CN114006612A - High side gate drive circuit - Google Patents
High side gate drive circuit Download PDFInfo
- Publication number
- CN114006612A CN114006612A CN202111169545.1A CN202111169545A CN114006612A CN 114006612 A CN114006612 A CN 114006612A CN 202111169545 A CN202111169545 A CN 202111169545A CN 114006612 A CN114006612 A CN 114006612A
- Authority
- CN
- China
- Prior art keywords
- pulse generating
- generating circuit
- circuit
- input end
- output end
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/0175—Coupling arrangements; Interface arrangements
- H03K19/017509—Interface arrangements
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Logic Circuits (AREA)
Abstract
Description
技术领域technical field
本申请实施例涉及高压功率集成电路技术领域,特别涉及高压侧栅极驱动电路。The embodiments of the present application relate to the technical field of high-voltage power integrated circuits, and in particular, to a high-voltage side gate drive circuit.
背景技术Background technique
在高压浮栅极驱动芯片中,需要一种高压电平移位电路将低电压域信号传递到高压域,如图1所示,MH是半桥拓扑结构中的高侧开关器件,ML是半桥拓扑结构中的低侧开关器件。通常使用浮栅极驱动芯片来有效的驱动高侧开关器件MH,该浮栅极驱动芯片包括低压输入逻辑、高压区栅极驱动电路和低压区栅极驱动电路,LIN是低侧通道的输入信号,HIN是高侧通道的输入信号,LIN和HIN都连接至低压输入逻辑,低压输入逻辑输出IN_L和IN_H这两个信号,其中IN_L输出至低压区栅极驱动电路,IN_H输出至高压区栅极驱动电路。LO是低侧通道的输出信号,连接至ML的栅极,HO是高侧通道的输出信号,连接至MH的栅极。VCC至GND电压域为低压区电路供电,VB至VS浮动电压域为高压区电路供电,VS端连接至MH的源极和ML的漏极。采用自举二极管DB和自举电容CB为VB供电,当ML开启时,VCC通过DB为自举电容 CB充电和为高压区栅极驱动电路供电;当MH开启时,自举电容CB承担为高压区栅极驱动电路供电的任务,如此反复。电感L的一端连接在VS端、另一端连接至输出电压Vout,电容C和电阻R0并联连接,其一端连接至Vout,另一端连接至GND。在高压浮栅极驱动芯片中,需要将VCC至GND的低电压域信号传递到VB至VS之间的高压域,因此需要一种高压电平移位电路来实现上述目的。传统的单路LDMOS(Laterally Diffused Metal Oxide Semiconductor,横向扩散金属氧化物半导体)电平移位电路,在开通时会使 LDMOS长时间导通,对集成高压横向场效应管的可靠性要求极高,在限制了芯片的最高工作电压的同时会造成极大的功耗问题和可靠性问题。In the high-voltage floating gate driver chip, a high-voltage level shift circuit is required to transfer the low-voltage domain signal to the high-voltage domain, as shown in Figure 1, MH is the high-side switching device in the half-bridge topology, and ML is a low-side switching device in a half-bridge topology. Usually a floating gate driver chip is used to effectively drive the high-side switching device MH . The floating gate driver chip includes a low-voltage input logic, a high-voltage region gate driver circuit and a low-voltage region gate driver circuit. LIN is the input of the low-side channel. Signal, HIN is the input signal of the high-side channel, LIN and HIN are both connected to the low-voltage input logic, and the low-voltage input logic outputs IN_L and IN_H these two signals, where IN_L is output to the low-voltage region gate drive circuit, and IN_H is output to the high-voltage region gate. pole drive circuit. LO is the output signal of the low-side channel, connected to the gate of ML , and HO is the output signal of the high-side channel, connected to the gate of MH . The VCC to GND voltage domain supplies power to the low-voltage region circuit, the VB to VS floating voltage domain supplies power to the high-voltage region circuit, and the VS terminal is connected to the source of MH and the drain of ML . The bootstrap diode DB and the bootstrap capacitor CB are used to supply power for VB. When ML is turned on, VCC charges the bootstrap capacitor CB through DB and supplies power to the gate drive circuit in the high voltage region; when MH is turned on, the The lifting capacitor CB undertakes the task of supplying power to the gate drive circuit in the high voltage region, and so on. One end of the inductor L is connected to the VS end and the other end is connected to the output voltage Vout. The capacitor C and the resistor R 0 are connected in parallel, one end of which is connected to Vout and the other end is connected to GND. In a high-voltage floating gate driving chip, the low-voltage domain signal from VCC to GND needs to be transmitted to the high-voltage domain between VB and VS, so a high-voltage level shift circuit is required to achieve the above purpose. The traditional single-channel LDMOS (Laterally Diffused Metal Oxide Semiconductor) level shift circuit will turn on the LDMOS for a long time when it is turned on, which requires extremely high reliability of the integrated high-voltage lateral FET. While limiting the maximum working voltage of the chip, it will cause great power consumption and reliability problems.
为解决上述问题,目前比较常用的信号传递方式如图2所示,将输入的宽脉冲信号的上升沿和下降沿分别转换成一个窄脉冲信号,信号传递至高压区后再将该两路窄脉冲信号通过RS触发器恢复为与原来的信号宽度相同的信号。该方案极大地降低了LDMOS的导通时间,降低了整体芯片的功耗,使得 LDMOS可以可靠稳定地工作。随着当下第三代半导体的兴起,采用第三代半导体制备的功率器件,尤其是氮化镓材料制备的功率器件的开关频率极高,对于芯片能够响应的最小脉冲宽度提出了更高的要求。In order to solve the above problems, the more commonly used signal transmission method is shown in Figure 2. The rising edge and falling edge of the input wide pulse signal are converted into a narrow pulse signal respectively, and the two channels are narrowed after the signal is transmitted to the high voltage area. The pulse signal is restored to a signal with the same width as the original signal by the RS flip-flop. This solution greatly reduces the turn-on time of the LDMOS, reduces the power consumption of the overall chip, and enables the LDMOS to work reliably and stably. With the rise of the current third-generation semiconductors, the switching frequency of power devices made of third-generation semiconductors, especially those made of gallium nitride materials, is extremely high, which puts forward higher requirements for the minimum pulse width that the chip can respond to. .
图3中示出了输入较宽的输入脉冲和较窄的输入脉冲时,芯片的输出响应情况。当输入信号IN为较宽脉冲时(图3中的左半部分),脉冲产生电路将输入信号的上升沿和下降沿分别于t1时刻和t4时刻形成一个窄脉冲信号于PG_S 和PG_R端口,PG_S信号经由高压电平移位电路传递至高压区HD_S端口,形成一个低电平窄脉冲,与此同时,高压区的被驱动MOS器件经过一段延时后于t2时刻导通并引起VS端口的电位抬升,该抬升过程会导致LDMOS的漏端电位表现为逻辑低电位(以VS为参考零点),因此,在t2至t3时间段内, HD_S与HD_R端口均表现为逻辑低电位,HD_R与HD_S的共模低电位会被共模滤波电路滤除,因此,该时间段内,S与R端的电压均表现为逻辑低电平。t4时刻,PG_R信号经由高压电平移位电路传递至高压区HD_R端口,经过共模滤波电路后于R端形成高电平窄脉冲信号,HO经过一段时间的延时后,转变为低电平信号,随后VS端的电压随之渐渐下降至零电平。当输入信号IN为较窄脉冲时(图3中的右半部分),t6时刻,输入信号IN的上升沿形成一个窄脉冲信号于PG_S端口,该信号经过高压电平移位电路传递至高压区并使得HD_S信号转变为低电平信号,经过一段延时后,于t7时刻HO变为高电平,并开启高压桥壁的功率器件,随之VS电压开始上升,由上述描述可知, VS电压在上升时,LDMOS漏端电位均表现为逻辑低电平信号,因此,在t7至 t10时间段内,HD_R和HD_S端的电压均表现为逻辑低电位,该时间段内所有信号均会被共模滤波电路所滤除。在t8时刻至t9时刻之间,由输入信号导致的下降沿脉冲均在VS上升阶段,那么该复位脉冲信号将会丢失,进而导致高压区输出信号HO输出变高后一直处于锁存状态,无法关断,直至下一个下降沿脉冲有效地传递至高压区。此阶段如果低侧信号输出高电平而开启低侧功率器件,将导致上下桥臂直通而损坏功率器件。同理,当输入信号IN表现为占空比很高时,即表现为一个较窄的负脉冲时,HD_S信号会在VS下降阶段淹没掉,表现为HO输出丢波。Figure 3 shows the output response of the chip when a wider input pulse and a narrower input pulse are input. When the input signal IN is a wider pulse (the left half of Fig. 3), the pulse generating circuit forms a narrow pulse signal at the PG_S and PG_R ports with the rising and falling edges of the input signal at time t1 and time t4 respectively. , the PG_S signal is transmitted to the HD_S port of the high-voltage region through the high-voltage level shift circuit, forming a low-level narrow pulse. At the same time, the driven MOS device in the high-voltage region turns on at time t2 after a delay and causes VS The potential of the port is raised, which will cause the drain potential of the LDMOS to appear as a logic low potential (with VS as the reference zero point). Therefore, during the time period from t 2 to t 3 , the HD_S and HD_R ports both appear as a logic low potential , the common-mode low potential of HD_R and HD_S will be filtered out by the common-mode filter circuit. Therefore, during this time period, the voltages at the S and R terminals are both logic low levels. At time t4, the PG_R signal is transmitted to the HD_R port of the high-voltage area through the high-voltage level shift circuit. After the common-mode filter circuit, a high-level narrow pulse signal is formed at the R terminal. After a period of delay, the HO changes to a low-voltage signal. level signal, and then the voltage at the VS terminal gradually drops to zero level. When the input signal IN is a narrow pulse (the right half in Figure 3), at time t6, the rising edge of the input signal IN forms a narrow pulse signal at the PG_S port, which is transmitted to the high voltage through the high voltage level shift circuit After a delay, HO becomes a high level at time t7, and the power device of the high - voltage bridge wall is turned on, and then the VS voltage starts to rise. It can be seen from the above description, When the VS voltage is rising, the potential of the LDMOS drain terminal shows a logic low level signal. Therefore, during the time period from t 7 to t 10 , the voltages at the HD_R and HD_S terminals show a logic low level. During this time period, all signals are will be filtered out by the common mode filter circuit. From time t8 to time t9 , the falling edge pulses caused by the input signal are all in the rising phase of VS, then the reset pulse signal will be lost, which will cause the high-voltage region output signal HO to remain in the latched state after the output becomes high. , cannot be turned off until the next falling edge pulse is effectively delivered to the high voltage region. At this stage, if the low-side signal outputs a high level and the low-side power device is turned on, it will cause the upper and lower bridge arms to pass through and damage the power device. Similarly, when the input signal IN exhibits a high duty cycle, that is, a narrow negative pulse, the HD_S signal will be drowned out in the falling phase of VS, and the HO output will lose waves.
发明内容SUMMARY OF THE INVENTION
本申请实施例提供了一种高压侧栅极驱动电路,可以解决高电平窄脉冲的下降沿脉冲在VS上升阶段,导致输出信号被误锁存在恒高状态,损坏低侧功率器件的问题,也可以解决低电平窄脉冲的上升沿脉冲在VS上升阶段,导致输出信号被误锁存在恒低状态,存在输出丢波的问题。所述技术方案如下:The embodiment of the present application provides a high-voltage side gate drive circuit, which can solve the problem that the falling edge pulse of the high-level narrow pulse is in the rising phase of VS, causing the output signal to be falsely locked in a constant-high state and damaging the low-side power device. It can also solve the problem that the rising edge pulse of the low-level narrow pulse is in the rising phase of VS, which causes the output signal to be locked in a constant low state by mistake, and there is a problem of output wave loss. The technical solution is as follows:
一方面,提供了一种高压侧栅极驱动电路,所述高压侧栅极驱动电路包括动态脉冲产生电路、高压电平移位电路、共模滤波电路、RS触发器以及输出级缓冲电路;In one aspect, a high voltage side gate drive circuit is provided, the high voltage side gate drive circuit includes a dynamic pulse generation circuit, a high voltage level shift circuit, a common mode filter circuit, an RS flip-flop and an output stage buffer circuit;
所述动态脉冲产生电路的输入端作为所述高压侧栅极驱动电路的输入端,所述动态脉冲产生电路的第一输出端与所述高压电平移位电路的第一输入端相连,所述动态脉冲产生电路的第二输出端与所述高压电平移位电路的第二输入端相连;The input end of the dynamic pulse generation circuit is used as the input end of the high voltage side gate drive circuit, and the first output end of the dynamic pulse generation circuit is connected to the first input end of the high voltage level shift circuit, so the the second output end of the dynamic pulse generating circuit is connected with the second input end of the high voltage level shift circuit;
所述高压电平移位电路的两个输出端分别与所述共模滤波电路的两个输入端相连,所述共模滤波电路的两个输出端分别与所述RS触发器的置位端和复位端相连;The two output ends of the high-voltage level shift circuit are respectively connected with the two input ends of the common mode filter circuit, and the two output ends of the common mode filter circuit are respectively connected with the set end of the RS flip-flop connected to the reset terminal;
所述RS触发器的输出端与所述输出级缓冲电路的输入端相连,所述输出级缓冲电路的输出端作为所述高压侧栅极驱动电路的输出端;The output end of the RS flip-flop is connected to the input end of the output stage buffer circuit, and the output end of the output stage buffer circuit serves as the output end of the high-voltage side gate drive circuit;
所述高压电平移位电路、所述共模滤波电路、所述RS触发器和所述输出级缓冲电路分别与高压侧电源和高压侧浮动地相连;the high voltage level shift circuit, the common mode filter circuit, the RS flip-flop and the output stage buffer circuit are respectively connected to the high voltage side power supply and the high voltage side floating ground;
当所述输入信号为窄脉冲时,所述动态脉冲产生电路用于对所述窄脉冲的上升沿和/或下降沿的脉冲宽度进行调整,以使调整后的脉冲结束时间晚于所述高压侧浮动地突变的结束时间。When the input signal is a narrow pulse, the dynamic pulse generating circuit is configured to adjust the pulse width of the rising edge and/or the falling edge of the narrow pulse, so that the adjusted end time of the pulse is later than the high voltage The end time of the side-floating mutation.
在一种可能的实现方式中,所述高压电平移位电路包括:第一LDMOS、第二LDMOS、第一电阻、第二电阻、第一二极管和第二二极管;In a possible implementation manner, the high-voltage level shift circuit includes: a first LDMOS, a second LDMOS, a first resistor, a second resistor, a first diode, and a second diode;
所述第一LDMOS的栅极作为所述高压电平移位电路的第一输入端,所述第二LDMOS的栅极作为所述高压电平移位电路的第二输入端,所述第一 LDMOS和所述第二LDMOS的源极接地;The gate of the first LDMOS serves as the first input end of the high-voltage level shift circuit, the gate of the second LDMOS serves as the second input end of the high-voltage level shift circuit, and the first the sources of the LDMOS and the second LDMOS are grounded;
所述第一LDMOS的漏极与所述第一电阻的第一端口、所述第一二极管的阴极连接于第一连接点,所述第一连接点作为所述高压电平移位电路的第一输出端;The drain of the first LDMOS, the first port of the first resistor, and the cathode of the first diode are connected to a first connection point, and the first connection point serves as the high-voltage level shift circuit the first output terminal of ;
所述第二LDMOS的漏极与所述第二电阻的第一端口、所述第二二极管的阴极连接于第二连接点,所述第二连接点作为所述高压电平移位电路的第二输出端;The drain of the second LDMOS, the first port of the second resistor, and the cathode of the second diode are connected to a second connection point, and the second connection point serves as the high-voltage level shift circuit the second output terminal of ;
所述第一电阻的第二端口和所述第二电阻的第二端口分别与所述高压侧电源相连,所述第一二极管和所述第二二极管的正极分别与所述高压侧浮动地相连。The second port of the first resistor and the second port of the second resistor are respectively connected to the high-voltage side power supply, and the anodes of the first diode and the second diode are respectively connected to the high-voltage side. side floating connection.
在一种可能的实现方式中,In one possible implementation,
当所述输入信号包括高电平窄脉冲时,所述动态脉冲产生电路用于控制所述高电平窄脉冲的下降沿脉冲宽度;或,When the input signal includes a high-level narrow pulse, the dynamic pulse generating circuit is configured to control the falling edge pulse width of the high-level narrow pulse; or,
当所述输入信号包括低电平窄脉冲时,所述动态脉冲产生电路用于控制所述低电平窄脉冲的上升沿脉冲宽度;或,When the input signal includes a low-level narrow pulse, the dynamic pulse generating circuit is configured to control the pulse width of the rising edge of the low-level narrow pulse; or,
当所述输入信号包括高电平窄脉冲和低电平窄脉冲时,所述动态脉冲产生电路用于控制所述高电平窄脉冲的下降沿脉冲宽度和所述低电平窄脉冲的上升沿脉冲宽度。When the input signal includes a high-level narrow pulse and a low-level narrow pulse, the dynamic pulse generating circuit is used to control the pulse width of the falling edge of the high-level narrow pulse and the rise of the low-level narrow pulse edge pulse width.
在一种可能的实现方式中,当所述动态脉冲产生电路用于控制所述下降沿脉冲宽度时,所述动态脉冲产生电路包括上升沿脉冲产生电路、延时电路、受控电流源和下降沿脉冲产生电路;In a possible implementation, when the dynamic pulse generating circuit is used to control the falling edge pulse width, the dynamic pulse generating circuit includes a rising edge pulse generating circuit, a delay circuit, a controlled current source and a falling edge pulse edge pulse generation circuit;
所述上升沿脉冲产生电路的输入端和所述下降沿脉冲产生电路的第一输入端相连后作为所述动态脉冲产生电路的输入端;所述上升沿脉冲产生电路的输出端作为所述动态脉冲产生电路的第一输出端,所述上升沿脉冲产生电路的输出端与所述延时电路的输入端相连;The input end of the rising edge pulse generating circuit is connected with the first input end of the falling edge pulse generating circuit as the input end of the dynamic pulse generating circuit; the output end of the rising edge pulse generating circuit is used as the dynamic pulse generating circuit the first output end of the pulse generating circuit, the output end of the rising edge pulse generating circuit is connected with the input end of the delay circuit;
所述延时电路的输出端与所述受控电流源的输入端相连,所述受控电流源的输出端与所述下降沿脉冲产生电路的第二输入端相连;The output end of the delay circuit is connected to the input end of the controlled current source, and the output end of the controlled current source is connected to the second input end of the falling edge pulse generating circuit;
所述下降沿脉冲产生电路的输出端作为所述动态脉冲产生电路的第二输出端。The output terminal of the falling edge pulse generating circuit is used as the second output terminal of the dynamic pulse generating circuit.
在一种可能的实现方式中,当所述动态脉冲产生电路用于控制所述下降沿脉冲宽度时,所述动态脉冲产生电路包括上升沿脉冲产生电路、延时电路、下降沿脉冲产生电路、第一反相器、第二反相器、第一或非门、第二或非门、第三或非门和第四或非门;In a possible implementation, when the dynamic pulse generating circuit is used to control the falling edge pulse width, the dynamic pulse generating circuit includes a rising edge pulse generating circuit, a delay circuit, a falling edge pulse generating circuit, The first inverter, the second inverter, the first NOR gate, the second NOR gate, the third NOR gate and the fourth NOR gate;
所述上升沿脉冲产生电路的输入端和所述下降沿脉冲产生电路的输入端相连后作为所述动态脉冲产生电路的输入端;所述上升沿脉冲产生电路的输出端作为所述动态脉冲产生电路的第一输出端,所述上升沿脉冲产生电路的输出端与所述延时电路的输入端相连;The input terminal of the rising edge pulse generating circuit is connected with the input terminal of the falling edge pulse generating circuit and then used as the input terminal of the dynamic pulse generating circuit; the output terminal of the rising edge pulse generating circuit is used as the dynamic pulse generating circuit. the first output end of the circuit, the output end of the rising edge pulse generating circuit is connected to the input end of the delay circuit;
所述延时电路的输出端分别与所述第一或非门和所述第二或非门的第一输入端相连于第三连接点;The output end of the delay circuit is respectively connected to the third connection point with the first input end of the first NOR gate and the second NOR gate;
所述下降沿脉冲产生电路的输出端分别与所述第一反相器的输入端和所述第四或非门的第二输入端相连于第四连接点;所述第一反相器的输出端与所述第一或非门的第二输入端相连;所述第一或非门的输出端与所述第二或非门的第二输入端相连;所述第二或非门的输出端与所述第三或非门的第一输入端相连;所述第三或非门的输出端与所述第四或非门的第一输入端相连;所述第四或非门的输出端分别与所述第二反相器的输入端和所述第三或非门的第二输入端相连;所述第二反相器的输出端作为所述动态脉冲产生电路的第二输出端。The output end of the falling edge pulse generating circuit is respectively connected with the input end of the first inverter and the second input end of the fourth NOR gate to the fourth connection point; The output end is connected with the second input end of the first NOR gate; the output end of the first NOR gate is connected with the second input end of the second NOR gate; The output terminal is connected with the first input terminal of the third NOR gate; the output terminal of the third NOR gate is connected with the first input terminal of the fourth NOR gate; The output end is respectively connected with the input end of the second inverter and the second input end of the third NOR gate; the output end of the second inverter is used as the second output of the dynamic pulse generating circuit end.
在一种可能的实现方式中,In one possible implementation,
当第三连接点为高电平,第四连接点为高电平时,所述动态脉冲产生电路的第二输出端的输出为高电平;When the third connection point is high level and the fourth connection point is high level, the output of the second output terminal of the dynamic pulse generating circuit is high level;
当第三连接点为高电平,第四连接点为低电平时,所述动态脉冲产生电路的第二输出端的输出与上一状态相同;When the third connection point is at a high level and the fourth connection point is at a low level, the output of the second output terminal of the dynamic pulse generating circuit is the same as the previous state;
当第三连接点为低电平,第四连接点为高电平时,所述动态脉冲产生电路的第二输出端的输出为有效高电位;When the third connection point is at a low level and the fourth connection point is at a high level, the output of the second output end of the dynamic pulse generating circuit is an effective high level;
当第三连接点为低电平,第四连接点为低电平时,所述动态脉冲产生电路的第二输出端的输出为无效低电位。When the third connection point is at a low level and the fourth connection point is at a low level, the output of the second output terminal of the dynamic pulse generating circuit is an invalid low level.
在一种可能的实现方式中,当所述动态脉冲产生电路用于控制所述上升沿脉冲宽度时,所述动态脉冲产生电路包括上升沿脉冲产生电路、下降沿脉冲产生电路、延时电路和受控电流源;In a possible implementation, when the dynamic pulse generating circuit is used to control the rising edge pulse width, the dynamic pulse generating circuit includes a rising edge pulse generating circuit, a falling edge pulse generating circuit, a delay circuit and controlled current source;
所述上升沿脉冲产生电路的第一输入端和所述下降沿脉冲产生电路的输入端相连后作为所述动态脉冲产生电路的输入端;所述下降沿脉冲产生电路的输出端作为所述动态脉冲产生电路的第二输出端,所述下降沿脉冲产生电路的输出端与所述延时电路的输入端相连;The first input terminal of the rising edge pulse generating circuit is connected with the input terminal of the falling edge pulse generating circuit and then used as the input terminal of the dynamic pulse generating circuit; the output terminal of the falling edge pulse generating circuit is used as the dynamic pulse generating circuit. a second output end of the pulse generating circuit, the output end of the falling edge pulse generating circuit is connected to the input end of the delay circuit;
所述延时电路的输出端与所述受控电流源的输入端相连,所述受控电流源的输出端与所述上升沿脉冲产生电路的第二输入端相连;The output end of the delay circuit is connected to the input end of the controlled current source, and the output end of the controlled current source is connected to the second input end of the rising edge pulse generating circuit;
所述上升沿脉冲产生电路的输出端作为所述动态脉冲产生电路的第一输出端。The output terminal of the rising edge pulse generating circuit is used as the first output terminal of the dynamic pulse generating circuit.
在一种可能的实现方式中,当所述动态脉冲产生电路用于控制所述下降沿脉冲宽度和所述上升沿脉冲宽度时,所述动态脉冲产生电路包括上升沿脉冲产生电路、下降沿脉冲产生电路、第一延时电路、第二延时电路、第一受控电流源和第二受控电流源;In a possible implementation, when the dynamic pulse generating circuit is used to control the falling edge pulse width and the rising edge pulse width, the dynamic pulse generating circuit includes a rising edge pulse generating circuit, a falling edge pulse a generating circuit, a first delay circuit, a second delay circuit, a first controlled current source and a second controlled current source;
所述上升沿脉冲产生电路的第一输入端和所述下降沿脉冲产生电路的第一输入端相连后作为所述动态脉冲产生电路的输入端;所述上升沿脉冲产生电路的输出端作为所述动态脉冲产生电路的第一输出端,所述上升沿脉冲产生电路的输出端与所述第一延时电路的输入端相连;所述下降沿脉冲产生电路的输出端作为所述动态脉冲产生电路的第二输出端,所述下降沿脉冲产生电路的输出端与所述第二延时电路的输入端相连;The first input end of the rising edge pulse generating circuit is connected with the first input end of the falling edge pulse generating circuit as the input end of the dynamic pulse generating circuit; the output end of the rising edge pulse generating circuit is used as the input end of the dynamic pulse generating circuit; The first output end of the dynamic pulse generation circuit, the output end of the rising edge pulse generation circuit is connected to the input end of the first delay circuit; the output end of the falling edge pulse generation circuit is used as the dynamic pulse generation a second output end of the circuit, the output end of the falling edge pulse generating circuit is connected to the input end of the second delay circuit;
所述第一延时电路的输出端与所述第一受控电流源的输入端相连,所述第一受控电流源的输出端与所述下降沿脉冲产生电路的第二输入端相连;所述第二延时电路的输出端与所述第二受控电流源的输入端相连,所述第二受控电流源的输出端与所述上升沿脉冲产生电路的第二输入端相连。The output end of the first delay circuit is connected to the input end of the first controlled current source, and the output end of the first controlled current source is connected to the second input end of the falling edge pulse generating circuit; The output end of the second delay circuit is connected to the input end of the second controlled current source, and the output end of the second controlled current source is connected to the second input end of the rising edge pulse generating circuit.
在一种可能的实现方式中,In one possible implementation,
所述上升沿脉冲产生电路包括第三反相器、第四反相器、第五反相器、第六反相器、第一电容和第五或非门,当所述上升沿脉冲产生电路包括一个输入端时,所述第三反相器的输入端作为所述上升沿脉冲产生电路的输入端;当所述上升沿脉冲产生电路包括两个输入端时,所述第三反相器的两个输入端分别作为所述上升沿脉冲产生电路的第一输入端和第二输入端;所述第三反相器的输出端分别与所述第四反相器的输入端和所述第五或非门的第二输入端相连,所述第四反相器的输出端分别与所述第一电容的正极和所述第五反相器的输入端相连,所述第一电容的负极接地,所述第五反相器的输出端与所述第六反相器的输入端相连,所述第六反相器的输出端与所述第五或非门的第一输入端相连,所述第五或非门的输出端作为所述上升沿脉冲产生电路的输出端;The rising edge pulse generating circuit includes a third inverter, a fourth inverter, a fifth inverter, a sixth inverter, a first capacitor and a fifth NOR gate, when the rising edge pulse generating circuit When including one input end, the input end of the third inverter is used as the input end of the rising edge pulse generating circuit; when the rising edge pulse generating circuit includes two input ends, the third inverter The two input terminals of the inverter are respectively used as the first input terminal and the second input terminal of the rising edge pulse generating circuit; the output terminal of the third inverter is respectively connected with the input terminal of the fourth inverter and the The second input end of the fifth NOR gate is connected, the output end of the fourth inverter is connected to the positive electrode of the first capacitor and the input end of the fifth inverter respectively, and the output end of the first capacitor is connected to the The negative pole is grounded, the output end of the fifth inverter is connected to the input end of the sixth inverter, and the output end of the sixth inverter is connected to the first input end of the fifth NOR gate , the output end of the fifth NOR gate is used as the output end of the rising edge pulse generating circuit;
所述下降沿脉冲产生电路包括第七反相器、第八反相器、第九反相器、第二电容和第六或非门,当所述下降沿脉冲产生电路包括一个输入端时,所述第七反相器的输入端作为所述下降沿脉冲产生电路的输入端,所述下降沿脉冲产生电路的输入端与所述第六或非门的第二输入端相连;当所述下降沿脉冲产生电路包括两个输入端时,所述第七反相器的两个输入端分别作为所述下降沿脉冲产生电路的第一输入端和第二输入端,所述下降沿脉冲产生电路的第一输入端与所述第六或非门的第二输入端相连;所述第七反相器的输出端分别与所述第二电容的正极和所述第八反相器的输入端相连,所述第二电容的负极接地,所述第八反相器的输出端与所述第九反相器的输入端相连,所述第九反相器的输出端与所述第六或非门的第一输入端相连,所述第六或非门的输出端作为所述下降沿脉冲产生电路的输出端;The falling edge pulse generating circuit includes a seventh inverter, an eighth inverter, a ninth inverter, a second capacitor and a sixth NOR gate, and when the falling edge pulse generating circuit includes an input terminal, The input end of the seventh inverter is used as the input end of the falling edge pulse generating circuit, and the input end of the falling edge pulse generating circuit is connected with the second input end of the sixth NOR gate; when the When the falling edge pulse generating circuit includes two input terminals, the two input terminals of the seventh inverter are respectively used as the first input terminal and the second input terminal of the falling edge pulse generating circuit, and the falling edge pulse generating circuit The first input end of the circuit is connected to the second input end of the sixth NOR gate; the output end of the seventh inverter is respectively connected to the positive electrode of the second capacitor and the input of the eighth inverter The negative terminal of the second capacitor is connected to the ground, the output terminal of the eighth inverter is connected to the input terminal of the ninth inverter, and the output terminal of the ninth inverter is connected to the sixth inverter. The first input end of the NOR gate is connected, and the output end of the sixth NOR gate is used as the output end of the falling edge pulse generating circuit;
所述延时电路包括第十反相器、第十一反相器和第三电容,所述第十反相器的输入端作为所述延时电路的输入端,所述第十反相器的输出端分别与所述第三电容的正极和所述第十一反相器的输入端相连,所述第三电容的负极接地,所述第十一反相器的输出端作为所述延时电路的输出端;The delay circuit includes a tenth inverter, an eleventh inverter and a third capacitor, the input end of the tenth inverter is used as the input end of the delay circuit, and the tenth inverter The output terminals of the inverter are respectively connected to the positive terminal of the third capacitor and the input terminal of the eleventh inverter, the negative terminal of the third capacitor is grounded, and the output terminal of the eleventh inverter is used as the delay terminal. The output terminal of the circuit;
当所述动态脉冲产生电路还包括所述受控电流源时,所述受控电流源包括电流源和PMOS管,所述电流源连接于电源和所述PMOS管的源级之间,所述 PMOS管的栅极作为所述受控电流源的输入端,所述PMOS管的漏极作为所述受控电流源的输出端。When the dynamic pulse generating circuit further includes the controlled current source, the controlled current source includes a current source and a PMOS transistor, the current source is connected between the power supply and the source stage of the PMOS transistor, the The gate of the PMOS transistor serves as the input end of the controlled current source, and the drain of the PMOS transistor serves as the output end of the controlled current source.
在一种可能的实现方式中,所述延时电路的延时值是根据公式tP+(ΔVS× RL×CDS)/(VB-Vth)确定的,其中,所述VB为所述高压侧电源,所述RL为所述高压电平移位电路的负载电阻,所述CDS为LDMOS的漏源寄生电容,所述Vth为所述共模滤波电路的阈值,所述ΔVS为所述高压侧浮动地的电压的变化量,所述tP为所述LDMOS至高侧输出端的延时时间。In a possible implementation manner, the delay value of the delay circuit is determined according to the formula t P +(ΔV S × R L ×C DS )/(VB-Vth), where the VB is the the high-voltage side power supply, the R L is the load resistance of the high-voltage level shift circuit, the C DS is the drain-source parasitic capacitance of the LDMOS, the Vth is the threshold of the common-mode filter circuit, and the ΔV S is the variation of the voltage of the high-side floating ground, and the t P is the delay time from the LDMOS to the high-side output terminal.
本申请提供的技术方案的有益效果至少包括:The beneficial effects of the technical solutions provided by this application at least include:
1、本申请中的高压侧栅极驱动电路,可以动态地调整窄脉冲的上升沿和/ 或下降沿的脉冲宽度,防止输出信号被误锁存在恒高或者恒低状态,以保证芯片的可靠性。1. The high-voltage side gate drive circuit in this application can dynamically adjust the pulse width of the rising edge and/or falling edge of the narrow pulse to prevent the output signal from being mistakenly locked in a constant high or constant low state, so as to ensure the reliability of the chip sex.
2、脉冲宽度的最大延时值来自于LDMOS漏端电荷泄放的最小速度,保证了脉冲信号不会淹没在VS电压变化阶段。2. The maximum delay value of the pulse width comes from the minimum speed of LDMOS drain charge discharge, which ensures that the pulse signal will not be submerged in the VS voltage change stage.
3、结构简单,避免带来额外的成本。3. Simple structure to avoid extra cost.
附图说明Description of drawings
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions in the embodiments of the present application more clearly, the following briefly introduces the drawings that are used in the description of the embodiments. Obviously, the drawings in the following description are only some embodiments of the present application. For those of ordinary skill in the art, other drawings can also be obtained from these drawings without creative effort.
图1为采用高压浮栅极驱动芯片的半桥拓扑结构;Figure 1 shows a half-bridge topology using a high-voltage floating gate driver chip;
图2为现有技术中采用双路LDMOS的高压电平移位电路;FIG. 2 is a high-voltage level shift circuit using dual-channel LDMOS in the prior art;
图3为图2中所示的双脉冲电路正常工作与故障工作波形意图;Fig. 3 is the waveform diagram of normal operation and fault operation of the double-pulse circuit shown in Fig. 2;
图4为本申请的一种高压侧栅极驱动电路的电路图;4 is a circuit diagram of a high-voltage side gate drive circuit according to the present application;
图5为一种动态脉冲产生电路的电路图;5 is a circuit diagram of a dynamic pulse generating circuit;
图6为图5中的电路的工作示意波形图;Fig. 6 is the working schematic waveform diagram of the circuit in Fig. 5;
图7为图5中的电路的电路图;FIG. 7 is a circuit diagram of the circuit in FIG. 5;
图8为另一种动态脉冲产生电路的电路图;8 is a circuit diagram of another dynamic pulse generating circuit;
图9为图8中的电路的工作示意波形图;Fig. 9 is the working schematic waveform diagram of the circuit in Fig. 8;
图10为另一种动态脉冲产生电路的电路图;10 is a circuit diagram of another dynamic pulse generating circuit;
图11为另一种动态脉冲产生电路的电路图。FIG. 11 is a circuit diagram of another dynamic pulse generating circuit.
具体实施方式Detailed ways
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。In order to make the objectives, technical solutions and advantages of the embodiments of the present application more clear, the embodiments of the present application will be further described in detail below with reference to the accompanying drawings.
请参考图4,其示出了本申请的一个实施例提供的高压侧栅极驱动电路,包括动态脉冲产生电路、高压电平移位电路、共模滤波电路、RS触发器以及输出级缓冲电路(Buffer)。Please refer to FIG. 4, which shows a high-side gate drive circuit provided by an embodiment of the present application, including a dynamic pulse generation circuit, a high-voltage level shift circuit, a common-mode filter circuit, an RS flip-flop, and an output stage buffer circuit (Buffer).
动态脉冲产生电路的输入端作为高压侧栅极驱动电路的输入端,动态脉冲产生电路的第一输出端与高压电平移位电路的第一输入端相连,动态脉冲产生电路的第二输出端与高压电平移位电路的第二输入端相连。其中,动态脉冲产生电路的输入信号IN_H来自于高压侧通道的输入信号,动态脉冲产生电路的第一输出端的输出信号为PG_S,第二输出端的输出信号为PG_R。The input end of the dynamic pulse generation circuit is used as the input end of the high-voltage side gate drive circuit, the first output end of the dynamic pulse generation circuit is connected with the first input end of the high voltage level shift circuit, and the second output end of the dynamic pulse generation circuit is connected to the second input terminal of the high voltage level shift circuit. The input signal IN_H of the dynamic pulse generating circuit comes from the input signal of the high-voltage side channel, the output signal of the first output terminal of the dynamic pulse generating circuit is PG_S, and the output signal of the second output terminal is PG_R.
高压电平移位电路的两个输出端分别与共模滤波电路的两个输入端相连,共模滤波电路的两个输出端分别与RS触发器的置位端S和复位端R相连。The two output ends of the high voltage level shift circuit are respectively connected with the two input ends of the common mode filter circuit, and the two output ends of the common mode filter circuit are respectively connected with the set end S and the reset end R of the RS flip-flop.
RS触发器的输出端与输出级缓冲电路的输入端相连,输出级缓冲电路的输出端作为高压侧栅极驱动电路的输出端。其中,输出级缓冲电路的输出端即高侧通道的输出端口。The output end of the RS flip-flop is connected to the input end of the output stage buffer circuit, and the output end of the output stage buffer circuit serves as the output end of the high voltage side gate drive circuit. The output end of the output stage buffer circuit is the output port of the high-side channel.
高压电平移位电路、共模滤波电路、RS触发器和输出级缓冲电路分别与高压侧电源VB和高压侧浮动地VS相连。即,高压电平移位电路、共模滤波电路、RS触发器和输出级缓冲电路连接与VB和VS之间。The high voltage level shift circuit, the common mode filter circuit, the RS flip-flop and the output stage buffer circuit are respectively connected with the high voltage side power supply VB and the high voltage side floating ground VS. That is, the high voltage level shift circuit, the common mode filter circuit, the RS flip-flop and the output stage buffer circuit are connected between VB and VS.
当输入信号为窄脉冲时,动态脉冲产生电路用于对窄脉冲的上升沿和/或下降沿的脉冲宽度进行调整,以使调整后的脉冲结束时间晚于高压侧浮动地VS 突变的结束时间。即,可以在输入脉宽较窄时,自适应地调整输入信号的上升沿和/或下降沿的脉冲宽度,得到PG_S与PG_R的脉冲块宽度。When the input signal is a narrow pulse, the dynamic pulse generating circuit is used to adjust the pulse width of the rising edge and/or the falling edge of the narrow pulse, so that the adjusted end time of the pulse is later than the end time of the high-side floating ground VS sudden change . That is, when the input pulse width is narrow, the pulse width of the rising edge and/or the falling edge of the input signal can be adaptively adjusted to obtain the pulse block widths of PG_S and PG_R.
其中,窄脉冲是指脉宽小于预定阈值的脉冲。这里的预定阈值是根据公式 tP+(ΔVS×RL×CDS)/(VB-Vth)确定的,其中,VB为高压侧电源,RL为高压电平移位电路的负载电阻,CDS为LDMOS的漏源寄生电容,Vth为共模滤波电路的阈值,ΔVS为高压侧浮动地的电压的变化量,tP为LDMOS至高侧输出端的延时时间。The narrow pulse refers to a pulse whose pulse width is smaller than a predetermined threshold. The predetermined threshold here is determined according to the formula t P +(ΔV S ×R L ×C DS )/(VB-Vth), where VB is the high-voltage side power supply, R L is the load resistance of the high-voltage level shift circuit, C DS is the drain-source parasitic capacitance of the LDMOS, Vth is the threshold of the common-mode filter circuit, ΔVS is the variation of the floating ground voltage on the high-voltage side, and t P is the delay time from the LDMOS to the high-side output terminal.
如图4所示,高压电平移位电路包括:第一LDMOS LD3、第二LDMOS LD4、第一电阻R1、第二电阻R2、第一二极管D3和第二二极管D4;As shown in FIG. 4 , the high voltage level shift circuit includes: a first LDMOS LD 3 , a second LDMOS LD 4 , a first resistor R 1 , a second resistor R 2 , a first diode D 3 and a second diode tube D4 ;
第一LDMOS LD3的栅极作为高压电平移位电路的第一输入端,第二LDMOS LD4的栅极作为高压电平移位电路的第二输入端,第一LDMOS LD3和第二LDMOS LD4的源极接地;第一LDMOS LD3的漏极与第一电阻R1的第一端口、第一二极管D3的阴极连接于第一连接点HD_S,第一连接点HD_S作为高压电平移位电路的第一输出端;第二LDMOS LD4的漏极与第二电阻R2的第一端口、第二二极管D4的阴极连接于第二连接点HD_R,第二连接点HD_R作为高压电平移位电路的第二输出端;第一电阻R1的第二端口和第二电阻R2的第二端口分别与高压侧电源VB相连,第一二极管D3和第二二极管D4的正极分别与高压侧浮动地VS相连。The gate of the first LDMOS LD 3 is used as the first input terminal of the high voltage level shift circuit, the gate of the second LDMOS LD 4 is used as the second input terminal of the high voltage level shift circuit, the first LDMOS LD 3 and the second The source of the LDMOS LD 4 is grounded; the drain of the first LDMOS LD 3 is connected to the first port of the first resistor R 1 and the cathode of the first diode D 3 is connected to the first connection point HD_S, and the first connection point HD_S serves as The first output terminal of the high-voltage level shift circuit; the drain of the second LDMOS LD 4 is connected to the first port of the second resistor R 2 , the cathode of the second diode D 4 is connected to the second connection point HD_R, the second The connection point HD_R is used as the second output terminal of the high-voltage level shift circuit; the second port of the first resistor R1 and the second port of the second resistor R2 are respectively connected to the high-voltage side power supply VB, and the first diode D3 and the anodes of the second diode D4 are respectively connected to the high - voltage side floating ground VS.
其中,高压电平移位电路的第一输入端的输入是PG_S,其作用于LD3的栅极;高压电平移位电路的第二输入端的输入是PG_R,其作用于LD4的栅极。第一二极管D3和第二二极管D4的作用是钳位HD_S、HD_R两点的电压,保护共模滤波电路中的栅极。The input of the first input terminal of the high voltage level shift circuit is PG_S, which acts on the gate of LD 3 ; the input of the second input terminal of the high voltage level shift circuit is PG_R, which acts on the gate of LD 4 . The functions of the first diode D3 and the second diode D4 are to clamp the voltages of HD_S and HD_R to protect the gate of the common mode filter circuit.
动态脉冲产生电路的形式可以包含以下三种:The form of dynamic pulse generation circuit can include the following three:
1)当输入信号包括高电平窄脉冲时,动态脉冲产生电路用于控制高电平窄脉冲的下降沿脉冲宽度。1) When the input signal includes a high-level narrow pulse, the dynamic pulse generating circuit is used to control the pulse width of the falling edge of the high-level narrow pulse.
2)当输入信号包括低电平窄脉冲时,动态脉冲产生电路用于控制低电平窄脉冲的上升沿脉冲宽度。其中,2) When the input signal includes a low-level narrow pulse, the dynamic pulse generating circuit is used to control the pulse width of the rising edge of the low-level narrow pulse. in,
3)当输入信号包括高电平窄脉冲和低电平窄脉冲时,动态脉冲产生电路用于控制高电平窄脉冲的下降沿脉冲宽度和低电平窄脉冲的上升沿脉冲宽度。3) When the input signal includes a high-level narrow pulse and a low-level narrow pulse, the dynamic pulse generating circuit is used to control the falling edge pulse width of the high-level narrow pulse and the rising edge pulse width of the low-level narrow pulse.
其中,高电平窄脉冲具有较低的占空比,比如,占空比接近于0%。低电平窄脉冲具有较高的占空比,比如,占空比接近于100%。Among them, the high-level narrow pulse has a relatively low duty cycle, for example, the duty cycle is close to 0%. The low-level narrow pulse has a higher duty cycle, eg, the duty cycle is close to 100%.
下面分别对这三种形式的动态脉冲产生电路的电路结构进行介绍。The circuit structures of these three forms of dynamic pulse generating circuits are introduced separately below.
如图5所示,在第一种形式的第一种实现方式中,当动态脉冲产生电路用于控制下降沿脉冲宽度时,动态脉冲产生电路包括上升沿脉冲产生电路、延时电路、受控电流源和下降沿脉冲产生电路。As shown in Figure 5, in the first implementation of the first form, when the dynamic pulse generating circuit is used to control the width of the falling edge pulse, the dynamic pulse generating circuit includes a rising edge pulse generating circuit, a delay circuit, a controlled Current source and falling edge pulse generation circuit.
上升沿脉冲产生电路的输入端和下降沿脉冲产生电路的第一输入端相连后作为动态脉冲产生电路的输入端;上升沿脉冲产生电路的输出端作为动态脉冲产生电路的第一输出端。其中,上升沿脉冲产生电路的输入端和下降沿脉冲产生电路的第一输入端输入的是IN_H,上升沿脉冲产生电路的输出端输出的是 PG_S。The input terminal of the rising edge pulse generating circuit is connected with the first input terminal of the falling edge pulse generating circuit as the input terminal of the dynamic pulse generating circuit; the output terminal of the rising edge pulse generating circuit is the first output terminal of the dynamic pulse generating circuit. Among them, the input terminal of the rising edge pulse generation circuit and the first input terminal of the falling edge pulse generation circuit input IN_H, and the output terminal of the rising edge pulse generation circuit outputs PG_S.
上升沿脉冲产生电路的输出端与延时电路的输入端相连;延时电路的输出端与受控电流源的输入端相连,受控电流源的输出端与下降沿脉冲产生电路的第二输入端相连,以控制下降沿脉冲宽度。下降沿脉冲产生电路的输出端作为动态脉冲产生电路的第二输出端。其中,下降沿脉冲产生电路的输出端输出的是PG_R。The output end of the rising edge pulse generating circuit is connected with the input end of the delay circuit; the output end of the delay circuit is connected with the input end of the controlled current source, and the output end of the controlled current source is connected with the second input of the falling edge pulse generating circuit terminals are connected to control the falling edge pulse width. The output terminal of the falling edge pulse generating circuit is used as the second output terminal of the dynamic pulse generating circuit. Among them, the output terminal of the falling edge pulse generating circuit outputs PG_R.
图6示出了图5中动态脉冲产生电路的工作波形图,与图2类似,同样可以将工作波形图分为左半边部分和右半边部分,左半边部分显示的是脉冲宽度较宽的输入信号,上升沿脉冲信号及其延时信号与下降沿脉冲信号没有交叠,电路可正常工作;右半边部分显示的是脉冲宽度较窄的输入信号,此时为了防止下降沿脉冲被dV/dt噪声淹没,将下降沿脉冲信号延迟一段时间,延迟的时间由公式2确定,假设共模滤波电路产生响应的阈值为Vth,那么,可以得到能够使得共模滤波电路产生响应的dV/dt的表达式为:Figure 6 shows the working waveform of the dynamic pulse generating circuit in Figure 5. Similar to Figure 2, the working waveform can also be divided into a left half and a right half. The left half shows the input with a wider pulse width. Signal, the rising edge pulse signal and its delay signal and the falling edge pulse signal do not overlap, the circuit can work normally; the right half shows the input signal with a narrow pulse width, at this time, in order to prevent the falling edge pulse from being dV/dt Noise submerged, delay the falling edge pulse signal for a period of time, the delay time is determined by
其中,VB为高压侧电源,RL为高电平移位电路的负载电阻,CDS为 LDMOS的漏源寄生电容。由公式1可知,当dV/dt值小于此值时,共模滤波电路不会响应,因此,可以得到延时电路的延时值:Among them, VB is the high-voltage side power supply, RL is the load resistance of the high-level shift circuit, and C DS is the drain-source parasitic capacitance of the LDMOS. It can be seen from
其中,tP为LDMOS至高侧输出端HO的延时时间。Among them, t P is the delay time from the LDMOS to the high-side output terminal HO.
如图7所示,下面分别对上升沿脉冲产生电路、下降沿脉冲产生电路、延时电路和受控电流源的结构进行说明。As shown in FIG. 7 , the structures of the rising edge pulse generating circuit, the falling edge pulse generating circuit, the delay circuit and the controlled current source are respectively described below.
上升沿脉冲产生电路包括第三反相器INV8、第四反相器INV9、第五反相器INV10、第六反相器INV11、第一电容C1和第五或非门NOR3,第三反相器 INV8的输入端作为上升沿脉冲产生电路的输入端;第三反相器INV8的输出端分别与第四反相器INV9的输入端和第五或非门NOR3的第二输入端相连,第四反相器INV9的输出端分别与第一电容C1的正极和第五反相器INV10的输入端相连,第一电容C1的负极接地,第五反相器INV10的输出端与第六反相器INV11的输入端相连,第六反相器INV11的输出端与第五或非门NOR3的第一输入端相连,第五或非门NOR3的输出端作为上升沿脉冲产生电路的输出端。The rising edge pulse generating circuit includes a third inverter INV 8 , a fourth inverter INV 9 , a fifth inverter INV 10 , a sixth inverter INV 11 , a first capacitor C 1 and a fifth NOR gate NOR 3. The input end of the third inverter INV 8 is used as the input end of the rising edge pulse generating circuit; the output end of the third inverter INV 8 is respectively connected with the input end of the fourth inverter INV 9 and the fifth NOR gate. The second input terminal of the NOR 3 is connected to the second input terminal, the output terminal of the fourth inverter INV 9 is connected to the positive terminal of the first capacitor C 1 and the input terminal of the fifth inverter INV 10 respectively, and the negative terminal of the first capacitor C 1 is connected to the ground, The output end of the fifth inverter INV 10 is connected to the input end of the sixth inverter INV 11 , the output end of the sixth inverter INV 11 is connected to the first input end of the fifth NOR gate NOR 3 , the fifth The output terminal of the NOR gate NOR 3 is used as the output terminal of the rising edge pulse generating circuit.
下降沿脉冲产生电路包括第七反相器INV14、第八反相器INV15、第九反相器INV16、第二电容C2和第六或非门NOR4,第七反相器INV14的两个输入端分别作为下降沿脉冲产生电路的第一输入端和第二输入端,下降沿脉冲产生电路的第一输入端与第六或非门NOR4的第二输入端相连;第七反相器INV14的输出端分别与第二电容C2的正极和第八反相器INV15的输入端相连,第二电容 C2的负极接地,第八反相器INV15的输出端与第九反相器INV16的输入端相连,第九反相器INV16的输出端与第六或非门NOR4的第一输入端相连,第六或非门NOR4的输出端作为下降沿脉冲产生电路的输出端。The falling edge pulse generating circuit includes a seventh inverter INV 14 , an eighth inverter INV 15 , a ninth inverter INV 16 , a second capacitor C 2 , a sixth NOR gate NOR 4 , and a seventh inverter INV The two input terminals of 14 are respectively used as the first input terminal and the second input terminal of the falling edge pulse generating circuit, and the first input terminal of the falling edge pulse generating circuit is connected with the second input terminal of the sixth NOR gate NOR 4 ; The output terminal of the seven inverter INV 14 is connected to the positive terminal of the second capacitor C 2 and the input terminal of the eighth inverter INV 15 respectively, the negative terminal of the second capacitor C 2 is grounded, and the output terminal of the eighth inverter INV 15 is connected to the input end of the ninth inverter INV 16 , the output end of the ninth inverter INV 16 is connected to the first input end of the sixth NOR gate NOR 4 , and the output end of the sixth NOR gate NOR 4 serves as a drop The output of the edge pulse generation circuit.
延时电路包括第十反相器INV12、第十一反相器INV13和第三电容C3,第十反相器INV12的输入端作为延时电路的输入端,第十反相器INV12的输出端分别与第三电容C3的正极和第十一反相器INV13的输入端相连,第三电容C3的负极接地,第十一反相器INV13的输出端作为延时电路的输出端。The delay circuit includes a tenth inverter INV 12 , an eleventh inverter INV 13 and a third capacitor C 3 . The input end of the tenth inverter INV 12 is used as the input end of the delay circuit, and the tenth inverter The output terminal of INV 12 is connected to the positive terminal of the third capacitor C 3 and the input terminal of the eleventh inverter INV 13 , respectively, the negative terminal of the third capacitor C 3 is grounded, and the output terminal of the eleventh inverter INV 13 is used as a delay the output of the circuit.
受控电流源包括电流源I1和PMOS管M1,电流源I1连接于电源和PMOS 管M1的源级之间,PMOS管M1的栅极作为受控电流源的输入端,PMOS管 M1的漏极作为受控电流源的输出端。The controlled current source includes a current source I 1 and a PMOS transistor M 1 , the current source I 1 is connected between the power supply and the source stage of the PMOS transistor M 1 , the gate of the PMOS transistor M 1 serves as the input end of the controlled current source, and the PMOS The drain of tube M1 serves as the output of the controlled current source.
如图8所示,在第一种形式的第二种实现方式中,当动态脉冲产生电路用于控制下降沿脉冲宽度时,动态脉冲产生电路包括上升沿脉冲产生电路、延时电路、下降沿脉冲产生电路、第一反相器INV17、第二反相器INV18、第一或非门NOR5、第二或非门NOR6、第三或非门NOR7和第四或非门NOR8。As shown in Figure 8, in the second implementation of the first form, when the dynamic pulse generating circuit is used to control the width of the falling edge pulse, the dynamic pulse generating circuit includes a rising edge pulse generating circuit, a delay circuit, a falling edge pulse Pulse generating circuit, first inverter INV 17 , second inverter INV 18 , first NOR gate NOR 5 , second NOR gate NOR 6 , third NOR gate NOR 7 and fourth NOR gate NOR 8 .
上升沿脉冲产生电路的输入端和下降沿脉冲产生电路的输入端相连后作为动态脉冲产生电路的输入端;上升沿脉冲产生电路的输出端作为动态脉冲产生电路的第一输出端,上升沿脉冲产生电路的输出端与延时电路的输入端相连。其中,上升沿脉冲产生电路的输入端和下降沿脉冲产生电路的输入端输入的是 IN_H,上升沿脉冲产生电路的输出端输出的是PG_S。延时电路的输出端分别与第一或非门NOR5和第二或非门NOR6的第一输入端相连于第三连接点 IN1。下降沿脉冲产生电路的输出端分别与第一反相器INV17的输入端和第四或非门NOR8的第二输入端相连于第四连接点IN2;第一反相器INV17的输出端与第一或非门NOR5的第二输入端相连;第一或非门NOR5的输出端与第二或非门NOR6的第二输入端相连;第二或非门NOR6的输出端与第三或非门NOR7的第一输入端相连;第三或非门NOR7的输出端与第四或非门NOR8的第一输入端相连;第四或非门NOR8的输出端分别与第二反相器INV18的输入端和第三或非门NOR7的第二输入端相连;第二反相器INV18的输出端作为动态脉冲产生电路的第二输出端。其中,第二反相器INV18的输出端输出的是PG_R。The input end of the rising edge pulse generation circuit is connected with the input end of the falling edge pulse generation circuit as the input end of the dynamic pulse generation circuit; the output end of the rising edge pulse generation circuit is used as the first output end of the dynamic pulse generation circuit, the rising edge pulse The output end of the generating circuit is connected with the input end of the delay circuit. Among them, the input terminal of the rising edge pulse generating circuit and the input terminal of the falling edge pulse generating circuit input IN_H, and the output terminal of the rising edge pulse generating circuit outputs PG_S. The output terminals of the delay circuit are respectively connected with the first input terminals of the first NOR gate NOR 5 and the second NOR gate NOR 6 to the third connection point IN1. The output end of the falling edge pulse generating circuit is respectively connected with the input end of the first inverter INV 17 and the second input end of the fourth NOR gate NOR 8 to the fourth connection point IN2; the output end of the first inverter INV 17 The terminal is connected with the second input terminal of the first NOR gate NOR 5 ; the output terminal of the first NOR gate NOR 5 is connected with the second input terminal of the second NOR gate NOR 6 ; the output of the second NOR gate NOR 6 The terminal is connected with the first input terminal of the third NOR gate NOR 7 ; the output terminal of the third NOR gate NOR 7 is connected with the first input terminal of the fourth NOR gate NOR 8 ; the output of the fourth NOR gate NOR 8 The terminals are respectively connected with the input terminal of the second inverter INV 18 and the second input terminal of the third NOR gate NOR 7 ; the output terminal of the second inverter INV 18 is used as the second output terminal of the dynamic pulse generating circuit. The output terminal of the second inverter INV 18 outputs PG_R.
其中,上升沿脉冲产生电路和延时电路可以参考图6中的实现方式。另外,图6中的下降沿脉冲产生电路具有两个输入端,而图8中的下降沿脉冲产生电路具有一个输入端,因此,可以在图6中所示的下降沿脉冲产生电路的基础上进行改动。改动后,第七反相器INV14的输入端作为下降沿脉冲产生电路的输入端,下降沿脉冲产生电路的输入端与第六或非门NOR4的第二输入端相连,其余结构不变。For the rising edge pulse generating circuit and the delay circuit, reference may be made to the implementation in FIG. 6 . In addition, the falling edge pulse generating circuit in FIG. 6 has two input terminals, while the falling edge pulse generating circuit in FIG. 8 has one input terminal. Therefore, on the basis of the falling edge pulse generating circuit shown in FIG. 6 Make changes. After the modification, the input terminal of the seventh inverter INV14 is used as the input terminal of the falling edge pulse generating circuit, and the input terminal of the falling edge pulse generating circuit is connected with the second input terminal of the sixth NOR gate NOR4, and the rest of the structure remains unchanged.
本实施例中,当第三连接点IN1为高电平,第四连接点IN2为高电平时,动态脉冲产生电路的第二输出端的输出为高电平;当第三连接点IN1为高电平,第四连接点IN2为低电平时,动态脉冲产生电路的第二输出端的输出与上一状态相同;当第三连接点IN1为低电平,第四连接点IN2为高电平时,动态脉冲产生电路的第二输出端的输出为有效高电位;当第三连接点IN1为低电平,第四连接点IN2为低电平时,动态脉冲产生电路的第二输出端的输出为无效低电位。In this embodiment, when the third connection point IN1 is at a high level and the fourth connection point IN2 is at a high level, the output of the second output terminal of the dynamic pulse generating circuit is at a high level; when the third connection point IN1 is at a high level When the fourth connection point IN2 is at a low level, the output of the second output terminal of the dynamic pulse generating circuit is the same as the previous state; when the third connection point IN1 is at a low level and the fourth connection point IN2 is at a high level, the dynamic The output of the second output terminal of the pulse generating circuit is a valid high level; when the third connection point IN1 is low level and the fourth connection point IN2 is low level, the output of the second output terminal of the dynamic pulse generating circuit is an invalid low level.
简单来说,在IN1=1,IN2=1的状态下,复位脉冲PG_R输出高电平;在 IN1=1,IN2=0的状态下,PG_R信号保持上一状态不变;在IN1=0,IN2=1的状态下,PG_R输出有效高电位;在IN1=0,IN2=0的状态下,PG_R输出无效低电位。这样,可以使得当上升沿脉冲延时信号的结束时间晚于下降沿脉冲的结束时间时,PG_R一直维持有效信号至上升沿脉冲延时信号的结束时间。Simply put, in the state of IN1=1, IN2=1, the reset pulse PG_R outputs a high level; in the state of IN1=1, IN2=0, the PG_R signal keeps the previous state unchanged; in IN1=0, In the state of IN2=1, PG_R outputs an active high level; in the state of IN1=0 and IN2=0, PG_R outputs an inactive low level. In this way, when the end time of the rising edge pulse delay signal is later than the end time of the falling edge pulse, the PG_R maintains a valid signal until the end time of the rising edge pulse delay signal.
图9为图8中的电路的工作示意波形图,左半边部分显示的是脉冲宽度较宽的输入信号,可以看出延时电路对于电路的工作没有任何影响,电路正常工作;右半边部分显示的是脉冲宽度较窄的输入信号,IN1为上升沿脉冲信号 PG_S的延时信号,根据逻辑电路的时序规则,下降沿由IN2为高电平时开始,一直保持至IN1信号由高变低,有效地防止芯片误触发。其中,延时电路的延时值是根据公式tP+(ΔVS×RL×CDS)/(VB-Vth)确定的,其中,VB为高压侧电源,RL为高压电平移位电路的负载电阻,CDS为LDMOS的漏源寄生电容,Vth为共模滤波电路的阈值,ΔVS为高压侧浮动地的电压的变化量,tP为 LDMOS至高侧输出端的延时时间。Figure 9 is a schematic waveform diagram of the circuit in Figure 8. The left half shows the input signal with a wider pulse width. It can be seen that the delay circuit has no effect on the operation of the circuit, and the circuit works normally; the right half shows It is an input signal with a narrow pulse width. IN1 is the delay signal of the rising edge pulse signal PG_S. According to the timing rules of the logic circuit, the falling edge starts when IN2 is high and keeps until the IN1 signal changes from high to low. Effective ground to prevent false triggering of the chip. Among them, the delay value of the delay circuit is determined according to the formula t P +(ΔV S ×R L ×C DS )/(VB-Vth), where VB is the high-voltage side power supply, and R L is the high-voltage level shift The load resistance of the circuit, C DS is the drain-source parasitic capacitance of the LDMOS, Vth is the threshold of the common mode filter circuit, ΔVS is the variation of the floating ground voltage on the high-voltage side, and t P is the delay time from the LDMOS to the high-side output terminal.
如图10所示,在第二种形式中,当动态脉冲产生电路用于控制上升沿脉冲宽度时,动态脉冲产生电路包括上升沿脉冲产生电路、下降沿脉冲产生电路、延时电路和受控电流源。As shown in Figure 10, in the second form, when the dynamic pulse generating circuit is used to control the rising edge pulse width, the dynamic pulse generating circuit includes a rising edge pulse generating circuit, a falling edge pulse generating circuit, a delay circuit and a controlled current source.
上升沿脉冲产生电路的第一输入端和下降沿脉冲产生电路的输入端相连后作为动态脉冲产生电路的输入端;下降沿脉冲产生电路的输出端作为动态脉冲产生电路的第二输出端。其中,上升沿脉冲产生电路的第一输入端和下降沿脉冲产生电路的输入端输入的是IN_H,下降沿脉冲产生电路的输出端输出的是 PG_R。The first input terminal of the rising edge pulse generating circuit is connected with the input terminal of the falling edge pulse generating circuit and then used as the input terminal of the dynamic pulse generating circuit; the output terminal of the falling edge pulse generating circuit is used as the second output terminal of the dynamic pulse generating circuit. Among them, the first input terminal of the rising edge pulse generating circuit and the input terminal of the falling edge pulse generating circuit input IN_H, and the output terminal of the falling edge pulse generating circuit outputs PG_R.
下降沿脉冲产生电路的输出端与延时电路的输入端相连;延时电路的输出端与受控电流源的输入端相连,受控电流源的输出端与上升沿脉冲产生电路的第二输入端相连;上升沿脉冲产生电路的输出端作为动态脉冲产生电路的第一输出端。其中,上升沿脉冲产生电路的输出端输出的是PG_S。The output end of the falling edge pulse generating circuit is connected with the input end of the delay circuit; the output end of the delay circuit is connected with the input end of the controlled current source, and the output end of the controlled current source is connected with the second input of the rising edge pulse generating circuit The output end of the rising edge pulse generating circuit is used as the first output end of the dynamic pulse generating circuit. Among them, the output terminal of the rising edge pulse generating circuit outputs PG_S.
其中,延时电路和受控电流源可以参考图6中的实现方式,下降沿脉冲产生电路可以参考图8中的实现方式。另外,图6中的上升沿脉冲产生电路具有一个输入端,而图10中的上升沿脉冲产生电路具有两个输入端,因此,可以在图6中所示的上升沿脉冲产生电路的基础上进行改动。改动后,第三反相器 INV8的两个输入端分别作为上升沿脉冲产生电路的第一输入端和第二输入端。The delay circuit and the controlled current source may refer to the implementation in FIG. 6 , and the falling edge pulse generating circuit may refer to the implementation in FIG. 8 . In addition, the rising edge pulse generating circuit in FIG. 6 has one input terminal, while the rising edge pulse generating circuit in FIG. 10 has two input terminals. Therefore, on the basis of the rising edge pulse generating circuit shown in FIG. 6 Make changes. After the modification, the two input terminals of the third inverter INV 8 are respectively used as the first input terminal and the second input terminal of the rising edge pulse generating circuit.
其中,延时电路的延时值是根据公式tP+(ΔVS×RL×CDS)/(VB-Vth)确定的,其中,VB为高压侧电源,RL为高压电平移位电路的负载电阻,CDS为 LDMOS的漏源寄生电容,Vth为共模滤波电路的阈值,ΔVS为高压侧浮动地的电压的变化量,tP为LDMOS至高侧输出端的延时时间。Among them, the delay value of the delay circuit is determined according to the formula t P +(ΔV S ×R L ×C DS )/(VB-Vth), where VB is the high-voltage side power supply, and R L is the high-voltage level shift The load resistance of the circuit, C DS is the drain-source parasitic capacitance of the LDMOS, Vth is the threshold of the common mode filter circuit, ΔVS is the variation of the floating ground voltage on the high-voltage side, and t P is the delay time from the LDMOS to the high-side output terminal.
如图11所示,在第三种形式中,当动态脉冲产生电路用于控制下降沿脉冲宽度和上升沿脉冲宽度时,动态脉冲产生电路包括上升沿脉冲产生电路、下降沿脉冲产生电路、第一延时电路、第二延时电路、第一受控电流源和第二受控电流源。As shown in Figure 11, in the third form, when the dynamic pulse generating circuit is used to control the falling edge pulse width and the rising edge pulse width, the dynamic pulse generating circuit includes a rising edge pulse generating circuit, a falling edge pulse generating circuit, a A delay circuit, a second delay circuit, a first controlled current source and a second controlled current source.
上升沿脉冲产生电路的第一输入端和下降沿脉冲产生电路的第一输入端相连后作为动态脉冲产生电路的输入端;上升沿脉冲产生电路的输出端作为动态脉冲产生电路的第一输出端;上升沿脉冲产生电路的输出端与第一延时电路的输入端相连;下降沿脉冲产生电路的输出端作为动态脉冲产生电路的第二输出端,下降沿脉冲产生电路的输出端与第二延时电路的输入端相连。其中,上升沿脉冲产生电路的第一输入端和下降沿脉冲产生电路的第一输入端输入的是IN_H,上升沿脉冲产生电路的输出端输出的是PG_S,下降沿脉冲产生电路的输出端输出的是PG_R。The first input terminal of the rising edge pulse generating circuit is connected with the first input terminal of the falling edge pulse generating circuit as the input terminal of the dynamic pulse generating circuit; the output terminal of the rising edge pulse generating circuit is used as the first output terminal of the dynamic pulse generating circuit The output end of the rising edge pulse generation circuit is connected with the input end of the first delay circuit; the output end of the falling edge pulse generation circuit is used as the second output end of the dynamic pulse generation circuit, and the output end of the falling edge pulse generation circuit is connected with the second output end of the dynamic pulse generation circuit. The input terminals of the delay circuit are connected. Among them, the first input terminal of the rising edge pulse generation circuit and the first input terminal of the falling edge pulse generation circuit input IN_H, the output terminal of the rising edge pulse generation circuit outputs PG_S, and the output terminal of the falling edge pulse generation circuit outputs The one is PG_R.
第一延时电路的输出端与第一受控电流源的输入端相连,第一受控电流源的输出端与下降沿脉冲产生电路的第二输入端相连;第二延时电路的输出端与第二受控电流源的输入端相连,第二受控电流源的输出端与上升沿脉冲产生电路的第二输入端相连。The output end of the first delay circuit is connected with the input end of the first controlled current source, the output end of the first controlled current source is connected with the second input end of the falling edge pulse generating circuit; the output end of the second delay circuit It is connected with the input end of the second controlled current source, and the output end of the second controlled current source is connected with the second input end of the rising edge pulse generating circuit.
上升沿脉冲产生电路可以参考图10中上升沿脉冲产生电路的实现方式,下降沿脉冲产生电路可以参考图6中下降沿脉冲产生电路的实现方式,第一延时电路和第二延时电路可以参考图6中延时电路的实现方式,第一受控电流源和第二受控电流源可以参考图6中受控电流源的实现方式。The rising edge pulse generation circuit can refer to the implementation of the rising edge pulse generation circuit in Figure 10, and the falling edge pulse generation circuit can refer to the implementation of the falling edge pulse generation circuit in Figure 6. The first delay circuit and the second delay circuit can be Referring to the implementation of the delay circuit in FIG. 6 , the first controlled current source and the second controlled current source may refer to the implementation of the controlled current source in FIG. 6 .
其中,延时电路的延时值是根据公式tP+(ΔVS×RL×CDS)/(VB-Vth)确定的,其中,VB为高压侧电源,RL为高压电平移位电路的负载电阻,CDS为 LDMOS的漏源寄生电容,Vth为共模滤波电路的阈值,ΔVS为高压侧浮动地的电压的变化量,tP为LDMOS至高侧输出端的延时时间。Among them, the delay value of the delay circuit is determined according to the formula t P +(ΔV S ×R L ×C DS )/(VB-Vth), where VB is the high-voltage side power supply, and R L is the high-voltage level shift The load resistance of the circuit, C DS is the drain-source parasitic capacitance of the LDMOS, Vth is the threshold of the common mode filter circuit, ΔVS is the variation of the floating ground voltage on the high-voltage side, and t P is the delay time from the LDMOS to the high-side output terminal.
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。Those of ordinary skill in the art can understand that all or part of the steps of implementing the above embodiments can be completed by hardware, or can be completed by instructing relevant hardware through a program, and the program can be stored in a computer-readable storage medium. The storage medium mentioned may be a read-only memory, a magnetic disk or an optical disk, etc.
以上所述并不用以限制本申请实施例,凡在本申请实施例的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请实施例的保护范围之内。The above is not intended to limit the embodiments of the present application, and any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the embodiments of the present application should be included within the protection scope of the embodiments of the present application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111169545.1A CN114006612A (en) | 2021-10-08 | 2021-10-08 | High side gate drive circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111169545.1A CN114006612A (en) | 2021-10-08 | 2021-10-08 | High side gate drive circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114006612A true CN114006612A (en) | 2022-02-01 |
Family
ID=79922291
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111169545.1A Pending CN114006612A (en) | 2021-10-08 | 2021-10-08 | High side gate drive circuit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114006612A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09251779A (en) * | 1996-03-18 | 1997-09-22 | Oki Electric Ind Co Ltd | Semiconductor storage device |
CN102045058A (en) * | 2011-01-27 | 2011-05-04 | 电子科技大学 | A high voltage level shift circuit |
CN104320001A (en) * | 2014-10-29 | 2015-01-28 | 广州金升阳科技有限公司 | Magnetic isolation feedback circuit |
CN105007062A (en) * | 2015-07-28 | 2015-10-28 | 周海波 | High-reliability edge pulse generating circuit of intelligent power module |
CN113114194A (en) * | 2021-03-16 | 2021-07-13 | 国硅集成电路技术(无锡)有限公司 | Gate drive circuit of gallium nitride power device |
-
2021
- 2021-10-08 CN CN202111169545.1A patent/CN114006612A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09251779A (en) * | 1996-03-18 | 1997-09-22 | Oki Electric Ind Co Ltd | Semiconductor storage device |
CN102045058A (en) * | 2011-01-27 | 2011-05-04 | 电子科技大学 | A high voltage level shift circuit |
CN104320001A (en) * | 2014-10-29 | 2015-01-28 | 广州金升阳科技有限公司 | Magnetic isolation feedback circuit |
CN105007062A (en) * | 2015-07-28 | 2015-10-28 | 周海波 | High-reliability edge pulse generating circuit of intelligent power module |
CN113114194A (en) * | 2021-03-16 | 2021-07-13 | 国硅集成电路技术(无锡)有限公司 | Gate drive circuit of gallium nitride power device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10340906B2 (en) | Integrated bootstrap high-voltage driver chip and technological structure thereof | |
US4071783A (en) | Enhancement/depletion mode field effect transistor driver | |
CN100438283C (en) | High-side transistor driver for power converter | |
JP3117696B2 (en) | Electronic circuit | |
JP4742828B2 (en) | Voltage-driven switching circuit | |
JP5945629B2 (en) | Level shift circuit | |
US7724034B2 (en) | Floating driving circuit | |
JPH0282714A (en) | Low noise output buffer circuit | |
JP2001144603A (en) | Level shifter circuit and data output circuit including it | |
US7656201B2 (en) | Output buffer circuit | |
US11476845B2 (en) | Driver circuit, corresponding device and method of operation | |
CN113965194B (en) | Low-delay high-voltage side driving circuit with noise detection function | |
CN109921779B (en) | Half-bridge circuit through protection circuit | |
US5621342A (en) | Low-power CMOS driver circuit capable of operating at high frequencies | |
CN113114194A (en) | Gate drive circuit of gallium nitride power device | |
CN113193865A (en) | Level shift circuit suitable for GaN half-bridge grid drive | |
WO2023134381A1 (en) | Switch power source circuit and terminal device | |
JP3900178B2 (en) | Level shift circuit | |
US4468576A (en) | Inverter circuit having transistors operable in a shallow saturation region for avoiding fluctuation of electrical characteristics | |
CN114006612A (en) | High side gate drive circuit | |
CN113179095B (en) | Output stage circuit based on gallium nitride process integrated circuit and cascade application thereof | |
JP7240835B2 (en) | switching circuit | |
CN115333338B (en) | A negative bias half-bridge pre-drive circuit for a motor controller | |
CN118944660B (en) | Level shift circuit for high-frequency GaN gate driver chips | |
WO2024189895A1 (en) | Drive circuit and semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |