CN114005926B - Heat conduction layer, light emitting diode, semiconductor device and preparation method thereof - Google Patents
Heat conduction layer, light emitting diode, semiconductor device and preparation method thereof Download PDFInfo
- Publication number
- CN114005926B CN114005926B CN202111269510.5A CN202111269510A CN114005926B CN 114005926 B CN114005926 B CN 114005926B CN 202111269510 A CN202111269510 A CN 202111269510A CN 114005926 B CN114005926 B CN 114005926B
- Authority
- CN
- China
- Prior art keywords
- layer
- metal
- emitting diode
- thickness
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract 15
- 238000002360 preparation method Methods 0.000 title abstract 2
- 239000002184 metal Substances 0.000 claims abstract 30
- 230000000903 blocking effect Effects 0.000 claims abstract 3
- 230000008020 evaporation Effects 0.000 claims 12
- 238000001704 evaporation Methods 0.000 claims 12
- 239000000758 substrate Substances 0.000 claims 10
- 230000004888 barrier function Effects 0.000 claims 6
- 238000000151 deposition Methods 0.000 claims 5
- 230000008021 deposition Effects 0.000 claims 4
- 238000004519 manufacturing process Methods 0.000 claims 4
- 238000000034 method Methods 0.000 claims 2
- 239000000853 adhesive Substances 0.000 claims 1
- 230000001070 adhesive effect Effects 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract 1
- 230000017525 heat dissipation Effects 0.000 abstract 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/858—Means for heat extraction or cooling
- H10H20/8581—Means for heat extraction or cooling characterised by their material
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/84—Coatings, e.g. passivation layers or antireflective coatings
- H10H20/841—Reflective coatings, e.g. dielectric Bragg reflectors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/858—Means for heat extraction or cooling
- H10H20/8583—Means for heat extraction or cooling not being in contact with the bodies
Landscapes
- Led Devices (AREA)
- Led Device Packages (AREA)
Abstract
Description
技术领域Technical field
本发明涉及半导体技术领域,具体而言,涉及一种导热层、发光二极管、半导体器件及其制备方法。The present invention relates to the field of semiconductor technology, and specifically to a thermal conductive layer, a light-emitting diode, a semiconductor device and a preparation method thereof.
背景技术Background technique
发光二极管(英文为Light Emitting Diode,简称LED)是利用半导体的P-N结电致发光原理制成的一种半导体发光器件。LED具有无污染、亮度高、功耗小、寿命长、工作电压低、易小型化等优点。自20世纪90年代氮化镓(GaN)基LED开发成功以来,随着研究的不断进展,其发光亮度也不断提高,应用领域也越来越广。随着功率型GaN基LED的效率不断提升,用GaN基LED半导体灯替代现有的照明光源将成为势不可挡的趋势。然而半导体照明要进入千家万户,还有许多问题需要解决,其中最核心的就是发光效率和散热不均匀导致的使用寿命问题。Light Emitting Diode (LED in English) is a semiconductor light-emitting device made by utilizing the P-N junction electroluminescence principle of semiconductors. LED has the advantages of no pollution, high brightness, low power consumption, long life, low operating voltage, and easy miniaturization. Since the successful development of gallium nitride (GaN)-based LEDs in the 1990s, with the continuous progress of research, their luminous brightness has also continued to increase, and their application fields have become wider and wider. As the efficiency of power GaN-based LEDs continues to improve, replacing existing lighting sources with GaN-based LED semiconductor lamps will become an unstoppable trend. However, there are still many problems that need to be solved for semiconductor lighting to enter thousands of households. The core of which is the service life problem caused by uneven luminous efficiency and heat dissipation.
在现有技术中,提高二极管散热的方法包括:在LED固晶区部分用高导热材料替换原来的BT板(Bismaleimide Triazine,BT树脂基板材料),高导热材料为铜、陶瓷或者其它导热材料。LED芯片固晶在高导热材料上,LED芯片外覆盖高温胶,使LED芯片直接与高导热材料接触,这样做LED产生的热量能迅速向下传导至驱动板上,来改善散热性能。现有技术中存在芯片本身导热性能较差(45W/mk),封装散热效果不好的技术问题。In the existing technology, methods to improve diode heat dissipation include: replacing the original BT board (Bismaleimide Triazine, BT resin substrate material) with a high thermal conductivity material in the LED die-bonding area. The high thermal conductivity material is copper, ceramics or other thermal conductive materials. The LED chip is solidified on a high thermal conductivity material, and the LED chip is covered with high-temperature glue so that the LED chip is in direct contact with the high thermal conductivity material. In this way, the heat generated by the LED can be quickly conducted downward to the driver board to improve heat dissipation performance. In the existing technology, there are technical problems such as poor thermal conductivity of the chip itself (45W/mk) and poor heat dissipation effect of the package.
有鉴于此,特提出本发明。In view of this, the present invention is proposed.
发明内容Contents of the invention
本发明的一个目的在于提供一种发光二极管的导热层,以解决现有技术中存在芯片本身导热性能较差,封装散热效果不好的技术问题;本发明的导热层可改善芯片导热系数,进而起到改善芯片的导热性能的作用。One object of the present invention is to provide a thermal conductive layer for a light-emitting diode to solve the technical problems in the prior art that the chip itself has poor thermal conductivity and the packaging heat dissipation effect is poor; the thermal conductive layer of the present invention can improve the thermal conductivity of the chip, and thereby It plays a role in improving the thermal conductivity of the chip.
本发明的另一个目的在于提供一种发光二极管,具有很好的散热效果。Another object of the present invention is to provide a light-emitting diode with good heat dissipation effect.
本发明的另一个目的在于提供一种半导体器件,具有优异的散热效果。Another object of the present invention is to provide a semiconductor device with excellent heat dissipation effect.
本发明的另一个目的在于提供一种半导体器件的制备方法,简单易行。Another object of the present invention is to provide a method for manufacturing a semiconductor device, which is simple and easy to implement.
为了实现本发明的上述目的,特采用以下技术方案:In order to achieve the above objects of the present invention, the following technical solutions are adopted:
一种发光二极管的导热层,所述导热层包括依次设置的金属粘结层、金属反射层、金属阻挡层和导热金,层。A thermal conductive layer of a light-emitting diode. The thermal conductive layer includes a metal bonding layer, a metal reflective layer, a metal barrier layer and a thermally conductive gold layer arranged in sequence.
在一实施方式中,所述金属粘结层包括Ti层、Cr层和Rh层中的至少一种;In one embodiment, the metal bonding layer includes at least one of a Ti layer, a Cr layer, and a Rh layer;
和/或,所述金属粘结层的厚度为10Å~50Å。And/or, the thickness of the metal bonding layer is 10Å~50Å.
在一实施方式中,所述金属反射层包括Al层和/或Ag层;In one embodiment, the metal reflective layer includes an Al layer and/or an Ag layer;
和/或,所述金属反射层的厚度为16KÅ~20KÅ。And/or, the thickness of the metal reflective layer is 16KÅ~20KÅ.
在一实施方式中,所述导热金属层包括Au层和/或Cu层;In one embodiment, the thermally conductive metal layer includes an Au layer and/or a Cu layer;
和/或,所述导热金属层的厚度为9KÅ~20KÅ。And/or, the thickness of the thermally conductive metal layer is 9KÅ~20KÅ.
在一实施方式中,所述金属阻挡层包括Pt层、Ti层和Ni层中的至少一种;In one embodiment, the metal barrier layer includes at least one of a Pt layer, a Ti layer and a Ni layer;
在一实施方式中,所述金属阻挡层的厚度为4.7KÅ~10.3KÅ;In one embodiment, the thickness of the metal barrier layer is 4.7KÅ~10.3KÅ;
在一实施方式中,所述金属阻挡层依次包括第一Ti层、第一Pt层、第二Ti层和第一Ni层,所述第一Ti层与所述金属反射层相连接;In one embodiment, the metal barrier layer includes a first Ti layer, a first Pt layer, a second Ti layer and a first Ni layer in sequence, and the first Ti layer is connected to the metal reflective layer;
在一实施方式中,所述第一Ti层的厚度为1.5KÅ~2.5KÅ,所述第一Pt层的厚度为1.5KÅ~2.5KÅ,所述第二Ti层的厚度为0.2KÅ~0.8KÅ,所述第一Ni层的厚度为2KÅ~5KÅ。In one embodiment, the thickness of the first Ti layer is 1.5KÅ~2.5KÅ, the thickness of the first Pt layer is 1.5KÅ~2.5KÅ, and the thickness of the second Ti layer is 0.2KÅ~0.8KÅ. , the thickness of the first Ni layer is 2KÅ~5KÅ.
一种发光二极管,至少包括:A light-emitting diode, including at least:
一LED发光单元,所述LED发光单元至少包括衬底,具有一上表面和一下表面;一外延结构层,至少包括N型半导体层、多量子阱有源层、P型半导体层;一P电极,设置于所述外延结构层上,并与所述P型半导体层电性连接;一N电极,设置于所述外延结构层上,并与所述N型半导体层电性连接;An LED light-emitting unit, the LED light-emitting unit at least includes a substrate with an upper surface and a lower surface; an epitaxial structural layer, including at least an N-type semiconductor layer, a multi-quantum well active layer, and a P-type semiconductor layer; a P electrode , is disposed on the epitaxial structure layer and is electrically connected to the P-type semiconductor layer; an N electrode is disposed on the epitaxial structure layer and is electrically connected to the N-type semiconductor layer;
以及,一导热层,设置于所述衬底下表面,在远离所述外延结构层的方向上依次包括如上所述的金属粘结层、金属反射层、金属阻挡层和导热金属层。And, a thermally conductive layer is provided on the lower surface of the substrate, and includes the metal bonding layer, the metal reflective layer, the metal barrier layer and the thermally conductive metal layer as described above in the direction away from the epitaxial structure layer.
优选地,所述衬底下表面与所述导热层之间还包括一DBR反射层。Preferably, a DBR reflective layer is further included between the lower surface of the substrate and the thermal conductive layer.
一种半导体器件,包括如上所述的发光二极管,以及用于承载所述发光二极管的承载基板。A semiconductor device includes a light-emitting diode as described above, and a carrying substrate for carrying the light-emitting diode.
一种半导体器件的制备方法,包括:A method for preparing a semiconductor device, including:
(1)LED发光单元形成步骤:包括外延结构生长步骤、电极制作和导热层沉积的步骤,具体如下:(1) LED light-emitting unit formation steps: including epitaxial structure growth steps, electrode fabrication and thermal conductive layer deposition steps, as follows:
首先,提供一生长衬底,包括上表面和下表面,在所述衬底的上表面外延生长N型半导体层、多量子阱有源层、P型半导体层;First, a growth substrate is provided, including an upper surface and a lower surface, and an N-type semiconductor layer, a multi-quantum well active layer, and a P-type semiconductor layer are epitaxially grown on the upper surface of the substrate;
其次,制作电极,在外延结构上形成与所述P型半导体层电性连接的P电极,以及与所述N型半导体层电性连接的N电极;Secondly, electrodes are made, and a P electrode electrically connected to the P-type semiconductor layer and an N electrode electrically connected to the N-type semiconductor layer are formed on the epitaxial structure;
最后,在所述衬底的下表面依次沉积如上所述的金属粘结层、金属反射层、金属阻挡层和导热金属层;Finally, the metal bonding layer, metal reflective layer, metal barrier layer and thermally conductive metal layer as described above are sequentially deposited on the lower surface of the substrate;
(2)与承载基板粘合步骤:提供一承载基板,通过粘合剂将所述LED发光单元固定在所述承载基板上。(2) The step of bonding with the carrier substrate: provide a carrier substrate, and fix the LED light-emitting unit on the carrier substrate through an adhesive.
在一实施方式中,所述金属粘结层的蒸镀条件包括:蒸镀速率为0.4Å/S~0.6Å/S,真空度大于0且小于或等于1E-6pa,蒸镀温度为25℃~30℃;In one embodiment, the evaporation conditions of the metal bonding layer include: evaporation rate is 0.4Å/S~0.6Å/S, vacuum degree is greater than 0 and less than or equal to 1E-6pa, and evaporation temperature is 25°C ~30℃;
在一实施方式中,所述金属反射层的蒸镀条件包括:蒸镀速率为4.5Å/S~5.5Å/S,真空度大于0且小于或等于1E-6pa,蒸镀温度为25℃~30℃;In one embodiment, the evaporation conditions of the metal reflective layer include: evaporation rate is 4.5Å/S~5.5Å/S, vacuum degree is greater than 0 and less than or equal to 1E-6pa, and evaporation temperature is 25°C~ 30℃;
在一实施方式中,所述金属阻挡层的蒸镀条件包括:蒸镀速率为0.5Å/S~5Å/S,真空度大于0且小于或等于1E-6pa,蒸镀温度为25℃~70℃;In one embodiment, the evaporation conditions of the metal barrier layer include: evaporation rate is 0.5Å/S~5Å/S, vacuum degree is greater than 0 and less than or equal to 1E-6pa, and evaporation temperature is 25°C~70 ℃;
在一实施方式中,所述导热金属层的蒸镀条件包括:蒸镀速率为14Å/S~16Å/S,真空度大于0且小于或等于1E-6pa,蒸镀温度为25℃~30℃。In one embodiment, the evaporation conditions of the thermally conductive metal layer include: evaporation rate is 14Å/S~16Å/S, vacuum degree is greater than 0 and less than or equal to 1E-6pa, and evaporation temperature is 25°C~30°C. .
在一实施方式中,所述金属阻挡层中,Ti层的蒸镀速率为0.4Å/S~0.6Å/S,Pt层的蒸镀速率为0.6Å/S~0.8Å/S,Ni层的蒸镀速率为5.5Å/S~6.5Å/S。In one embodiment, in the metal barrier layer, the evaporation rate of the Ti layer is 0.4Å/S~0.6Å/S, the evaporation rate of the Pt layer is 0.6Å/S~0.8Å/S, and the evaporation rate of the Ni layer is 0.4Å/S~0.6Å/S. The evaporation rate is 5.5Å/S~6.5Å/S.
与现有技术相比,本发明的有益效果为:Compared with the prior art, the beneficial effects of the present invention are:
(1)本发明的发光二极管设置金属粘结层、金属反射层、金属阻挡层和导热金属层,并且各层相互协调配合发挥作用,可改善芯片导热系数,进而起到改善芯片的导热性能的作用;另外,减少贵金属的使用,节约成本。(1) The light-emitting diode of the present invention is provided with a metal adhesive layer, a metal reflective layer, a metal barrier layer and a thermally conductive metal layer, and each layer coordinates with each other to improve the thermal conductivity of the chip, thereby improving the thermal conductivity of the chip. function; in addition, it reduces the use of precious metals and saves costs.
(2)本发明的发光二极管含有上述导热层,具有很好的光反射效果和散热效果,提升发光二极管的出光效率和使用寿命。(2) The light-emitting diode of the present invention contains the above-mentioned thermal conductive layer, which has good light reflection and heat dissipation effects, and improves the light extraction efficiency and service life of the light-emitting diode.
(3)本发明的半导体器件同样具有优异的散热效果,其制备方法简单易行。(3) The semiconductor device of the present invention also has excellent heat dissipation effect, and its preparation method is simple and easy to implement.
附图说明Description of drawings
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly explain the specific embodiments of the present invention or the technical solutions in the prior art, the accompanying drawings that need to be used in the description of the specific embodiments or the prior art will be briefly introduced below. Obviously, the drawings in the following description The drawings illustrate some embodiments of the present invention. For those of ordinary skill in the art, other drawings can be obtained based on these drawings without exerting any creative effort.
图1为本发明发光二极管的结构示意图;Figure 1 is a schematic structural diagram of a light-emitting diode of the present invention;
图2为本发明半导体器件的结构示意图。Figure 2 is a schematic structural diagram of the semiconductor device of the present invention.
附图标记:Reference signs:
1-发光二极管、2-承载基板、3-导热层、31-金属粘结层、32-金属反射层、33-金属阻挡层、34-导热金属层、4-衬底、5-外延结构、51-N型半导体层、52-多量子阱有源层、53-P型半导体层、6-电极结构、61-电流扩展层、62-P电极、63-N电极、7-封装结构。1-light emitting diode, 2-carrying substrate, 3-thermal conductive layer, 31-metal bonding layer, 32-metal reflective layer, 33-metal barrier layer, 34-thermal conductive metal layer, 4-substrate, 5-epitaxial structure, 51-N-type semiconductor layer, 52-multi-quantum well active layer, 53-P-type semiconductor layer, 6-electrode structure, 61-current spreading layer, 62-P electrode, 63-N electrode, 7-packaging structure.
具体实施方式Detailed ways
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限制本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。The embodiments of the present invention will be described in detail below with reference to examples, but those skilled in the art will understand that the following examples are only used to illustrate the present invention and should not be regarded as limiting the scope of the present invention. If the specific conditions are not specified in the examples, the conditions should be carried out according to the conventional conditions or the conditions recommended by the manufacturer. If the manufacturer of the reagents or instruments used is not indicated, they are all conventional products that can be purchased commercially.
根据本发明的一个方面,本发明涉及一种发光二极管的导热层,所述导热层包括依次设置的金属粘结层、金属反射层、金属阻挡层和导热金属层。According to one aspect of the invention, the invention relates to a thermally conductive layer of a light-emitting diode, the thermally conductive layer including a metal bonding layer, a metal reflective layer, a metal barrier layer and a thermally conductive metal layer arranged in sequence.
本发明的发光二极管依次设置金属粘结层、金属反射层、金属阻挡层和导热金属层,并且各层相互协调配合发挥作用,可改善芯片导热系数,进而起到改善芯片的导热性能的作用;另外,减少贵金属的使用,节约成本。The light-emitting diode of the present invention is provided with a metal adhesive layer, a metal reflective layer, a metal barrier layer and a thermally conductive metal layer in sequence, and each layer coordinates with each other to improve the thermal conductivity of the chip, thereby improving the thermal conductivity of the chip; In addition, the use of precious metals is reduced and costs are saved.
在一些实施方式中,所述金属粘结层包括Ti层、Cr层和Rh层中的至少一种。In some embodiments, the metal bonding layer includes at least one of a Ti layer, a Cr layer, and a Rh layer.
本发明通过设置金属粘结层以增加电极粘附性,使金属电极与衬底形成欧姆接触。In the present invention, a metal adhesive layer is provided to increase electrode adhesion, so that the metal electrode forms ohmic contact with the substrate.
在一些实施方式中,金属粘结层可以为Ti层、Cr层或Rh层,或者Ti层和Cr层的组合,或者Ti层与Rh层组合,或者依次为Ti层、Cr层和Rh层的组合,或者依次为Cr层、Rh层、Cr层和Ti层等等,即可以为不同材质层的重复叠加。In some embodiments, the metal bonding layer may be a Ti layer, a Cr layer, or a Rh layer, or a combination of a Ti layer and a Cr layer, or a combination of a Ti layer and a Rh layer, or a Ti layer, a Cr layer, and a Rh layer in sequence. The combination, or the Cr layer, Rh layer, Cr layer and Ti layer, etc., can be the repeated superposition of different material layers.
在一些实施方式中,所述金属粘结层的厚度为10Å~50Å。本发明的金属粘结层的厚度具体为12Å、15Å、17Å、20Å、22Å、25Å、27Å、30Å、32Å、35Å、37Å、40Å、42Å、45Å、47Å或49Å,当然还可以选择上述范围内的其他数值,在此不做限定。本发明通过设置适宜厚度的金属粘结层,进而可更好的起到增加电极粘附性的作用。In some embodiments, the metal bonding layer has a thickness of 10 Å to 50 Å. The thickness of the metal bonding layer of the present invention is specifically 12Å, 15Å, 17Å, 20Å, 22Å, 25Å, 27Å, 30Å, 32Å, 35Å, 37Å, 40Å, 42Å, 45Å, 47Å or 49Å. Of course, it can also be selected within the above range. Other values are not limited here. By arranging a metal bonding layer of appropriate thickness, the present invention can better increase electrode adhesion.
在一些实施方式中,所述金属反射层包括Al层和/或Ag层。In some embodiments, the metal reflective layer includes an Al layer and/or an Ag layer.
本发明的金属反射层能将传输到底部的光反射回芯片内部,最终反射出芯片,提高出光效率。The metal reflective layer of the present invention can reflect the light transmitted to the bottom back to the inside of the chip, and finally reflect it out of the chip, thereby improving the light extraction efficiency.
在一些实施方式中,金属反射层可以为Al层或Ag层,或者依次为Al层和Ag层,或者依次为Al层、Ag层和Al层等等,即可以为不同材质层的重复叠加。In some embodiments, the metal reflective layer can be an Al layer or an Ag layer, or an Al layer and an Ag layer in sequence, or an Al layer, an Ag layer, and an Al layer in sequence, etc., that is, it can be a repeated superposition of layers of different materials.
在一些实施方式中,所述金属反射层的厚度为16KÅ~20KÅ。金属反射层的厚度具体为16.2KÅ、16.5KÅ、16.7KÅ、17KÅ、17.5KÅ、18KÅ、18.5KÅ、19KÅ、19.5KÅ或19.7KÅ等等,当然还可以选择上述范围内的其他数值,在此不做限定。本发明上述厚度的金属反射层可更好地提高出光效率。In some embodiments, the thickness of the metal reflective layer is 16KÅ~20KÅ. The thickness of the metal reflective layer is specifically 16.2KÅ, 16.5KÅ, 16.7KÅ, 17KÅ, 17.5KÅ, 18KÅ, 18.5KÅ, 19KÅ, 19.5KÅ or 19.7KÅ, etc. Of course, other values within the above range can also be selected, which will not be discussed here. Make limitations. The metal reflective layer with the above thickness of the present invention can better improve the light extraction efficiency.
在一些实施方式中,所述导热金属层包括Au层和/或Cu层。In some embodiments, the thermally conductive metal layer includes an Au layer and/or a Cu layer.
本发明的导热金属层具有高的导热性能,同时需要满足性质不活泼。The thermally conductive metal layer of the present invention has high thermal conductivity and needs to be inactive in nature.
在一些实施方式中,所述导热金属层可以为Au层或Cu层,或者依次为Au层和Cu层,或者依次为Au层、Cu层和Au层等等,即可以为不同材质层的重复叠加。In some embodiments, the thermally conductive metal layer can be an Au layer or a Cu layer, or an Au layer and a Cu layer in sequence, or an Au layer, a Cu layer and an Au layer in sequence, etc., that is, it can be a repetition of layers of different materials. Overlay.
在一些实施方式中,所述导热金属层的厚度为9KÅ~20KÅ。所述导热金属层的厚度具体为10KÅ、11KÅ、12KÅ、13KÅ、14KÅ、15KÅ、16KÅ、17KÅ、18KÅ、19KÅ或20KÅ等,当然还可以选择上述范围内的其他数值,在此不做限定。本发明采用上述厚度范围的导热金属层,可以起到更好地导热效果。In some embodiments, the thickness of the thermally conductive metal layer is 9KÅ~20KÅ. The thickness of the thermally conductive metal layer is specifically 10KÅ, 11KÅ, 12KÅ, 13KÅ, 14KÅ, 15KÅ, 16KÅ, 17KÅ, 18KÅ, 19KÅ or 20KÅ, etc. Of course, other values within the above range can also be selected, and are not limited here. The present invention adopts the thermally conductive metal layer with the above thickness range, which can achieve better thermal conductivity effect.
在一些实施方式中,所述金属阻挡层包括Pt层、Ti层和Ni层中的至少一种。In some embodiments, the metal barrier layer includes at least one of a Pt layer, a Ti layer, and a Ni layer.
Pt是较好的原子扩散阻挡层,但由于应力较大,没有办法镀得较厚。因此,可以使用Ti与Ni的组合和/或Ti与Pt的组合,作为金属反射层的阻挡层,防止金属反射层的金属向上扩散,比直接使用Pt可靠性高,可达到更好的阻挡效果。Pt is a better atomic diffusion barrier layer, but due to the large stress, it cannot be plated thicker. Therefore, a combination of Ti and Ni and/or a combination of Ti and Pt can be used as a barrier layer for the metal reflective layer to prevent the upward diffusion of metal in the metal reflective layer. This is more reliable than directly using Pt and can achieve better blocking effects. .
在一些实施方式中,所述金属阻挡层的厚度为4.7KÅ~10.3KÅ。金属阻挡层的厚度具体为5KÅ、5.5KÅ、6KÅ、6.5KÅ、7KÅ、7.5KÅ、8KÅ、9KÅ或10KÅ。In some embodiments, the thickness of the metal barrier layer ranges from 4.7 KÅ to 10.3 KÅ. The thickness of the metal barrier layer is specifically 5KÅ, 5.5KÅ, 6KÅ, 6.5KÅ, 7KÅ, 7.5KÅ, 8KÅ, 9KÅ or 10KÅ.
在一些实施方式中,所述金属阻挡层依次包括第一Ti层、第一Pt层、第二Ti层和第一Ni层,所述第一Ti层与所述金属反射层相连接。In some embodiments, the metal barrier layer includes a first Ti layer, a first Pt layer, a second Ti layer, and a first Ni layer in sequence, and the first Ti layer is connected to the metal reflective layer.
在一些实施方式中,所述第一Ti层的厚度为1.5KÅ~2.5KÅ,所述第一Pt层的厚度为1.5KÅ~2.5KÅ,所述第二Ti层的厚度为0.2KÅ~0.8KÅ,所述第一Ni层的厚度为2KÅ~5KÅ。In some embodiments, the thickness of the first Ti layer is 1.5KÅ~2.5KÅ, the thickness of the first Pt layer is 1.5KÅ~2.5KÅ, and the thickness of the second Ti layer is 0.2KÅ~0.8KÅ. , the thickness of the first Ni layer is 2KÅ~5KÅ.
本发明通过设置适宜厚度的金属粘结层、金属反射层、金属阻挡层和导热金属层,各层相互协调配合发挥作用,可改善芯片导热系数,进而改善芯片的导热性能。The present invention can improve the thermal conductivity of the chip by arranging a metal bonding layer, a metal reflective layer, a metal barrier layer and a thermally conductive metal layer of appropriate thickness, and each layer coordinates with each other to improve the thermal conductivity of the chip, thereby improving the thermal conductivity of the chip.
根据本发明的另一个方面,本发明还涉及一种发光二极管,至少包括:According to another aspect of the invention, the invention also relates to a light-emitting diode, which at least includes:
一LED发光单元,所述LED发光单元至少包括衬底,具有一上表面和一下表面;一外延结构层,至少包括N型半导体层、多量子阱有源层、P型半导体层;一P电极,设置于所述外延结构层上,并与所述P型半导体层电性连接;一N电极,设置于所述外延结构层上,并与所述N型半导体层电性连接;An LED light-emitting unit, the LED light-emitting unit at least includes a substrate with an upper surface and a lower surface; an epitaxial structural layer, including at least an N-type semiconductor layer, a multi-quantum well active layer, and a P-type semiconductor layer; a P electrode , is disposed on the epitaxial structure layer and is electrically connected to the P-type semiconductor layer; an N electrode is disposed on the epitaxial structure layer and is electrically connected to the N-type semiconductor layer;
以及,一导热层,设置于所述衬底下表面,在远离所述外延结构层的方向上依次包括如上所述的金属粘结层、金属反射层、金属阻挡层和导热金属层。And, a thermally conductive layer is provided on the lower surface of the substrate, and includes the metal bonding layer, the metal reflective layer, the metal barrier layer and the thermally conductive metal layer as described above in the direction away from the epitaxial structure layer.
LED发光单元还包括电流扩展层,电流扩展层包括P电极电流扩展层和/或N电极电流扩展层。N电极电流扩展层与N型半导体层直接接触,P电极电流扩展层与P型半导体层直接接触。The LED light-emitting unit also includes a current expansion layer, and the current expansion layer includes a P electrode current expansion layer and/or an N electrode current expansion layer. The N electrode current spreading layer is in direct contact with the N-type semiconductor layer, and the P electrode current spreading layer is in direct contact with the P-type semiconductor layer.
本发明通过在衬底的一面镀一层合金,起到了改善原材料的导热系数的作用,进而起到了改善芯片的散热性能的作用。By plating a layer of alloy on one side of the substrate, the invention improves the thermal conductivity of the raw material, thereby improving the heat dissipation performance of the chip.
本发明的衬底包括但不限于蓝宝石和碳化硅。Substrates of the present invention include, but are not limited to, sapphire and silicon carbide.
根据本发明的另一实施方式,该衬底下表面与该导热层之间还包括一DBR反射层。该反射层可以由交替的高折射率和低折射率材料层组成。其中,高折射率层材料选自TiO、TiO2、Ti3O5、Ti2O3、Ta2O5、ZrO2或前述的任意组合之一;低折射率层材料选自SiO2、SiNx、Al2O3或前述的任意组合之一。According to another embodiment of the present invention, a DBR reflective layer is further included between the lower surface of the substrate and the thermal conductive layer. The reflective layer may consist of alternating layers of high refractive index and low refractive index materials. Among them, the material of the high refractive index layer is selected from TiO, TiO 2 , Ti 3 O 5 , Ti 2 O 3 , Ta 2 O 5 , ZrO 2 or any combination of the above; the material of the low refractive index layer is selected from SiO 2 , SiNx , Al 2 O 3 or any combination of the above.
根据本发明的另一个方面,本发明还涉及一种半导体器件,包括如上所述的发光二极管,以及用于承载所述发光二极管的承载基板。According to another aspect of the present invention, the present invention also relates to a semiconductor device, including a light-emitting diode as described above, and a carrying substrate for carrying the light-emitting diode.
承载基板可以是印刷电路板(PCB)、软性印刷电路板(FCB)、陶瓷基板或复合基板。除了负责承载发光二极管之外,更进一步将发光二极管所产生的热导出,进而达到散热的效果。发光二极管可以是四元或三元系列的发光二极管,其所发出的光可以是红色、蓝色、绿色、黄色等。The carrier substrate may be a printed circuit board (PCB), flexible printed circuit board (FCB), ceramic substrate or composite substrate. In addition to being responsible for carrying the light-emitting diodes, it further conducts the heat generated by the light-emitting diodes to achieve a heat dissipation effect. The light-emitting diode can be a quaternary or ternary series light-emitting diode, and the light it emits can be red, blue, green, yellow, etc.
进一步地,半导体器件还包括封装结构。封装结构是将透明封装材料利用点胶技术形成于发光二极管上,再加热硬化成型;其中该透明封装材料是具有高光穿透特性的有机绝缘材料,例如环氧树脂(epoxy)、聚亚酰胺(Poly-imides)、硅胶(siliconresin)或上述所混合形成的材料等。Further, the semiconductor device also includes a packaging structure. The packaging structure is to form a transparent packaging material on a light-emitting diode using glue dispensing technology, and then heat and harden it into shape; the transparent packaging material is an organic insulating material with high light penetration properties, such as epoxy resin (epoxy), polyimide ( Poly-imides), silica gel (siliconresin) or materials mixed above.
根据本发明的另一个方面,本发明还涉及一种半导体器件的制备方法,包括:According to another aspect of the invention, the invention also relates to a method for manufacturing a semiconductor device, including:
(1)LED发光单元形成步骤:包括外延结构生长步骤、电极制作和导热层沉积的步骤,具体如下:(1) LED light-emitting unit formation steps: including epitaxial structure growth steps, electrode fabrication and thermal conductive layer deposition steps, as follows:
首先,提供一生长衬底,包括上表面和下表面,在所述衬底的上表面外延生长N型半导体层、多量子阱有源层、P型半导体层;First, a growth substrate is provided, including an upper surface and a lower surface, and an N-type semiconductor layer, a multi-quantum well active layer, and a P-type semiconductor layer are epitaxially grown on the upper surface of the substrate;
其次,制作电极,在外延结构上形成与所述P型半导体层电性连接的P电极,以及与所述N型半导体层电性连接的N电极;Secondly, electrodes are made, and a P electrode electrically connected to the P-type semiconductor layer and an N electrode electrically connected to the N-type semiconductor layer are formed on the epitaxial structure;
最后,在所述衬底的下表面依次沉积如上所述的金属粘结层、金属反射层、金属阻挡层和导热金属层;Finally, the metal bonding layer, metal reflective layer, metal barrier layer and thermally conductive metal layer as described above are sequentially deposited on the lower surface of the substrate;
(2)与承载基板粘合步骤:提供一承载基板,通过粘合剂将所述LED发光单元固定在所述承载基板上。(2) The step of bonding with the carrier substrate: provide a carrier substrate, and fix the LED light-emitting unit on the carrier substrate through an adhesive.
本发明的半导体器件的制备方法简单易行。The preparation method of the semiconductor device of the present invention is simple and easy to implement.
在一些实施方式中,所述导热层通过蒸镀的方式设置于所述衬底上。In some embodiments, the thermally conductive layer is disposed on the substrate by evaporation.
本发明通过蒸镀的方式将导热层中的金属粘结层、金属反射层、金属阻挡层和导热金属层进行逐层镀覆。In the present invention, the metal bonding layer, metal reflective layer, metal barrier layer and thermal conductive metal layer in the thermal conductive layer are plated layer by layer through evaporation.
在一实施方式中,所述金属粘结层的蒸镀条件包括:蒸镀速率为0.4Å/S~0.6Å/S,真空度大于0且小于或等于1E-6pa,蒸镀温度为25℃~30℃;In one embodiment, the evaporation conditions of the metal bonding layer include: evaporation rate is 0.4Å/S~0.6Å/S, vacuum degree is greater than 0 and less than or equal to 1E-6pa, and evaporation temperature is 25°C ~30℃;
在一实施方式中,所述金属反射层的蒸镀条件包括:蒸镀速率为4.5Å/S~5.5Å/S,真空度大于0且小于或等于1E-6pa,蒸镀温度为25℃~30℃;In one embodiment, the evaporation conditions of the metal reflective layer include: evaporation rate is 4.5Å/S~5.5Å/S, vacuum degree is greater than 0 and less than or equal to 1E-6pa, and evaporation temperature is 25°C~ 30℃;
在一实施方式中,所述金属阻挡层的蒸镀条件包括:蒸镀速率为0.5Å/S~5Å/S,真空度大于0且小于或等于1E-6pa,蒸镀温度为25℃~70℃;In one embodiment, the evaporation conditions of the metal barrier layer include: evaporation rate is 0.5Å/S~5Å/S, vacuum degree is greater than 0 and less than or equal to 1E-6pa, and evaporation temperature is 25°C~70 ℃;
在一实施方式中,所述导热金属层的蒸镀条件包括:蒸镀速率为14Å/S~16Å/S,真空度大于0且小于或等于1E-6pa,蒸镀温度为25℃~30℃。In one embodiment, the evaporation conditions of the thermally conductive metal layer include: evaporation rate is 14Å/S~16Å/S, vacuum degree is greater than 0 and less than or equal to 1E-6pa, and evaporation temperature is 25°C~30°C. .
在一实施方式中,所述金属阻挡层中,Ti层的蒸镀速率为0.4Å/S~0.6Å/S,Pt层的蒸镀速率为0.6Å/S~0.8Å/S,Ni层的蒸镀速率为5.5Å/S~6.5Å/S。In one embodiment, in the metal barrier layer, the evaporation rate of the Ti layer is 0.4Å/S~0.6Å/S, the evaporation rate of the Pt layer is 0.6Å/S~0.8Å/S, and the evaporation rate of the Ni layer is 0.4Å/S~0.6Å/S. The evaporation rate is 5.5Å/S~6.5Å/S.
本发明通过上述蒸镀条件的设置,可更好地实现导热层中各层的镀覆,提高二极管的导热效果,即提高其散热效果。By setting the above evaporation conditions, the present invention can better realize the plating of each layer in the thermal conductive layer and improve the thermal conductivity effect of the diode, that is, improve its heat dissipation effect.
下面将结合具体的实施例对本发明作进一步地解释说明。The present invention will be further explained below in conjunction with specific embodiments.
图1为本发明发光二极管的结构示意图。Figure 1 is a schematic structural diagram of a light emitting diode of the present invention.
图2为本发明半导体器件的结构示意图。Figure 2 is a schematic structural diagram of the semiconductor device of the present invention.
实施例1Example 1
一种发光二极管1,包括:一LED发光单元,所述LED发光单元至少包括衬底4,具有一上表面和一下表面;一外延结构5,至少包括N型半导体层51、多量子阱有源层52、P型半导体层53;一电极结构6,包括:一P电极62,设置于所述外延结构5层上,并与所述P型半导体层53电性连接,一N电极63,设置于所述外延结构5层上,并与所述N型半导体层51电性连接,一电流扩展层61,电流扩展层61与P型半导体层53直接接触;A light-emitting diode 1, including: an LED light-emitting unit, the LED light-emitting unit at least includes a substrate 4, having an upper surface and a lower surface; an epitaxial structure 5, including at least an N-type semiconductor layer 51, a multi-quantum well active Layer 52, P-type semiconductor layer 53; an electrode structure 6, including: a P electrode 62, which is provided on the epitaxial structure layer 5 and is electrically connected to the P-type semiconductor layer 53; an N electrode 63, which is provided On the epitaxial structure layer 5 and electrically connected to the N-type semiconductor layer 51, there is a current expansion layer 61, and the current expansion layer 61 is in direct contact with the P-type semiconductor layer 53;
以及,一导热层3,设置于所述衬底4下表面,在远离所述外延结构5层的方向上依次包括所述的金属粘结层31、金属反射层32、金属阻挡层33和导热金属层34;And, a thermal conductive layer 3 is provided on the lower surface of the substrate 4 and includes the metal adhesive layer 31, the metal reflective layer 32, the metal barrier layer 33 and the thermal conductive layer in sequence in the direction away from the epitaxial structure layer 5. metal layer 34;
金属粘结层31为Ti层,厚度为10Å;The metal bonding layer 31 is a Ti layer with a thickness of 10Å;
金属反射层32为Al层,厚度为16KÅ;The metal reflective layer 32 is an Al layer with a thickness of 16KÅ;
金属阻挡层33依次包括第一Ti层、第一Pt层、第二Ti层和第一Ni层,第一Ti层与金属反射层32相连接;第一Ti层的厚度为1KÅ,第一Pt层的厚度为2KÅ,第二Ti层的厚度为0.5KÅ,第一Ni层的厚度为3KÅ;The metal barrier layer 33 includes a first Ti layer, a first Pt layer, a second Ti layer and a first Ni layer in sequence. The first Ti layer is connected to the metal reflective layer 32; the thickness of the first Ti layer is 1KÅ, and the first Pt layer The thickness of the layer is 2KÅ, the thickness of the second Ti layer is 0.5KÅ, and the thickness of the first Ni layer is 3KÅ;
导热金属层34为Au层,厚度为9KÅ。Thermal conductive metal layer 34 is an Au layer with a thickness of 9KÅ.
实施例2Example 2
一种半导体器件,包括实施例1的发光二极管1,用于承载所述发光二极管1的承载基板2和封装结构7;A semiconductor device, including the light-emitting diode 1 of Embodiment 1, a carrier substrate 2 and a packaging structure 7 for carrying the light-emitting diode 1;
上述半导体器件的制备方法,包括:The preparation method of the above-mentioned semiconductor device includes:
(1)LED发光单元形成步骤:包括外延结构5生长步骤、电极结构6的制作和导热层3沉积的步骤,具体如下:(1) LED light-emitting unit formation steps: including the steps of growing the epitaxial structure 5, making the electrode structure 6, and depositing the thermal conductive layer 3, as follows:
首先,提供一生长衬底4,包括上表面和下表面,在所述衬底4的上表面外延生长N型半导体层51、多量子阱有源层52、P型半导体层53;First, a growth substrate 4 is provided, including an upper surface and a lower surface, and an N-type semiconductor layer 51, a multi-quantum well active layer 52, and a P-type semiconductor layer 53 are epitaxially grown on the upper surface of the substrate 4;
其次,制作电极,在外延结构5上形成与所述P型半导体层53电性连接的P电极62,以及与所述N型半导体层51电性连接的N电极63;Secondly, electrodes are made, and a P electrode 62 electrically connected to the P-type semiconductor layer 53 and an N-electrode 63 electrically connected to the N-type semiconductor layer 51 are formed on the epitaxial structure 5;
最后,在所述衬底4的下表面依次沉积金属粘结层31、金属反射层32、金属阻挡层33和导热金属层34;Finally, a metal adhesive layer 31, a metal reflective layer 32, a metal barrier layer 33 and a thermally conductive metal layer 34 are sequentially deposited on the lower surface of the substrate 4;
金属粘结层31的蒸镀条件包括:蒸镀速率为0.5Å/S,真空度为1E-6pa,蒸镀温度为常温;The evaporation conditions of the metal bonding layer 31 include: the evaporation rate is 0.5Å/S, the vacuum degree is 1E-6pa, and the evaporation temperature is normal temperature;
金属反射层32的蒸镀条件包括:蒸镀速率为5Å/S,真空度为1E-6pa,蒸镀温度为常温;The evaporation conditions of the metal reflective layer 32 include: the evaporation rate is 5Å/S, the vacuum degree is 1E-6pa, and the evaporation temperature is normal temperature;
金属阻挡层33的蒸镀条件包括:第一Ti层的蒸镀速率为0.5Å/S,真空度为1E-6pa,蒸镀温度为常温;第一Pt层的蒸镀速率为0.7Å/S,真空度为1E-6pa,蒸镀温度为常温;第二Ti层的蒸镀速率为0.5Å/S,真空度为1E-6pa,蒸镀温度为常温;第一Ni层的蒸镀速率为6Å/S真空度为1E-6pa,蒸镀温度为70℃;The evaporation conditions of the metal barrier layer 33 include: the evaporation rate of the first Ti layer is 0.5Å/S, the vacuum degree is 1E-6pa, and the evaporation temperature is normal temperature; the evaporation rate of the first Pt layer is 0.7Å/S. , the vacuum degree is 1E-6pa, and the evaporation temperature is room temperature; the evaporation rate of the second Ti layer is 0.5Å/S, the vacuum degree is 1E-6pa, and the evaporation temperature is room temperature; the evaporation rate of the first Ni layer is 6Å/S vacuum degree is 1E-6pa, evaporation temperature is 70℃;
导热金属层34的蒸镀条件包括:蒸镀速率为15Å/S,真空度为1E-6pa,蒸镀温度为常温。The evaporation conditions of the thermally conductive metal layer 34 include: the evaporation rate is 15Å/S, the vacuum degree is 1E-6pa, and the evaporation temperature is normal temperature.
(2)与承载基板2粘合步骤:提供一承载基板2,通过粘合剂将所述LED发光单元固定在所述承载基板2上;再用封装结构7对发光二极管1进行封装。(2) Bonding step with the carrier substrate 2: Provide a carrier substrate 2, fix the LED light-emitting unit on the carrier substrate 2 through an adhesive; and then use the packaging structure 7 to package the light-emitting diode 1.
实施例3Example 3
一种发光二极管1,除金属粘结层31为Cr层,金属反射层32为Ag层,金属阻挡层33依次为第一Ti层和第一Pt层,导热金属为Cu层,其他条件同实施例1。A kind of light-emitting diode 1, except that the metal bonding layer 31 is a Cr layer, the metal reflection layer 32 is an Ag layer, the metal barrier layer 33 is a first Ti layer and a first Pt layer in sequence, and the thermal conductive metal is a Cu layer, other conditions are the same. example 1.
一种半导体器件,包括本实施例的发光二极管1,以及用于承载所述发光二极管1的承载基板2和封装结构7;A semiconductor device, including the light-emitting diode 1 of this embodiment, and a carrying substrate 2 and a packaging structure 7 for carrying the light-emitting diode 1;
半导体器件的制备方法同实施例2。The preparation method of the semiconductor device is the same as that in Example 2.
实施例4Example 4
一种发光二极管1,除金属粘结层31为Ti层和Rh层,Ti层的厚度为15Å,Rh层的厚度为20Å;金属反射层32为Al层和Ag层,Al层厚度为10KÅ,Ag层厚度为10KÅ;导热金属层34为Au层和Cu层,Au层厚度为10KÅ,Cu层厚度为10KÅ,其他条件同实施例1。A kind of light-emitting diode 1, except that the metal bonding layer 31 is a Ti layer and a Rh layer, the thickness of the Ti layer is 15Å, and the thickness of the Rh layer is 20Å; the metal reflection layer 32 is an Al layer and an Ag layer, the thickness of the Al layer is 10KÅ, The thickness of the Ag layer is 10KÅ; the thermally conductive metal layer 34 is an Au layer and a Cu layer, the thickness of the Au layer is 10KÅ, and the thickness of the Cu layer is 10KÅ. Other conditions are the same as in Embodiment 1.
一种半导体器件,包括本实施例的发光二极管1,以及用于承载所述发光二极管1的承载基板2;A semiconductor device, including the light-emitting diode 1 of this embodiment, and a carrying substrate 2 for carrying the light-emitting diode 1;
半导体器件的制备方法同实施例2。The preparation method of the semiconductor device is the same as that in Example 2.
实施例5Example 5
一种发光二极管1,除金属粘结层31的厚度为30Å,金属反射层32的厚度为18KÅ,第一Ti层的厚度为1.5KÅ,第一Pt层的厚度为2.5KÅ,第二Ti层的厚度为0.7KÅ,第一Ni层的厚度为5KÅ;导热金属层34的厚度为15KÅ;金属粘结层31的蒸镀速率为0.4Å/S;金属反射层32的蒸镀速率为6Å/S;金属阻挡层33中,第一Ti层的蒸镀速率为0.6Å/S,第一Pt层的蒸镀速率为0.8Å/S,第二Ti层的蒸镀速率为0.4Å/S,第一Ni层的蒸镀速率为5.5Å/S;导热金属层34的蒸镀速率为16Å/S,其他条件同实施例1。A light-emitting diode 1, except that the thickness of the metal bonding layer 31 is 30Å, the thickness of the metal reflection layer 32 is 18KÅ, the thickness of the first Ti layer is 1.5KÅ, the thickness of the first Pt layer is 2.5KÅ, and the thickness of the second Ti layer The thickness of the first Ni layer is 0.7KÅ, the thickness of the first Ni layer is 5KÅ; the thickness of the thermally conductive metal layer 34 is 15KÅ; the evaporation rate of the metal bonding layer 31 is 0.4Å/S; the evaporation rate of the metal reflective layer 32 is 6Å/ S; in the metal barrier layer 33, the evaporation rate of the first Ti layer is 0.6Å/S, the evaporation rate of the first Pt layer is 0.8Å/S, and the evaporation rate of the second Ti layer is 0.4Å/S. The evaporation rate of the first Ni layer is 5.5Å/S; the evaporation rate of the thermally conductive metal layer 34 is 16Å/S. Other conditions are the same as in Embodiment 1.
一种半导体器件,包括本实施例的发光二极管1,以及用于承载所述发光二极管1的承载基板2和封装结构7;A semiconductor device, including the light-emitting diode 1 of this embodiment, and a carrying substrate 2 and a packaging structure 7 for carrying the light-emitting diode 1;
半导体器件的制备方法同实施例2。The preparation method of the semiconductor device is the same as that in Example 2.
实施例6Example 6
一种发光二极管1,除金属粘结层31的厚度为50Å,金属反射层32的厚度为20KÅ,第一Ti层的厚度为2KÅ,第一Pt层的厚度为1.5KÅ,第二Ti层的厚度为0.3KÅ,第一Ni层的厚度为4KÅ;导热金属层34的厚度为16KÅ;金属粘结层31的蒸镀速率为0.6Å/S;金属反射层32的蒸镀速率为8Å/S;金属阻挡层33中,第一Ti层的蒸镀速率为0.4Å/S,第一Pt层的蒸镀速率为0.6Å/S,第二Ti层的蒸镀速率为0.6Å/S,第一Ni层的蒸镀速率为6.5Å/S;导热金属层34的蒸镀速率为14Å/S,其他条件同实施例1。A light-emitting diode 1, except that the thickness of the metal bonding layer 31 is 50Å, the thickness of the metal reflection layer 32 is 20KÅ, the thickness of the first Ti layer is 2KÅ, the thickness of the first Pt layer is 1.5KÅ, and the thickness of the second Ti layer is The thickness is 0.3KÅ, the thickness of the first Ni layer is 4KÅ; the thickness of the thermally conductive metal layer 34 is 16KÅ; the evaporation rate of the metal bonding layer 31 is 0.6Å/S; the evaporation rate of the metal reflective layer 32 is 8Å/S ; In the metal barrier layer 33, the evaporation rate of the first Ti layer is 0.4Å/S, the evaporation rate of the first Pt layer is 0.6Å/S, the evaporation rate of the second Ti layer is 0.6Å/S, and the evaporation rate of the first Ti layer is 0.6Å/S. The evaporation rate of a Ni layer is 6.5 Å/S; the evaporation rate of the thermally conductive metal layer 34 is 14 Å/S. Other conditions are the same as in Embodiment 1.
一种半导体器件,包括本实施例的发光二极管1,以及用于承载所述发光二极管1的承载基板2和封装结构7;A semiconductor device, including the light-emitting diode 1 of this embodiment, and a carrying substrate 2 and a packaging structure 7 for carrying the light-emitting diode 1;
半导体器件的制备方法同实施例2。The preparation method of the semiconductor device is the same as that in Example 2.
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,但本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solution of the present invention, but not to limit it. Although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: It is still possible to modify the technical solutions recorded in the foregoing embodiments, or to equivalently replace some or all of the technical features; and these modifications or substitutions do not deviate from the essence of the corresponding technical solutions from the technical solutions of the embodiments of the present invention. range.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111269510.5A CN114005926B (en) | 2021-10-29 | 2021-10-29 | Heat conduction layer, light emitting diode, semiconductor device and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111269510.5A CN114005926B (en) | 2021-10-29 | 2021-10-29 | Heat conduction layer, light emitting diode, semiconductor device and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114005926A CN114005926A (en) | 2022-02-01 |
CN114005926B true CN114005926B (en) | 2024-02-27 |
Family
ID=79925005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111269510.5A Active CN114005926B (en) | 2021-10-29 | 2021-10-29 | Heat conduction layer, light emitting diode, semiconductor device and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114005926B (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201450017U (en) * | 2008-12-26 | 2010-05-05 | 世纪晶源科技有限公司 | Single electrode LED chip structure |
KR20100090830A (en) * | 2009-02-09 | 2010-08-18 | 주식회사 두성에이텍 | Method of manufacturing light emitting diode unit and light emitting diode unit manufactured by the method |
CN101929610A (en) * | 2008-12-26 | 2010-12-29 | 深圳世纪晶源华芯有限公司 | Large-power forward LED chip structure |
CN102185075A (en) * | 2011-04-07 | 2011-09-14 | 大连美明外延片科技有限公司 | Light-emitting diode with bonding reflecting layer and manufacturing method thereof |
CN103746047A (en) * | 2013-12-13 | 2014-04-23 | 华灿光电(苏州)有限公司 | A light emitting diode manufacturing method and a light emitting diode produced by adopting the method |
CN104916771A (en) * | 2014-03-12 | 2015-09-16 | 山东浪潮华光光电子股份有限公司 | Substrate-replaced normally-mounted GaN-based light-emitting diode chip and preparation method thereof |
CN108538981A (en) * | 2018-03-26 | 2018-09-14 | 华灿光电(浙江)有限公司 | A kind of light-emitting diode chip for backlight unit and preparation method thereof |
CN108767102A (en) * | 2018-03-26 | 2018-11-06 | 华灿光电(浙江)有限公司 | A kind of light-emitting diode chip for backlight unit and preparation method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2331625B (en) * | 1997-11-19 | 2003-02-26 | Hassan Paddy Abdel Salam | led Lamp |
TWI298555B (en) * | 2006-06-05 | 2008-07-01 | Epistar Corp | Light emitting device |
TWI462324B (en) * | 2007-05-18 | 2014-11-21 | Delta Electronics Inc | Light-emitting diode device and method of manufacturing same |
US20100301359A1 (en) * | 2009-05-26 | 2010-12-02 | Ming-Hsiung Liu | Light Emitting Diode Package Structure |
-
2021
- 2021-10-29 CN CN202111269510.5A patent/CN114005926B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201450017U (en) * | 2008-12-26 | 2010-05-05 | 世纪晶源科技有限公司 | Single electrode LED chip structure |
CN101929610A (en) * | 2008-12-26 | 2010-12-29 | 深圳世纪晶源华芯有限公司 | Large-power forward LED chip structure |
KR20100090830A (en) * | 2009-02-09 | 2010-08-18 | 주식회사 두성에이텍 | Method of manufacturing light emitting diode unit and light emitting diode unit manufactured by the method |
CN102185075A (en) * | 2011-04-07 | 2011-09-14 | 大连美明外延片科技有限公司 | Light-emitting diode with bonding reflecting layer and manufacturing method thereof |
CN103746047A (en) * | 2013-12-13 | 2014-04-23 | 华灿光电(苏州)有限公司 | A light emitting diode manufacturing method and a light emitting diode produced by adopting the method |
CN104916771A (en) * | 2014-03-12 | 2015-09-16 | 山东浪潮华光光电子股份有限公司 | Substrate-replaced normally-mounted GaN-based light-emitting diode chip and preparation method thereof |
CN108538981A (en) * | 2018-03-26 | 2018-09-14 | 华灿光电(浙江)有限公司 | A kind of light-emitting diode chip for backlight unit and preparation method thereof |
CN108767102A (en) * | 2018-03-26 | 2018-11-06 | 华灿光电(浙江)有限公司 | A kind of light-emitting diode chip for backlight unit and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN114005926A (en) | 2022-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI324401B (en) | Fabrication method of high-brightness light emitting diode having reflective layer | |
CN102270633B (en) | High-power flip-chip array LED chip and manufacturing method thereof | |
TW201234679A (en) | High voltage wire bond free LEDs | |
TW200411953A (en) | Light emitting diode and method of making the same | |
CN103066195A (en) | Inverted light emitting diode using graphene as thermal conductive layer | |
CN103378244A (en) | Light emitting diode device and manufacturing method thereof | |
CN102368528B (en) | Luminescent device with high heat dissipation performance and manufacturing method thereof | |
CN102779915A (en) | Inverted light-emitting diode and method for fabricating same | |
CN1731592A (en) | Flip-chip bonded structure light-emitting diode and its manufacture method | |
CN103943769B (en) | A kind of high power LED lamp using ceramic heat-dissipating | |
CN104300054A (en) | Light emitting diode and light emitting diode package | |
TWI438949B (en) | Semiconductor light-emitting chip and method of manufacturing same | |
CN110444559B (en) | Micro-LED array and preparation method thereof | |
CN114005926B (en) | Heat conduction layer, light emitting diode, semiconductor device and preparation method thereof | |
TWI438930B (en) | Semiconductor light-emitting chip and method of manufacturing same | |
CN108365056A (en) | A kind of light emitting diode with vertical structure and its manufacturing method | |
KR101115533B1 (en) | Flip chip Light-emitting device and Method of manufacturing the same | |
CN117637973B (en) | LED chip and preparation method thereof | |
CN204257692U (en) | There is the upside-down mounting LED chip of double reflecting layers | |
CN1172379C (en) | Inverted light emitting diode | |
CN103915556B (en) | A kind of high power LED lamp using ceramic heat-dissipating | |
CN104332546B (en) | A kind of LED chip | |
CN103943745B (en) | A kind of high power LED lamp using ceramic heat-dissipating | |
CN100517775C (en) | Semiconductor light emitting device with improved brightness and method of manufacturing the same | |
CN115347100A (en) | Light emitting diode chip with improved heat conduction and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |