A and the liquid storage coil B have no openings, and the tops are provided with openings communicating with the film-forming liquid release mechanism, The mixing coil is arranged at the bottom of the compression part and is fixed on the coring barrel, and the coring barrel is provided with a first infusion pipe for connecting the mixing coil and the adjustment cavity.
优选的,所述弹簧活动组件包括设置在调节腔内的封堵螺丝、弹簧和浮动活塞,所述调节腔的一端设置有与所述储液盘管A和/或储液盘管B连通的进液口,所述调节腔的侧壁上设置有连通混合盘管的出液口,所述浮动活塞用于控制所述进液口和出液口之间的通断。Preferably, the spring movable assembly includes a blocking screw, a spring and a floating piston arranged in an adjustment cavity, and one end of the adjustment cavity is provided with a connection to the liquid storage coil A and/or the liquid storage coil B. For the liquid inlet, the side wall of the adjustment chamber is provided with a liquid outlet that communicates with the mixing coil, and the floating piston is used to control the on-off between the liquid inlet and the liquid outlet.
优选的,所述取心筒底部还设置有底部密封器,所述底部密封器与所述中心杆、取心筒围合形成容置岩石样品的取样腔;所述底部密封器为弹性花瓣状结构,且每一瓣的端部固定在取心筒的内壁上、其余端面相互抵持对取心筒底部进行密封。Preferably, the bottom of the coring barrel is further provided with a bottom sealer, and the bottom sealer is enclosed with the central rod and the coring barrel to form a sampling cavity for accommodating rock samples; the bottom sealer is elastic petal-shaped The end of each petal is fixed on the inner wall of the coring barrel, and the other end faces abut against each other to seal the bottom of the coring barrel.
优选的,所述液体A包括环氧树脂类或聚二甲基硅氧烷类,液体B包括环氧固化剂类或聚甲基氢硅氧烷类。Preferably, the liquid A includes epoxy resins or polydimethylsiloxanes, and the liquid B includes epoxy curing agents or polymethylhydrogensiloxanes.
还提供一种原位自触发随钻成膜保质取心方法,包括以下步骤:S1:在储液盘管A中储存液体A,在储液盘管B中储存液体B,且液体A和液体B混合后的成膜液能够交联固化形成固态保护膜;S2:取心筒对岩石进行取心,并将岩石放入封闭空间内;S3:将液体A和液体B输入到混合盘管中进行混合形成成膜液;S4:将成膜液喷洒到岩石表面,并填充入封闭空间中,直到成膜液完全覆盖在岩石表面;S5:待成膜液在岩石表面固化完全,取出岩石。There is also provided an in-situ self-triggering method for coring with film formation while drilling, comprising the following steps: S1: storing liquid A in liquid storage coil A, storing liquid B in liquid storage coil B, and liquid A and liquid The film-forming liquid after mixing B can be cross-linked and solidified to form a solid protective film; S2: The coring cylinder is used to coring the rock, and the rock is put into the closed space; S3: Liquid A and liquid B are input into the mixing coil Mixing to form a film-forming liquid; S4: Spray the film-forming liquid on the rock surface and fill it into a closed space until the film-forming liquid completely covers the rock surface; S5: After the film-forming liquid is completely solidified on the rock surface, take out the rock.
由于采用了上述技术方案,本发明的有益效果包括:本发明的一种原位自触发随钻成膜保质取心模拟装置及取心方法,包括模拟舱和设置在模拟舱内的成膜装置和用于盛放岩心的岩心底座,岩心底座设置在成膜装置底部,成膜装置内有取心筒和中心杆,所述中心杆密封伸缩设置在所述取心筒内,取心筒靠近岩心底座的一端设置有用于取岩心的取样腔,中心杆上固定有压缩部,压缩部与取心筒的内壁滑动密封连接,进而中心杆、取心筒和压缩部围合形成挤压腔,挤压腔内设置有分别用于储存液体A和液体B的储液盘管A和储液盘管B,取心筒上还设置有成膜液释放机构和混合盘管,成膜液释放机构包括与混合盘管连通的调节腔,调节腔另一端还连通有储液盘管A和储液盘管B,调节腔内设置有用于控制调节腔通断的弹簧活动组件;混合盘管用于混合液体A和液体B形成混合后的成膜液,并输出成膜液到岩石样品外表面;模拟舱内还设置有用于调节中心杆和取心筒相对距离的位移调节装置。Due to the adoption of the above technical solutions, the beneficial effects of the present invention include: an in-situ self-triggering film-forming-while-drilling and quality-preserving coring simulation device and coring method of the present invention, comprising a simulation cabin and a film-forming device arranged in the simulation cabin and a core base for holding the core, the core base is arranged at the bottom of the film-forming device, and the film-forming device is provided with a coring barrel and a center rod, the center rod is sealed and telescopically arranged in the coring barrel, and the coring barrel is close to the One end of the core base is provided with a sampling cavity for taking the core, a compression part is fixed on the central rod, the compression part is slidably and sealedly connected with the inner wall of the coring barrel, and then the central rod, the coring barrel and the compression part are enclosed to form an extrusion cavity, The extrusion chamber is provided with a liquid storage coil A and a liquid storage coil B for storing liquid A and liquid B, respectively, and a film-forming liquid release mechanism and a mixing coil are also provided on the coring barrel. The film-forming liquid release mechanism It includes an adjustment cavity that communicates with the mixing coil, and the other end of the adjustment cavity is also connected with a liquid storage coil A and a liquid storage coil B. The adjustment cavity is provided with a spring movable component for controlling the opening and closing of the adjustment cavity; the mixing coil is used for Mixing liquid A and liquid B forms a mixed film-forming liquid, and outputs the film-forming liquid to the outer surface of the rock sample; a displacement adjusting device for adjusting the relative distance between the center rod and the core barrel is also arranged in the simulation cabin.
附图说明Description of drawings
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。In order to explain the technical solutions of the embodiments of the present invention more clearly, the accompanying drawings in the embodiments will be briefly introduced below. It should be understood that the following drawings only show some embodiments of the present invention, and therefore should not be viewed as As a limitation of the scope, for those of ordinary skill in the art, other related drawings can also be obtained according to these drawings without any creative effort.
图1为本发明的成膜装置结构剖面图;1 is a structural cross-sectional view of a film forming device of the present invention;
图2是本发明的图1的局部A放大图;2 is an enlarged view of part A of FIG. 1 of the present invention;
图3是本发明的图1的局部B放大图;Fig. 3 is the partial B enlarged view of Fig. 1 of the present invention;
图4是本发明的图1的A-A向剖面图;Fig. 4 is the A-A sectional view of Fig. 1 of the present invention;
图5是本发明的图1的B-B向剖面图;Fig. 5 is the B-B direction sectional view of Fig. 1 of the present invention;
图6是本发明的成膜装置取心状态结构图;6 is a structural view of the coring state of the film forming device of the present invention;
图7是本发明的图6的局部A放大图;7 is an enlarged view of part A of FIG. 6 of the present invention;
图8是本发明的图6的局部B放大图;8 is an enlarged view of part B of FIG. 6 of the present invention;
图9是本发明的成膜装置取心后结构图;9 is a structural diagram of the film forming device of the present invention after coring;
图10是本发明的图9的局部B放大图;FIG. 10 is an enlarged view of part B of FIG. 9 of the present invention;
图11是本发明的第一结构取心前结构图;Fig. 11 is the structure diagram before coring of the first structure of the present invention;
图12是本发明的第一结构取心中结构图;Figure 12 is a structural diagram of the first structural coring core of the present invention;
图13是本发明的第一结构取心后结构图;Figure 13 is a structural diagram of the first structure of the present invention after coring;
图14是本发明的第二结构取心前结构图;Fig. 14 is the structure diagram before coring of the second structure of the present invention;
图15是本发明的第二结构取心中结构图;Fig. 15 is the structure diagram of the second structure core of the present invention;
图16是本发明的第二结构取心后结构图;Fig. 16 is the structure diagram after coring of the second structure of the present invention;
图17是本发明的第三结构取心前结构图;Fig. 17 is the structure diagram before coring of the third structure of the present invention;
图18是本发明的第三结构取心中结构图;Fig. 18 is the structure diagram of the third structural coring core of the present invention;
图19是本发明的第三结构取心后结构图。FIG. 19 is a structural diagram of the third structure of the present invention after coring.
具体元素符号说明:1-中心杆,2-外壳,3-上法兰盘,4-成膜液释放机构,5-储液盘管A,6-储液盘管B,7-第一输液管,8-取心筒,9-混合盘管,10-弹卡,11-岩心爪,12-岩石,13-底部密封器,14-下法兰盘,15-压缩部,16-连接头,17-第二输液管,18-第三输液管,19-推杆,20-连杆,21-环形活塞,-22-注液口,23-排液口,24-岩心底座,25-加热套,41-封堵螺丝,42-弹簧,43-浮动活塞,91-静态混合器。Symbol description of specific elements: 1- center rod, 2- shell, 3- upper flange, 4- film-forming liquid release mechanism, 5- liquid storage coil A, 6- liquid storage coil B, 7- first infusion Tube, 8-coring barrel, 9-mixing coil, 10-spring clip, 11-core jaw, 12-rock, 13-bottom sealer, 14-lower flange, 15-compression, 16-connector , 17-Second infusion pipe, 18-Third infusion pipe, 19-Push rod, 20-Rod, 21-Ring piston,-22-Injection port, 23-Drain port, 24-Core base, 25- Heating mantle, 41-blocking screw, 42-spring, 43-floating piston, 91-static mixer.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purposes, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments These are some embodiments of the present invention, but not all embodiments. The components of the embodiments of the invention generally described and illustrated in the drawings herein may be arranged and designed in a variety of different configurations. The following detailed description of the embodiments of the invention provided in the accompanying drawings is not intended to limit the scope of the invention as claimed, but is merely representative of selected embodiments of the invention. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
实施例1:请参阅图1至图19,本实施例的一种原位自触发随钻成膜保质取心模拟装置,包括模拟舱和设置在模拟舱内的成膜装置和用于盛放岩心的岩心底座24,岩心底座24设置在成膜装置底部,成膜装置内有取心筒8和中心杆1,中心杆1密封伸缩设置在取心筒8内,取心筒8靠近岩心底座24的一端设置有用于取岩心的取样腔,中心杆1上固定有压缩部15,压缩部15与取心筒8的内壁滑动密封连接,进而中心杆1、取心筒8和压缩部15围合形成挤压腔,挤压腔内设置有分别用于储存液体A和液体B的储液盘管A5和储液盘管B6,取心筒8上还设置有成膜液释放机构4和混合盘管9,成膜液释放机构4包括与混合盘管9连通的调节腔,调节腔另一端还连通有储液盘管A5和储液盘管B6,调节腔内设置有用于控制调节腔通断的弹簧42活动组件;混合盘管9用于混合液体A和液体B形成混合后的成膜液,并输出成膜液到岩石12样品外表面;模拟舱内还设置有用于调节中心杆1和取心筒8相对距离的位移调节装置。模拟原位深部地层的高温高压取心环境,验证保质取心成膜工艺与装置,随钻进取心动态过程中,成膜单液触发释放经过静态混合搅拌器形成成膜液,成膜液在岩心表面均匀完整覆盖,通过交联固化作用形成一层具备高阻隔性能的固态保质密封膜,保护岩心免受钻井液污染,并防止岩心内部物质散失,使所取岩心能真实反映原位地层状态,为深部资源勘探与开发作业提供指导、为深部岩石科学、深部生物学探索研究奠定基础。Embodiment 1: Please refer to FIG. 1 to FIG. 19 , an in-situ self-triggering coring-while-drilling film-forming and quality-preserving simulation device of this embodiment includes a simulation cabin and a film-forming device arranged in the simulation cabin and used for storing The
实施例2:本实施例的位移调节装置包括用于推动取心筒8上下运动的环形活塞21,环形活塞21套设在中心杆1延伸出取心筒8的一端,中心杆1与模拟舱固定,且环形活塞21与取心筒8固定连接,环形活塞21与中心杆1滑动连接,环形活塞21与注液泵连接。取心前:岩心置于岩心底座24的上部,将保质取心成膜装置吊装于岩心之上,成膜A/B液被分别预储存于储液盘管A5及储液盘管B6中。弹簧42推动浮动活塞43堵住成膜A/B液出口,防止成膜A/B液在取心前泄漏。取心前在模拟舱内注满介质液,使用柱塞泵将舱内压力提高至深部原位压力,开启加热套25使舱内温度提高至深部原位温度。取心时,由注液口22向舱内注介质液,推动环形活塞21使保质取心装置向下运动,完成上述取心过程。取心进尺完成后,从排液口23注入介质液,使取心筒8整体向上移动,岩心爪11卡住岩心,使岩心脱离岩心底座24,一同向上移动,底部密封装置回弹封住岩心底部。Embodiment 2: The displacement adjusting device of this embodiment includes an
实施例3:本实施例的位移调节装置包括用于推动取心筒8上下运动的推杆19,推杆19一端伸出模拟舱外,另一端与取心筒8连接,推杆19与中心杆1滑动连接,推杆19与注液泵连接,中心杆1与模拟舱固定。取心前:岩心置于岩心底座24的上部,将保质取心成膜装置吊装于岩心之上,成膜A/B液被分别预储存于储液盘管A5及储液盘管B6中。弹簧42推动浮动活塞43堵住成膜A/B液出口,防止成膜A/B液在取心前泄漏。取心前在模拟舱内注满介质液,使用柱塞泵将舱内压力提高至深部原位压力,开启加热套25使舱内温度提高至深部原位温度;取心时,驱动推杆19使保质取心装置向下运动,完成上述取心过程;取心进尺完成后,提拉推杆19,使取心筒8整体向上移动,岩心爪11卡住岩心,使岩心脱离岩心底座24,一同向上移动,底部密封装置回弹封住岩心底部。Embodiment 3: The displacement adjustment device of this embodiment includes a
实施例4:本实施例的位移调节装置包括用于连接中心杆1和岩心的连杆20,中心杆1远离岩心的一端伸出模拟舱,中心杆1与注液泵连接,取心筒8与模拟舱固定。取心前:岩心置于岩心底座24的上部,将保质取心成膜装置吊装于岩心之上,成膜A/B液被分别预储存于储液盘管A5及储液盘管B6中。弹簧42推动浮动活塞43堵住成膜A/B液出口,防止成膜A/B液在取心前泄漏。取心前在模拟舱内注满介质液,使用柱塞泵将舱内压力提高至深部原位压力,开启加热套25使舱内温度提高至深部原位温度;取心时,取心筒8固定不动,提拉中心杆1使岩心向上运动进入取心筒8,完成上述取心过程;取心进尺完成后,岩心爪11卡住岩心,底部密封装置回弹封住岩心底部。Embodiment 4: The displacement adjusting device of this embodiment includes a connecting
实施例5:本实施例的模拟舱包括外壳2,外壳2设置在取心筒8外,外壳2的顶部设置有上法兰盘3、底部设置有下法兰盘14,外壳2外还套设有用于对模拟舱进行加热的加热套25。本实施例的外壳2靠近上法兰盘3的一端设置有用于注入介质液的注液口22,外壳2靠近下法兰盘14的一端设置有用于排出介质液的排液口23。本实施例的液体A包括环氧树脂类或聚二甲基硅氧烷类,液体B包括环氧固化剂类或聚甲基氢硅氧烷类。Embodiment 5: The simulation cabin of this embodiment includes an
实施例6:本实施例的储液盘管A5和储液盘管B6交错盘绕设置在挤压腔内,成膜液释放机构4的数量为两个,一个用于单独连通储液盘管A5和混合盘管9、另一个用于单独连通储液盘管B6和混合盘管9。本实施例的混合盘管9内设置有静态混合器91,静态混合器91设置在靠近混合盘管9进液口的一端,并用于混合不同的成膜单液形成混合后的成膜液。本实施例的弹簧42活动组件包括设置在调节腔内的封堵螺丝41、弹簧42和浮动活塞43,浮动活塞43与储液盘管A5和/或储液盘管B6连通,调节腔的侧壁上设置有连通混合盘管9的出液口,出液口在浮动活塞43的活动进程内。Embodiment 6: The liquid storage coil A5 and the liquid storage coil B6 of this embodiment are alternately coiled and arranged in the extrusion cavity, and the number of film-forming
实施例7:本实施例的取心筒8底部还设置有底部密封器13,底部密封器13与中心杆1、取心筒8围合形成容置岩石12样品的取样腔。本实施例的底部密封器13为弹性花瓣状结构,且每一瓣的端部固定在取心筒8的内壁上、其余端面相互抵持对取心筒8底部进行密封。本实施例的取心筒8的取样腔内还设置有用于固定岩石12的岩心爪11,岩心爪11环绕设置在取心筒8的内壁上。本实施例的中心杆1上设置有收缩弹卡10,收缩弹卡10用于锁定中心杆1和取心筒8。Embodiment 7: The bottom of the
实施例8:本实施例的成膜液释放机构4设置在挤压腔上方,储液盘管A5和储液盘管B6的底部无开口,顶部设置有与成膜液释放机构4连通的开口,混合盘管9设置在压缩部15的底部且固定在取心筒8上,外钻杆2上设置有用于连通混合盘管9和调节腔的第一输液管7。成膜单液包括A和B。若需要两种以上成膜单液,就需要增加更多的储液盘管,成膜单液和储液盘管的数量不限于两种;取心前:成膜A/B液被分别预储存于储液盘管A5及储液盘管B6中。弹簧42推动浮动活塞43堵住成膜A/B液出口,防止成膜A/B液在取心前泄漏;取心时:中心杆1静止,成膜液释放机构4、取心筒8向下运动,岩心随钻穿过底部密封器13进入取心筒8。中心杆1与成膜液释放机构4及取心筒8发生相对运动,使储液空间减小,对储液盘管A5及储液盘管B6施加轴向压缩力,使其变形并分别排出成膜A/B液。成膜A/B液挤压浮动活塞43及弹簧42,使出液口暴露。成膜A/B液经输液管中向下流动,汇集到混合盘管9中,经过混合盘管9底部内置静态混合器91充分混合形成具备固化能力的成膜液。成膜液再经过混合盘管9上部内侧出液孔流出,覆盖在新钻出的岩心表面。成膜迅速发生交联固化反应,在岩心表面形成一层固态保质密封膜。取心后:完成取心进尺后,弹卡10弹出,使中心杆1与取心筒8间的相对位置固定。上提钻具,岩心爪11抱紧岩心后,底部密封器13重新闭合,防止成膜液从取心筒8底部大量泄漏。成膜液在岩心与取心筒8之间的环形空间,以及在岩心顶底部空间发生交联固化反应形成固态保质密封膜。Embodiment 8: The film-forming
实施例9:本实施例还提供一种原位自触发随钻成膜保质取心方法,包括以下步骤:S1:在储液盘管A5中储存液体A,在储液盘管B6中储存液体B,且液体A和液体B混合后的成膜液能够交联固化形成固态保护膜;S2:取心筒8对岩石12进行取心,并将岩石12放入封闭空间内;S3:将液体A和液体B输入到混合盘管9中进行混合形成成膜液;S4:将成膜液喷洒到岩石12表面,并填充入封闭空间中,直到成膜液完全覆盖在岩石12表面;S5:待成膜液在岩石12表面固化完全,取出岩石12。Embodiment 9: This embodiment also provides an in-situ self-triggering method for coring while drilling with film formation and quality assurance, including the following steps: S1: storing liquid A in the liquid storage coil A5, and storing the liquid in the liquid storage coil B6 B, and the film-forming liquid mixed with liquid A and liquid B can be cross-linked and solidified to form a solid protective film; S2: the
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111158168.1A CN114023124B (en) | 2021-09-30 | 2021-09-30 | In-situ self-triggering film-forming while-drilling quality-guaranteeing coring simulation device and coring method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111158168.1A CN114023124B (en) | 2021-09-30 | 2021-09-30 | In-situ self-triggering film-forming while-drilling quality-guaranteeing coring simulation device and coring method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114023124A CN114023124A (en) | 2022-02-08 |
CN114023124B true CN114023124B (en) | 2022-10-04 |
Family
ID=80055398
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111158168.1A Active CN114023124B (en) | 2021-09-30 | 2021-09-30 | In-situ self-triggering film-forming while-drilling quality-guaranteeing coring simulation device and coring method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114023124B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115372590A (en) * | 2022-08-24 | 2022-11-22 | 四川大学 | A simulation device for deep in-situ film-while-drilling and quality-preserving coring |
CN116084915B (en) * | 2022-12-19 | 2024-10-18 | 四川大学 | A simulation device for in-situ film formation and quality preservation of core sampling of combustible ice while drilling |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0254216A2 (en) * | 1986-07-21 | 1988-01-27 | Eastman Christensen Company | Method and apparatus for coring with a core barrel sponge |
CN106837229A (en) * | 2017-01-17 | 2017-06-13 | 中国石油大学(华东) | Particle stream flow coring apparatus |
CN109403900A (en) * | 2018-12-06 | 2019-03-01 | 深圳大学 | Deep rock is guaranteed the quality coring device and its coring method |
CN111734332A (en) * | 2020-07-29 | 2020-10-02 | 四川大学 | A film-forming-while-drilling simulation device and a film-forming-while-drilling coring method |
CN111764854A (en) * | 2020-07-29 | 2020-10-13 | 四川大学 | In-situ coring device for deep rock with guaranteed quality and method for coring while drilling |
CN113175307A (en) * | 2021-04-29 | 2021-07-27 | 四川大学 | Rotary seal core lifting mechanism |
CN113202434A (en) * | 2021-06-23 | 2021-08-03 | 东北石油大学 | Self-compensating type in-situ drilling coring and testing device |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4230192A (en) * | 1978-08-08 | 1980-10-28 | Pfannkuche Fritz T | Core sampling apparatus and method |
US6283228B2 (en) * | 1997-01-08 | 2001-09-04 | Baker Hughes Incorporated | Method for preserving core sample integrity |
US7124841B2 (en) * | 2003-06-19 | 2006-10-24 | Independent Administrative Institution Japan Agency for Marine-Earth Science & Technology | Crustal core sampler and method of coring crustal core sample using the same |
JP4081452B2 (en) * | 2004-02-24 | 2008-04-23 | 独立行政法人海洋研究開発機構 | Crust core sample collection method |
NO334847B1 (en) * | 2012-07-16 | 2014-06-16 | Coreall As | Method and apparatus for drilling a subsurface formation |
CN203965204U (en) * | 2014-04-11 | 2014-11-26 | 中国石油大学(北京) | The making apparatus of rock core shakes out |
CN109555493B (en) * | 2018-12-07 | 2024-05-14 | 深圳大学 | Fidelity coring device |
-
2021
- 2021-09-30 CN CN202111158168.1A patent/CN114023124B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0254216A2 (en) * | 1986-07-21 | 1988-01-27 | Eastman Christensen Company | Method and apparatus for coring with a core barrel sponge |
CN106837229A (en) * | 2017-01-17 | 2017-06-13 | 中国石油大学(华东) | Particle stream flow coring apparatus |
CN109403900A (en) * | 2018-12-06 | 2019-03-01 | 深圳大学 | Deep rock is guaranteed the quality coring device and its coring method |
CN111734332A (en) * | 2020-07-29 | 2020-10-02 | 四川大学 | A film-forming-while-drilling simulation device and a film-forming-while-drilling coring method |
CN111764854A (en) * | 2020-07-29 | 2020-10-13 | 四川大学 | In-situ coring device for deep rock with guaranteed quality and method for coring while drilling |
CN113175307A (en) * | 2021-04-29 | 2021-07-27 | 四川大学 | Rotary seal core lifting mechanism |
CN113202434A (en) * | 2021-06-23 | 2021-08-03 | 东北石油大学 | Self-compensating type in-situ drilling coring and testing device |
Non-Patent Citations (1)
Title |
---|
深部岩石原位"五保"取芯构想与研究进展;谢和平等;《岩石力学与工程学报》;20200501(第05期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN114023124A (en) | 2022-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113898306B (en) | In-situ self-triggering quality-guaranteeing and coring device and method with film formation while drilling | |
CN114023124B (en) | In-situ self-triggering film-forming while-drilling quality-guaranteeing coring simulation device and coring method | |
CN111764854B (en) | Deep rock in-situ quality guarantee coring device and film-forming coring method while drilling | |
CN111734332B (en) | A film-forming simulation device while drilling and a film-forming coring method while drilling | |
CN104614249B (en) | Pressure chamber testing device and testing method for monitoring rock breaking multivariate precursory information | |
CN114000844B (en) | Bottom sealing mechanism of in-situ self-triggering film-forming-while-drilling quality-guaranteeing coring device | |
CN115487887A (en) | A high-temperature and high-pressure micro-nanofluidic chip holder device and temperature-pressure control method thereof | |
CN109236269B (en) | Device and method for testing influence of water channeling on well cementation quality | |
CN109632502A (en) | Multi-joint experimental system and its experimental method | |
CN110954674B (en) | A static penetrating test indoor simulation test device | |
CN115573684A (en) | Device for automatically closing overcurrent at fixed time and using method thereof | |
CN110857943B (en) | Experimental device for be used to induced crack leaking stoppage simulation evaluation | |
CN115372590A (en) | A simulation device for deep in-situ film-while-drilling and quality-preserving coring | |
CN112268844B (en) | Seepage erosion control system and test method under GDS triaxial apparatus drainage condition | |
CN105092383B (en) | Packing element sets visual test device | |
CN113898307A (en) | Flexible liquid storage and release mechanism of in-situ self-triggering film-forming while-drilling quality-guaranteeing coring device | |
CN109959595B (en) | Method and device for testing permeability in hydraulic sand fracturing process of tight reservoir | |
CN201794586U (en) | Well cementing wall packing channeling checking instrument | |
CN113996197B (en) | Static mixing mechanism of in-situ self-triggering film-forming-while-drilling quality-preserving coring device | |
CN213091384U (en) | A large-scale triaxial mechanical test device for coarse-grained soil simulating freeze-thaw cycles | |
CN114965956A (en) | Multifunctional casing for synergistic remediation test of fracturing and permeation enhancement of low-permeability polluted soil | |
CN115370312B (en) | A deep in-situ film-forming-while-drilling quality-preserving coring device | |
CN116181262B (en) | A combustible ice in-situ film-forming and quality-preserving coring device and coring method | |
CN111781328A (en) | Drilling fluid mud cake generation test shaft simulation mechanism and system | |
CN116084915B (en) | A simulation device for in-situ film formation and quality preservation of core sampling of combustible ice while drilling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |