CN114002855B - Axicon lens, minimum base angle adjustment device and adjustment method of axicon lens - Google Patents
Axicon lens, minimum base angle adjustment device and adjustment method of axicon lens Download PDFInfo
- Publication number
- CN114002855B CN114002855B CN202111309299.5A CN202111309299A CN114002855B CN 114002855 B CN114002855 B CN 114002855B CN 202111309299 A CN202111309299 A CN 202111309299A CN 114002855 B CN114002855 B CN 114002855B
- Authority
- CN
- China
- Prior art keywords
- electrode
- driving voltage
- lens
- axicon lens
- liquid crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 24
- 239000004973 liquid crystal related substance Substances 0.000 claims abstract description 64
- 238000010586 diagram Methods 0.000 description 27
- 230000005684 electric field Effects 0.000 description 14
- 239000000758 substrate Substances 0.000 description 11
- 238000004088 simulation Methods 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0938—Using specific optical elements
- G02B27/095—Refractive optical elements
- G02B27/0955—Lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0927—Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/13306—Circuit arrangements or driving methods for the control of single liquid crystal cells
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/134309—Electrodes characterised by their geometrical arrangement
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/29—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Geometry (AREA)
- Liquid Crystal (AREA)
Abstract
本发明涉透镜技术领域,尤其涉及一种锥透镜、锥透镜最小底角调整装置和调整方法,本发明的锥透镜包括电极和液晶层;电极包括第一电极和第二电极,液晶层位于第一电极和第二电极之间;第一电极与第二电极之间的距离为0.1mm至0.7mm;所述电极用于接收第一驱动电压v1,第一驱动电压v1为第一电极与第二电极之间的电压。本发明的锥透镜最小底角调整装置,包括驱动电源和锥透镜,本发明的调整方法使透镜的电极接收第一驱动电压v1,并调整第一驱动电压v1的取值。本发明通过调整所述锥透镜的第一驱动电压v1的取值来快速,实时地对锥透镜的最小底角进行调整,并获得比现有技术更小的最小底角。
The present invention relates to the technical field of lenses, in particular to an axicon lens, a device for adjusting the minimum base angle of the axicon lens, and an adjustment method. The axicon lens of the present invention includes an electrode and a liquid crystal layer; the electrode includes a first electrode and a second electrode, and the liquid crystal layer is located on the first between an electrode and a second electrode; the distance between the first electrode and the second electrode is 0.1mm to 0.7mm; the electrode is used to receive the first driving voltage v1, and the first driving voltage v1 is the distance between the first electrode and the second electrode voltage between the two electrodes. The device for adjusting the minimum base angle of an axicon lens of the present invention includes a driving power source and an axicon lens. The adjusting method of the present invention enables the electrode of the lens to receive the first driving voltage v1 and adjust the value of the first driving voltage v1. The present invention adjusts the minimum base angle of the axicon lens quickly and in real time by adjusting the value of the first driving voltage v1 of the axicon lens, and obtains a smaller minimum base angle than the prior art.
Description
技术领域technical field
本发明涉透镜技术领域,尤其涉及一种锥透镜、锥透镜最小底角调整装置和调整方法。The invention relates to the technical field of lenses, in particular to an axicon lens, a device for adjusting the minimum base angle of the axicon lens, and an adjustment method.
背景技术Background technique
锥透镜是一种重要的光学元器件,它可以将入射光线按照一定的角度进行折射。通过这些折射后的光束之间的干涉和衍射,使得锥透镜的焦线可以变得很长,能沿着光轴产生的一条长的焦距线。当一束高斯光束透过锥透镜时,会变成一束贝塞尔光束,从而可以大大减少衍射的影响,并在焦线上光场有一个均匀的强度分布,锥透镜的这些特性使它得到了广泛的应用,比如用于产生非共线的谐波,用于高敏感的巧光测量,用来进行纳米粒子筛选,用锥透镜替代球透镜解决离焦问题等。锥透镜的还有一个显著的优势是能得到一个成像物体的深度信息。Axicon is an important optical component, which can refract incident light according to a certain angle. Through the interference and diffraction between these refracted light beams, the focal line of the axicon can become very long, and a long focal length line can be generated along the optical axis. When a Gaussian beam passes through an axicon, it becomes a Bessel beam, which can greatly reduce the effect of diffraction and have a uniform intensity distribution in the light field on the focal line. These characteristics of the axicon make it It has been widely used, such as for generating non-collinear harmonics, for highly sensitive fluorescence measurement, for nanoparticle screening, and replacing ball lenses with axicons to solve the problem of defocusing. Another significant advantage of the axicon is that it can obtain depth information of an imaged object.
现在技术中也有不少可以产生贝塞尔光束的方法,例如:There are also many methods in the technology that can generate Bessel beams, such as:
1.利用在传统会聚透镜后焦面加入一个带环形通光孔径的光阑产生贝塞尔光束;1. A Bessel beam is generated by adding a diaphragm with an annular clear aperture to the back focal plane of a traditional converging lens;
2.利用空间光调制器产生贝塞尔光束;2. Using a spatial light modulator to generate a Bessel beam;
3.利用TAG lens产生贝塞尔光束;3. Use TAG lens to generate Bessel beam;
4.利用锥透镜产生贝塞尔光束。4. Use an axicon to generate a Bessel beam.
但是利用在传统会聚透镜后焦面加入一个带环形通光孔径的光阑的方法所产生贝塞尔光束的焦深不如传统锥透镜的焦深大;利用空间光调制器产生贝塞尔光束的方法成本高,且调制函数复杂;利用TAG lens产生贝塞尔光束的方法所形成的锥透镜的最小底角受锥形腔体和液体介质的影响,而无法对其最小底角进行方便,快速,实时地调节。However, the focal depth of the Bessel beam generated by adding a diaphragm with an annular clear aperture to the back focal plane of the traditional converging lens is not as large as that of the traditional axicon; the Bessel beam generated by using a spatial light modulator The cost of the method is high, and the modulation function is complex; the minimum base angle of the cone lens formed by the method of using the TAG lens to generate the Bessel beam is affected by the conical cavity and the liquid medium, and the minimum base angle cannot be easily and quickly performed. , adjust in real time.
实际应用中,采用锥透镜来产生贝塞尔光束的情况较多。但是使用锥透镜产生贝塞尔光束时,由于贝塞尔-高斯光束的最大无衍射距离与锥透镜的最小底角成反比,因此要想获得更大的贝塞尔-高的斯光束的最大无衍射距离,就需要最小底角值更小的锥透镜,但是传统的锥透镜由于工艺的限制,锥透镜的最小底角受到限制,为0.5度至1度左右,这严重限制了所产生的贝塞尔-高斯光束的最大无衍射距离,因此采用现有技术的锥透镜也无法获得更大景深和清晰度更高的图像。并且,由于传统的锥透镜制造完成后锥透镜最小底角就已经固定,如果要改变其最小底角,只有更换锥透镜,因此在实际应用中没法实现快速实时地进行最小底角的调整,因此传统的锥透镜无法适用于需要快速实时地改变最小底角的应用场合。In practical applications, there are many cases where an axicon lens is used to generate a Bessel beam. However, when an axicon is used to generate a Bessel beam, since the maximum non-diffracted distance of the Bessel-Gaussian beam is inversely proportional to the minimum base angle of the axicon, it is necessary to obtain a larger Bessel-Gaussian beam. Without the diffraction distance, an axicon lens with a smaller minimum base angle value is required. However, due to the limitation of the traditional axicon lens, the minimum base angle of the axicon lens is limited to about 0.5 degrees to 1 degree, which seriously limits the generated The maximum non-diffraction distance of the Bessel-Gaussian beam, so the use of the existing axicon can not obtain a larger depth of field and higher definition images. Moreover, since the minimum base angle of the axicon lens has been fixed after the traditional axicon lens is manufactured, if the minimum base angle of the axicon lens is to be changed, only the axicon lens can be replaced, so it is impossible to adjust the minimum base angle quickly and in real time in practical applications. Therefore, the traditional axicon cannot be used in applications that need to change the minimum base angle quickly and in real time.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明提供一种锥透镜、锥透镜最小底角调整装置和调整方法来解决现有技术中锥透镜最小底角值过大,致使锥透镜产生的贝塞尔-高斯光束的最大无衍射距离短,以及锥透镜最小底角无法快速实时调整的问题。In view of this, the present invention provides an axicon lens, an axicon lens minimum base angle adjustment device and an adjustment method to solve the problem that the minimum base angle value of the axicon lens in the prior art is too large, resulting in the largest Bessel-Gaussian beam generated by the axicon lens. There is no problem that the diffraction distance is short, and the minimum base angle of the axicon cannot be quickly adjusted in real time.
为解决上述技术问题,本发明的通过以下技术方案来实现:In order to solve the above-mentioned technical problems, the present invention is realized through the following technical solutions:
第一方面,本发明提供一种锥透镜,所述锥透镜包括液晶透镜元件,所述液晶透镜元件包括电极和液晶层;In a first aspect, the present invention provides an axicon lens, the axicon lens includes a liquid crystal lens element, and the liquid crystal lens element includes an electrode and a liquid crystal layer;
所述电极包括第一电极和第二电极,所述第二电极为圆孔状电极;The electrode includes a first electrode and a second electrode, and the second electrode is a circular hole-shaped electrode;
所述液晶层位于第一电极和第二电极之间;the liquid crystal layer is located between the first electrode and the second electrode;
在沿第一电极的平面的法向方向上,所述第一电极与第二电极之间的距离为0.1mm至0.7mm;In the normal direction along the plane of the first electrode, the distance between the first electrode and the second electrode is 0.1 mm to 0.7 mm;
所述电极用于接收第一驱动电压V1,所述第一驱动电压为第一电极与第二电极之间的电压。The electrodes are used to receive a first driving voltage V1, and the first driving voltage is a voltage between the first electrode and the second electrode.
优选的,在沿第一电极的平面的法向方向上,所述第一电极与第二电极之间的距离为0.2mm至0.5mm;Preferably, in the normal direction along the plane of the first electrode, the distance between the first electrode and the second electrode is 0.2 mm to 0.5 mm;
所述第一驱动电压V1的范围为0V至35。The range of the first driving voltage V1 is 0V to 35V.
第二方面,本发明提供一种锥透镜,所述锥透镜包括液晶透镜元件,所述液晶透镜元件包括电极和液晶层;In a second aspect, the present invention provides an axicon lens, the axicon lens includes a liquid crystal lens element, and the liquid crystal lens element includes an electrode and a liquid crystal layer;
所述电极包括第一电极和第二电极,所述第二电极为圆孔状电极;The electrode includes a first electrode and a second electrode, and the second electrode is a circular hole-shaped electrode;
所述液晶层位于第一电极和第二电极之间;the liquid crystal layer is located between the first electrode and the second electrode;
所述电极还包括第三电极,所述第二电极位于第一电极和第三电极之间,所述液晶层位于第一电极和第二电极之间,在沿第一电极的平面的法向方向上,所述第一电极与第二电极之间的距离为d1,所述第二电极的与第三电极之间的距离为d2,其中0≤d2≤0.4,d2/2+0.3≤d1≤-d2/2+0.7,其中d1和d2的单位为mm;The electrode further includes a third electrode, the second electrode is located between the first electrode and the third electrode, and the liquid crystal layer is located between the first electrode and the second electrode, in a normal direction along the plane of the first electrode In the direction, the distance between the first electrode and the second electrode is d1, and the distance between the second electrode and the third electrode is d2, where 0≤d2≤0.4, d2/2+0.3≤d1 ≤-d2/2+0.7, where d1 and d2 are in mm;
所述电极用于接收第一驱动电压V1和第二驱动电压V2,所述第一驱动电压V1为第一电极与第二电极之间的电压,所述第二驱动电压V2为第一电极和第三电极之间的电压。The electrodes are used to receive a first driving voltage V1 and a second driving voltage V2, the first driving voltage V1 is the voltage between the first electrode and the second electrode, and the second driving voltage V2 is the first electrode and the second driving voltage V2. voltage between the third electrodes.
优选地,其中V1和V2满足:0≤V2≤40,0≤V1≤3×V2/4+30,其中V1和V2的单位为V。Preferably, wherein V1 and V2 satisfy: 0≤V2≤40, 0≤V1≤3×V2/4+30, wherein the unit of V1 and V2 is V.
第三方面,本发明提供一种锥透镜最小底角调整装置,包括驱动电源和第一方面中所述的锥透镜,所述驱动电源用于提供所述第一驱动电压V1,所述驱动电源为可调电源。In a third aspect, the present invention provides a device for adjusting the minimum base angle of an axicon lens, comprising a drive power source and the axicon lens described in the first aspect, the drive power source is used to provide the first drive voltage V1, and the drive power source is used to provide the first drive voltage V1. is an adjustable power supply.
优选的,还包括驱动电压调整模块,所述驱动电压调整模块用于调整驱动电源提供的第一驱动电压V1值,其中V1的调整量ΔV的取值范围为ΔV1/V1≤0.07。Preferably, a driving voltage adjustment module is also included, the driving voltage adjustment module is used to adjust the value of the first driving voltage V1 provided by the driving power supply, wherein the value range of the adjustment amount ΔV of V1 is ΔV1/V1≤0.07.
第四方面,本发明提供一种锥透镜最小底角调整装置,包括驱动电源和第一方面中所述的锥透镜,所述驱动电源用于提供第一驱动电压V1和第二驱动电压V2,驱动电源所提供的第一驱动电压V1或/和第二驱动电压V2为可调电压。In a fourth aspect, the present invention provides a device for adjusting the minimum base angle of an axicon lens, comprising a driving power source and the axicon lens described in the first aspect, wherein the driving power source is used to provide a first driving voltage V1 and a second driving voltage V2, The first driving voltage V1 or/and the second driving voltage V2 provided by the driving power supply are adjustable voltages.
优选的,还包括驱动电压调整模块,所述驱动电压调整模块用于调整第一驱动电压V1或/和第二驱动电压V2;Preferably, a driving voltage adjustment module is further included, and the driving voltage adjustment module is used to adjust the first driving voltage V1 or/and the second driving voltage V2;
其中V1的调整量ΔV1的取值范围为ΔV1/V1≤0.07,其中V2的调整量ΔV2的取值范围为ΔV2/V2≤0.07。The value range of the adjustment amount ΔV1 of V1 is ΔV1/V1≤0.07, and the value range of the adjustment amount ΔV2 of V2 is ΔV2/V2≤0.07.
第五方面,本发明提供一种锥透镜最小底角调整方法,包括第一方面中的锥透镜的电极接收第一驱动电压V1;In a fifth aspect, the present invention provides a method for adjusting the minimum base angle of an axicon lens, including the electrodes of the axicon lens in the first aspect receiving a first driving voltage V1;
调整第一驱动电压V1的取值。Adjust the value of the first driving voltage V1.
优选的,其中V1的调整量ΔV1的取值范围为ΔV1/V1≤0.07。Preferably, the value range of the adjustment amount ΔV1 of V1 is ΔV1/V1≤0.07.
第六方面,本发明提供一种锥透镜最小底角调整方法,包括:In a sixth aspect, the present invention provides a method for adjusting the minimum base angle of an axicon lens, including:
第一方面中所述锥透镜的电极接收第一驱动电压V1和第二驱动电压V2;The electrodes of the axicon lens in the first aspect receive the first driving voltage V1 and the second driving voltage V2;
调整第一驱动电压V1或/和第二驱动电压V2的取值。Adjust the value of the first driving voltage V1 or/and the second driving voltage V2.
优选的,其中V1的调整量ΔV1的取值范围为ΔV1/V1≤0.07,其中V2的调整量ΔV2的取值范围为ΔV2/V2≤0.07。Preferably, the value range of the adjustment amount ΔV1 of V1 is ΔV1/V1≤0.07, and the value range of the adjustment amount ΔV2 of V2 is ΔV2/V2≤0.07.
本发明的有益效果:与现有技术相比,本发明提供的锥透镜,锥透镜最小底角调整装置和调整方法,通过将第一电极与第二电极之间的距离设置在0.1mm至0.7mm之间,并给第一电极和第二电极之间加上第一驱动电压,利用其形成的电场驱动液晶分子呈近似的圆锥形排布,使所有通过液晶层的入射光线都以—个相同的角度进行折射,从而形成可以靠电压驱动的液晶锥透镜。并通过调整第一驱动电压的值来控制电场在空间中的分布情况,从而调整液晶锥透镜的最小底角,其调整过程不需要改变锥透镜的外形,不需要对锥透镜进行重新加工,因此不会受到加工工艺的限制,可以获得比现有技术的锥透镜更小的最小底角。由于锥透镜的最小底角随着驱动电压V1连续变化而迅速地连续改变,因此利用本申请的锥透镜最小底角调整装置和方法,可以在不用改变锥透镜外形结构和尺寸的情况下,方便,快捷,实时地对锥透镜的最小底角进行调整。Beneficial effects of the present invention: Compared with the prior art, the axicon lens, the minimum base angle adjustment device and the adjustment method of the axicon lens provided by the present invention, by setting the distance between the first electrode and the second electrode at 0.1mm to 0.7mm mm, and add a first driving voltage between the first electrode and the second electrode, and use the electric field formed by the electric field to drive the liquid crystal molecules to be arranged in an approximate conical shape, so that all the incident light passing through the liquid crystal layer is a The same angle is refracted to form a liquid crystal axicon that can be driven by a voltage. And by adjusting the value of the first driving voltage to control the distribution of the electric field in the space, so as to adjust the minimum base angle of the liquid crystal cone lens, the adjustment process does not need to change the shape of the cone lens, and does not need to reprocess the cone lens, so Without being limited by the processing technology, a smaller minimum base angle can be obtained than that of the prior art axicon. Since the minimum base angle of the axicon lens changes rapidly and continuously with the continuous change of the driving voltage V1, using the device and method for adjusting the minimum base angle of the axicon lens of the present application, without changing the external structure and size of the axicon lens, it is convenient to , adjust the minimum base angle of the Axicon in real time and quickly.
附图说明Description of drawings
图1是本发明实施例1的液晶透镜元件的结构示意图。FIG. 1 is a schematic structural diagram of a liquid crystal lens element according to
图2是本发明实施例2的液晶透镜元件的结构示意图。FIG. 2 is a schematic structural diagram of a liquid crystal lens element according to
图3是本发明中当d1=0.3mm,d2=0.02mm,v1=40V,v2=20V时的波前图。FIG. 3 is a wavefront diagram when d1=0.3mm, d2=0.02mm, v1=40V, and v2=20V in the present invention.
图4是本发明中当d1=0.7mm,d2=0.02mm,v1=40V,v2=20V时的波前图。FIG. 4 is a wavefront diagram when d1=0.7mm, d2=0.02mm, v1=40V, and v2=20V in the present invention.
图5是本发明中当d1=0.5mm,d2=0.4mm,v1=40V,v2=20V时的波前图。FIG. 5 is a wavefront diagram when d1=0.5mm, d2=0.4mm, v1=40V, and v2=20V in the present invention.
图6是本发明中当d1=0.35mm,d2=0.1mm,v1=40V,v2=20V时的波前图。FIG. 6 is a wavefront diagram of the present invention when d1=0.35mm, d2=0.1mm, v1=40V, and v2=20V.
图7是本发明中当d1=0.65mm,d2=0.1mm,v1=40V,v2=20V时的波前图。FIG. 7 is a wavefront diagram when d1=0.65mm, d2=0.1mm, v1=40V, v2=20V in the present invention.
图8是本发明中当d1=0.4mm,d2=0.2mm,v1=40V,v2=20V时的波前图。FIG. 8 is a wavefront diagram when d1=0.4mm, d2=0.2mm, v1=40V, and v2=20V in the present invention.
图9是本发明中当d1=0.6mm,d2=0.2mm,v1=40V,v2=20V时的波前图。FIG. 9 is a wavefront diagram when d1=0.6mm, d2=0.2mm, v1=40V, and v2=20V in the present invention.
图10是本发明中当d1=0.3mm,d2=0.1mm,v1=0V,v2=30V时的波前图。FIG. 10 is a wavefront diagram when d1=0.3mm, d2=0.1mm, v1=0V, and v2=30V in the present invention.
图11是本发明中当d1=0.3mm,d2=0.1mm,v1=20V,v2=0V时的波前图。FIG. 11 is a wavefront diagram when d1=0.3mm, d2=0.1mm, v1=20V, and v2=0V in the present invention.
图12是本发明中当d1=0.3mm,d2=0.1mm,v1=20V,v2=40V时的波前图。FIG. 12 is a wavefront diagram when d1=0.3mm, d2=0.1mm, v1=20V, and v2=40V in the present invention.
图13是本发明中当d1=0.3mm,d2=0.1mm,v1=30V,v2=0V时的波前图。FIG. 13 is a wavefront diagram when d1=0.3mm, d2=0.1mm, v1=30V, and v2=0V in the present invention.
图14是本发明中当d1=0.3mm,d2=0.1mm,v1=40V,v2=40V时的波前图。Fig. 14 is a wavefront diagram when d1=0.3mm, d2=0.1mm, v1=40V, v2=40V in the present invention.
图15是本发明中当d1=0.3mm,d2=0.1mm,v1=50V,v2=40V时的波前图。FIG. 15 is a wavefront diagram when d1=0.3mm, d2=0.1mm, v1=50V, and v2=40V in the present invention.
图16是本发明中当d1=0.3mm,d2=0.1mm,v1=60V,v2=40V时的波前图。FIG. 16 is a wavefront diagram when d1=0.3mm, d2=0.1mm, v1=60V, and v2=40V in the present invention.
图17是本发明中当d1=0.3mm,d2=0.1mm,v1=37.5V,v2=10V时的波前图。FIG. 17 is a wavefront diagram when d1=0.3mm, d2=0.1mm, v1=37.5V, and v2=10V in the present invention.
图18是本发明的实施例13的结构示意图。FIG. 18 is a schematic structural diagram of
主要元件符号说明:第一透明基板11、第二透明基板12、第三透明基板13、第一电极21、第二电极22、第三电极23、液晶层3、绝缘层4、间隔子5、激光器6、偏振片7、高反镜8、锥透镜9、光电探测器10和示波器12。Description of main component symbols: first
如下具体实施方式将结合上述附图进一步说明本发明。The following specific embodiments will further illustrate the present invention in conjunction with the above drawings.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
需要说明的是,在本发明中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。It should be noted that the descriptions involving "first", "second", etc. in the present invention are only for the purpose of description, and should not be construed as indicating or implying their relative importance or implying the number of indicated technical features . Thus, a feature delimited with "first", "second" may expressly or implicitly include at least one of that feature. In addition, the technical solutions between the various embodiments can be combined with each other, but must be based on the realization by those of ordinary skill in the art. When the combination of technical solutions is contradictory or cannot be realized, it should be considered that the combination of such technical solutions does not exist. , is not within the scope of protection required by the present invention.
实施例1Example 1
本实施例提供一种锥透镜。如图1所示,本实施方式中的锥透镜,包括液晶透镜元件,所述液晶透镜元件包括电极和液晶层3;This embodiment provides an axicon lens. As shown in FIG. 1 , the cone lens in this embodiment includes a liquid crystal lens element, and the liquid crystal lens element includes electrodes and a
所述电极包括第一电极21和第二电极22,所述第二电极22为圆孔状电极;The electrodes include a
所述液晶层3位于第一电极21和第二电极22之间;The
在沿第一电极21的平面的法向方向上,所述第一电极21与第二电极22之间的距离为0.1mm至0.7m;In the normal direction along the plane of the
所述电极用于接收第一驱动电压V1,所述第一驱动电压为第一电极21与第二电极22之间的电压。The electrodes are used to receive the first driving voltage V1 , and the first driving voltage is the voltage between the
其中第一电极21可选用透明电极,如ITO电极或者AZO电极,第二电极22可以选用透明电极或者非透明电极例如金属电极,其中金属电极材料包括但不限于Al、Pt、Cr。The
当第一电极21与第二电极22之间的距离为0.1mm至0.7m时,给第一电极21和第二电极22之间加上电压,可以在第一电极21和第二电极22之间形成电场,该电场可以使液晶分子呈圆锥形或近似的圆锥形排布,使所有通过液晶层3的入射光线都以—个相同的角度进行折射,从而形成可以靠电压驱动的液晶锥透镜。并通过调整第一驱动电压的值来控制电场在空间中的分布情况,从而调整液晶锥透镜的最小底角,其调整过程不需要改变锥透镜的外形,不需要对锥透镜进行重新加工,因此不会受到加工工艺的限制,可以获得比现有技术的锥透镜更小的最小底角由于锥透镜的最小底角随着驱动电压V1连续变化而迅速连续改变,因此利用本实施例的锥透镜可以在不用改变锥透镜外形结构和尺寸的情况下,方便,快捷,实时地对锥透镜的最小底角进行调整。When the distance between the
实施例2Example 2
本实施例在实施例1的基础上在将第一电极21与第二电极22之间的距离限制0,2mm至0.5mm范围内,将第一驱动电压V1的限制在0V至35V范围内。在前述距离和电压范围内液晶分子的排布最接近圆锥形,使用该锥透镜的成像效果也最好。In this embodiment, on the basis of
实施例3Example 3
如图2所示,本实施例提供另一种结构的液晶锥透镜,本实施例的液晶锥透镜包括液晶透镜元件,所述液晶透镜元件包括电极和液晶层;As shown in FIG. 2 , this embodiment provides a liquid crystal cone lens with another structure. The liquid crystal cone lens in this embodiment includes a liquid crystal lens element, and the liquid crystal lens element includes an electrode and a liquid crystal layer;
所述电极包括第一电极21和第二电极22,所述第二电极22为圆孔状电极;The electrodes include a
所述液晶层位于第一电极21和第二电极22之间;the liquid crystal layer is located between the
所述电极还包括第三电极23,所述第二电极22位于第一电极21和第三电极23之间,所述液晶层位于第一电极21和第二电极22之间,在沿第一电极21的平面的法向方向上,所述第一电极21与第二电极22之间的距离为d1,所述第二电极22的与第三电极23之间的距离为d2,其中0<d2<0.4,d2/2+0.3<d1<-d2/2+0.7,其中d1和d2的单位为mm;The electrodes further include a
所述电极用于接收第一驱动电压V1和第二驱动电压V2,所述第一驱动电压V1为第一电极21与第二电极22之间的电压,所述第二驱动电压V2为第一电极和第三电极23之间的电压。The electrodes are used to receive a first driving voltage V1 and a second driving voltage V2, the first driving voltage V1 is the voltage between the
本实施例增加了第三电极23,并使第一电极21,第二电极22第三电极23之间的距离满足0≤d2≤0.4,d2/2+0.3≤d1≤-d2/2+0.7。本实施例可以为液晶锥透镜同时提供第一驱动电压和第二驱动电压,采用前述结构后,在第一驱动电压和第二驱动电压的综合作用下,液晶分子成圆锥形排布,使所有通过液晶层3的入射光线都以—个相同的角度进行折射。采用前述结构的波前图如图3至图9所示,图3至图9为保持第一驱动电压和第二驱动电压不变的情况下采用不同的电极间隔距离得到的波前图。从图中可以看出满足前述距离关系的液晶锥透镜的波前图接近圆锥形。In this embodiment, a
本实施例可以通过对第一驱动电压或者第二驱动电压的搭配来增加锥透镜最小底角调节的灵活性,还可以通过对第一驱动电压或者第二驱动电压之间相对大小的设置来使锥透镜在正锥透镜和负锥透镜两种状态之间进行方便快速地切换。例如当第一驱动电压和第二驱动电压设置为V1大于V2时,液晶透镜为正锥透镜,当第一驱动电压和第二驱动电压设置为V1小于V2时,液晶透镜为负锥透镜。由于锥透镜的最小底角可以随着驱动电压V1或者V2的改变而快速改变,因此本实施例可以在不用改变锥透镜外形结构和尺寸的情况下,通过调第一驱动整驱动电压V1或/和第二驱动电压V2来方便,快捷,实时地对锥透镜的最小底角进行调整。In this embodiment, the flexibility of adjusting the minimum base angle of the axicon lens can be increased by matching the first driving voltage or the second driving voltage, and the relative size between the first driving voltage or the second driving voltage can be set to make the Axicons switch conveniently and quickly between positive and negative axicon states. For example, when the first and second driving voltages are set to V1 greater than V2, the liquid crystal lens is a positive conical lens, and when the first and second driving voltages are set to V1 less than V2, the liquid crystal lens is a negative conical lens. Since the minimum base angle of the axicon lens can change rapidly with the change of the driving voltage V1 or V2, this embodiment can adjust the driving voltage V1 or/ and the second driving voltage V2 to adjust the minimum base angle of the axicon lens conveniently, quickly and in real time.
实施例4Example 4
本实施例在实施例3的基础上将V1和V2的取值范围进一步限定为0≤V2≤40,0≤V1≤3×V2/4+30,其中v1和v2的单位为V。本实施例在实施例3的基础上,将第一驱动电压和第二驱动电压之间的差值限制在前述范围内时液晶分子的排布最接近圆锥形,使用该锥透镜的成像效果也最好。In this embodiment, on the basis of
实施例5Example 5
本实施例提供一种锥透镜最小底角调整装置,包括驱动电源和实施例1或实例2中的锥透镜,所述驱动电源用于提供所述第一驱动电压V1,所述驱动电源为可调电源。本实例利用可调电源为实施例1或实施例2提供第一驱动电压,这样通过调整可调电源输出的电压值就可以改变液晶层3中液晶分子的排布从而改变锥透镜的最小底角。本装置通过改变电压来调整锥透镜的最小底角,不需要改变锥透镜的外形结构,可以快速实时地实现对锥透镜最小底角的调整。This embodiment provides a device for adjusting the minimum base angle of an axicon lens, including a driving power source and the axicon lens in
实施例6Example 6
本实例在实例5的基础上增加了驱动电压调整模块,包括驱动电压调整模块,所述驱动电压调整模块用于调整驱动电源提供的第一驱动电压V1值,其中V1的调整量ΔV的取值范围为ΔV1/V1≤0.07。本装置可以利用驱动电压调整模块连续实时改变第一驱动电压来连续实时地调整锥透镜的最小底角,并且在ΔV1/V1≤0.07的范围内调整V1的值时,锥透镜最小底角相对V1的变化率较小,使得本装置对锥透镜最小底角调整的精确度更高。This example adds a driving voltage adjustment module on the basis of Example 5, including a driving voltage adjustment module, the driving voltage adjustment module is used to adjust the value of the first driving voltage V1 provided by the driving power supply, wherein the value of the adjustment amount ΔV of V1 is the value of The range is ΔV1/V1≤0.07. The device can use the driving voltage adjustment module to continuously change the first driving voltage in real time to continuously adjust the minimum base angle of the axicon, and when the value of V1 is adjusted within the range of ΔV1/V1≤0.07, the minimum base angle of the axicon is relative to V1 The rate of change is small, so that the device can adjust the minimum base angle of the cone lens more accurately.
实施例7Example 7
本实施例提供的锥透镜最小底角调整装置,包括驱动电源和实施例3或4中所的锥透镜,所述驱动电源用于提供第一驱动电压V1和第二驱动电压V2,驱动电源所提供的第一驱动电压V1或/和第二驱动电压V2为可调电压。本实施例利用驱动电源为锥透镜提供可以调整的第一驱动电压V1或/和第二驱动电压V2,这样一方面可以通过改变第一驱动电压V1或/和第二驱动电压V2压的值来快速,实时地调整锥透镜的最小底角,另一方面通过改变第一驱动电压V1或/和第二驱动电压V2之间的大小关系来实现正锥透镜状态和负锥透镜状态之间的切换。The device for adjusting the minimum base angle of an axicon lens provided in this embodiment includes a drive power source and the axicon lens in
实施例8Example 8
本实施例在实施例7的基础上,利用驱动电压调整模块对第一驱动电压V1或/和第二驱动电压V2,进行调整,并且调整的范围为ΔV1/V1≤0.07,其中V2的调整量ΔV2的取值范围为ΔV2/V2≤0.07,本装置可以利用驱动电压调整模块连续实时改变第一驱动电压和第二驱动电压来连续实时地调整锥透镜的最小底角,在前述调整范围内锥透镜最小底角相对V1或者V2的变化率较小,使得对锥透镜最小底角调整的精确度更高。In this embodiment, on the basis of
实施例9Example 9
本实施例提供一种锥透镜最小底角调整方法,本实施例的方法给实施例1或2中的锥透镜的电极加上第一驱动电压V1,在第一电极21和第二电极22之间形成电场,利用形成的电场使液晶分子呈近似的圆锥形排布,并通过调整第一驱动电压V1的值来控制电场在空间中的分布情况,从而调整液晶锥透镜的最小底角,前述调整过程不需要改变锥透镜的外形,不需要对锥透镜进行重新加工,因此不会受到加工工艺的限制,可以获得比现有技术的锥透镜更小的最小底角。由于锥透镜的最小底角可以随着驱动电压V1的改变而快速改变,因此本实施例可以在不用改变锥透镜外形结构和尺寸的情况下,方便,快捷,实时地对锥透镜的最小底角进行调整。This embodiment provides a method for adjusting the minimum base angle of an axicon lens. The method of this embodiment applies a first driving voltage V1 to the electrodes of the axicon lens in
实施例10Example 10
本实施例在实施例8的基础上,在ΔV1/V1≤0.07的范围内对V1进行调整,在前述范围内锥透镜最小底角相对ΔV1的变化率小,使得对锥透镜最小底角调整的精确度更高。In this embodiment, on the basis of
实施例11Example 11
本实施例提供一种锥透镜最小底角调整方法,包括:实施例3或4中的锥透镜的电极加上第一驱动电压V1和第二驱动电压V2,在第一驱动电压V1和第二驱动电压V2的综合作用下形成电场,利用形成的电场使液晶分子呈近似的圆锥形排布,并通过调整第一驱动电压V1和第二驱动电压的V2值来控制电场在空间中的分布情况,从而调整液晶锥透镜的最小底角,前述调整过程不需要改变锥透镜的外形,不需要对锥透镜进行重新加工,因此不会受到加工工艺的限制,可以获得比现有技术的锥透镜更小的最小底角。由于锥透镜的最小底角可以随着驱动电压V1或者V2的改变而快速改变,因此本实施例可以在不用改变锥透镜外形结构和尺寸的情况下,通过调第一驱动整驱动电压V1或/和第二驱动电压V2来方便,快捷,实时地对锥透镜的最小底角进行调整。此外,通过改变V1或者V2之间的大小关系还可以使锥透镜在正锥透镜和负锥透镜之间切换。This embodiment provides a method for adjusting the minimum base angle of an axicon lens, including: adding a first driving voltage V1 and a second driving voltage V2 to the electrodes of the axicon lens in
例如可以设置电极接收第一组电压,在该组电压中第一驱动电压V1设置为0V,第二驱动电压压V2设置为30V,这时通过仿真得到的波前如图10所示,这时锥透镜为负锥透镜。For example, the electrodes can be set to receive the first set of voltages. In this set of voltages, the first driving voltage V1 is set to 0V, and the second driving voltage V2 is set to 30V. At this time, the wavefront obtained by simulation is shown in Figure 10. At this time, Axicons are negative axicons.
例如可以设置电极接收第二组电压,在该组电压中第一驱动电压V1设置为20V,第二驱动电压压V2设置为0V,这时通过仿真得到的波前如图11所示,这时锥透镜为正锥透镜。这时第一驱动电压V1保持20V不变,第二驱动电压设置V2调整为40V后作为第三组电压,按照前述设定使电极接收第三组电压,这时通过仿真得到的波前图如图12所示。前述过程中第二驱动电压V1小于第一驱动电压V2,这时液晶透镜形成负锥透镜。For example, the electrodes can be set to receive a second set of voltages. In this set of voltages, the first driving voltage V1 is set to 20V, and the second driving voltage V2 is set to 0V. At this time, the wavefront obtained by simulation is shown in Figure 11. At this time, Axicons are positive axicons. At this time, the first drive voltage V1 remains unchanged at 20V, and the second drive voltage V2 is adjusted to 40V as the third set of voltages. According to the aforementioned settings, the electrodes receive the third set of voltages. At this time, the wavefront diagram obtained by the simulation is as follows Figure 12. In the foregoing process, the second driving voltage V1 is lower than the first driving voltage V2, and the liquid crystal lens forms a negative conical lens at this time.
还可以设置电极接收第四组电压,在该组电压中第二驱动电压V2设置为0V,第一驱动电压V1设置为30V,这时通过仿真得到的波前图如图13所示。The electrodes can also be set to receive a fourth group of voltages. In this group of voltages, the second driving voltage V2 is set to 0V and the first driving voltage V1 is set to 30V. The wavefront diagram obtained by simulation is shown in FIG. 13 .
还可以设置电极接收第五组电压,在该组电压中第二驱动电压V2设置为40V,第一驱动电压V1设置为40V,这时通过仿真得到的波前图如图14所示。The electrodes can also be set to receive a fifth set of voltages. In this set of voltages, the second driving voltage V2 is set to 40V and the first driving voltage V1 is set to 40V. The wavefront diagram obtained by simulation is shown in FIG. 14 .
这时第二驱动电压V2保持40V不变,第一驱动电压V1V2调整为50V后作为第六组电压,电压驱动模块按照前述设置输出第六组电压,这时通过仿真得到的波前图如图15所示。前述过程中第二驱动电压V2小于第一驱动电压V1,这时液晶透镜形成正锥透镜。At this time, the second driving voltage V2 remains unchanged at 40V, and the first driving voltage V1V2 is adjusted to 50V as the sixth group of voltages. The voltage driving module outputs the sixth group of voltages according to the aforementioned settings. At this time, the wavefront diagram obtained by the simulation is shown in the figure 15 shown. In the foregoing process, the second driving voltage V2 is lower than the first driving voltage V1, and at this time, the liquid crystal lens forms a positive conical lens.
还可以使第二驱动电压V2保持40V不变,第一驱动电压V1调整为60V后作为第七组电压,电压驱动模块按照前述设置输出第七组电压,这时通过仿真得到的波前图如图16所示。It is also possible to keep the second driving voltage V2 unchanged at 40V, and adjust the first driving voltage V1 to 60V as the seventh group of voltages. The voltage driving module outputs the seventh group of voltages according to the aforementioned settings. At this time, the wavefront diagram obtained by the simulation is as follows: Figure 16.
还可以设置电极接收第八组电压,在该组电压中第二驱动电压V2设置为10V,第一驱动电压V1设置为37.5V,这时通过仿真得到的波前图如图17所示。The electrodes can also be set to receive an eighth group of voltages. In this group of voltages, the second driving voltage V2 is set to 10V and the first driving voltage V1 is set to 37.5V. The wavefront diagram obtained by simulation is shown in FIG. 17 .
实施例12Example 12
本实施例在实施例11的基础上,在ΔV1/V1≤0.07或/和ΔV2/V2≤0.07的范围内对V1和V2进行调整,在前述范围内锥透镜最小底角相对V1和V2的变化率小,使得对锥透镜最小底角调整的精确度更高。In this embodiment, on the basis of
实施例13Example 13
如图18所示,本实施例在实施例3或4的锥透镜9的基础上增加激光器6、偏振片7,光电探测器10和示波器12,其中锥透镜9、光电探测器10和示波器12依次排列。打开激光器6,给液晶透镜施加电场,调节V1等于50V,V2等于40V,此时液晶锥透镜的光学性质就是一个正锥透镜的光学性质,使用光电探测器10扫描,并在在示波器12上呈现出出射光的光强分布保持V2不变,调节V1等于60,使用光电探测器10扫描,在示波器12上呈现出射光的光强分布。通过对光强分布的分析可以发现,出射光束传播过程中光强分布不同,且峰值光强出现的位置随外加电场的改变而改变。故通过改变外加电场的大小可以改变液晶锥透镜的最小底角。本实施例中还可以采用一组或者多种高反镜8对入射激光进行准直调整。As shown in FIG. 18 , the present embodiment adds a
本发明还可以在第一电极21和第二电极22之间以及第二电极22和第三电极23之间设置绝缘部件,其中在第一电极21和第二电极22之间的绝缘部件为绝缘层4,通过绝缘层4将第一电极21和第二电极22有效阻隔开,防止两个电极之间短路。其中,第二电极22和第三电极23之间的绝缘部件为设置在液晶层3中的间隔子5。间隔子5设置在液晶层3的径向方向的边缘处,一方面将液晶层3支撑起预设的厚度,另一方面在第二电极22和第三电极23之间起到绝缘作用。本实施方式的锥透镜还包括第一透明基板11、第二透明基板12、第三透明基板13,所述第一电极21设置在第一透明基板11上,所述第二电极22设置在第二透明基板12上,所述第三电极23设置在第三透明基板13上。三块透明基板可以对三个电极起到很好的支撑和保护的作用,使液晶锥透镜的结构和性能更加稳固。In the present invention, an insulating member can also be provided between the
以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同替换,而不脱离本发明技术方案的精神和范围。The above embodiments are only used to illustrate the technical solutions of the present invention and not to limit them. Although the present invention has been described in detail with reference to the preferred embodiments, those of ordinary skill in the art should understand that the technical solutions of the present invention can be modified or equivalently replaced. Without departing from the spirit and scope of the technical solutions of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111309299.5A CN114002855B (en) | 2021-11-06 | 2021-11-06 | Axicon lens, minimum base angle adjustment device and adjustment method of axicon lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111309299.5A CN114002855B (en) | 2021-11-06 | 2021-11-06 | Axicon lens, minimum base angle adjustment device and adjustment method of axicon lens |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114002855A CN114002855A (en) | 2022-02-01 |
CN114002855B true CN114002855B (en) | 2022-07-05 |
Family
ID=79927839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111309299.5A Active CN114002855B (en) | 2021-11-06 | 2021-11-06 | Axicon lens, minimum base angle adjustment device and adjustment method of axicon lens |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114002855B (en) |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006313248A (en) * | 2005-05-09 | 2006-11-16 | Konica Minolta Holdings Inc | Liquid crystal lens |
JP2009015995A (en) * | 2007-07-06 | 2009-01-22 | Asahi Glass Co Ltd | Liquid crystal diffractive lens element and optical head device |
CN102200668B (en) * | 2010-03-23 | 2013-05-29 | 深圳华映显示科技有限公司 | Electric driving liquid crystal lens and three-dimensional display |
CN102305984A (en) * | 2011-08-26 | 2012-01-04 | 深圳市华星光电技术有限公司 | Liquid crystal lens and liquid crystal display device |
JP6550683B2 (en) * | 2016-06-16 | 2019-07-31 | 日本電信電話株式会社 | Wavelength swept light source |
CN109031811A (en) * | 2018-08-10 | 2018-12-18 | 电子科技大学 | A kind of focal length and the variable liquid crystal optical device of phase-delay quantity |
ES2711456B2 (en) * | 2018-09-14 | 2020-12-15 | Univ Madrid Politecnica | CONFIGURABLE OPTICAL DEVICE |
CN112346279B (en) * | 2019-08-09 | 2025-02-11 | 电子科技大学 | Optical device, imaging device, zoom driving method and lens center moving method |
CN111596498B (en) * | 2020-07-01 | 2022-03-01 | 中国工程物理研究院激光聚变研究中心 | Annular light beam generation method based on liquid crystal phased array |
-
2021
- 2021-11-06 CN CN202111309299.5A patent/CN114002855B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN114002855A (en) | 2022-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100489599C (en) | Liquid crystal lens | |
RU2601227C2 (en) | Multicelled liquid crystal optical instrument with conjugated electric field control | |
US8194228B2 (en) | Liquid crystal lens in which a voltage imparts optimal first-stage optical properties to the liquid crystal lens by influencing a liquid crystal layer | |
TWI412791B (en) | Double-layer liquid crystal lens apparatus | |
US10139529B2 (en) | Deformable lens structure for adaptive optics devices | |
US7619713B2 (en) | Liquid crystal optical element and method for manufacturing thereof | |
JP4435795B2 (en) | Liquid crystal optical device | |
JP2018120238A (en) | Lenses with electrically-tunable output and alignment | |
WO2014094165A1 (en) | Liquid crystal optical device with advanced electric field control capability | |
RU2008152284A (en) | VARIABLE FOCUS LENS FOR ISOLATION OR RETAINING OF SUBSTANCE FROM SMALL PARTICLES | |
CN108663731A (en) | The making of dielectrophoretic force liquid zoom lens and focal-length measurement method | |
US11624966B2 (en) | Digitally controlled dynamic lens | |
US20230004050A1 (en) | Electrode structure for creating electrical potential gradient | |
CN114002855B (en) | Axicon lens, minimum base angle adjustment device and adjustment method of axicon lens | |
EP3086167A1 (en) | Optical modulation element | |
DE60043531D1 (en) | OPTICAL HEAD | |
Feng et al. | Positive-negative tunable liquid crystal lens of rectangular aperture | |
CN111913331A (en) | Liquid crystal electric control light beam deflection device and method | |
CN114002857A (en) | Cone lens laser shaping device and cone lens laser shaping method | |
CN111290190A (en) | Liquid crystal lens array, imaging device and driving method | |
JP4077384B2 (en) | Liquid crystal element drive device | |
CN114236940A (en) | Dual-frequency liquid crystal cone lens, control method, adjustment device and laser shaping device | |
JP2016114899A (en) | Liquid crystal optical device | |
CN114002856B (en) | Axicon imaging device, axicon imaging method and electronic device | |
CN111880350B (en) | Modulation method for electric control beam deflection based on barium titanate crystal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |