[go: up one dir, main page]

CN113980919B - DNA sequence for regulating and controlling corn ear rot resistance, mutant, molecular marker and application thereof - Google Patents

DNA sequence for regulating and controlling corn ear rot resistance, mutant, molecular marker and application thereof Download PDF

Info

Publication number
CN113980919B
CN113980919B CN202111065285.3A CN202111065285A CN113980919B CN 113980919 B CN113980919 B CN 113980919B CN 202111065285 A CN202111065285 A CN 202111065285A CN 113980919 B CN113980919 B CN 113980919B
Authority
CN
China
Prior art keywords
seq
corn
zmlox3
gene
indel151
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111065285.3A
Other languages
Chinese (zh)
Other versions
CN113980919A (en
Inventor
王宝宝
王海洋
赵斌斌
廖新阳
李长育
候美
李耀耀
谢钰容
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Agricultural University
Biotechnology Research Institute of CAAS
Original Assignee
South China Agricultural University
Biotechnology Research Institute of CAAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Agricultural University, Biotechnology Research Institute of CAAS filed Critical South China Agricultural University
Priority to CN202111065285.3A priority Critical patent/CN113980919B/en
Publication of CN113980919A publication Critical patent/CN113980919A/en
Application granted granted Critical
Publication of CN113980919B publication Critical patent/CN113980919B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0069Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8282Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for fungal resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y113/00Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13)
    • C12Y113/11Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13) with incorporation of two atoms of oxygen (1.13.11)
    • C12Y113/11012Linoleate 13S-lipoxygenase (1.13.11.12)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

The invention discloses a DNA sequence for regulating and controlling corn ear rot resistance, a mutant, a molecular marker and application thereof. The invention firstly provides a key DNA sequence for regulating and controlling corn ear rot resistance and mutants thereof, wherein the base sequences of the key DNA sequence are shown as SEQ ID No.1, SEQ ID No.2 and SEQ ID No.14, the key DNA sequence can regulate and control the expression of ZmLOX3 genes in corn ears and seeds, and the key DNA sequence can improve the corn ear rot resistance or cultivate new varieties of corn ear rot resistance. The invention provides a molecular marker of Indel151 or Indel363 as ZmLOX3 gene expressed in corn ears and kernels, and application of ZmLOX3 gene in regulating and controlling corn expression and improving corn ear rot resistance. The invention further provides a detection primer for detecting the mutation condition of the DNA sequence and the mutant thereof and a detection primer for detecting the ZmLOX3 gene expression in corn.

Description

调控玉米穗腐病抗性的DNA序列及其突变体、分子标记和应用DNA sequences regulating corn ear rot resistance and their mutants, molecular markers and applications

技术领域Technical field

本发明涉及调控玉米穗腐病抗性的DNA序列及其突变体,尤其涉及调控ZmLOX3基因表达的启动子区和内含子区的关键DNA序列及其突变体、ZmLOX3基因表达的分子标记和检测引物,本发明进一步涉及它们在调控玉米穗腐病抗性中的应用,属于玉米穗腐病抗性调控的DNA序列、其突变体及其应用领域。The present invention relates to DNA sequences that regulate corn ear rot resistance and mutants thereof, in particular to key DNA sequences that regulate the promoter region and intron region of ZmLOX3 gene expression and mutants thereof, as well as molecular markers and detection of ZmLOX3 gene expression. Primers, the present invention further relates to their application in regulating corn ear rot resistance, and belongs to the field of DNA sequences regulating corn ear rot resistance, mutants thereof and their application fields.

背景技术Background technique

玉米是重要的粮食、饲料和工业原材料,也是当前中国的第一大农作物。玉米的健康安全生产对保障我国的粮食安全和农业发展有着举足轻重的作用。Corn is an important food, feed and industrial raw material, and is currently China's largest crop. The healthy and safe production of corn plays a decisive role in ensuring my country's food security and agricultural development.

玉米穗腐病(ear rot),也叫穗粒腐病(kernel and ear rot),是世界范围内玉米产区普遍发生的一类真菌病害。迄今已鉴定出40余种引起玉米穗腐病的病原真菌,其中常见的致病菌主要有以下几种:轮状镰孢F.verticillioides,拟轮枝镰孢F.moniliforme,禾谷镰孢F.graminearum,尖镰孢F.oxysporum,层出镰孢F.proliferatum,黄色镰孢F.culmorum,燕麦镰孢F.avenaceum,木贼镰孢F.equiseti,半裸镰孢F.semitectum,黄曲霉A.flavus,赭曲霉A.ochraceus等。一般,各地的病原菌组成差异较大,并且不同病院真菌可以单独或复合侵染引起玉米穗粒腐病的发生。Corn ear rot, also called kernel and ear rot, is a common fungal disease that occurs in corn producing areas around the world. So far, more than 40 pathogenic fungi causing corn ear rot have been identified, among which the common pathogenic bacteria are mainly the following: F. verticillioides, F. moniliforme, F. graminearum .graminearum, F.oxysporum, F.proliferatum, F.culmorum, F.avenaceum, F.equiseti, F.semitectum, Aspergillus flavus A .flavus, A.ochraceus, etc. Generally, the composition of pathogenic bacteria varies greatly from place to place, and fungi in different hospitals can cause single or compound infection to cause corn ear rot.

玉米穗腐病的发病率通常与材料的遗传背景关系比较紧密,也受不同环境和气候条件的影响,高温高湿的环境容易加重玉米穗粒腐病的发生。The incidence of corn ear rot is usually closely related to the genetic background of the material, and is also affected by different environmental and climatic conditions. High temperature and high humidity environments can easily aggravate the occurrence of corn ear rot.

穗腐病的发生可引起籽粒腐烂,造成产量损失高达30%-40%。除直接造成产量损失外,穗腐病的致病镰孢、曲霉等病原真菌能产生多种毒素(如镰孢菌能够产生单端孢霉烯、伏马毒素和玉米赤霉烯酮等真菌毒素,曲霉产生的黄曲霉毒素以及赭曲霉毒素等),还影响玉米安全贮存和食用安全。真菌毒素不但能够影响真菌对宿主的侵染和破坏程度,而且对包括人类和畜禽在内的脊椎动物具有严重的毒害作用。不同类型的毒素,对寄主植物和人畜造成的伤害程度和引起的症状各异。伏马毒素是一类鞘脂类化合物,在动植物细胞中,竞争性抑制鞘脂的生物合成,从而造成鞘胺碱在细胞的积累,导致寄主组织坏死,可引起猪肺水肿、马的脑白质软化症、大鼠肝癌以及人类食道癌等;雪腐镰刀菌烯醇和脱氧雪腐镰刀菌烯醇具有结合真核生物60S核糖体亚基的能力,导致蛋白质合成的抑制和诱导凋亡的作用,产生萎蔫、褪绿或坏死的症状,引起人畜呕吐、腹泻、拒食或雌激素中毒等症状;黄曲霉毒素是重要的致癌物质,其可抑制寄主植物和人畜体内白质的合成,给动植物组织造成严重损害。整体上,玉米穗粒腐病不仅导致玉米产量和品质的降低,也给其食品与饲料的安全带来重大隐患并直接威胁到人畜健康,因此,控制玉米穗腐病的发生和危害具有重要意义。The occurrence of ear rot can cause grain rot, resulting in yield losses of up to 30%-40%. In addition to directly causing yield losses, pathogenic fungi such as Fusarium and Aspergillus that cause ear rot can produce a variety of toxins (for example, Fusarium can produce mycotoxins such as trichothecenes, fumonisins, and zearalenone). , aflatoxins and ochratoxins produced by Aspergillus, etc.), also affect the safe storage and eating safety of corn. Mycotoxins can not only affect the degree of infection and damage caused by fungi to the host, but also have serious toxic effects on vertebrates including humans, livestock and poultry. Different types of toxins cause different degrees of damage and symptoms to host plants, humans and animals. Fumonisins are a type of sphingolipid compounds that competitively inhibit the biosynthesis of sphingolipids in animal and plant cells, causing accumulation of sphingosine in cells, leading to host tissue necrosis, and can cause pulmonary edema in pigs and brain damage in horses. Leukomalacia, rat liver cancer, human esophageal cancer, etc.; nivalenol and deoxynivalenol have the ability to bind to the eukaryotic 60S ribosomal subunit, leading to the inhibition of protein synthesis and induction of apoptosis. , producing symptoms of wilting, chlorosis or necrosis, causing vomiting, diarrhea, food refusal or estrogen poisoning in humans and animals; aflatoxin is an important carcinogen, which can inhibit the synthesis of white matter in host plants and humans and animals, and infect animal and plant tissues. causing serious damage. Overall, corn ear rot not only reduces corn yield and quality, but also poses major hidden dangers to the safety of food and feed and directly threatens human and animal health. Therefore, it is of great significance to control the occurrence and harm of corn ear rot. .

挖掘调控玉米穗腐病的抗性基因,是提高玉米穗腐病抗性、培育抗病品种,保证玉米安全生产的关键措施。前人研究发现,脂氧合酶基因(ZmLOXs)是宿主与病原真菌间相互作用的重要信号交流分子,源自宿主玉米中的脂氧合酶基因在调控玉米穗腐病的抗性方面发挥着重要作用。其中,玉米9-LOX基因ZmLOX3可能作为致病因子被轮枝镰孢菌(F.verticillioides)利用从而引起茎/穗腐病抗性。完全敲除ZmLOX3基因会增加玉米对镰孢菌引起的粒腐病的抗性,但对黄曲霉引起的粒腐病表现出感病;表明了ZmLOX3基因在玉米穗腐病抗性调控方面的复杂性,并且也表明直接的敲除该基因并不能直接用于玉米穗腐病的抗性改良。Discovering resistance genes that regulate corn ear rot is a key measure to improve corn ear rot resistance, cultivate disease-resistant varieties, and ensure safe corn production. Previous studies have found that lipoxygenase genes (ZmLOXs) are important signal communication molecules in the interaction between the host and pathogenic fungi. The lipoxygenase genes derived from the host corn play a role in regulating resistance to corn ear rot. important role. Among them, the maize 9-LOX gene ZmLOX3 may be used as a pathogenic factor by F. verticillioides to cause stem/ear rot resistance. Complete knockout of the ZmLOX3 gene will increase the resistance of corn to grain rot caused by Fusarium, but show susceptibility to grain rot caused by Aspergillus flavus; indicating the complexity of the ZmLOX3 gene in the regulation of corn ear rot resistance. It also shows that direct knockout of this gene cannot be directly used to improve resistance to corn ear rot.

鉴于ZmLOX3基因在镰孢菌和黄曲霉抗性调控方面的拮抗作用,一种保证该基因的蛋白功能,但适当的降低其表达量的策略,可能能达到抗镰孢菌同时兼抗黄曲霉的作用,从而实现综合提高玉米穗腐病抗性。玉米在长达近一万年的进化过程中,积累了丰富的自然变异,自然界中很可能存在这样一种不改变ZmLOX3蛋白功能,但能适当降低其表达丰度的自然变异。该类自然变异的挖掘对玉米穗腐病抗性改良至关重要,并将在玉米育种中具有广阔的应用前景。In view of the antagonistic effect of the ZmLOX3 gene in regulating resistance to Fusarium and Aspergillus aflatoxin, a strategy that ensures the protein function of the gene but appropriately reduces its expression level may be able to achieve resistance to both Fusarium and Aspergillus aflatoxin. function, thereby comprehensively improving corn ear rot resistance. During the evolutionary process of nearly 10,000 years, corn has accumulated abundant natural variation. It is likely that there is such a natural variation in nature that does not change the function of ZmLOX3 protein, but can appropriately reduce its expression abundance. The mining of this type of natural variation is crucial to the improvement of corn ear rot resistance and will have broad application prospects in corn breeding.

发明内容Contents of the invention

本发明的目的之一是提供一种调控玉米穗腐病的关键DNA序列;One of the purposes of the present invention is to provide a key DNA sequence for regulating corn ear rot;

本发明的目的之二是提供所述调控玉米穗腐病的关键DNA序列的突变体;The second object of the present invention is to provide a mutant of the key DNA sequence for regulating corn ear rot;

本发明的目的之三是提供用作调控ZmLOX3基因在玉米果穗和籽粒中表达的分子标记;The third object of the present invention is to provide a molecular marker for regulating the expression of ZmLOX3 gene in corn ears and grains;

本发明的目的之四提供降低玉米发生穗腐病风险或提高穗腐病抗性的方法或者培育抗穗腐病的玉米新品种的方法;The fourth object of the present invention is to provide a method for reducing the risk of ear rot in corn or improving resistance to ear rot, or a method for cultivating new corn varieties resistant to ear rot;

本发明的目的之五是提供一种检测所述分子标记的变异情况的检测引物;The fifth object of the present invention is to provide a detection primer for detecting the mutation of the molecular marker;

本发明的目的之六是提供检测玉米中ZmLOX3基因表达量的检测引物;The sixth object of the present invention is to provide detection primers for detecting ZmLOX3 gene expression in corn;

本发明的上述目的是通过以下技术方案来实现的:The above objects of the present invention are achieved through the following technical solutions:

本发明一方面提供了一种调控玉米穗腐病抗性的关键DNA序列,其多核苷酸为(a)、(b)、(c)或(d)所示:In one aspect, the present invention provides a key DNA sequence for regulating corn ear rot resistance, and its polynucleotide is represented by (a), (b), (c) or (d):

(a)SEQ ID No.1所示的多核苷酸序列,或(a) the polynucleotide sequence shown in SEQ ID No. 1, or

(b)与SEQ ID No.1的互补序列在严谨杂交条件能够进行杂交的多核苷酸序列;(b) A polynucleotide sequence capable of hybridizing with the complementary sequence of SEQ ID No. 1 under stringent hybridization conditions;

(c)与SEQ ID No.1所示的多核苷酸至少有90%或以上同源性的多核苷酸序列;或(c) A polynucleotide sequence that is at least 90% or more homologous to the polynucleotide shown in SEQ ID No. 1; or

(d)在SEQ ID No.1所示的多核苷酸序列的基础上进行一个或多个碱基的缺失、取代或插入的突变体,且该突变体仍具有调控玉米穗腐病的功能或活性。(d) A mutant in which one or more bases are deleted, substituted or inserted based on the polynucleotide sequence shown in SEQ ID No. 1, and the mutant still has the function of regulating corn ear rot; or active.

本发明发现,上述的关键DNA序列能够调控ZmLOX3基因在玉米果穗和籽粒中的表达量变化进而影响玉米对于穗腐病或穗粒腐抗性的高低。The present invention found that the above-mentioned key DNA sequence can regulate the expression changes of the ZmLOX3 gene in corn ears and grains, thereby affecting the resistance of corn to ear rot or ear rot.

本发明中所述的“穗腐病”或“穗粒腐病”为同一种病害。The "ear rot" or "ear rot" mentioned in the present invention are the same disease.

在本发明的上下文中,术语“突变体”是含有变化的DNA序列,在所述DNA序列中,优选在基本保持DNA序列的同时缺失、添加和/或替代原始序列的一个或多个核苷酸。例如,可以从DNA序列5’或3’末端缺失一个或多个碱基对以产生“截短的”DNA序列;也可以在DNA序列内部插入、缺失或替代一个或多个碱基对。可以通过例如标准DNA诱变技术或通过化学合成变体DNA序列或其部分而产生变体DNA序列。突变体多核苷酸还包括合成来源的多核苷酸,例如采用定点诱变所得到的突变体,或者是通过重组的方法(例如DNA改组)所得到的突变体,或者是通过自然选择所得到的突变体。In the context of the present invention, the term "mutant" is a DNA sequence containing changes in which one or more nucleosides of the original sequence are deleted, added and/or substituted, preferably while substantially maintaining the DNA sequence. acid. For example, one or more base pairs can be deleted from the 5' or 3' end of a DNA sequence to produce a "truncated" DNA sequence; one or more base pairs can also be inserted, deleted, or substituted within the DNA sequence. Variant DNA sequences can be produced, for example, by standard DNA mutagenesis techniques or by chemical synthesis of the variant DNA sequence or portions thereof. Mutant polynucleotides also include polynucleotides of synthetic origin, such as mutants obtained by site-directed mutagenesis, or mutants obtained by recombinant methods (such as DNA shuffling), or by natural selection. mutant.

作为所述突变体的一种具体的实施方案,本发明提供了一种调控玉米穗腐病抗性的关键DNA序列的突变体,其多核苷酸序列如SEQ ID No.2所示;该突变体是在ZmLOX3基因启动子区Indel151处造成151bp的碱基插入,其插入的序列如SEQ ID No.3;在ZmLOX3基因的第二个内含子区Indel363处缺失361bp或者363bp碱基,其缺失的多核苷酸序列为SEQ IDNo.4或者SEQ ID No.5所示;该突变体能够升高ZmLOX3基因在玉米果穗和籽粒中的表达量高,表现出发生穗腐病的风险提高。As a specific embodiment of the mutant, the present invention provides a mutant of a key DNA sequence that regulates corn ear rot resistance, and its polynucleotide sequence is shown in SEQ ID No. 2; the mutation The body causes a 151bp base insertion at Indel151 in the ZmLOX3 gene promoter region, and the inserted sequence is SEQ ID No. 3; a 361bp or 363bp base deletion at Indel363 in the second intron region of the ZmLOX3 gene, and its deletion The polynucleotide sequence is shown in SEQ ID No. 4 or SEQ ID No. 5; this mutant can increase the expression of ZmLOX3 gene in corn ears and grains, showing an increased risk of ear rot.

作为所述突变体的一种优选的具体实施方案,本发明提供了一种调控玉米穗腐病抗性的关键DNA序列的突变体,其多核苷酸序列如SEQ ID No.14所示;该突变体是在ZmLOX3基因启动子区Indel151处缺失151bp的碱基,其缺失的序列如SEQ ID No.3所示;在ZmLOX3基因的第二个内含子区Indel363处插入363bp碱基,其插入的多核苷酸序列如SEQ ID No.5所示;该突变体能够降低ZmLOX3基因在玉米果穗和籽粒中的表达量,表现出发生穗腐病的风险显著降低。As a preferred specific embodiment of the mutant, the present invention provides a mutant of a key DNA sequence that regulates corn ear rot resistance, and its polynucleotide sequence is shown in SEQ ID No. 14; The mutant is a 151bp base deleted at Indel151 in the promoter region of the ZmLOX3 gene, and the deleted sequence is shown in SEQ ID No. 3; a 363bp base is inserted at Indel363, the second intron region of the ZmLOX3 gene, and its insertion The polynucleotide sequence is shown in SEQ ID No. 5; this mutant can reduce the expression of ZmLOX3 gene in corn ears and grains, showing a significant reduction in the risk of ear rot.

本发明因此确定在ZmLOX3基因启动子区Indel151缺失SEQ ID No.3所示的151bp的片段或在ZmLOX3基因第二个内含子区Indel363处插入SEQ ID No.4或SEQ ID No.5所示的碱基片段的玉米材料普遍具有较低的ZmLOX3基因表达量,进而表现出抗轮状镰孢引起的穗腐病,发生穗腐病的风险降低;相反,在ZmLOX3基因启动子区Indel151插入SEQ ID No.3所示的151bp的片段或在ZmLOX3基因的第二个内含子区Indel363处缺失SEQ ID No.4或SEQID No.5所示的碱基片段的玉米材料普遍具有较高的ZmLOX3基因表达量,表现出易感轮状镰孢引起的穗腐病,发生穗腐病的风险提高。The present invention therefore determines that the 151 bp fragment shown in SEQ ID No. 3 is deleted from Indel151 in the ZmLOX3 gene promoter region or that SEQ ID No. 4 or SEQ ID No. 5 is inserted into the second intron region Indel363 of the ZmLOX3 gene. Corn materials with base fragments generally have lower ZmLOX3 gene expression levels, and thus show resistance to ear rot caused by Fusarium verticilliformis, and reduce the risk of ear rot; on the contrary, SEQ is inserted into Indel151 in the promoter region of the ZmLOX3 gene The 151 bp fragment shown in ID No. 3 or the maize material lacking the base fragment shown in SEQ ID No. 4 or SEQ ID No. 5 at Indel363, the second intron region of the ZmLOX3 gene, generally has higher ZmLOX3 The gene expression level shows susceptibility to ear rot caused by Fusarium verticilliformis, and the risk of ear rot is increased.

由此,本发明提供了一种降低玉米发生穗腐病风险或提供穗腐病抗性的方法,包括:在ZmLOX3基因启动子区Indel151缺失SEQ ID No.3所示的151bp的片段;或者,在ZmLOX3基因第二个内含子区Indel363处插入SEQ ID No.4或SEQ ID No.5所示的碱基片段;或者在ZmLOX3基因启动子区Indel151缺失SEQ ID No.3所示的151bp的片段以及在ZmLOX3基因第二个内含子区Indel363处插入SEQ ID No.4或SEQ ID No.5所示的碱基片段。Therefore, the present invention provides a method for reducing the risk of ear rot in corn or providing resistance to ear rot, including: deleting the 151 bp fragment shown in SEQ ID No. 3 in Indel151, the ZmLOX3 gene promoter region; or, Insert the base fragment shown in SEQ ID No.4 or SEQ ID No.5 at Indel363, the second intron region of the ZmLOX3 gene; or delete the 151 bp sequence shown in SEQ ID No.3 at Indel151 in the promoter region of the ZmLOX3 gene. fragment and insert the base fragment shown in SEQ ID No. 4 or SEQ ID No. 5 at Indel363, the second intron region of the ZmLOX3 gene.

本发明还提供了一种培育抗穗腐病的玉米新品种的方法,包括降低ZmLOX3基因在玉米果穗和籽粒中的表达量,进而提高玉米穗腐病的抗性;因此,通过降低ZmLOX3基因在玉米果穗和籽粒中的表达量来达到提高玉米穗腐病抗性的方法都应属于本发明的保护范围;包括利用其它的组成型或组织特异的启动子和ZmLOX3构建的表达盒驱动ZmLOX3基因在玉米果穗和籽粒中表达,或利用其它的自然变异来改变ZmLOX3基因在玉米果穗和籽粒中表达,或通过RNAi来降低ZmLOX3基因在玉米果穗和籽粒中表达的方法。The present invention also provides a method for cultivating new corn varieties resistant to ear rot, which includes reducing the expression level of the ZmLOX3 gene in corn ears and grains, thereby improving the resistance to corn ear rot; therefore, by reducing the expression of the ZmLOX3 gene in corn ears and grains, Methods for improving corn ear rot resistance by increasing the expression level in corn ears and grains all fall within the scope of the present invention; including using other constitutive or tissue-specific promoters and expression cassettes constructed from ZmLOX3 to drive the ZmLOX3 gene in Expression in corn ears and grains, or using other natural variations to change the expression of ZmLOX3 gene in corn ears and grains, or using RNAi to reduce the expression of ZmLOX3 gene in corn ears and grains.

作为本方面一种优选的具体实施方案,降低ZmLOX3基因在玉米果穗和籽粒中的表达量的方法可以是:在ZmLOX3基因启动子区Indel151缺失SEQ ID No.3所示的151bp的片段;或者,在ZmLOX3基因第二个内含子区Indel363处插入SEQ ID No.4或SEQ ID No.5所示的碱基片段;或者在ZmLOX3基因启动子区Indel151缺失SEQ ID No.3所示的151bp的片段以及在ZmLOX3基因第二个内含子区Indel363处插入SEQ ID No.4或SEQ ID No.5所示的碱基片段。As a preferred specific embodiment of this aspect, the method for reducing the expression level of the ZmLOX3 gene in corn ears and grains can be: deleting the 151 bp fragment shown in SEQ ID No. 3 in Indel151, the promoter region of the ZmLOX3 gene; or, Insert the base fragment shown in SEQ ID No.4 or SEQ ID No.5 at Indel363, the second intron region of the ZmLOX3 gene; or delete the 151 bp sequence shown in SEQ ID No.3 at Indel151 in the promoter region of the ZmLOX3 gene. fragment and insert the base fragment shown in SEQ ID No. 4 or SEQ ID No. 5 at Indel363, the second intron region of the ZmLOX3 gene.

进一步的,含有所述SEQ ID No.1所述的部分或全部DNA序列、SEQ ID No.2或SEQID No.14所示的部分或全部的DNA序列的突变体的表达盒、含有该表达盒的重组植物表达载体、转基因细胞系和宿主菌均属于本发明的保护范围之内。Further, an expression cassette containing a mutant of part or all of the DNA sequence shown in SEQ ID No. 1, part or all of the DNA sequence shown in SEQ ID No. 2 or SEQ ID No. 14, and an expression cassette containing the same. The recombinant plant expression vectors, transgenic cell lines and host bacteria all fall within the protection scope of the present invention.

所述的重组植物表达载体是将所述表达盒与质粒或表达载体所构建得到的重组植物表达载体并且能够将所述表达盒转入植物宿主细胞、组织或器官中。The recombinant plant expression vector is a recombinant plant expression vector constructed by combining the expression cassette with a plasmid or expression vector and can transfer the expression cassette into plant host cells, tissues or organs.

本发明的DNA序列或其突变体可以用于制备转基因植物。譬如,通过农杆菌介导、基因枪法等方法将含有所述DNA序列或其突变体的重组植物表达载体导入植物细胞、组织或器官中,再将该转化的植物细胞、组织或器官培育成植株,获得转基因植物。用于构建所述植物表达载体的出发载体可为任意一种用于农杆菌转化植物的双元载体或可用于植物微弹轰击的载体等。The DNA sequence of the invention or its mutants can be used to prepare transgenic plants. For example, the recombinant plant expression vector containing the DNA sequence or its mutant is introduced into plant cells, tissues or organs through methods such as Agrobacterium-mediated or biolistic methods, and then the transformed plant cells, tissues or organs are cultivated into plants. , to obtain transgenic plants. The starting vector used to construct the plant expression vector can be any binary vector used to transform plants with Agrobacterium or a vector that can be used for plant microprojectile bombardment, etc.

为了实施本发明,制备和使用植物表达载体和宿主细胞的常规组合物和方法为本领域技术人员所熟知,具体方法可以参考例如Sambrook等。In order to implement the present invention, conventional compositions and methods for preparing and using plant expression vectors and host cells are well known to those skilled in the art. Specific methods can be referred to, for example, Sambrook et al.

所述重组植物表达载体还可含有用于选择转化细胞的选择性标记基因。选择性标记基因用于选择经转化的细胞或组织。所述的标记基因包括:编码抗生素抗性的基因以及赋予除草化合物抗性的基因等。此外,所述的标记基因还包括表型标记,例如β-半乳糖苷酶和荧光蛋白等。The recombinant plant expression vector may also contain a selectable marker gene for selecting transformed cells. Selectable marker genes are used to select transformed cells or tissues. The marker genes include genes encoding antibiotic resistance and genes conferring resistance to herbicidal compounds. In addition, the marker genes also include phenotypic markers, such as β-galactosidase and fluorescent proteins.

总之,可将本发明提供的DNA序列、该序列的突变体、分子标记Indel151或Indel363以及检测该分子标记变异情况的特异性检测引物以及检测ZmLOX3基因表达量的特异性检测引物等应用于培育抗病的玉米新品种,尤其是应用在改良玉米穗腐病抗性等方面。In short, the DNA sequence provided by the present invention, mutants of the sequence, molecular markers Indel151 or Indel363, specific detection primers for detecting the variation of the molecular markers, and specific detection primers for detecting the expression of the ZmLOX3 gene can be used to cultivate antibodies. New corn varieties with disease, especially used in improving corn ear rot resistance.

作为参考,本发明提供了一种调控玉米的穗腐病抗性的方法,包括:用SEQ IDNo.1所示的DNA序列,SEQ ID No.2所示的DNA序列或SEQ ID No.14所示的DNA序列的突变体调控ZmLOX3基因在玉米中进行表达。For reference, the present invention provides a method for regulating ear rot resistance of corn, including: using the DNA sequence shown in SEQ ID No. 1, the DNA sequence shown in SEQ ID No. 2 or the DNA sequence shown in SEQ ID No. 14. Mutants of the DNA sequences shown regulate expression of the ZmLOX3 gene in maize.

本发明中所述的转化方案以及将所述多核苷酸或多肽引入植物的方案可视用于转化的植物(单子叶植物或双子叶植物)或植物细胞的类型而变化。将所述多核苷酸或多肽引入植物细胞的合适方法包括:显微注射、电穿孔、农杆菌介导的转化、直接基因转移以及高速弹道轰击等。在特定的实施方案中,可利用多种瞬时转化法将本发明的表达盒提供给植物。利用常规方法可使已转化的细胞再生稳定转化植株(McCormick et al.Plant CellReports.1986.5:81-84)。The transformation protocols described in this invention and the protocols for introducing the polynucleotides or polypeptides into plants may vary depending on the type of plant (monocotyledonous or dicotous) or plant cell used for transformation. Suitable methods for introducing the polynucleotide or polypeptide into plant cells include microinjection, electroporation, Agrobacterium-mediated transformation, direct gene transfer, high-speed ballistic bombardment, and the like. In certain embodiments, a variety of transient transformation methods can be used to provide expression cassettes of the invention to plants. Stable transformed plants can be regenerated from transformed cells using conventional methods (McCormick et al. Plant Cell Reports. 1986.5:81-84).

本发明可用于转化任何植物种类,包括但不限于单子叶植物或双子叶植物,优选是玉米。The present invention can be used to transform any plant species, including but not limited to monocots or dicots, preferably maize.

本发明进一步确定Indel151或者Indel363能够作为调控ZmLOX3基因在玉米果穗和籽粒中表达的分子标记。本发明还发现,Indel151和Indel363几乎完全连锁在一起,任意的其中一个变异都可以单独作为检测ZmLOX3基因在玉米果穗和籽粒中表达的分子标记。The present invention further determines that Indel151 or Indel363 can be used as a molecular marker to regulate the expression of ZmLOX3 gene in corn ears and grains. The present invention also found that Indel151 and Indel363 are almost completely linked together, and any one of the mutations can be used alone as a molecular marker to detect the expression of ZmLOX3 gene in corn ears and grains.

本发明进一步提供了用于检测Indel151变异情况的检测引物;作为一种优选的具体实施方案,所述的检测引物的核苷酸序列分别为SEQ ID No.6和SEQ ID No.7所示;采用所述特异性检测引物可对玉米品种中的Indel151的变异情况进行检测,从而用于玉米的分子辅助育种。The present invention further provides detection primers for detecting Indel151 mutations; as a preferred specific embodiment, the nucleotide sequences of the detection primers are shown in SEQ ID No. 6 and SEQ ID No. 7 respectively; The specific detection primer can be used to detect the variation of Indel151 in corn varieties, thereby being used for molecular-assisted breeding of corn.

本发明进一步提供了用于检测Indel363变异情况的检测引物;作为一种优选的实施方案,所述的检测引物的核苷酸序列分别为SEQ ID No.8和SEQ ID No.9所示;采用所述特异性检测引物可对玉米品种中的Indel363的变异情况进行检测,从而用于玉米的分子辅助育种。The present invention further provides detection primers for detecting Indel363 mutation; as a preferred embodiment, the nucleotide sequences of the detection primers are shown in SEQ ID No. 8 and SEQ ID No. 9 respectively; using The specific detection primer can detect the variation of Indel363 in corn varieties, and can be used for molecular-assisted breeding of corn.

此外,其他的根据SEQ ID No.1,SEQ ID No.2或SEQ ID No.14所设计的引物,或通过其他方法设计的可用于检测Indel151或Indel363变异情况的引物也应属于本发明的保护范围。In addition, other primers designed according to SEQ ID No. 1, SEQ ID No. 2 or SEQ ID No. 14, or primers designed by other methods that can be used to detect Indel151 or Indel363 mutations should also belong to the protection of the present invention. scope.

本发明还进一步提供了用于检测ZmLOX3基因表达量的特异性扩增引物,该特异性检测引物序列分别为SEQ ID No.10和SEQ ID No.11所示;采用该特异性检测引物可对玉米品种的ZmLOX3基因表达量进行检测,进而为玉米育种中针对ZmLOX3基因的研究提供参考。The present invention further provides specific amplification primers for detecting the expression level of the ZmLOX3 gene. The specific detection primer sequences are shown in SEQ ID No. 10 and SEQ ID No. 11 respectively; the specific detection primers can be used to detect The expression level of ZmLOX3 gene in corn varieties was detected to provide reference for the research on ZmLOX3 gene in corn breeding.

本发明中所述ZmLOX3基因,其编码区的核苷酸序列为SEQ ID No.12所示,其编码蛋白如SEQ ID No.13所示。The nucleotide sequence of the ZmLOX3 gene described in the present invention is shown in SEQ ID No. 12, and the nucleotide sequence of its coding region is shown in SEQ ID No. 13.

本发明所提供的调控玉米穗腐病的DNA序列或其突变体能够调控ZmLOX3基因在玉米果穗或籽粒中的表达,其对改良玉米穗腐病具有重要意义,还可将其进一步应用于玉米新品种的选育。本发明还进一步提供了用作调控ZmLOX3基因表达的分子标记Indel151或Indel363、检测所述分子标记变异情况的特异性检测引物以及检测玉米中ZmLOX3基因表达量的特异性检测引物,这些均能直接应用于定向改良玉米的穗腐病抗性,对于玉米抗病新品种选育也具有重要的应用潜力。The DNA sequence for regulating corn ear rot or its mutant provided by the present invention can regulate the expression of ZmLOX3 gene in corn ears or grains, which is of great significance for improving corn ear rot, and can be further applied to new corns. Breeding of varieties. The present invention further provides molecular markers Indel151 or Indel363 used to regulate the expression of the ZmLOX3 gene, specific detection primers for detecting the variation of the molecular markers, and specific detection primers for detecting the expression level of the ZmLOX3 gene in corn, all of which can be directly used. For targeted improvement of ear rot resistance of corn, it also has important application potential for the breeding of new disease-resistant corn varieties.

本发明所涉及到的术语定义Definitions of terms involved in this invention

除非另外定义,否则本文所用的所有技术及科学术语都具有与本发明所属领域的普通技术人员通常所了解相同的含义。虽然在本发明的实践或测试中可使用与本文所述者类似或等效的任何方法、装置和材料,但现在描述优选方法、装置和材料。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods, devices, and materials similar or equivalent to those described herein can be used in the practice or testing of the invention, the preferred methods, devices, and materials are now described.

术语“多核苷酸”或“核苷酸”意指单股或双股形式的脱氧核糖核苷酸、脱氧核糖核苷、核糖核苷或核糖核苷酸及其聚合物。除非特定限制,否则所述术语涵盖含有天然核苷酸的已知类似物的核酸,所述类似物具有类似于参考核酸的结合特性并以类似于天然产生的核苷酸的方式进行代谢。除非另外特定限制,否则所述术语也意指寡核苷酸类似物,其包括PNA(肽核酸)、在反义技术中所用的DNA类似物(硫代磷酸酯、磷酰胺酸酯等等)。除非另外指定,否则特定核酸序列也隐含地涵盖其保守修饰的变异体(包括(但不限于)简并密码子取代)和互补序列以及明确指定的序列。特定而言,可通过产生其中一个或一个以上所选(或所有)密码子的第3位经混合碱基和/或脱氧肌苷残基取代的序列来实现简并密码子取代(Batzer等人,Nucleic Acid Res.19:5081(1991);Ohtsuka等人,J.Biol.Chem.260:2605-2608(1985);和Cassol等人,(1992);Rossolini等人,Mol Cell.Probes 8:91-98(1994))。The term "polynucleotide" or "nucleotide" means deoxyribonucleotides, deoxyribonucleosides, ribonucleosides or ribonucleotides and polymers thereof in single- or double-stranded form. Unless specifically limited, the term encompasses nucleic acids containing known analogs of natural nucleotides that have binding properties similar to the reference nucleic acid and are metabolized in a manner similar to naturally occurring nucleotides. Unless specifically limited otherwise, the term also means oligonucleotide analogs, which include PNA (peptide nucleic acid), DNA analogs used in antisense technology (phosphorothioates, phosphoamidates, etc.) . Unless otherwise specified, a particular nucleic acid sequence also implicitly encompasses conservatively modified variants thereof (including, but not limited to, degenerate codon substitutions) and complementary sequences as well as the explicitly specified sequences. Specifically, degenerate codon substitution can be achieved by generating a sequence in which position 3 of one or more selected (or all) codons is substituted with a mixed base and/or a deoxyinosine residue (Batzer et al. , Nucleic Acid Res. 19:5081 (1991); Ohtsuka et al., J. Biol. Chem. 260:2605-2608 (1985); and Cassol et al., (1992); Rossolini et al., Mol Cell.Probes 8: 91-98(1994)).

术语“同源性”指多核苷酸序列之间在百分比核苷酸位置同一性(即序列相似性或同一性)方面的相似性或百分同一性的水平。此处所用的术语同源性也指不同多核苷酸分子之间相似的功能特性的概念,例如具有相似功能的启动子可能具有同源的顺式元件。当多核苷酸分子在特定条件下特异性地杂交以形成双链体分子时,它们是同源的。在这些条件下(称为严谨杂交条件)一个多核苷酸分子可以用作鉴定共有同源性的另一个多核苷酸分子的探针或引物。The term "homology" refers to the level of similarity or percent identity between polynucleotide sequences in terms of percent nucleotide position identity (ie, sequence similarity or identity). The term homology, as used herein, also refers to the concept of similar functional properties between different polynucleotide molecules, for example, promoters with similar functions may have homologous cis-elements. Polynucleotide molecules are homologous when they hybridize specifically under specific conditions to form duplex molecules. Under these conditions (called stringent hybridization conditions) one polynucleotide molecule can be used as a probe or primer to identify another polynucleotide molecule that shares homology.

本发明中所述“严谨杂交条件”意指在所属领域中已知的低离子强度和高温的条件。通常,在严谨条件下,探针与其靶序列杂交的可检测程度比与其它序列杂交的可检测程度更高(例如超过本底至少2倍。严谨杂交条件是序列依赖性的,在不同的环境条件下将会不同,较长的序列在较高温度下特异性杂交。通过控制杂交的严谨性或洗涤条件可鉴定与探针100%互补的靶序列。对于核酸杂交的详尽指导可参考有关文献(Tijssen,Techniquesin Biochemistry and Molecular Biology-Hybridization with Nucleic Probes,"Overview of principles of hybridization and the strategy of nucleic acidassays.1993)。更具体的,所述严谨条件通常被选择为低于特异序列在规定离子强度pH下的热熔点(Tm)约5-10℃。Tm为在平衡状态下50%与目标互补的探针杂交到目标序列时所处的温度(在指定离子强度、pH和核酸浓度下)(因为目标序列过量存在,所以在Tm下在平衡状态下50%的探针被占据)。严谨条件可为以下条件:其中在pH 7.0到8.3下盐浓度低于约1.0M钠离子浓度,通常为约0.01到1.0M钠离子浓度(或其它盐),并且温度对于短探针(包括(但不限于)10到50个核苷酸)而言为至少约30℃,而对于长探针(包括(但不限于)大于50个核苷酸)而言为至少约60℃。严谨条件也可通过加入诸如甲酰胺的去稳定剂来实现。对于选择性或特异性杂交而言,正信号可为至少两倍的背景杂交,视情况为10倍背景杂交。例示性严谨杂交条件可如下:50%甲酰胺,5×SSC和1%SDS,在42℃下培养;或5×SSC,1%SDS,在65℃下培养,在0.2×SSC中洗涤和在65℃下于0.1%SDS中洗涤。所述洗涤可进行5、15、30、60、120分钟或更长时间。"Stringent hybridization conditions" as used in the present invention refer to conditions of low ionic strength and high temperature known in the art. Typically, under stringent conditions, a probe hybridizes to its target sequence to a more detectable extent (e.g., at least 2-fold above background) than to other sequences. Stringent hybridization conditions are sequence-dependent and vary in different environments. Conditions will vary, with longer sequences hybridizing specifically at higher temperatures. Target sequences that are 100% complementary to the probe can be identified by controlling the stringency of hybridization or washing conditions. Detailed guidance on nucleic acid hybridization can be found in the relevant literature. (Tijssen, Techniques in Biochemistry and Molecular Biology-Hybridization with Nucleic Probes, "Overview of principles of hybridization and the strategy of nucleic acid assays. 1993). More specifically, the stringent conditions are usually chosen to be lower than the specified ion strength for the specific sequence. The thermal melting point ( Tm ) at pH is about 5-10°C. Tm is the temperature at which a probe complementary to the target is 50% hybridized to the target sequence at equilibrium (under specified ionic strength, pH and nucleic acid concentration ) (50% of the probe is occupied at equilibrium at T m because the target sequence is present in excess). Stringent conditions may be conditions where the salt concentration is less than about 1.0 M sodium ion concentration at pH 7.0 to 8.3 , typically about 0.01 to 1.0 M sodium ion concentration (or other salt), and a temperature of at least about 30°C for short probes (including (but not limited to) 10 to 50 nucleotides) and at least about 30°C for long probes. For selective or specific hybridization, it is at least about 60° C. The signal can be at least two times background hybridization, and optionally 10 times background hybridization. Exemplary stringent hybridization conditions can be as follows: 50% formamide, 5×SSC, and 1% SDS, incubated at 42°C; or 5×SSC, 1% SDS, incubate at 65°C, wash in 0.2×SSC and wash in 0.1% SDS at 65°C. The washes can be performed for 5, 15, 30, 60, 120 minutes or longer.

本发明中所述的“多个”通常意味着2-8个,优选为2-4个;所述的“替换”是指分别用不同的氨基酸残基取代一个或多个氨基酸残基;所述的“缺失”是指氨基酸残基数量的减少,也即是分别缺少其中的一个或多个氨基酸残基;所述的“插入”是指氨基酸残基序列的改变,相对天然分子而言,所述改变导致添加一个或多个氨基酸残基。The "multiple" mentioned in the present invention usually means 2-8, preferably 2-4; the "replacement" refers to replacing one or more amino acid residues with different amino acid residues; The "deletion" mentioned above refers to the reduction in the number of amino acid residues, that is, the lack of one or more amino acid residues; the "insertion" refers to the change in the sequence of amino acid residues. Compared with natural molecules, The alteration results in the addition of one or more amino acid residues.

术语“编码序列”:转录成RNA的核酸序列。The term "coding sequence": a nucleic acid sequence transcribed into RNA.

术语“启动子”指多核苷酸分子,所述多核苷酸分子在其天然状态位于可读框(或蛋白质编码区)的翻译起始密码子上游或5’,并参与RNA聚合酶II及其它蛋白质(反式作用转录因子)的识别和结合以启动转录。The term "promoter" refers to a polynucleotide molecule that in its native state is located upstream or 5' of the translation initiation codon of the open reading frame (or protein coding region) and that participates in RNA polymerase II and other Recognition and binding of proteins (trans-acting transcription factors) to initiate transcription.

术语“植物启动子”是在植物细胞中有功能的天然或非天然启动子。组成型植物启动子在植物发育始终的大部分或所有组织中发挥功能。可以将任何植物启动子用作5’调节元件以用于调节与其可操作地连接的一种或多种特定基因的表达。当与可转录的多核苷酸分子可操作地连接时,启动子一般引起该可转录的多核苷酸分子的转录,其转录方式与该启动子通常连接的可转录的多核苷酸分子的转录方式类似。植物启动子可以包括通过操作已知启动子以产生人工、嵌合或杂合启动子而产生的启动子。这类启动子也可以通过例如向具有其自身部分或全部调节元件的活性启动子加入异源调节元件而组合了来自一个或多个启动子的顺式元件。The term "plant promoter" refers to a natural or non-native promoter that is functional in plant cells. Constitutive plant promoters function in most or all tissues throughout plant development. Any plant promoter can be used as a 5' regulatory element for regulating the expression of one or more specific genes to which it is operably linked. When operably linked to a transcribable polynucleotide molecule, a promoter generally causes the transcription of the transcribable polynucleotide molecule in a manner that is consistent with the transcription of the transcribable polynucleotide molecule to which the promoter is normally linked. similar. Plant promoters may include promoters generated by manipulating known promoters to produce artificial, chimeric or hybrid promoters. Such promoters may also combine cis-elements from one or more promoters by, for example, adding heterologous regulatory elements to an active promoter with some or all of its own regulatory elements.

术语“顺式元件”指赋予基因表达全面控制的一方面的顺式作用转录调节元件。顺式元件可以起到结合调节转录的转录因子,反式作用蛋白质因子的作用。一些顺式元件结合超过一种转录因子,而且转录因子可以与超过一种顺式元件以不同的亲和力相互作用。The term "cis-acting element" refers to a cis-acting transcriptional regulatory element that confers overall control of gene expression. Cis-acting elements can bind to transcription factors that regulate transcription and trans-acting protein factors. Some cis -elements bind more than one transcription factor, and transcription factors can interact with more than one cis -element with different affinities.

术语“可操作地连接”指第一个多核苷酸分子(例如启动子)与第二个可转录的多核苷酸分子(例如目的基因)连接,其中多核苷酸分子如此排列,从而第一个多核苷酸分子影响第二个多核苷酸分子的功能。优选地,两个多核苷酸分子是单个连续多核苷酸分子的部分,且更优选是临近的。例如,如果启动子在细胞内调节或介导目的基因的转录,则该启动子与目的基因可操作地连接。The term "operably linked" refers to the connection of a first polynucleotide molecule (e.g., a promoter) to a second transcribable polynucleotide molecule (e.g., a gene of interest), wherein the polynucleotide molecules are arranged such that the first A polynucleotide molecule affects the function of a second polynucleotide molecule. Preferably, the two polynucleotide molecules are part of a single contiguous polynucleotide molecule, and more preferably are adjacent. For example, a promoter is operably linked to a gene of interest if the promoter regulates or mediates the transcription of the gene of interest within the cell.

术语“可转录的多核苷酸分子”指能够被转录为RNA分子的任何多核苷酸分子。已知以使可转录的多核苷酸分子被转录为功能mRNA分子的方式将构建体引入细胞的方法,所述功能mRNA分子得到翻译并从而表达为蛋白质产物。为了抑制特定的目的RNA分子的翻译,也可以构建能够表达反义RNA分子的构建体。The term "transcriptable polynucleotide molecule" refers to any polynucleotide molecule capable of being transcribed into an RNA molecule. Methods are known for introducing a construct into a cell in such a way that a transcribable polynucleotide molecule is transcribed into a functional mRNA molecule, which is translated and thus expressed as a protein product. In order to inhibit the translation of a specific RNA molecule of interest, a construct capable of expressing an antisense RNA molecule can also be constructed.

术语“重组植物表达载体”:一种或多种用于实现植物转化的DNA载体;本领域中这些载体常被称为二元载体。二元载体连同具有辅助质粒的载体是大多常用于土壤杆菌介导转化的。二元载体通常包括:T-DNA转移所需要的顺式作用序列、经工程化处理以便能够在植物细胞中表达的选择标记物,待转录的异源性DNA序列等。The term "recombinant plant expression vector": one or more DNA vectors used to effect plant transformation; these vectors are often referred to in the art as binary vectors. Binary vectors together with vectors with helper plasmids are most commonly used for Agrobacterium-mediated transformation. Binary vectors usually include: cis-acting sequences required for T-DNA transfer, selectable markers engineered to be expressed in plant cells, heterologous DNA sequences to be transcribed, etc.

术语“转化”:将异源性DNA序列引入到宿主细胞或有机体的方法。The term "transformation": A method of introducing heterologous DNA sequences into a host cell or organism.

术语“表达”:内源性基因或转基因在植物细胞中的转录和/或翻译。The term "expression": the transcription and/or translation of an endogenous gene or transgene in plant cells.

术语“重组宿主细胞株”或“宿主细胞”意指包含本发明多核苷酸的细胞,而不管使用何种方法进行插入以产生重组宿主细胞,例如直接摄取、转导、f配对或所属领域中已知的其它方法。外源性多核苷酸可保持为例如质粒的非整合载体或者可整合入宿主基因组中。宿主细胞可为原核细胞或真核细胞,宿主细胞还可为单子叶或双子叶植物细胞。The term "recombinant host cell strain" or "host cell" means a cell containing a polynucleotide of the invention, regardless of the method used for insertion to produce a recombinant host cell, such as direct uptake, transduction, pairing, or any other method known in the art. Other methods are known. The exogenous polynucleotide can be maintained as a non-integrating vector, such as a plasmid, or can be integrated into the host genome. The host cell can be a prokaryotic cell or a eukaryotic cell, and the host cell can also be a monocotyledonous or dicotyledonous plant cell.

附图说明Description of drawings

图1A为通过测序方法发现ZmLOX3的启动子和第二个内含子区分别存在一个插入缺失自然变异(Indel);Indel151,启动子区的151bp的Indel;Indel363,第二个内含子区的363bp的Indel。图片的右侧是所测序的12个自交系中授粉当天的胚珠(Ovule_0DAP)和授粉后5天的籽粒(Kernel_5DAP)中ZmLOX3基因的表达情况。整体上,有Indel151插入或Indel363缺失的自交系中ZmLOX3基因的表达量较高;B为GWAS分析表明Indel151和Indel363与ZmLOX3基因的表达高低显著关联,曼哈顿图的下边为所有标记的连锁不平衡模块(LD-Block)图;C为自交系中Indel151的不同基因型与ZmLOX3基因表达量间的关系情况,当存在Indel151的插入时,ZmLOX3基因的表达量较高;D为Indel151的不同基因型在不同年代的玉米品种间的等位基因频率变化情况,其中降低ZmLOX3基因表达所对应的基因型在育种过程中受到选择;E为Indel151处的两种基因型在不同杂种优势群材料间的等位基因频率分布情况。Figure 1A shows that through sequencing methods, it was found that the promoter and second intron region of ZmLOX3 each have an insertion-deletion natural variation (Indel); Indel151, a 151bp Indel in the promoter region; Indel363, a 151-bp Indel in the second intron region 363bp Indel. The right side of the picture shows the expression of the ZmLOX3 gene in the ovules on the day of pollination (Ovule_0DAP) and the kernels 5 days after pollination (Kernel_5DAP) of the 12 inbred lines sequenced. Overall, the expression level of ZmLOX3 gene is higher in inbred lines with Indel151 insertion or Indel363 deletion; B is GWAS analysis showing that Indel151 and Indel363 are significantly associated with the expression level of ZmLOX3 gene. The lower part of the Manhattan plot shows the linkage disequilibrium of all markers. Module (LD-Block) diagram; C is the relationship between different genotypes of Indel151 and ZmLOX3 gene expression in inbred lines. When there is an insertion of Indel151, the expression of ZmLOX3 gene is higher; D is the different genes of Indel151 Changes in allelic frequency among maize varieties of different ages, among which the genotype corresponding to reduced ZmLOX3 gene expression was selected during the breeding process; E is the variation of the two genotypes at Indel151 between different heterotic group materials Allele frequency distribution.

图2为12个自交系的Indel151基因型鉴定结果。Figure 2 shows the Indel151 genotype identification results of 12 inbred lines.

图3为12个自交系的Indel363基因型鉴定结果。Figure 3 shows the Indel363 genotype identification results of 12 inbred lines.

图4为10个自交系的玉米籽粒接菌结果;其中有Indel151插入、在Indel363处缺失的5个自交系与其余不同基因型自交系相比明显更易感病。Figure 4 shows the results of corn kernel inoculation of 10 inbred lines; among them, 5 inbred lines with Indel151 insertion and Indel363 deletion are significantly more susceptible to the disease than the other inbred lines with different genotypes.

图5为在杂交种中不同Indel151基因型对应ZmLOX3基因的表达量情况(左图)及Indel151的不同基因型在不同年代杂交种间的等位基因频率变化情况(右图)。Figure 5 shows the expression levels of the ZmLOX3 gene corresponding to different Indel151 genotypes in hybrids (left picture) and the allele frequency changes of different Indel151 genotypes in hybrids of different generations (right picture).

具体实施方式Detailed ways

以下结合具体实施例来进一步描述本发明,本发明的优点和特点将会随着描述而更为清楚。但这些实施例仅是范例性的,并不对本发明的范围构成任何限制。本领域技术人员应该理解的是,在不偏离本发明的精神和范围下可以对本发明的细节和形式进行修改或替换,但这些修改和替换均落入本发明的保护范围内。The present invention will be further described below in conjunction with specific embodiments, and the advantages and features of the present invention will become clearer with the description. However, these embodiments are only exemplary and do not constitute any limitation on the scope of the present invention. Those skilled in the art should understand that the details and forms of the present invention can be modified or replaced without departing from the spirit and scope of the present invention, but these modifications and substitutions all fall within the protection scope of the present invention.

以下实施例中所用的自交系可从“中国作物种质信息网”得到相关信息和申请获取对应的种子。For the inbred lines used in the following examples, relevant information and corresponding seeds can be obtained from the "China Crop Germplasm Information Network".

实施例1 ZmLOX3基因启动子区和第二个内含子区的插入缺失(Indel)变异调控ZmLOX3基因的表达量变化的试验Example 1 Experiment on how insertion and deletion (Indel) variation in the ZmLOX3 gene promoter region and the second intron region regulates changes in the expression level of the ZmLOX3 gene

1、ZmLOX3基因启动子区和第二个内含子区变异位点的发掘1. Discovery of mutation sites in the ZmLOX3 gene promoter region and the second intron region

利用平均>55×的PacBio SMRT reads数据,>94×的二代Illumina 150bp双末端测序数据,及>139×的BioNano单分子数据,对世界范围内广泛使用的12个玉米骨干自交系亲本进行全基因组组装。这12个自交系为:PH207、A632、OH43、Zheng58、Ye478、Dan340、Huangzaosi、Chang7-2、Jing92、Jing724、Xu178、S37;加上已发表的B73和Mo17基因组,这14个高质量基因组几乎涵盖了玉米育种上所有杂种优势群的核心代表自交系。Using average >55× PacBio SMRT reads data, >94× second-generation Illumina 150bp paired-end sequencing data, and >139× BioNano single-molecule data, 12 maize backbone inbred line parents widely used around the world were analyzed. Whole genome assembly. These 12 inbred lines are: PH207, A632, OH43, Zheng58, Ye478, Dan340, Huangzaosi, Chang7-2, Jing92, Jing724, Xu178, S37; plus the published B73 and Mo17 genomes, these 14 high-quality genomes The core representative inbred lines cover almost all heterotic groups in corn breeding.

将14个核心自交系中ZmLOX3基因上下游10kb的基因组序列调取出来,进行DNA序列的Blast比对,发现14个自交系中,在ZmLOX3基因的启动子和第二个内含子中各存在一个插入缺失变异(Indel,图1中A)。其中启动子区的Indel长度为151bp,其序列为SEQ IDNo.3;第二个外显子区的Indel长度为363bp,其碱基序列为SEQ ID No.5所示,或者该外显子区的Indel长度为361bp,其碱基序列为SEQ ID No.4所示。The 10 kb genome sequence upstream and downstream of the ZmLOX3 gene in the 14 core inbred lines was retrieved, and Blast comparison of the DNA sequences was performed. It was found that in the 14 inbred lines, in the promoter and second intron of the ZmLOX3 gene There is one indel variant (Indel, A in Figure 1) each. The Indel length of the promoter region is 151 bp, and its sequence is SEQ ID No. 3; the Indel length of the second exon region is 363 bp, and its base sequence is SEQ ID No. 5, or the exon region The Indel length is 361bp, and its base sequence is shown in SEQ ID No. 4.

2、Indel151和Indel363与ZmLOX3基因的表达量变异显著关联2. Indel151 and Indel363 are significantly associated with the expression variation of ZmLOX3 gene

中国历史上经历了6次玉米品种(杂交种)的更新换代,本发明人前期收集组配了116份不同年代品种更新过程中广泛利用的杂交种及其对应的137份亲本自交系(部分杂交种有共享的亲本)。2019年夏天,对这253份材料(116杂交种和137份自交系)吐丝期的雌穗进行了取样(每个材料取样3个重复),然后进行RNA-Seq分析,得到20000余个基因在253份材料果穗中的表达量数据。其中,本发明中单独把ZmLOX3基因的表达量数据抽出来用于后续分析。China has experienced six times of upgrading of corn varieties (hybrids) in history. In the early stage, the inventor collected and assembled 116 hybrids widely used in the variety upgrading process of different eras and their corresponding 137 parental inbred lines (partially Hybrids have shared parents). In the summer of 2019, the ears of these 253 materials (116 hybrids and 137 inbred lines) were sampled during the silking stage (3 replicates were sampled for each material), and then RNA-Seq analysis was performed, resulting in more than 20,000 Gene expression data in the ears of 253 materials. Among them, in the present invention, the expression data of the ZmLOX3 gene are extracted separately for subsequent analysis.

利用137份玉米自交系的深度(>10×)二代重测序的数据结合已公布的玉米B73V3基因组,挖掘出了25,320,664单核苷酸多态性分子标记(SNPs)和4,319,510个插入缺失多态性分子标记(Indel)。此外,利用开发的PCR引物LOX3-2(序列为SEQ ID No.6和SEQ IDNo.7)及LOX3-3序列为SEQ ID No.8和SEQ ID No.9)鉴定了137份玉米自交系中Indel151(图2)和Indel363(图3)的基因型。Using deep (>10×) second-generation resequencing data of 137 maize inbred lines combined with the published maize B73V3 genome, 25,320,664 single nucleotide polymorphism molecular markers (SNPs) and 4,319,510 indel polymorphisms were discovered. Morphic molecular markers (Indel). In addition, 137 maize inbred lines were identified using the developed PCR primers LOX3-2 (sequences are SEQ ID No. 6 and SEQ ID No. 7) and LOX3-3 sequences are SEQ ID No. 8 and SEQ ID No. 9. Genotypes of Indel151 (Fig. 2) and Indel363 (Fig. 3).

利用这些挖掘到的分子标记估算出137份玉米自交系的群体结构和亲缘关系,然后将检测到的ZmLOX3基因的表达量数据作为表型进行全基因组关联分析(GWAS)。其中在ZmLOX3基因附近鉴定到一个显著的关联信号,最显著的信号落在Indel151标记上(p-value=1.40E-9),Indel363为第二显著的关联标记(图1B),这表明Indel151和Indel363与ZmLOX3基因的表达量变异显著关联。These mined molecular markers were used to estimate the population structure and genetic relationship of 137 maize inbred lines, and then the detected expression data of the ZmLOX3 gene were used as phenotypes for genome-wide association analysis (GWAS). Among them, a significant association signal was identified near the ZmLOX3 gene. The most significant signal fell on the Indel151 marker (p-value=1.40E-9), and Indel363 was the second most significant association marker (Figure 1B), which indicated that Indel151 and Indel363 is significantly associated with the expression variation of the ZmLOX3 gene.

本试验进一步根据Indel151处的基因型将137份材料分成两类,一类为Indel151处缺失151bp序列的基因型材料,共计95份;另一类为Indel151处存在151bp序列的基因型材料,共计33份;比较两类材料间的ZmLOX3基因表达量,发现缺失Indel151的材料中ZmLOX3基因的表达量更低(图1C),表明Indel151可以正调控ZmLOX3基因的表达。连锁不平衡分析还表明,Indel151和Indel363位于同一个LD-block(连锁不平衡模块)内(图1B);并且14个自交系中的序列分析也表明,这两个变异总是以相斥相的形式连锁在一起出现,即当一个材料中Indel151处为缺失151bp序列的基因型时,往往在Indel363处为插入363bp或361bp序列的基因型(图1A)。表明有可能通过两者之一的基因型推测出另一个Indel处的基因型;不过,Indel151与ZmLOX3基因的表达量关联性更强,因此Indel151可作为更优的检测ZmLOX3基因表达量的分子标记。This experiment further divided 137 materials into two categories based on the genotype of Indel151. One type is the genotype materials with a 151bp sequence missing at Indel151, a total of 95 materials; the other type is a genotype material with a 151bp sequence present at Indel151, a total of 33 materials. portion; comparing the ZmLOX3 gene expression between the two types of materials, it was found that the ZmLOX3 gene expression in the material lacking Indel151 was lower (Figure 1C), indicating that Indel151 can positively regulate the expression of the ZmLOX3 gene. Linkage disequilibrium analysis also showed that Indel151 and Indel363 are located in the same LD-block (linkage disequilibrium module) (Figure 1B); and sequence analysis in 14 inbred lines also showed that these two mutations always repel each other. Phase forms appear linked together, that is, when a material has a genotype with a 151bp deletion at Indel151, it often has a genotype with a 363bp or 361bp insertion sequence at Indel363 (Figure 1A). This indicates that it is possible to infer the genotype of the other Indel from the genotype of one of the two; however, the correlation between Indel151 and the expression level of the ZmLOX3 gene is stronger, so Indel151 can be used as a better molecular marker for detecting the expression level of the ZmLOX3 gene. .

实施例2 Indel151和Indel363通过调控ZmLOX3基因表达量影响玉米穗腐病抗性Example 2 Indel151 and Indel363 affect corn ear rot resistance by regulating ZmLOX3 gene expression

适当降低籽粒中ZmLOX3基因的表达量,但不改变其蛋白功能,有可能起到抗镰孢菌同时兼抗黄曲霉的作用。Appropriately reducing the expression of ZmLOX3 gene in grains without changing its protein function may play a role in resisting Fusarium and Aspergillus aflatoxin.

本发明人前期研究结果显示,缺失Indel151或插入Indel363的材料,往往具有较低的ZmLOX3基因表达量。为了进一步验证Indel151和Indel363与ZmLOX3基因表达量间的关系,将前文中的12份代表性自交系(PH207,A632,OH43,Zheng58,Ye478,Dan340,Huangzaosi,Chang7-2,Jing92,Jing724,Xu178,S37),分别种在田间,对其吐丝期的胚珠和授粉5天后的籽粒进行取样和液氮速冻。每5个单株的样品混合成一个样品,每种自交系取3个生物学重复,之后用TRIzol法提取RNA,利用特异引物(SEQ ID No.10和SEQ ID No.11)检测ZmLOX3基因的表达量。发现与前文GWAS分析结果一样,缺失Indel151或插入Indel363的材料(PH207,A632,Zheng58,Ye478,Jing724,Xu178,S37),不论是在未授粉的胚珠,还是授粉5天后的籽粒中,普遍具有较低的ZmLOX3基因表达量(图1中A),再次验证了Indel151和Indel363与ZmLOX3基因表达量间的关系。The inventor's preliminary research results show that materials lacking Indel151 or inserting Indel363 often have lower ZmLOX3 gene expression. In order to further verify the relationship between Indel151 and Indel363 and ZmLOX3 gene expression, 12 representative inbred lines mentioned above (PH207, A632, OH43, Zheng58, Ye478, Dan340, Huangzaosi, Chang7-2, Jing92, Jing724, Xu178 , S37), were planted in the field, and the ovules at the silking stage and the grains 5 days after pollination were sampled and quick-frozen in liquid nitrogen. Samples from every five individual plants were mixed into one sample, and three biological replicates were taken from each inbred line. RNA was then extracted using the TRIzol method, and specific primers (SEQ ID No. 10 and SEQ ID No. 11) were used to detect the ZmLOX3 gene. amount of expression. It was found that the results of the previous GWAS analysis were the same as that of the materials lacking Indel151 or inserting Indel363 (PH207, A632, Zheng58, Ye478, Jing724, Xu178, S37), whether in unpollinated ovules or in grains 5 days after pollination, generally higher The low ZmLOX3 gene expression (A in Figure 1) once again verified the relationship between Indel151 and Indel363 and ZmLOX3 gene expression.

进一步的对12个代表性自交系中的10个材料的玉米籽粒进行轮状镰孢F.verticillioides接菌实验(图4)。结果表明,ZmLOX3基因表达低的5个自交系(B73、Ye478、Mo17、PH207、A632,缺失Indel151,插入Indel363)普遍比ZmLOX3基因表达高的5个自交系(Jing92、Dan340、Huangzaosi、OH43、Chang7-2,插入Indel151,缺失Indel363)更抗轮状镰孢引起的穗腐病。这些结果表明Indel151和Indel363能通过调控ZmLOX3基因表达量进而影响玉米穗腐病抗性。Further experiments were conducted on the corn kernels of 10 materials from 12 representative inbred lines for inoculation with F. verticillioides (Figure 4). The results showed that the five inbred lines with low ZmLOX3 gene expression (B73, Ye478, Mo17, PH207, A632, deletion of Indel151, and insertion of Indel363) were generally better than the five inbred lines with high ZmLOX3 gene expression (Jing92, Dan340, Huangzaosi, OH43 , Chang7-2, Indel151 insertion, Indel363 deletion) are more resistant to ear rot caused by Fusarium verticillioides. These results indicate that Indel151 and Indel363 can affect corn ear rot resistance by regulating the expression of ZmLOX3 gene.

实施例3 Indel151处的优异等位基因在现代玉米育种过程中受到了强的人工选择Example 3 The excellent allele at Indel151 has been subject to strong artificial selection during modern corn breeding.

本发明人前期收集了来自于中国和美国不同的育种时期的350份玉米自交系材料,包括美国早期(Public-US)和近现代(Ex-PVP)育种材料163份,中国早期(CN1960&70s)、中期(CN1980&90s)和当前(CN2000&10s)主栽玉米育种材料187份。对Indel151的基因型(Indel363与Indel151紧密连锁,可以被Indel151的基因型所代表)在这些材料中的频率分布进行分析发现,随着育种时期的推进,缺失Indel151(对应较低的ZmLOX3基因表达量和较高的穗腐病抗性)类的基因型频率在中国和美国玉米育种过程中都发生了显著的提升(图1D),表明缺失Indel151类的基因型在现代玉米育种过程中受到了强的人工选择。The inventor collected 350 corn inbred line materials from different breeding periods in China and the United States in the early stage, including 163 early American (Public-US) and modern (Ex-PVP) breeding materials, early Chinese (CN1960&70s) , 187 copies of main corn breeding materials in the mid-term (CN1980&90s) and current (CN2000&10s). Analysis of the frequency distribution of the Indel151 genotype (Indel363 is closely linked to Indel151 and can be represented by the Indel151 genotype) in these materials found that as the breeding period progresses, Indel151 is missing (corresponding to lower ZmLOX3 gene expression) and higher ear rot resistance) genotype frequencies have significantly increased during the corn breeding process in China and the United States (Figure 1D), indicating that genotypes lacking the Indel151 class have been strongly affected in the modern corn breeding process. of artificial selection.

另外,350份玉米自交系材料还可以被划分到8个杂种优势类群中,分别为SS、PA、X、NSS、TSPT、IDT、PB、Mixed。前人报道显示,TSPT种质普遍比较易感穗腐病,其中,前文中的Huangzaosi、Chang7-2、Jing92都是典型的TSPT种质,本发明的接菌实验也证明其确实比较易感穗腐病(图4),印证了前人的报道。本发明还发现,在TSPT种质中,插入Indel151类的基因型频率较高,而Indel151的插入对应较高的ZmLOX3基因表达量,进而易感穗腐病,揭示了TSPT种质易感穗腐病的原因。同时,也预示了Indel151与Indel363在TSPT种质穗腐病抗性改良方面的重要潜力。In addition, 350 corn inbred line materials can also be divided into eight heterotic groups, namely SS, PA, X, NSS, TSPT, IDT, PB, and Mixed. Previous reports have shown that TSPT germplasm is generally more susceptible to ear rot. Among them, Huangzaosi, Chang7-2, and Jing92 mentioned above are all typical TSPT germplasms. The inoculation experiment of the present invention also proves that they are indeed more susceptible to ear rot. rot (Figure 4), confirming previous reports. The present invention also found that in TSPT germplasm, the frequency of genotypes inserted into the Indel151 class is higher, and the insertion of Indel151 corresponds to a higher ZmLOX3 gene expression level, which makes the TSPT germplasm susceptible to ear rot, revealing that the TSPT germplasm is susceptible to ear rot. The cause of the disease. At the same time, it also indicates the important potential of Indel151 and Indel363 in improving ear rot resistance of TSPT germplasm.

进一步的,本发明还分析了116个不同年代的杂交种中ZmLOX3基因的表达情况及Indel151不同基因型的分布情况。分析发现在杂交种中,缺失Indel151的材料中ZmLOX3的表达量显著低于杂合和插入Indel151的材料(图5中的左图)。ZmLOX3低表达量对应的是抗穗腐病,所以缺失Indel151的基因型为优良基因型,插入Indel151的基因型为不利基因型。等位基因频率分析发现,Indel151的纯合优良等位基因型在杂交种的育种过程中逐渐上升,而纯合不利基因型在2000年之后的杂交种中几乎消失;并且随着育种年代的推进,杂合基因型的比例也越来越低,进一步证明Indel151在育种过程中受到了强的选择。这些杂交种全部是玉米生产中直接栽培利用的品种,在杂交种中受到选择,进一步证实了该自然变异(Indel151及其紧密连锁的Indel363)的重要性。Furthermore, the present invention also analyzed the expression of ZmLOX3 gene and the distribution of different genotypes of Indel151 in 116 hybrids of different ages. The analysis found that in the hybrids, the expression level of ZmLOX3 in the Indel151-deleted material was significantly lower than that of the heterozygous and Indel151-inserted materials (left picture in Figure 5). The low expression level of ZmLOX3 corresponds to resistance to ear rot, so the genotype lacking Indel151 is an excellent genotype, and the genotype with Indel151 insertion is an unfavorable genotype. Allele frequency analysis found that the homozygous superior allele type of Indel151 gradually increased during the breeding process of hybrids, while the homozygous unfavorable genotype almost disappeared in hybrids after 2000; and as the breeding years progressed , the proportion of heterozygous genotypes is also getting lower and lower, further proving that Indel151 has been subject to strong selection during the breeding process. These hybrids are all directly cultivated and utilized in corn production, and are selected among the hybrids, further confirming the importance of this natural variation (Indel151 and its closely linked Indel363).

SEQUENCE LISTINGSEQUENCE LISTING

<110> 中国农业科学院生物技术研究所<110> Institute of Biotechnology, Chinese Academy of Agricultural Sciences

<120> 调控玉米穗腐病抗性的DNA序列及其突变体、分子标记和应用<120> DNA sequences regulating corn ear rot resistance and their mutants, molecular markers and applications

<130> BJ-2002-210706A<130> BJ-2002-210706A

<160> 14<160> 14

<170> PatentIn version 3.5<170> PatentIn version 3.5

<210> 1<210> 1

<211> 6655<211> 6655

<212> DNA<212> DNA

<213> Zea mays L.<213> Zea mays L.

<400> 1<400> 1

ggcgaactcc gctccgcccg accccagggc tcggactcgg gctaagaccc ggaagacggc 60ggcgaactcc gctccgcccg accccagggc tcggactcgg gctaagaccc ggaagacggc 60

gaactccgct ccgcccgacc ccagggctcg gactcgggct aagacccgga agacggcgaa 120gaactccgct ccgcccgacc ccagggctcg gactcgggct aagacccgga agacggcgaa 120

ctctgctccg cccgacccca gggctcggac tcgggctaag acccggaaga cggcgaatct 180ctctgctccg cccgacccca gggctcggac tcgggctaag acccggaaga cggcgaatct 180

ccgcctcgcc cgaccccagg gctcagactc cgccctggcc tcggccaaac gatctccgcc 240ccgcctcgcc cgaccccagg gctcagactc cgccctggcc tcggccaaac gatctccgcc 240

tcgcccgacc ccagggctcg gactccgccc tagcctcggc caaacgatct ccgcctcgcc 300tcgcccgacc ccagggctcg gactccgccc tagcctcggc caaacgatct ccgcctcgcc 300

cgacccgggg gctcgggctc ggcctcggca acggaaggca gactcgacct cgacttcgga 360cgacccgggg gctcgggctc ggcctcggca acggaaggca gactcgacct cgacttcgga 360

ggagccccca cgtcgccctg cctagggcac aggtccgcca cgtcaacagg aagcgccatc 420ggagccccca cgtcgccctg cctagggcac aggtccgcca cgtcaacagg aagcgccatc 420

accaacctac cccgagccga cttgggacac gaaggacaag accggcgtcc catctggcca 480accaacctac cccgagccga cttgggacac gaaggacaag accggcgtcc catctggcca 480

gctccgccgg atgggcaatg atggcgcccc ccgagctctg tgacgacggc ggctcttagc 540gctccgccgg atgggcaatg atggcgcccc ccgagctctg tgacgacggc ggctcttagc 540

tctcttacgg cagcagagcg acgtcagcaa ggactcgacc gctccaacag ctgtccctcc 600tctcttacgg cagcagagcg acgtcagcaa ggactcgacc gctccaacag ctgtccctcc 600

gtcaggctcc gtcgctcctc cgacagccac gacatcacgc cagcaaggtg ccaagacctc 660gtcaggctcc gtcgctcctc cgacagccac gacatcacgc cagcaaggtg ccaagacctc 660

tccggctgcc acattggcat gtacccaggg cgttagctct ctctctctcc gctagacacg 720tccggctgcc acattggcat gtacccaggg cgttagctct ctctctctcc gctagacacg 720

tagcactctg ctacccccgt tgtacacctg gatcctctcc ttacgactat aaaaggaagg 780tagcactctg ctacccccgt tgtacacctg gatcctctcc ttacgactat aaaaggaagg 780

accagggcct tcttagagaa ggttggccgc gcgggaccga ggacgggaca ggcgctctct 840accagggccttcttagagaa ggttggccgc gcgggaccga ggacgggaca ggcgctctct 840

tggggccgct cgcttccctc acccgcgtgg acgcttgtaa cccccctact gcaagcgcac 900tggggccgct cgcttccctc acccgcgtgg acgcttgtaa cccccctact gcaagcgcac 900

ctgacctggg cgcgggacga acacgaaggc cgcgggactt ccacctctct cacgctcgac 960ctgacctggg cgcgggacga acacgaaggc cgcgggactt ccacctctct cacgctcgac 960

tctggccacc tcgcctctcc ccccttcgcg ctcgcccacg cgctcgaccc atctgggctg 1020tctggccacc tcgcctctcc ccccttcgcg ctcgcccacg cgctcgaccc atctgggctg 1020

gggcacgcag cacactcact cgtcggctta gggacccccc tgtctcgaaa cgccgacaat 1080gggcacgcag cacactcact cgtcggctta gggaccccccc tgtctcgaaa cgccgacaat 1080

aagcttatct cgaattcatg tggtggagga ttggaaatga tttttatgta ttagtagaat 1140aagctttatct cgaattcatg tggtggagga ttggaaatga tttttatgta ttagtagaat 1140

ttgtttctac tctgtaaatt acatgaccct cttcgtctca ctcctctata gtaaaaatat 1200ttgtttctac tctgtaaatt acatgaccct cttcgtctca ctcctctata gtaaaaatat 1200

agcacataaa tatctccgac atcttgctaa taatagtata caaatatatt tttcatcaaa 1260agcacataaa tatctccgac atcttgctaa taatagtata caaatatatt tttcatcaaa 1260

ccgaattaac ttaattgata tatgtctaaa ttactgttat tagaatggaa ttcaattcca 1320ccgaattaac ttaattgata tatgtctaaa ttactgttat tagaatggaa ttcaattcca 1320

atgaaccaaa cggggcgtaa gtgatttctt agtgaggtgg cacctatgga aatcacttag 1380atgaaccaaa cggggcgtaa gtgatttctt agtgaggtgg cacctatgga aatcacttag 1380

tagtttctgg gttgtaattg ctcttatggc atgaagaaaa ttttgcattc gagctcgaac 1440tagtttctgg gttgtaattg ctctttatggc atgaagaaaa ttttgcattc gagctcgaac 1440

gctacaaggt cgttttagaa gctacatcag taatgcttcg agtatgacaa acaacatcac 1500gctacaaggt cgttttagaa gctacatcag taatgcttcg agtatgacaa acaacatcac 1500

aagtaacatc tacctatatg caccgaatct ccaccaccac cacaatatcg atgtcagaag 1560aagtaacatc tacctatatg caccgaatct ccaccaccac cacaatatcg atgtcagaag 1560

gctagggaag gacgaccaat aatatagaag acacataggc cacactcaat tcaatcaaca 1620gctagggaag gacgaccaat aatatagaag acacataggc cacactcaat tcaatcaaca 1620

tcacgacaat ctacttgatg tcctatgtag ccatgatctc tacgagcaat caatatcaat 1680tcacgacaat ctacttgatg tcctatgtag ccatgatctc tacgagcaat caatatcaat 1680

gcactagaat cccaactacg tagagtatta ttggacgaac gagtaaaaca ccaaagagca 1740gcactagaat cccaactacg tagagtatta ttggacgaac gagtaaaaca ccaaagagca 1740

gccactggac gactttcttg catctccaca aggataaatt ctctcagata gtcagatgcc 1800gccactggac gactttcttg catctccaca aggataaatt ctctcagata gtcagatgcc 1800

taatgaaatt caagtccatc aatattgaca tgtgcgaagg caagaaggat ccaaattagt 1860taatgaaatt caagtccatc aatattgaca tgtgcgaagg caagaaggat ccaaattagt 1860

tgattcgaca ctacttggtt accatcaatc tcaagggagg aaacaaagat atcaaagcat 1920tgattcgaca ctacttggtt accatcaatc tcaagggagg aaacaaagat atcaaagcat 1920

catgctttca aatgtactca aagctactct agtgacttgg cttgaatagc tcccaagagg 1980catgctttca aatgtactca aagctactct agtgacttgg cttgaatagc tcccaagagg 1980

ctacatcgat aacaggctag cactctccaa ggaattaatg gacaacttcc aaagtgcatg 2040ctacatcgat aacaggctag cactctccaa ggaattaatg gacaacttcc aaagtgcatg 2040

gcctcgttcg gacaaccggt acaatcttca aaatggaagt agaagattgg tgaaagcata 2100gcctcgttcg gacaaccggt acaatcttca aaatggaagt agaagattgg tgaaagcata 2100

tgcaactagt acaagctctt gatcgaaatt tgatgctaca ggcctaacta cttcgacgat 2160tgcaactagt acaagctctt gatcgaaatt tgatgctaca ggcctaacta cttcgacgat 2160

gatcatgggg aaaagttcta gtatcagaat ttcataaaaa caaaccaaaa acaattcatg 2220gatcatgggg aaaagttcta gtatcagaat ttcataaaaa caaaccaaaa acaattcatg 2220

agttctaaca catgatcaac aactgaatga atgtcgaaga cacagtacga gataagtttg 2280agttctaaca catgatcaac aactgaatga atgtcgaaga cacagtacga gataagtttg 2280

acaattgaaa ccgtagatat aacaataaag ataacattca tagagacaac aagggcagct 2340acaattgaaa ccgtagatat aacaataaag ataacattca tagagacaac aagggcagct 2340

tatcggataa gaagtgaggg aaagataaca ctatgataag cactcgcatc aaagaagggt 2400tatcggataa gaagtgaggg aaagataaca ctatgataag cactcgcatc aaagaagggt 2400

ggcaagaaca aatcattcaa ttagcaactc tttgagcaac acccatacca cctacatcat 2460ggcaagaaca aatcattcaa ttagcaactc tttgagcaac acccatacca cctacatcat 2460

aaatcataag tgctctacca ctaaatgcat gcaactcaag aactttggca tcatcttagc 2520aaatcataag tgctctacca ctaaatgcat gcaactcaag aactttggca tcatcttagc 2520

tcggaagcaa gacaaaacca aacagagttg ataaaaaata ttaggaaaaa tagaataatg 2580tcggaagcaa gacaaaacca aacagagttg ataaaaaata ttaggaaaaa tagaataatg 2580

gagacttcta gagggccaca aacatagtta acctcatctt caaaggagca tcttccttaa 2640gagacttcta gagggccaca aacatagtta acctcatctt caaaggagca tcttccttaa 2640

tacctaagag gaagactaaa cttacccttt tgtgagatga tggttgttga accatcacct 2700tacctaagag gaagactaaa cttacccttt tgtgagatga tggttgttga accatcacct 2700

acaacatata tgtgatggtt cgagatccca attcaattta taagggagga ttagtttctc 2760acaacatata tgtgatggtt cgagatccca attcaattta taagggagga ttagtttctc 2760

aaacatagga tgctatggtc tagtcctggc cccgatggtg gcaggacttc aacttagtaa 2820aaacatagga tgctatggtc tagtcctggc cccgatggtg gcaggacttc aacttagtaa 2820

ggaaggtgaa ttaccaatat gttcaaaagg atggggtaaa aggaaggtga attatgcaat 2880ggaaggtgaa ttaccaatat gttcaaaagg atggggtaaa aggaaggtga attatgcaat 2880

ctatttttcg cactttttca ttaatcaaaa cctatatgga taaccaatcg ttcatatgtg 2940ctatttttcg cactttttca ttaatcaaaa cctatatgga taaccaatcg ttcatatgtg 2940

caactaaggt tttgactaag tgttgctatc tctaccgtaa aaggagtttt gctaccccaa 3000caactaaggt tttgactaag tgttgctatc tctaccgtaa aaggagtttt gctaccccaa 3000

acctatcaac tagtctatga ctaagctaag aagataaatc acacaaccac aagtaacaat 3060acctatcaac tagtctatga ctaagctaag aagataaatc acacaaccac aagtaacaat 3060

ataaatgtgg aattttaaat atggtagaga tacaaactct cgttgatgtg tcagtatttt 3120ataaatgtgg aattttaaat atggtagaga tacaaactct cgttgatgtg tcagtatttt 3120

tactggagta tcaagaaacg cgcaagcttc ttactaatcc ttcttagagc ctcacgcaag 3180tactggagta tcaagaaacg cgcaagcttc ttaactaatcc ttcttagagc ctcacgcaag 3180

gctaagctcc cgctcaggta accctgtata gatacaaacc ctaccaatga ctatagtaac 3240gctaagctcc cgctcaggta accctgtata gatacaaacc ctaccaatga ctatagtaac 3240

ttttatgaag atatagggaa acacacaagt tttaccctag ttctcgttgg agcctcttat 3300ttttatgaag atatagggaa acacacaagt tttaccctag ttctcgttgg agcctctttat 3300

aaacatgtcc acaaggggat gaagctaaga gtcgagtaag ggtttgtttg atttctttag 3360aaacatgtcc acaaggggat gaagctaaga gtcgagtaag ggtttgtttg atttctttag 3360

tcttaatgac taaaactaag caaagagctt taattattgt gcaaattgat tacattatcc 3420tcttaatgac taaaactaag caaagagctt taattattgt gcaaattgat tacattatcc 3420

ctaattaatg ctatcttcga ctactgttta cccacacgca gagctactgt tcgtgcgcat 3480ctaattaatg ctatcttcga ctactgttta cccacacgca gagctactgt tcgtgcgcat 3480

tcacaatgct gcatgcgtgc acgttgcttt ggggaggagc ctacttcatg cgcgttggtt 3540tcacaatgct gcatgcgtgc acgttgcttt ggggagaggagc ctacttcatg cgcgttggtt 3540

agggagggca tatgaagtaa aaatgtcact ttatggttag tttgacaccc tcattttttt 3600agggagggca tatgaagtaa aaatgtcact ttatggttag tttgacaccc tcattttttt 3600

caagggattg tattttcaca aaagaaatta atttattttt cttgaaaaat aggaatccct 3660caagggattg tattttcaca aaagaaatta atttattttt cttgaaaaat aggaatccct 3660

tagaaaaaaa tagagttgtc aaactaaccc ttattcattt tagtcactct tttggtaatt 3720tagaaaaaaa tagagttgtc aaactaaccc ttattcattt tagtcactct tttggtaatt 3720

agaggactat aatttagttg gaggatttta gtcacactgt gttgattctt tagtgactaa 3780agaggactat aatttagttg gaggatttta gtcacactgt gttgattctt tagtgactaa 3780

aaatgactaa aatttaatca attaaatgta gtcacccaaa ccaaacagag tcgcgcgtcc 3840aaatgactaa aatttaatca attaaatgta gtcacccaaa ccaaacagag tcgcgcgtcc 3840

gacgtgcctc ctcaaccggc gcgtgggagt aggtctggaa aaaagctcaa gctcgatgag 3900gacgtgcctc ctcaaccggc gcgtgggagt aggtctggaa aaaagctcaa gctcgatgag 3900

ttggcttggg ctcacggtaa cttgggtcgg ctcgacgctc aaaacgagtc caagtcctat 3960ttggcttggg ctcacggtaa cttgggtcgg ctcgacgctc aaaacgagtc caagtcctat 3960

ttttgtggct cgtgataagt gtgagctagc tcggctcggc tcacgaaccg acaacaattt 4020ttttgtggct cgtgataagt gtgagctagc tcggctcggc tcacgaaccg acaacaattt 4020

actacataaa attctgatta gcatataatg ttagtaccaa atatacaatt agtatatgtt 4080actacataaa attctgatta gcatataatg ttagtaccaa atatacaatt agtatatgtt 4080

atttgatatt tatatacaaa attaatttat ttctatgtta tattagtact ataattattt 4140atttgatatt tatatacaaa attaatttat ttctatgtta tattagtact ataattattt 4140

attaatttaa gagatgtaat ttgattattt ttgatatttt atgttataat ttgtaacgta 4200attaatttaa gagatgtaat ttgattattt ttgatatttt atgttataat ttgtaacgta 4200

agctggtgct tgtggttaga ctctctacta gtcgagtttt cacgctcgtc aaaggaccga 4260agctggtgct tgtggttaga ctctctacta gtcgagtttt cacgctcgtc aaaggaccga 4260

gccgagacga ggcaagctca acacattacc gagccgaccg gctcgtttcc gccacgtggt 4320gccgagacga ggcaagctca acacattacc gagccgaccg gctcgtttcc gccacgtggt 4320

agagcggcag cacccttccc agatctcgtg tcccgcgcgc cgtgcgcaca gccgcgcaca 4380agagcggcag cacccttccc agatctcgtg tcccgcgcgc cgtgcgcaca gccgcgcaca 4380

cacacggact gccgcgtccg ggcgcgatcc gttctcgcga acacaccggt cgtagccgtc 4440cacacggact gccgcgtccg ggcgcgatcc gttctcgcga acacaccggt cgtagccgtc 4440

cgtaatttgt actagtatgg cacgcggaac acgagtcggc gccagcaccg gcacgtcacc 4500cgtaatttgt actagtatgg cacgcggaac acgagtcggc gccagcaccg gcacgtcacc 4500

atcggggccg ctggccccat acgggcagcc aattaataaa tccttgctct gcgacagacg 4560atcggggccg ctggccccat acgggcagcc aattaataaa tccttgctct gcgacagacg 4560

cgcaggggca cgtcacgcag ccgtagtcga tcggtgcacg gtgctcgcgc ccccgttgca 4620cgcaggggca cgtcacgcag ccgtagtcga tcggtgcacg gtgctcgcgc ccccgttgca 4620

gcgcgcagct ctcccgcgct ataaatgccc cggctcggcc tcgctcccac agccacagcc 4680gcgcgcagct ctcccgcgct ataaatgccc cggctcggcc tcgctcccac agccacagcc 4680

tcacacagac accaacgcca ctgcactgca aaagcaagag cagctagcta gtaaagatgc 4740tcacacagac accaacgcca ctgcactgca aaagcaagag cagctagcta gtaaagatgc 4740

tgagcgggat catcgacggg ctgacggggg cgaacaagca tgcgcggctc aagggcacgg 4800tgagcgggat catcgacggg ctgacggggg cgaacaagca tgcgcggctc aagggcacgg 4800

tggtgctcat gcgcaagaac gtgctggacc tcaacgactt cggcgccacc gtcgttgaca 4860tggtgctcat gcgcaagaac gtgctggacc tcaacgactt cggcgccacc gtcgttgaca 4860

gcatcagcga gttcctcggc aagggggtca cctgccagct catcagctcc accctcgtcg 4920gcatcagcga gttcctcggc aagggggtca cctgccagct catcagctcc accctcgtcg 4920

acgccagtga gtaccgcgcc gcgccgccgg cacctctccg atctgcgctt ccccatgtcg 4980acgccagtga gtaccgcgcc gcgccgccgg cacctctccg atctgcgctt ccccatgtcg 4980

atcgatctcg atctctctag gctctagagc tatagctctc tcggccccca ctttttacct 5040atcgatctcg atctctctag gctctagagc tatagctctc tcggccccca ctttttacct 5040

ttgcaagcat tttccctgca tgcgaaacaa gcgatagttt actatttggg cggccatgct 5100ttgcaagcat tttccctgca tgcgaaacaa gcgatagttt actatttggg cggccatgct 5100

gctgctgctt cggctacctt gcctccgtca tctttgacgg gacatggaaa gaaagaaaga 5160gctgctgctt cggctacctt gcctccgtca tctttgacgg gacatggaaa gaaagaaaga 5160

atagagagag agacagagag agagagagag caaacaccga gaaaaagaca gcaaagctag 5220atagagagag agacagagag agagagagag caaacaccga gaaaaagaca gcaaagctag 5220

ttgtagcctg ggcgcagaac acagcaccag atgctggcta gctcgtgaca aagtaaaaaa 5280ttgtagcctg ggcgcagaac acagcaccag atgctggcta gctcgtgaca aagtaaaaaa 5280

agagaggaac gaacacagta gtaccaagag atcagggacg agacctttct actttgaact 5340agagaggaac gaacacagta gtaccaagag atcagggacg agacctttct actttgaact 5340

ggattatata ttggattctt tatcagtaac ttactgctgc tagtataccc ctaccctagt 5400ggattatata ttggattctt tatcagtaac ttactgctgc tagtataccc ctaccctagt 5400

ctcggggcga cgtgcctgcg tgcatgcccg acgcgtacga aacacatcga cggactcaca 5460ctcggggcga cgtgcctgcg tgcatgcccg acgcgtacga aacacatcga cggactcaca 5460

tgggccaccg cgcgcgcgcg tgcctgcttt aactttcgct gtgcagacaa cggcaaccgc 5520tgggccaccg cgcgcgcgcg tgcctgcttt aactttcgct gtgcagacaa cggcaaccgc 5520

gggcgggtcg gggcggaggc gaacctggag cagtggctga cgagcctgcc gtcgctgacg 5580gggcgggtcg gggcggaggc gaacctggag cagtggctga cgagcctgcc gtcgctgacg 5580

accggcgagt ccaagttcgg cgtcacgttc gactgggagg tggagaagct gggagtgccg 5640accggcgagt ccaagttcgg cgtcacgttc gactgggagg tggagaagct gggagtgccg 5640

ggggccgtcg tcgtcaagaa caaccacgcc gccgagttct tcctcaagac aatcaccctc 5700gggccgtcg tcgtcaagaa caaccacgcc gccgagttct tcctcaagac aatcaccctc 5700

gacgacgtgc ccggccgcgg cgccgtcacc ttcgtcgcca actcctgggt ctaccccgcg 5760gacgacgtgc ccggccgcgg cgccgtcacc ttcgtcgcca actcctgggt ctaccccgcg 5760

ggcaagtacc gctacaaccg cgtcttcttc tccaacgatg tgagtccttt ctcgatagat 5820ggcaagtacc gctacaaccg cgtcttcttc tccaacgatg tgagtccttt ctcgatagat 5820

cattatgttt gtttgttatt ttgtttcttg gtatcatgta ggcatgtagc tagccgccat 5880cattatgttt gtttgttatttgtttcttg gtatcatgta ggcatgtagc tagccgccat 5880

gtcgtcagtt ggagtgcagt aggtaggaaa aaggacgaca tgggatggga gtggttaaga 5940gtcgtcagtt ggagtgcagt aggtaggaaa aaggacgaca tgggatggga gtggttaaga 5940

aaatccatgc aagtgggact agtgtgtaac tggtagtata gctgaagaat ctagtggtag 6000aaatccatgc aagtgggact agtgtgtaac tggtagtata gctgaagaat ctagtggtag 6000

aatgatcttg tacgtgaata atgtttctga cgctgagcgc tgaggctatc cgcaaccgtt 6060aatgatcttg tacgtgaata atgtttctga cgctgagcgc tgaggctatc cgcaaccgtt 6060

aaccctaaat ttttccctct atatcatttt ttcctctatt ttcctcccta ttttttcatc 6120aaccctaaat ttttccctct atatcatttt ttcctctatt ttcctcccta ttttttcatc 6120

tcccgcagcg gttcccccta aatactcccc ctatatctca ctaccactat aaaatattat 6180tcccgcagcg gttcccccta aatactcccc ctatatctca ctaccactat aaaatattat 6180

tttctatacc aattatcaat tttttatcta ctaacaatta ctcgtggacc cacagcacag 6240tttctatacc aattatcaat tttttatcta ctaacaatta ctcgtggacc cacagcacag 6240

tgtttagggt gatgaacagt gacacgctag atctgaaggg agagagaagg ggaccgacac 6300tgtttagggt gatgaacagt gacacgctag atctgaaggg agagagaagg ggaccgacac 6300

gtagggagcc tgtagagggc accgctgcgg ccgtagggtg ctccctacgc gccgcataca 6360gtagggagcc tgtagagggc accgctgcgg ccgtagggtg ctccctacgc gccgcataca 6360

aggggagggg ggagaggcag cggtaaccgc tgcgcacagc ctgagggcga ggcatgtgag 6420aggggagggg ggagaggcag cggtaaccgc tgcgcacagc ctgagggcga ggcatgtgag 6420

ttcaccacgt gagtagcagc aaaaggaaac aacccttctt cacccggcta tcatctaacg 6480ttcaccacgt gagtagcagc aaaaggaaac aacccttctt cacccggcta tcatctaacg 6480

tatcgccccg ggagaatcaa taactctaac gagatgacga aaagtcaaaa ataaagtcgt 6540tatcgccccg ggagaatcaa taactctaac gagatgacga aaagtcaaaa ataaagtcgt 6540

gtgatggcca tgaaagtcag tcaagcaaat cagctgctaa cacgtgtccc ttatctacag 6600gtgatggcca tgaaagtcag tcaagcaaat cagctgctaa cacgtgtccc ttatctacag 6600

gtgtaagaga gtagagtctt gtcaatcaac ctgggttgtt ttctatctgc gtttt 6655gtgtaagaga gtagagtctt gtcaatcaac ctgggttgtt ttctatctgc gtttt 6655

<210> 2<210> 2

<211> 6434<211> 6434

<212> DNA<212> DNA

<213> Zea mays L.<213> Zea mays L.

<400> 2<400> 2

ggcgaactcc gctccgcccg accccagggc tcggactcgg gctaagaccc ggaagacggc 60ggcgaactcc gctccgcccg accccagggc tcggactcgg gctaagaccc ggaagacggc 60

gaactccgct ccgcccgacc ccagggctcg gactcgggct aagacccgga agacggcgaa 120gaactccgct ccgcccgacc ccagggctcg gactcgggct aagacccgga agacggcgaa 120

ctctgctccg cccgacccca gggctcggac tcgggctaag acccggaaga cggcgaatct 180ctctgctccg cccgacccca gggctcggac tcgggctaag acccggaaga cggcgaatct 180

ccgcctcgcc cgaccccagg gctcagactc cgccctggcc tcggccaaac gatctccgcc 240ccgcctcgcc cgaccccagg gctcagactc cgccctggcc tcggccaaac gatctccgcc 240

tcgcccgacc ccagggctcg gactccgccc tagcctcggc caaacgatct ccgcctcgcc 300tcgcccgacc ccagggctcg gactccgccc tagcctcggc caaacgatct ccgcctcgcc 300

cgacccgggg gctcgggctc ggcctcggca acggaaggca gactcgacct cgacttcgga 360cgacccgggg gctcgggctc ggcctcggca acggaaggca gactcgacct cgacttcgga 360

ggagccccca cgtcgccctg cctagggcac aggtccgcca cgtcaacagg aagcgccatc 420ggagccccca cgtcgccctg cctagggcac aggtccgcca cgtcaacagg aagcgccatc 420

accaacctac cccgagccga cttgggacac gaaggacaag accggcgtcc catctggcca 480accaacctac cccgagccga cttgggacac gaaggacaag accggcgtcc catctggcca 480

gctccgccgg atgggcaatg atggcgcccc ccgagctctg tgacgacggc ggctcttagc 540gctccgccgg atgggcaatg atggcgcccc ccgagctctg tgacgacggc ggctcttagc 540

tctcttacgg cagcagagcg acgtcagcaa ggactcgacc gctccaacag ctgtccctcc 600tctcttacgg cagcagagcg acgtcagcaa ggactcgacc gctccaacag ctgtccctcc 600

gccaggctcc gtcgctcctc cgacagccac gacatcacgc cagcaaggtg ccaagacctc 660gccaggctcc gtcgctcctc cgacagccac gacatcacgc cagcaaggtg ccaagacctc 660

tccggctgcc acattggcat gtacccaggg cgttagctct ctctctctcc gctagacacg 720tccggctgcc acattggcat gtacccaggg cgttagctct ctctctctcc gctagacacg 720

tagcactctg ctaccccccg ttgtacacct ggatcctctc cttacgacta taaaaggaag 780tagcactctg ctaccccccg ttgtacacct ggatcctctc cttacgacta taaaaggaag 780

gaccagggcc ttcttagaga aggttggccg cgcgggaccg aggacgggac aggcgctctc 840gaccagggcc ttcttagaga aggttggccg cgcgggaccg aggacgggac aggcgctctc 840

ttggggccgc tcgcttccct cacccgcgtg gacgcttgta acccccctac tgcaagcgca 900ttggggccgc tcgcttcct cacccgcgtg gacgcttgta acccccctac tgcaagcgca 900

cctgacctgg gcgcgggacg aacacgaagg ccgcgggact tccacctctc tcacgctcga 960cctgacctgg gcgcgggacg aacacgaagg ccgcgggact tccacctctc tcacgctcga 960

ctccggccac ctcgcctctc cccccttcgc gctcgcccac gcgctcgacc catctgggct 1020ctccggccac ctcgcctctc cccccttcgc gctcgcccac gcgctcgacc catctgggct 1020

ggggcacgca gcacactcac tcgtcggctt agggaccccc ctgtctcgaa acgccgacaa 1080ggggcacgca gcacactcac tcgtcggctt agggaccccc ctgtctcgaa acgccgacaa 1080

taagcttatc tcgaattcat ggggtggagg attggaaatg atttttatgt attagtagaa 1140taagcttatc tcgaattcat ggggtggagg attggaaatg atttttatgt attagtagaa 1140

tttgtttcta ctctgtaaat tacatgaccc tcttcgtctc actcctctat agtaaaaata 1200tttgtttcta ctctgtaaat tacatgaccc tcttcgtctc actcctctat agtaaaaata 1200

tagcacataa atatctccga catcttgcta ataatagtat acaaatatat ttttcatcaa 1260tagcacataa atatctccga catcttgcta ataatagtat acaaatatttttcatcaa 1260

accgaattaa cttaattgat atatgtctaa attactgtta ttagaatgga attcaattcc 1320accgaattaa cttaattgat atatgtctaa attactgtta ttagaatgga attcaattcc 1320

aatgaaccaa acggggcgta agtgatttct tagtgaggtg gcacctatgg aaatcactta 1380aatgaaccaa acggggcgta agtgatttct tagtgaggtg gcacctatgg aaatcactta 1380

gtagtttctg ggttgtaatt gctcttatgg catgaagaaa attttgcatt cgagctcgaa 1440gtagtttctg ggttgtaatt gctcttatgg catgaagaaa attttgcatt cgagctcgaa 1440

cgctacaagg tcgttttaga agctacatca gtaatgcttc gagtatgaca aacaacatca 1500cgctacaagg tcgttttaga agctacatca gtaatgcttc gagtatgaca aacaacatca 1500

caagtaacat ctacctatat gcaccgaatc tccaccacca ccacaatatc gatgtcagaa 1560caagtaacat ctacctatat gcaccgaatc tccaccacca ccacaatatc gatgtcagaa 1560

ggctagggaa ggacgaccaa taatatagaa gacacatagg ccacactcaa ttcaatcaac 1620ggctagggaa ggacgaccaa taatatagaa gacacatagg ccacactcaa ttcaatcaac 1620

atcacgacaa tctacttgat gtcctatgta gccatgatct ctacgagcaa tcaatatcaa 1680atcacgacaa tctacttgat gtcctatgta gccatgatct ctacgagcaa tcaatatcaa 1680

tgcactagaa tcccaactac gtagagtatt attggacgaa cgagtaaaac accaaagagc 1740tgcactagaa tcccaactac gtagagtatt attggacgaa cgagtaaaac accaaagagc 1740

agccactgga cgactttctt gcatctccac aaggataaat tctctcagat agtcagatgc 1800agccactgga cgactttctt gcatctccac aaggataaat tctctcagat agtcagatgc 1800

ctaatgaaat tcaagtccat caatattgac atgtgcgaag gcaagaagga tccaaattag 1860ctaatgaaat tcaagtccat caatattgac atgtgcgaag gcaagaagga tccaaattag 1860

ttgattcgac actacttggt taccatcaat ctcaagggag gaaacaaaga tatcaaagca 1920ttgattcgac actacttggt taccatcaat ctcaagggag gaaacaaaga tatcaaagca 1920

tcatgctttc aaatgtactc aaagctactc tagtgacttg gcttgaatag ctcccaagag 1980tcatgctttc aaatgtactc aaagctactc tagtgacttg gcttgaatag ctcccaagag 1980

gctacatcga taacaggcta gcactctcca aggaattaat ggacaacttc caaagtgcat 2040gctacatcga taacaggcta gcactctcca aggaattaat ggacaacttc caaagtgcat 2040

ggcctcgttc ggacaaccgg tacaatcttc aaaatggaag tagaagattg gtgaaagcat 2100ggcctcgttc ggacaaccgg tacaatcttc aaaatggaag tagaagattg gtgaaagcat 2100

atgcaactag tacaagctct tgatcgaaat ttgatgctac aggcctaact acttcgacga 2160atgcaactag tacaagctct tgatcgaaat ttgatgctac aggcctaact acttcgacga 2160

tgatcatggg gaaaagttct agtatcagaa tttcataaaa acaaaccaaa aacaattcat 2220tgatcatggg gaaaagttct agtatcagaa tttcataaaa acaaaccaaa aacaattcat 2220

gagttctaac acatgatcaa caactgaatg aatgtcgaag acacagtacg agataagttt 2280gagttctaac acatgatcaa caactgaatg aatgtcgaag acacagtacg agataagttt 2280

gacaattgaa accgtagata taacaataaa gataacattc atagagacaa caagggcagc 2340gacaattgaa accgtagata taacaataaa gataacattc atagagacaa caagggcagc 2340

ttatcggata agaagtgagg gaaagataac actatgataa gcactcgcat caaagaaggg 2400ttatcggata agaagtgagg gaaagataac actatgataa gcactcgcat caaagaaggg 2400

tggcaagaac aaatcattca attagcaact ctttgagcaa cacccatacc acctacatca 2460tggcaagaac aaatcattca attagcaact ctttgagcaa cacccatacc acctacatca 2460

taaatcataa gtgctctacc actaaatgca tgcaactcaa gaactttggc atcatcttag 2520taaatcataa gtgctctacc actaaatgca tgcaactcaa gaactttggc atcatcttag 2520

ctcggaagca agacaaaacc aaacagagtt gataaaaaat attaggaaaa atagaataat 2580ctcggaagca agacaaaacc aaacagagtt gataaaaaat attaggaaaa atagaataat 2580

ggagacttct agagggccac aaacatagtt aacctcatct tcaaaggagc atcttcctta 2640ggagacttct agagggccac aaacatagtt aacctcatct tcaaaggagc atcttcctta 2640

atacctaaga ggaagactaa acttaccctt ttgtgagatg atggttgttg aaccatcacc 2700atacctaaga ggaagactaa acttacccttttgtgagatg atggttgttg aaccatcacc 2700

tacaacatat atgtgatggt tcgagatccc aattcaattt ataagggagg attagtttct 2760tacaacatat atgtgatggt tcgagatccc aattcaattt ataagggagg attagtttct 2760

caaacatagg atgctatggt ctagtcctgg ccccgatggt ggcaggactt caacttagta 2820caaacatagg atgctatggt ctagtcctgg ccccgatggt ggcaggactt caacttagta 2820

aggaaggtga attaccaata tgttcaaaag gatggggtaa aaggaaggtg aattatgcaa 2880aggaaggtga attaccaata tgttcaaaag gatggggtaa aaggaaggtg aattatgcaa 2880

tctatttttc gcactttttc attaatcaaa acctatatgg ataaccaatc gttcatatgt 2940tctatttttc gcactttttc attaatcaaa acctatatgg ataaccaatc gttcatatgt 2940

gcaactaagg ttttgactaa gtgttgctat ctctaccgta aaaggagttt tgctacccca 3000gcaactaagg ttttgactaa gtgttgctat ctctaccgta aaaggagttt tgctacccca 3000

aacctatcaa ctagtctatg actaagctaa gaagataaat cacacaacca caagtaacaa 3060aacctatcaa ctagtctatg actaagctaa gaagataaat cacacaacca caagtaacaa 3060

tataaatgtg gaattttaaa tatggtagag atacaaactc tcgttgatgt gtcagtattt 3120tataaatgtg gaattttaaa tatggtagag atacaaactc tcgttgatgt gtcagtattt 3120

ttactggagt atcaagaaac gcgcaagctt cttactaatc cttcttagag cctcacgcaa 3180ttactggagt atcaagaaac gcgcaagctt cttactaatc cttcttagag cctcacgcaa 3180

ggctaagctc ccgctcaggt aaccctgtat agatacaaac cctaccaatg actatagtaa 3240ggctaagctc ccgctcaggt aaccctgtat agatacaaac cctaccaatg actatagtaa 3240

cttttatgaa gatataggga aacacacaag ttttacccta gttctcgttg gagcctctta 3300cttttatgaa gatataggga aacacacaag ttttacccta gttctcgttg gagcctctta 3300

taaacatgtc cacaagggga tgaagctaag agtcgagtaa gggtttgttt gatttcttta 3360taaacatgtc cacaagggga tgaagctaag agtcgagtaa gggtttgttt gatttcttta 3360

gtcttaatga ctaaaactaa gcaaagagct ttaattattg tgcaaattga ttacattatc 3420gtcttaatga ctaaaactaa gcaaagagct ttaattattg tgcaaattga ttacattatc 3420

cctaattaat gctatcttcg actactgttt acccacacgc agagctactg ttcgtgcgca 3480cctaattaat gctatcttcg actactgttt acccaacacgc agagctactg ttcgtgcgca 3480

ttcacaatgc tgcatgcgtg cacgttgctt tggggaggag cctacttcat gcgcgttggt 3540ttcacaatgc tgcatgcgtg cacgttgctt tggggagaggag cctacttcat gcgcgttggt 3540

tagggagggc atatgaagta aaaatgtcac tttatggtta gtttgacacc ctcatttttt 3600tagggagggc atatgaagta aaaatgtcac tttatggtta gtttgacacc ctcatttttt 3600

tcaagggatt gtattttcac aaaagaaatt aatttatttt tcttgaaaaa taggaatccc 3660tcaagggatt gtattttcac aaaagaaatt aatttatttt tcttgaaaaa taggaatccc 3660

ttagaaaaaa atagagttgt caaactaacc cttattcatt ttagtcactc ttttggtaat 3720ttagaaaaaa atagagttgt caaactaacc cttattcatt ttagtcactc ttttggtaat 3720

tagaggacta taatttagtt ggaggatttt agtcacactg tgttgattct ttagtgacta 3780tagaggacta taatttagtt ggaggatttt agtcacactg tgttgattct ttagtgacta 3780

aaaatgacta aaatttaatc aattaaatgt agtcacccaa accaaacaga gtcgcgcgtc 3840aaaatgacta aaatttaatc aattaaatgt agtcacccaa accaaacaga gtcgcgcgtc 3840

cgacgtgcct cctcaaccgg cgcgtgggag taggtctgga aaaaagctcg agctcgatga 3900cgacgtgcct cctcaaccgg cgcgtgggag taggtctgga aaaaagctcg agctcgatga 3900

gttggcttgg gctcacggta acttgggtcg gctcgacgct caaaacgagt ccaagtccta 3960gttggcttgg gctcacggta acttgggtcg gctcgacgct caaaacgagt ccaagtccta 3960

tttttgtggc tcgtgataag tgtgagctag ctcggctcgg ctcacgaacc gacaacaatt 4020tttttgtggc tcgtgataag tgtgagctag ctcggctcgg ctcacgaacc gacaacaatt 4020

tactacataa aattctgatt agcatataat gttagtacca aatatacaat tagtatatgt 4080tactacataa aattctgatt agcatataat gttagtacca aatatacaat tagtatatgt 4080

tatttgatat ttatatacaa aattaattta tttctatgtt atattagtac tataattatt 4140tatttgatat ttatatacaa aattaattta tttctatgtt atattagtac tataattatt 4140

tattaattta agagatgtaa tttgattatt tttgatattt tatgttataa tttgtaacgt 4200tattaattta agagatgtaa tttgattatt tttgatattt tatgttataa tttgtaacgt 4200

aagctggtgc ttgtggttag actctctact agtcgagttt tcacgctcgt caaaggaccg 4260aagctggtgc ttgtggttag actctctact agtcgagttt tcacgctcgt caaaggaccg 4260

agccgagacg aggcaagctc aacacattac cgagccgacc ggctcgtttc cgccacgtgg 4320agccgagacg aggcaagctc aacacattac cgagccgacc ggctcgtttc cgccacgtgg 4320

tagagcggca gcacccttcc cagatctcgt gtcccgcgcg ccgtgcgcac agccgcgcac 4380tagagcggca gcacccttcc cagatctcgt gtcccgcgcg ccgtgcgcac agccgcgcac 4380

acacacggac tgccgcgtcc gggcgcgatc cgttctcgcg aacacaccgg tcgtagccgt 4440acacacggac tgccgcgtcc gggcgcgatc cgttctcgcg aacacaccgg tcgtagccgt 4440

ccgtaatttg tactagtatg gcacgcggaa cacgagtcgg cgccagcacc ggcacgtcac 4500ccgtaatttg tactagtatg gcacgcggaa cacgagtcgg cgccagcacc ggcacgtcac 4500

catcggggcc gctggcccca tacgggcagc caattaataa aagagccgaa gcgaccgacg 4560catcggggcc gctggcccca tacgggcagc caattaataa aagagccgaa gcgaccgacg 4560

gcgcaggtac acgcaggcgc ctcctgcacc attcaccatt cacgtctctg tggcccaata 4620gcgcaggtac acgcaggcgc ctcctgcacc attcaccatt cacgtctctg tggcccaata 4620

ataaaaccgc attaattacg ctcgcgcaga cacggtagca cactggccgc cacagtgcca 4680ataaaaccgc attaattacg ctcgcgcaga cacggtagca cactggccgc cacagtgcca 4680

cccacccacc aatccttgct ctgcgacaga cgcgcagggg cacgtcacgc agccgtagtc 4740cccacccacc aatccttgct ctgcgacaga cgcgcagggg cacgtcacgc agccgtagtc 4740

gatcggtgca cggtgctcgc gcccccgttg cagcgcgcag ctctcccgcg ctataaatgc 4800gatcggtgca cggtgctcgc gcccccgttg cagcgcgcag ctctcccgcg ctataaatgc 4800

cccggctcgg cctcgctccc acagccacag cctcacacag acaccaacgc cactgcactg 4860cccggctcgg cctcgctccc acagccacag cctcacacag acaccaacgc cactgcactg 4860

caaaagcaag agcagctagc tagtaaagat gctgagcggg atcatcgacg ggctgacggg 4920caaaagcaag agcagctagc tagtaaagat gctgagcggg atcatcgacg ggctgacggg 4920

ggcgaacaag catgcgcggc tcaagggcac ggtggtgctc atgcgcaaga acgtgctgga 4980ggcgaacaag catgcgcggc tcaagggcac ggtggtgctc atgcgcaaga acgtgctgga 4980

cctcaacgac ttcggcgcca ccgtcgttga cagcatcagc gagttcctcg gcaagggggt 5040cctcaacgac ttcggcgcca ccgtcgttga cagcatcagc gagttcctcg gcaagggggt 5040

cacctgccag ctcatcagct ccaccctcgt cgacgccagt gagtaccgcg ccgcgccgcc 5100cacctgccag ctcatcagct ccaccctcgt cgacgccagt gagtaccgcg ccgcgccgcc 5100

ggcacctctc cgatctgcgc ttccccatgt cgatcgatct cgatctctct aggctctaga 5160ggcacctctc cgatctgcgc ttccccatgt cgatcgatct cgatctctct aggctctaga 5160

gctatagctc tctcggcccc cactttttac ctttgcaagc attttccctg catgcgaaac 5220gctatagctc tctcggcccc cactttttac ctttgcaagc attttccctg catgcgaaac 5220

aagcgatagt ttactatttg ggcggccatg ctgctgctgc ttcggctacc ttgcctccgt 5280aagcgatagt ttactatttg ggcggccatg ctgctgctgc ttcggctacc ttgcctccgt 5280

catctttgac gggacatgga aagaaagaaa gaatagagag agagacagag agagagagag 5340catctttgac gggacatgga aagaaagaaa gaatagagag agagacagag agagagagag 5340

agcaaacacc gagaaaaaga cagcaaagct agttgtagcc tgggcgcaga acacagcacc 5400agcaaacacc gagaaaaaga cagcaaagct agttgtagcc tgggcgcaga acacagcacc 5400

agatgctggc tagctcgtga caaagtaaaa aaagagagga acgaacacag tagtaccaag 5460agatgctggc tagctcgtga caaagtaaaa aaagagagga acgaacacag tagtaccaag 5460

agatcaggga cgagaccttt ctactttgaa ctggattata tattggattc tttatcagta 5520agatcaggga cgagaccttt ctactttgaa ctggattata tattggattc tttatcagta 5520

acttactgct gctagtatac ccctacccta gtctcggggc gacgtgcctg cgtgcatgcc 5580acttactgct gctagtatac ccctacccta gtctcggggc gacgtgcctg cgtgcatgcc 5580

cgacgcgtac gaaacacatc gacggactca catgggccac cgcgcgcgcg cgtgcctgct 5640cgacgcgtac gaaacacatc gacggactca catgggccac cgcgcgcgcg cgtgcctgct 5640

ttaactttcg ctgtgcagac aacggcaacc gcgggcgggt cggggcggag gcgaacctgg 5700ttaactttcg ctgtgcagac aacggcaacc gcgggcgggt cggggcggag gcgaacctgg 5700

agcagtggct gacgagcctg ccgtcgctga cgaccggcga gtccaagttc ggcgtcacgt 5760agcagtggct gacgagcctg ccgtcgctga cgaccggcga gtccaagttc ggcgtcacgt 5760

tcgactggga ggtggagaag ctgggagtgc cgggggccgt cgtcgtcaag aacaaccacg 5820tcgactggga ggtggagaag ctggggagtgc cgggggccgt cgtcgtcaag aacaaccacg 5820

ccgccgagtt cttcctcaag acaatcaccc tcgacgacgt gcccggccgc ggcgccgtca 5880ccgccgagtt cttcctcaag acaatcaccc tcgacgacgt gcccggccgc ggcgccgtca 5880

ccttcgtcgc caactcctgg gtctaccccg cgggcaagta ccgctacaac cgcgtcttct 5940ccttcgtcgc caactcctgg gtctaccccg cgggcaagta ccgctacaac cgcgtcttct 5940

tctccaacga tgtgagtcct ttctcgatag atcattatgt ttgtttgttt attggtatca 6000tctccaacga tgtgagtcct ttctcgatag atcattatgt ttgtttgttt attggtatca 6000

tgtagctagc cgccatgtcg tcagttggag tgcagtaggt aggaaaaagg acgacatggg 6060tgtagctagc cgccatgtcg tcagttggag tgcagtaggt aggaaaaagg acgacatggg 6060

atgggagtgg ttaagaaaat ccatgcaagt gggactagtg tgtaactggt agtatagctg 6120atgggagtgg ttaagaaaat ccatgcaagt gggactagtg tgtaactggt agtatagctg 6120

aagaatctag tggtagaatg atcttgtacg tgaataatgt ttctgacgct gagcgctgag 6180aagaatctag tggtagaatg atcttgtacg tgaataatgt ttctgacgct gagcgctgag 6180

ggcgaggcat gtgagttcac cacgtgagta gcagcaaaag gaaacgaccc ttcttcaccc 6240ggcgaggcat gtgagttcac cacgtgagta gcagcaaaag gaaacgaccc ttcttcaccc 6240

ggctatcatc taacgtatcg ccccgggaga atcaataact ttattaacga gatgacgaaa 6300ggctatcatc taacgtatcg ccccgggaga atcaataact ttattaacga gatgacgaaa 6300

agtcaaaaaa aaaagtcgtg tgatggccat gatagtcagt caagcaaatc agcgtccaac 6360agtcaaaaaa aaaagtcgtg tgatggccat gatagtcagt caagcaaatc agcgtccaac 6360

acgtgtccct tatctacagg tgtaagagag tagagtcttg tcaatcaacc tgggttgttt 6420acgtgtccct tatctacagg tgtaagagag tagagtcttg tcaatcaacc tgggttgttt 6420

tctatctgcg tttt 6434tctatctgcg tttt 6434

<210> 3<210> 3

<211> 151<211> 151

<212> DNA<212> DNA

<213> Zea mays L.<213> Zea mays L.

<400> 3<400> 3

aaagagccga agcgaccgac ggcgcaggta cacgcaggcg cctcctgcac cattcaccat 60aaagagccga agcgaccgac ggcgcaggta cacgcaggcg cctcctgcac cattcaccat 60

tcacgtctct gtggcccaat aataaaaccg cattaattac gctcgcgcag acacggtagc 120tcacgtctct gtggcccaat aataaaaccg cattaattac gctcgcgcag acacggtagc 120

acactggccg ccacagtgcc acccacccac c 151accactggccg ccacagtgcc acccaccccac c 151

<210> 4<210> 4

<211> 361<211> 361

<212> DNA<212> DNA

<213> Zea mays L.<213> Zea mays L.

<400> 4<400> 4

ctgaggctat ccgcaaccgt taaccctaaa tttttccctc tatatcattt tttcctctat 60ctgaggctat ccgcaaccgt taaccctaaa tttttccctc tatatcattt tttcctctat 60

tttcctccct attttttcat ctcccgcagc ggttccccct aaatactccc cctatatctc 120tttcctccct attttttcat ctcccgcagc ggttccccct aaatactccc cctatatctc 120

actaccacta taaaatatta ttttctatac caattatcaa ttttttatct actaacaatt 180actaccacta taaaatatta ttttctatac caattatcaa ttttttatct actaacaatt 180

actcgtggac ccacagcaca gtgtttaggg tgatgaacag tgacacgcta gatctgaagg 240actcgtggac ccacagcaca gtgtttaggg tgatgaacag tgacacgcta gatctgaagg 240

gagagagaag gggaccgaca cgtagggagc ctgtagaggg caccgctgcg gccgtagggt 300gagagagaag gggacccgaca cgtagggagc ctgtagaggg caccgctgcg gccgtagggt 300

gctccctacg cgccgcatac aaggggaggg gggagaggca gcggtaaccg ctgcgcacag 360gctccctacg cgccgcatac aaggggaggg gggagaggca gcggtaaccg ctgcgcacag 360

c 361c 361

<210> 5<210> 5

<211> 363<211> 363

<212> DNA<212> DNA

<213> Zea mays L.<213> Zea mays L.

<400> 5<400> 5

ctgaggctat ccgcaaccgt taaccctaaa tttttccctc tatatcattt tttcccctat 60ctgaggctat ccgcaaccgt taaccctaaa tttttccctc tatatcattt tttcccctat 60

tttcctccct attttttcat ctcccgcagc ggttccccct aaatactccc cctatatccc 120tttcctccct attttttcat ctcccgcagc ggttccccct aaatactccc cctatatccc 120

actaccacta taaaatatta ttttctatac caattatcaa ttttttatct actaacaatt 180actaccacta taaaatatta ttttctatac caattatcaa ttttttatct actaacaatt 180

actcgtggac ccacagcaca gtgtttaggg tgatgaacag tgacacgcta gatctgaagg 240actcgtggac ccacagcaca gtgtttaggg tgatgaacag tgacacgcta gatctgaagg 240

gagagagaag gggaccgaca cgtagggagc ctgtagaggg caccgctgcg gccgtagggt 300gagagagaag gggacccgaca cgtagggagc ctgtagaggg caccgctgcg gccgtagggt 300

gctccctacg cgccgcatac aaggggaggg gggggagagg cagcggtaac cgctgcgcac 360gctccctacg cgccgcatac aaggggaggg gggggagagg cagcggtaac cgctgcgcac 360

agc 363agc 363

<210> 6<210> 6

<211> 20<211> 20

<212> DNA<212> DNA

<213> Artifical sequence<213> Artificial sequence

<400> 6<400> 6

gctcacgaac cgacaacaat 20gctcacgaac cgacaacaat 20

<210> 7<210> 7

<211> 21<211> 21

<212> DNA<212> DNA

<213> Artifical sequence<213> Artificial sequence

<400> 7<400> 7

tcccgctcag catctttact a 21tcccgctcag catctttact a 21

<210> 8<210> 8

<211> 20<211> 20

<212> DNA<212> DNA

<213> Artifical sequence<213> Artificial sequence

<400> 8<400> 8

tacgaaacac atcgacggac 20tacgaaacac atcgacggac 20

<210> 9<210> 9

<211> 20<211> 20

<212> DNA<212> DNA

<213> Artifical sequence<213> Artificial sequence

<400> 9<400> 9

gttattgatt ctcccggggc 20gttattgattctcccggggc 20

<210> 10<210> 10

<211> 22<211> 22

<212> DNA<212> DNA

<213> Artifical sequence<213> Artificial sequence

<400> 10<400> 10

gttcttcctc aagacaatca cc 22gttcttcctc aagacaatca cc 22

<210> 11<210> 11

<211> 21<211> 21

<212> DNA<212> DNA

<213> Artifical sequence<213> Artificial sequence

<400> 11<400> 11

gagaagaaga cgcggttgta g 21gagaagaaga cgcggttgta g 21

<210> 12<210> 12

<211> 2604<211> 2604

<212> DNA<212> DNA

<213> Zea mays L.<213> Zea mays L.

<400> 12<400> 12

atgctgagcg ggatcatcga cgggctgacg ggggcgaaca agcatgcgcg gctcaagggc 60atgctgagcg ggatcatcga cgggctgacg ggggcgaaca agcatgcgcg gctcaagggc 60

acggtggtgc tcatgcgcaa gaacgtgctg gacctcaacg acttcggcgc caccgtcgtt 120acggtggtgc tcatgcgcaa gaacgtgctg gacctcaacg acttcggcgc caccgtcgtt 120

gacagcatca gcgagttcct cggcaagggg gtcacctgcc agctcatcag ctccaccctc 180gacagcatca gcgagttcct cggcaagggg gtcacctgcc agctcatcag ctccaccctc 180

gtcgacgcca acaacggcaa ccgcgggcgg gtcggggcgg aggcgaacct ggagcagtgg 240gtcgacgcca acaacggcaa ccgcgggcgg gtcggggcgg aggcgaacct ggagcagtgg 240

ctgacgagcc tgccgtcgct gacgaccggc gagtccaagt tcggcgtcac gttcgactgg 300ctgacgagcc tgccgtcgct gacgaccggc gagtccaagt tcggcgtcac gttcgactgg 300

gaggtggaga agctgggagt gccgggggcc gtcgtcgtca agaacaacca cgccgccgag 360gaggtggaga agctgggagt gccgggggcc gtcgtcgtca agaacaacca cgccgccgag 360

ttcttcctca agacaatcac cctcgacgac gtgcccggcc gcggcgccgt caccttcgtc 420ttcttcctca agacaatcac cctcgacgac gtgcccggcc gcggcgccgt caccttcgtc 420

gccaactcct gggtctaccc cgcgggcaag taccgctaca accgcgtctt cttctccaac 480gccaactcct gggtctaccc cgcgggcaag taccgctaca accgcgtctt cttctccaac 480

gatacgtacc tgccaagcca gatgccggcg gcgctgaagc cgtaccgcga cgacgagctc 540gatacgtacc tgccaagcca gatgccggcg gcgctgaagc cgtaccgcga cgacgagctc 540

cgcaacctcc gcggcgacga ccagcagggc ccctaccagg agcacgaccg cgtgtaccgc 600cgcaacctcc gcggcgacga ccagcagggc ccctaccagg agcacgaccg cgtgtaccgc 600

tacgacgtct acaacgacct cggcgagccc gacggcggca acccgcgccc catcctcggc 660tacgacgtct acaacgacct cggcgagccc gacggcggca acccgcgccc catcctcggc 660

ggctccgccg accacccgta cccgcgccgc tgccgcacgg gccgcaagcc caccaaaacc 720ggctccgccg accacccgta cccgcgccgc tgccgcacgg gccgcaagcc caccaaaacc 720

gaccccaact cggagagccg actgtcgctg gtggagcaga tctacgtgcc gcgggacgag 780gaccccaact cggagagccg actgtcgctg gtggagcaga tctacgtgcc gcgggacgag 780

cgcttcggcc acctcaagat gtccgacttc ctgggctact ccatcaaggc catcacgcag 840cgcttcggcc acctcaagat gtccgacttc ctgggctact ccatcaaggc catcacgcag 840

ggcatcatcc cggcggtgcg cacgtacgtg gacaccaccc cgggcgagtt cgactccttc 900ggcatcatcc cggcggtgcg cacgtacgtg gacaccaccc cgggcgagtt cgactccttc 900

caggacatca tcaacctgta cgagggcggg atcaagctgc ccaagatcca ggcgctcgag 960caggacatca tcaacctgta cgagggcggg atcaagctgc ccaagatcca ggcgctcgag 960

gacatgcgca agctcttccc gctccagctc gtcaaggacc tcctccccgc cggcggggac 1020gacatgcgca agctcttccc gctccagctc gtcaaggacc tcctccccgc cggcggggac 1020

tacctgctca agctccccat cccacagatc atccaaggca cgtcacagga caagaacgcg 1080tacctgctca agctccccat cccacagatc atccaaggca cgtcacagga caagaacgcg 1080

tggaggaccg acgaggagtt cgcgcgggag gtgctcgccg gcgtcaaccc gatggtgatc 1140tggaggaccg acgaggagtt cgcgcgggag gtgctcgccg gcgtcaaccc gatggtgatc 1140

acgcgcctca cggagttccc gcccaagagc acgctggacc ccagcaagta cggcgaccac 1200acgcgcctca cggagttccc gcccaagagc acgctggacc ccagcaagta cggcgaccac 1200

accagcacga tcacggcgga gcacatcgag aagaacctcg agggcctcac ggtgcagcag 1260accagcacga tcacggcgga gcacatcgag aagaacctcg agggcctcac ggtgcagcag 1260

gcgctggacg gcaacaggct ctacatcctg gaccaccacg accgcttcat gccgttcctc 1320gcgctggacg gcaacaggct ctacatcctg gaccaccacg accgcttcat gccgttcctc 1320

atcgacgtca acaacctgga gggcaacttc atctacgcca ccaggacgct cttcttcctg 1380atcgacgtca acaacctgga gggcaacttc atctacgcca ccaggacgct cttcttcctg 1380

cgcggcgacg gcaggctcgc gcccctcgcc atcgagctca gcgagccgta catcgacggg 1440cgcggcgacg gcaggctcgc gcccctcgcc atcgagctca gcgagccgta catcgacggg 1440

gacctcaccg tggccaagag caaggtctac acgccggcgt ccagcggcgt cgaggcctgg 1500gacctcaccg tggccaagag caaggtctac acgccggcgt ccagcggcgt cgaggcctgg 1500

gtgtggcagc tcgccaaggc ctatgtcgcc gtcaacgact ctggctggca ccaactcgtc 1560gtgtggcagc tcgccaaggc ctatgtcgcc gtcaacgact ctggctggca ccaactcgtc 1560

agccactggc tgaacaccca cgcggtgatg gagccgttcg tgatcgcgac gaaccggcag 1620agccactggc tgaacaccca cgcggtgatg gagccgttcg tgatcgcgac gaaccggcag 1620

ctgagcgtga cgcacccggt gcacaagctc ctgagctcgc acttccgcga caccatgacc 1680ctgagcgtga cgcacccggt gcacaagctc ctgagctcgc acttccgcga caccatgacc 1680

atcaacgcgc tggcgcggca gacgctcatc aacggcggcg gcatcttcga gatgaccgtc 1740atcaacgcgc tggcgcggca gacgctcatc aacggcggcg gcatcttcga gatgaccgtc 1740

ttcccgggca agtacgcgct gggcatgtcc tccgtggtgt acaagagctg gaacttcacc 1800ttcccgggca agtacgcgct gggcatgtcc tccgtggtgt acaagagctg gaacttcacc 1800

gagcagggcc tccccgccga cctcgtcaag aggggcgtgg cggtggcgga cccgtccagc 1860gagcagggcc tccccgccga cctcgtcaag aggggcgtgg cggtggcgga cccgtccagc 1860

ccgtacaagg tgcggctgct gatcgaggac tacccgtacg cgagcgacgg gctggccatc 1920ccgtacaagg tgcggctgct gatcgaggac tacccgtacg cgagcgacgg gctggccatc 1920

tggcacgcca tcgagcagtg ggtgggcgag tacctggcca tctactaccc cgacgacggc 1980tggcacgcca tcgagcagtg ggtgggcgag tacctggcca tctactaccc cgacgacggc 1980

gcgctgcggg gcgacgagga gctgcaggcg tggtggaagg aggtgcgcga ggtcgggcac 2040gcgctgcggg gcgacgagga gctgcaggcg tggtggaagg aggtgcgcga ggtcgggcac 2040

ggcgaccaca aggacgcgcc ctggtggccc aagatgcagg ccgtgtcgga gctcgccagc 2100ggcgaccaca aggacgcgcc ctggtggccc aagatgcagg ccgtgtcgga gctcgccagc 2100

gcctgcacca ccatcatctg gatcgcgtcg gcgctccacg ccgccgtcaa cttcggccag 2160gcctgcacca ccatcatctg gatcgcgtcg gcgctccacg ccgccgtcaa cttcggccag 2160

tacccgtacg cggggtacct cccgaacagg cccacggtga gccggcgccg gatgccggag 2220tacccgtacg cggggtacct cccgaacagg cccacggtga gccggcgccg gatgccggag 2220

cccggcagca aggagtacga ggagctggag cgcgacccgg agcgcggctt catccacacc 2280cccggcagca aggagtacga ggagctggag cgcgacccgg agcgcggctt catccacacc 2280

atcacgagcc agatccagac catcatcggc atctcgctca tcgagatcct ctccaagcac 2340atcacgagcc agatccagac catcatcggc atctcgctca tcgagatcct ctccaagcac 2340

tcctccgacg aggtgtacct cggccagcgc gacacccccg agtggacctc cgacgcccgg 2400tcctccgacg aggtgtacct cggccagcgc gacacccccg agtggacctc cgacgcccgg 2400

gcgctggcgg cgttcaagag gttcagcgac gcgctggtca agatcgaggg caaggtggtg 2460gcgctggcgg cgttcaagag gttcagcgac gcgctggtca agatcgaggg caaggtggtg 2460

ggcgagaacc gcgacccgca gctgaggaac aggaacggcc ccgccgagtt cccctacatg 2520ggcgagaacc gcgacccgca gctgaggaac aggaacggcc ccgccgagtt cccctacatg 2520

ctgctctatc ccaacacctc tgaccacagt ggcgccgccg cagggctcac tgccaagggc 2580ctgctctatc ccaacacctc tgaccacagt ggcgccgccg cagggctcac tgccaagggc 2580

atccccaaca gcatctccat ctga 2604atccccaaca gcatctccat ctga 2604

<210> 13<210> 13

<211> 867<211> 867

<212> PRT<212> PRT

<213> Zea mays L.<213> Zea mays L.

<400> 13<400> 13

Met Leu Ser Gly Ile Ile Asp Gly Leu Thr Gly Ala Asn Lys His AlaMet Leu Ser Gly Ile Ile Asp Gly Leu Thr Gly Ala Asn Lys His Ala

1 5 10 151 5 10 15

Arg Leu Lys Gly Thr Val Val Leu Met Arg Lys Asn Val Leu Asp LeuArg Leu Lys Gly Thr Val Val Leu Met Arg Lys Asn Val Leu Asp Leu

20 25 30 20 25 30

Asn Asp Phe Gly Ala Thr Val Val Asp Ser Ile Ser Glu Phe Leu GlyAsn Asp Phe Gly Ala Thr Val Val Asp Ser Ile Ser Glu Phe Leu Gly

35 40 45 35 40 45

Lys Gly Val Thr Cys Gln Leu Ile Ser Ser Thr Leu Val Asp Ala AsnLys Gly Val Thr Cys Gln Leu Ile Ser Ser Thr Leu Val Asp Ala Asn

50 55 60 50 55 60

Asn Gly Asn Arg Gly Arg Val Gly Ala Glu Ala Asn Leu Glu Gln TrpAsn Gly Asn Arg Gly Arg Val Gly Ala Glu Ala Asn Leu Glu Gln Trp

65 70 75 8065 70 75 80

Leu Thr Ser Leu Pro Ser Leu Thr Thr Gly Glu Ser Lys Phe Gly ValLeu Thr Ser Leu Pro Ser Leu Thr Thr Gly Glu Ser Lys Phe Gly Val

85 90 95 85 90 95

Thr Phe Asp Trp Glu Val Glu Lys Leu Gly Val Pro Gly Ala Val ValThr Phe Asp Trp Glu Val Glu Lys Leu Gly Val Pro Gly Ala Val Val

100 105 110 100 105 110

Val Lys Asn Asn His Ala Ala Glu Phe Phe Leu Lys Thr Ile Thr LeuVal Lys Asn Asn His Ala Ala Glu Phe Phe Leu Lys Thr Ile Thr Leu

115 120 125 115 120 125

Asp Asp Val Pro Gly Arg Gly Ala Val Thr Phe Val Ala Asn Ser TrpAsp Asp Val Pro Gly Arg Gly Ala Val Thr Phe Val Ala Asn Ser Trp

130 135 140 130 135 140

Val Tyr Pro Ala Gly Lys Tyr Arg Tyr Asn Arg Val Phe Phe Ser AsnVal Tyr Pro Ala Gly Lys Tyr Arg Tyr Asn Arg Val Phe Phe Ser Asn

145 150 155 160145 150 155 160

Asp Thr Tyr Leu Pro Ser Gln Met Pro Ala Ala Leu Lys Pro Tyr ArgAsp Thr Tyr Leu Pro Ser Gln Met Pro Ala Ala Leu Lys Pro Tyr Arg

165 170 175 165 170 175

Asp Asp Glu Leu Arg Asn Leu Arg Gly Asp Asp Gln Gln Gly Pro TyrAsp Asp Glu Leu Arg Asn Leu Arg Gly Asp Asp Gln Gln Gly Pro Tyr

180 185 190 180 185 190

Gln Glu His Asp Arg Val Tyr Arg Tyr Asp Val Tyr Asn Asp Leu GlyGln Glu His Asp Arg Val Tyr Arg Tyr Asp Val Tyr Asn Asp Leu Gly

195 200 205 195 200 205

Glu Pro Asp Gly Gly Asn Pro Arg Pro Ile Leu Gly Gly Ser Ala AspGlu Pro Asp Gly Gly Asn Pro Arg Pro Ile Leu Gly Gly Ser Ala Asp

210 215 220 210 215 220

His Pro Tyr Pro Arg Arg Cys Arg Thr Gly Arg Lys Pro Thr Lys ThrHis Pro Tyr Pro Arg Arg Cys Arg Thr Gly Arg Lys Pro Thr Lys Thr

225 230 235 240225 230 235 240

Asp Pro Asn Ser Glu Ser Arg Leu Ser Leu Val Glu Gln Ile Tyr ValAsp Pro Asn Ser Glu Ser Arg Leu Ser Leu Val Glu Gln Ile Tyr Val

245 250 255 245 250 255

Pro Arg Asp Glu Arg Phe Gly His Leu Lys Met Ser Asp Phe Leu GlyPro Arg Asp Glu Arg Phe Gly His Leu Lys Met Ser Asp Phe Leu Gly

260 265 270 260 265 270

Tyr Ser Ile Lys Ala Ile Thr Gln Gly Ile Ile Pro Ala Val Arg ThrTyr Ser Ile Lys Ala Ile Thr Gln Gly Ile Ile Pro Ala Val Arg Thr

275 280 285 275 280 285

Tyr Val Asp Thr Thr Pro Gly Glu Phe Asp Ser Phe Gln Asp Ile IleTyr Val Asp Thr Thr Pro Gly Glu Phe Asp Ser Phe Gln Asp Ile Ile

290 295 300 290 295 300

Asn Leu Tyr Glu Gly Gly Ile Lys Leu Pro Lys Ile Gln Ala Leu GluAsn Leu Tyr Glu Gly Gly Ile Lys Leu Pro Lys Ile Gln Ala Leu Glu

305 310 315 320305 310 315 320

Asp Met Arg Lys Leu Phe Pro Leu Gln Leu Val Lys Asp Leu Leu ProAsp Met Arg Lys Leu Phe Pro Leu Gln Leu Val Lys Asp Leu Leu Pro

325 330 335 325 330 335

Ala Gly Gly Asp Tyr Leu Leu Lys Leu Pro Ile Pro Gln Ile Ile GlnAla Gly Gly Asp Tyr Leu Leu Lys Leu Pro Ile Pro Gln Ile Ile Gln

340 345 350 340 345 350

Gly Thr Ser Gln Asp Lys Asn Ala Trp Arg Thr Asp Glu Glu Phe AlaGly Thr Ser Gln Asp Lys Asn Ala Trp Arg Thr Asp Glu Glu Phe Ala

355 360 365 355 360 365

Arg Glu Val Leu Ala Gly Val Asn Pro Met Val Ile Thr Arg Leu ThrArg Glu Val Leu Ala Gly Val Asn Pro Met Val Ile Thr Arg Leu Thr

370 375 380 370 375 380

Glu Phe Pro Pro Lys Ser Thr Leu Asp Pro Ser Lys Tyr Gly Asp HisGlu Phe Pro Pro Lys Ser Thr Leu Asp Pro Ser Lys Tyr Gly Asp His

385 390 395 400385 390 395 400

Thr Ser Thr Ile Thr Ala Glu His Ile Glu Lys Asn Leu Glu Gly LeuThr Ser Thr Ile Thr Ala Glu His Ile Glu Lys Asn Leu Glu Gly Leu

405 410 415 405 410 415

Thr Val Gln Gln Ala Leu Asp Gly Asn Arg Leu Tyr Ile Leu Asp HisThr Val Gln Gln Ala Leu Asp Gly Asn Arg Leu Tyr Ile Leu Asp His

420 425 430 420 425 430

His Asp Arg Phe Met Pro Phe Leu Ile Asp Val Asn Asn Leu Glu GlyHis Asp Arg Phe Met Pro Phe Leu Ile Asp Val Asn Asn Leu Glu Gly

435 440 445 435 440 445

Asn Phe Ile Tyr Ala Thr Arg Thr Leu Phe Phe Leu Arg Gly Asp GlyAsn Phe Ile Tyr Ala Thr Arg Thr Leu Phe Phe Leu Arg Gly Asp Gly

450 455 460 450 455 460

Arg Leu Ala Pro Leu Ala Ile Glu Leu Ser Glu Pro Tyr Ile Asp GlyArg Leu Ala Pro Leu Ala Ile Glu Leu Ser Glu Pro Tyr Ile Asp Gly

465 470 475 480465 470 475 480

Asp Leu Thr Val Ala Lys Ser Lys Val Tyr Thr Pro Ala Ser Ser GlyAsp Leu Thr Val Ala Lys Ser Lys Val Tyr Thr Pro Ala Ser Ser Gly

485 490 495 485 490 495

Val Glu Ala Trp Val Trp Gln Leu Ala Lys Ala Tyr Val Ala Val AsnVal Glu Ala Trp Val Trp Gln Leu Ala Lys Ala Tyr Val Ala Val Asn

500 505 510 500 505 510

Asp Ser Gly Trp His Gln Leu Val Ser His Trp Leu Asn Thr His AlaAsp Ser Gly Trp His Gln Leu Val Ser His Trp Leu Asn Thr His Ala

515 520 525 515 520 525

Val Met Glu Pro Phe Val Ile Ala Thr Asn Arg Gln Leu Ser Val ThrVal Met Glu Pro Phe Val Ile Ala Thr Asn Arg Gln Leu Ser Val Thr

530 535 540 530 535 540

His Pro Val His Lys Leu Leu Ser Ser His Phe Arg Asp Thr Met ThrHis Pro Val His Lys Leu Leu Ser Ser His Phe Arg Asp Thr Met Thr

545 550 555 560545 550 555 560

Ile Asn Ala Leu Ala Arg Gln Thr Leu Ile Asn Gly Gly Gly Ile PheIle Asn Ala Leu Ala Arg Gln Thr Leu Ile Asn Gly Gly Gly Ile Phe

565 570 575 565 570 575

Glu Met Thr Val Phe Pro Gly Lys Tyr Ala Leu Gly Met Ser Ser ValGlu Met Thr Val Phe Pro Gly Lys Tyr Ala Leu Gly Met Ser Ser Val

580 585 590 580 585 590

Val Tyr Lys Ser Trp Asn Phe Thr Glu Gln Gly Leu Pro Ala Asp LeuVal Tyr Lys Ser Trp Asn Phe Thr Glu Gln Gly Leu Pro Ala Asp Leu

595 600 605 595 600 605

Val Lys Arg Gly Val Ala Val Ala Asp Pro Ser Ser Pro Tyr Lys ValVal Lys Arg Gly Val Ala Val Ala Asp Pro Ser Ser Pro Tyr Lys Val

610 615 620 610 615 620

Arg Leu Leu Ile Glu Asp Tyr Pro Tyr Ala Ser Asp Gly Leu Ala IleArg Leu Leu Ile Glu Asp Tyr Pro Tyr Ala Ser Asp Gly Leu Ala Ile

625 630 635 640625 630 635 640

Trp His Ala Ile Glu Gln Trp Val Gly Glu Tyr Leu Ala Ile Tyr TyrTrp His Ala Ile Glu Gln Trp Val Gly Glu Tyr Leu Ala Ile Tyr Tyr

645 650 655 645 650 655

Pro Asp Asp Gly Ala Leu Arg Gly Asp Glu Glu Leu Gln Ala Trp TrpPro Asp Asp Gly Ala Leu Arg Gly Asp Glu Glu Leu Gln Ala Trp Trp

660 665 670 660 665 670

Lys Glu Val Arg Glu Val Gly His Gly Asp His Lys Asp Ala Pro TrpLys Glu Val Arg Glu Val Gly His Gly Asp His Lys Asp Ala Pro Trp

675 680 685 675 680 685

Trp Pro Lys Met Gln Ala Val Ser Glu Leu Ala Ser Ala Cys Thr ThrTrp Pro Lys Met Gln Ala Val Ser Glu Leu Ala Ser Ala Cys Thr Thr

690 695 700 690 695 700

Ile Ile Trp Ile Ala Ser Ala Leu His Ala Ala Val Asn Phe Gly GlnIle Ile Trp Ile Ala Ser Ala Leu His Ala Ala Val Asn Phe Gly Gln

705 710 715 720705 710 715 720

Tyr Pro Tyr Ala Gly Tyr Leu Pro Asn Arg Pro Thr Val Ser Arg ArgTyr Pro Tyr Ala Gly Tyr Leu Pro Asn Arg Pro Thr Val Ser Arg Arg

725 730 735 725 730 735

Arg Met Pro Glu Pro Gly Ser Lys Glu Tyr Glu Glu Leu Glu Arg AspArg Met Pro Glu Pro Gly Ser Lys Glu Tyr Glu Glu Leu Glu Arg Asp

740 745 750 740 745 750

Pro Glu Arg Gly Phe Ile His Thr Ile Thr Ser Gln Ile Gln Thr IlePro Glu Arg Gly Phe Ile His Thr Ile Thr Ser Gln Ile Gln Thr Ile

755 760 765 755 760 765

Ile Gly Ile Ser Leu Ile Glu Ile Leu Ser Lys His Ser Ser Asp GluIle Gly Ile Ser Leu Ile Glu Ile Leu Ser Lys His Ser Ser Asp Glu

770 775 780 770 775 780

Val Tyr Leu Gly Gln Arg Asp Thr Pro Glu Trp Thr Ser Asp Ala ArgVal Tyr Leu Gly Gln Arg Asp Thr Pro Glu Trp Thr Ser Asp Ala Arg

785 790 795 800785 790 795 800

Ala Leu Ala Ala Phe Lys Arg Phe Ser Asp Ala Leu Val Lys Ile GluAla Leu Ala Ala Phe Lys Arg Phe Ser Asp Ala Leu Val Lys Ile Glu

805 810 815 805 810 815

Gly Lys Val Val Gly Glu Asn Arg Asp Pro Gln Leu Arg Asn Arg AsnGly Lys Val Val Gly Glu Asn Arg Asp Pro Gln Leu Arg Asn Arg Asn

820 825 830 820 825 830

Gly Pro Ala Glu Phe Pro Tyr Met Leu Leu Tyr Pro Asn Thr Ser AspGly Pro Ala Glu Phe Pro Tyr Met Leu Leu Tyr Pro Asn Thr Ser Asp

835 840 845 835 840 845

His Ser Gly Ala Ala Ala Gly Leu Thr Ala Lys Gly Ile Pro Asn SerHis Ser Gly Ala Ala Ala Gly Leu Thr Ala Lys Gly Ile Pro Asn Ser

850 855 860 850 855 860

Ile Ser IleIle Ser Ile

865865

<210> 14<210> 14

<211> 6642<211> 6642

<212> DNA<212> DNA

<213> Zea mays L.<213> Zea mays L.

<400> 14<400> 14

ggcgaactcc gctccgcccg accccagggc tcggactcgg gctaacaccc ggaagacggc 60ggcgaactcc gctccgcccg accccagggc tcggactcgg gctaacaccc ggaagacggc 60

gaactccgct ccgcccgacc ccagggctcg gactcgggct aagacccgga agacggcgaa 120gaactccgct ccgcccgacc ccagggctcg gactcgggct aagacccgga agacggcgaa 120

ctctgctccg cccgacccca gggctcggac tcgggctaag acccggaaga cggcgaatct 180ctctgctccg cccgacccca gggctcggac tcgggctaag acccggaaga cggcgaatct 180

ccgcctcgcc cgaccccagg gctcagactc cgccctggcc tcggccaaac gatctccgcc 240ccgcctcgcc cgaccccagg gctcagactc cgccctggcc tcggccaaac gatctccgcc 240

tcgcccgacc ccagggctcg gactccgccc tagcctcggc caaacgatct ccgcctcgcc 300tcgcccgacc ccagggctcg gactccgccc tagcctcggc caaacgatct ccgcctcgcc 300

cgacccgggg gctcgggctc ggcctcggca acggaaggca gactcgacct cgacttcgga 360cgacccgggg gctcgggctc ggcctcggca acggaaggca gactcgacct cgacttcgga 360

ggagccccca cgtcgccctg cctagggcac aggtccgcca cgtcaacagg aagcgccatc 420ggagccccca cgtcgccctg cctagggcac aggtccgcca cgtcaacagg aagcgccatc 420

accaacctac cccgagccga cttgggacac gaaggacaag accggcgtcc catctggcca 480accaacctac cccgagccga cttgggacac gaaggacaag accggcgtcc catctggcca 480

gctccgccgg atgggcaatg atggcgcccc ccgagctctg tgacgacggc ggctcttagc 540gctccgccgg atgggcaatg atggcgcccc ccgagctctg tgacgacggc ggctcttagc 540

tctcttacgg cagcagagcg acgtcagcaa ggactcgacc gctccaacag ctgtccctcc 600tctcttacgg cagcagagcg acgtcagcaa ggactcgacc gctccaacag ctgtccctcc 600

gccaggctcc gtcgctcctc cgacagccac gacatcacgc cagcaaggtg ccaagacctc 660gccaggctcc gtcgctcctc cgacagccac gacatcacgc cagcaaggtg ccaagacctc 660

tccggctgcc acattggcat gtacccaggg cgttagctct ctctctctcc gctagacacg 720tccggctgcc acattggcat gtacccaggg cgttagctct ctctctctcc gctagacacg 720

tagcactctg ctaccccccg ttgtacacct ggatcctctc cttacgacta taaaaggaag 780tagcactctg ctaccccccg ttgtacacct ggatcctctc cttacgacta taaaaggaag 780

gaccagggcc ttcttagaga aggttggccg cgcgggaccg aggacgggac aggcgctctc 840gaccagggcc ttcttagaga aggttggccg cgcgggaccg aggacgggac aggcgctctc 840

ttggggccgc tcgcttccct cacccgcgtg gacgcttgta acccccctac tgcaagcgca 900ttggggccgc tcgcttcct cacccgcgtg gacgcttgta acccccctac tgcaagcgca 900

cctgacctgg gcgcgggacg aacacgaagg ccgcgggact tccacctctc tcacgctcga 960cctgacctgg gcgcgggacg aacacgaagg ccgcgggact tccacctctc tcacgctcga 960

ctccggccac ctcgcctctc cccccttcgc gctcgcccac gcgctcgacc catctgggct 1020ctccggccac ctcgcctctc cccccttcgc gctcgcccac gcgctcgacc catctgggct 1020

ggggcacgca gcacactcac tcgtcggctt agggaccccc ctgtctcgaa acgccgacaa 1080ggggcacgca gcacactcac tcgtcggctt agggaccccc ctgtctcgaa acgccgacaa 1080

taagcttatc tcgaattcat ggggtggagg attggaaatg atttttatgt attagtagaa 1140taagcttatc tcgaattcat ggggtggagg attggaaatg atttttatgt attagtagaa 1140

tttgtttcta ctctgtaaat tacatgaccc tcttcgtctc actcctctat agtaaaaata 1200tttgtttcta ctctgtaaat tacatgaccc tcttcgtctc actcctctat agtaaaaata 1200

tagcacataa atatctccga catcttgcta ataatagtat acaaatatat ttttcatcaa 1260tagcacataa atatctccga catcttgcta ataatagtat acaaatatttttcatcaa 1260

accgaattaa cttaattgat atatgtctaa attactgtta ttagaatgga attcaattcc 1320accgaattaa cttaattgat atatgtctaa attactgtta ttagaatgga attcaattcc 1320

aatgaaccaa acggggcgta agtgatttct tagtgaggtg gcacctatgg aaatcactta 1380aatgaaccaa acggggcgta agtgatttct tagtgaggtg gcacctatgg aaatcactta 1380

gtagtttctg ggttgtaatt gctcttatgg catgaagaaa attttgcatt cgagctcgaa 1440gtagtttctg ggttgtaatt gctcttatgg catgaagaaa attttgcatt cgagctcgaa 1440

cgctacaagg tcgttttaga agctacatca gtaatgcttc gagtatgaca aacaacatca 1500cgctacaagg tcgttttaga agctacatca gtaatgcttc gagtatgaca aacaacatca 1500

caagtaacat ctacctatat gcaccgaatc tccaccacca ccacaatatc gatgtcagaa 1560caagtaacat ctacctatat gcaccgaatc tccaccacca ccacaatatc gatgtcagaa 1560

ggctagggaa ggacgaccaa taatatagaa gacacatagg ccacactcaa ttcaatcaac 1620ggctagggaa ggacgaccaa taatatagaa gacacatagg ccacactcaa ttcaatcaac 1620

atcacgacaa tctacttgat gtcctatgta gccatgatct ctacgagcaa tcaatatcaa 1680atcacgacaa tctacttgat gtcctatgta gccatgatct ctacgagcaa tcaatatcaa 1680

tgcactagaa tcccaactac gtagagtatt attggacgaa cgagtaaaac accaaagagc 1740tgcactagaa tcccaactac gtagagtatt attggacgaa cgagtaaaac accaaagagc 1740

agccactgga cgactttctt gcatctccac aaggataaat tctctcagat agtcagatgc 1800agccactgga cgactttctt gcatctccac aaggataaat tctctcagat agtcagatgc 1800

ctaatgaaat tcaagtccat caatattgac atgtgcgaag gcaagaaggg tccaaattag 1860ctaatgaaat tcaagtccat caatattgac atgtgcgaag gcaagaaggg tccaaattag 1860

ttgattcgac actacttggt taccatcaat ctcaagggag gaaacaaaga tatcaaagca 1920ttgattcgac actacttggt taccatcaat ctcaagggag gaaacaaaga tatcaaagca 1920

tcatgctttc aaatgtactc aaagctactc tagtgacttg gcttgaatag ctcccaagag 1980tcatgctttc aaatgtactc aaagctactc tagtgacttg gcttgaatag ctcccaagag 1980

gctacatcga taacaggcta gcactctcca aggaattaat ggacaacttc caaagtgcat 2040gctacatcga taacaggcta gcactctcca aggaattaat ggacaacttc caaagtgcat 2040

ggcctcgttc ggacaaccgg tacaatcttc aaaatggaag tagaagattg gtgaaagcat 2100ggcctcgttc ggacaaccgg tacaatcttc aaaatggaag tagaagattg gtgaaagcat 2100

atgcaactag tacaagctct tgatcgaaat ttgatgctac aggcctaact acttcgacga 2160atgcaactag tacaagctct tgatcgaaat ttgatgctac aggcctaact acttcgacga 2160

tgatcatggg gaaaagttct agtatcagaa tttcataaaa acaaaccaaa aacaattcat 2220tgatcatggg gaaaagttct agtatcagaa tttcataaaa acaaaccaaa aacaattcat 2220

gagttctaac acatgatcaa caactgaatg aatgtcgaag acacagtacg agataagttt 2280gagttctaac acatgatcaa caactgaatg aatgtcgaag acacagtacg agataagttt 2280

gacaattgaa accgtagata taacaataaa gataacattc atagagacaa caagggcagc 2340gacaattgaa accgtagata taacaataaa gataacattc atagagacaa caagggcagc 2340

ttatcggata agaagtgagg gaaagataac actatgataa gcactcgcat caaagaaggg 2400ttatcggata agaagtgagg gaaagataac actatgataa gcactcgcat caaagaaggg 2400

tggcaagaac aaatcattca attagcaact ctttgagcaa cacccatacc acctacatca 2460tggcaagaac aaatcattca attagcaact ctttgagcaa cacccatacc acctacatca 2460

taaatcataa gtgctctacc actaaatgca tgcaactcaa gaactttggc atcatcttag 2520taaatcataa gtgctctacc actaaatgca tgcaactcaa gaactttggc atcatcttag 2520

ctcggaagca agacaaaacc aaacagagtt gataaaaaat attaggaaaa atagaataat 2580ctcggaagca agacaaaacc aaacagagtt gataaaaaat attaggaaaa atagaataat 2580

ggagacttct agagggccac aaacatagtt aacctcatct tcaaaggagc atcttcctta 2640ggagacttct agagggccac aaacatagtt aacctcatct tcaaaggagc atcttcctta 2640

atacctaaga ggaagactaa acttaccctt ttgtgagatg atggttgttg aaccatcacc 2700atacctaaga ggaagactaa acttacccttttgtgagatg atggttgttg aaccatcacc 2700

tacaacatat atgtgatggt tcgagatccc aattcaattt ataagggagg attagtttct 2760tacaacatat atgtgatggt tcgagatccc aattcaattt ataagggagg attagtttct 2760

caaacatagg atgctatggt ctagtcctgg ccccgatggt ggcaggactt caacttagta 2820caaacatagg atgctatggt ctagtcctgg ccccgatggt ggcaggactt caacttagta 2820

aggaaggtga attaccaata tgttcaaaag gatggggtaa aaggaaggtg aattatgcaa 2880aggaaggtga attaccaata tgttcaaaag gatggggtaa aaggaaggtg aattatgcaa 2880

tctatttttc gcactttttc attaatcaaa acctatatgg ataaccaatc gttcatatgt 2940tctatttttc gcactttttc attaatcaaa acctatatgg ataaccaatc gttcatatgt 2940

gcaactaagg ttttgactaa gtgttgctat ctctaccgta aaaggagttt tgctacccca 3000gcaactaagg ttttgactaa gtgttgctat ctctaccgta aaaggagttt tgctacccca 3000

aacctatcaa ctagtctatg actaagctaa gaagataaat cacacaacca caagtaacaa 3060aacctatcaa ctagtctatg actaagctaa gaagataaat cacacaacca caagtaacaa 3060

tataaatgtg gaattttaaa tatggtagag atacaaactc tcgttgatgt gtcagtattt 3120tataaatgtg gaattttaaa tatggtagag atacaaactc tcgttgatgt gtcagtattt 3120

ttactggagt atcaagaaac gcgcaagctt cttactaatc cttcttagag cctcacgcaa 3180ttactggagt atcaagaaac gcgcaagctt cttactaatc cttcttagag cctcacgcaa 3180

ggctaagctc ccgctcaggt aaccctgtat agatacaaac cctaccaatg actatagtaa 3240ggctaagctc ccgctcaggt aaccctgtat agatacaaac cctaccaatg actatagtaa 3240

cttttatgaa gatataggga aacacacaag ttttacccta gttctcgttg gagcctctta 3300cttttatgaa gatataggga aacacacaag ttttacccta gttctcgttg gagcctctta 3300

taaacatgtc cacaagggga tgaagctaag agtcgagtaa gggtttgttt gatttcttta 3360taaacatgtc cacaagggga tgaagctaag agtcgagtaa gggtttgttt gatttcttta 3360

gtcttaatga ctaaaactaa gcaaagagct ttaattattg tgcaaattga ttacattatc 3420gtcttaatga ctaaaactaa gcaaagagct ttaattattg tgcaaattga ttacattatc 3420

cctaattaat gctatcttcg actactgttt acccacacgc agagctactg ttcgtgcgca 3480cctaattaat gctatcttcg actactgttt acccaacacgc agagctactg ttcgtgcgca 3480

ttcacaatgc tgcatgcgtg cacgttgctt tggggaggag cctacttcat gcgcgttggt 3540ttcacaatgc tgcatgcgtg cacgttgctt tggggagaggag cctacttcat gcgcgttggt 3540

tagggagggc atatgaagta aaaatgtcac tttatggtta gtttgacacc ctcatttttt 3600tagggagggc atatgaagta aaaatgtcac tttatggtta gtttgacacc ctcatttttt 3600

tcaagggatt gtattttcac aaaagaaatt aatttatttt tcttgaaaaa taggaatccc 3660tcaagggatt gtattttcac aaaagaaatt aatttatttt tcttgaaaaa taggaatccc 3660

ttagaaaaaa atagagttgt caaactaacc cttattcatt ttagtcactc ttttggtaat 3720ttagaaaaaa atagagttgt caaactaacc cttattcatt ttagtcactc ttttggtaat 3720

tagaggacta taatttagtt ggaggatttt agtcacactg tgttgattct ttagtgacta 3780tagaggacta taatttagtt ggaggatttt agtcacactg tgttgattct ttagtgacta 3780

aaaatgacta aaatttaatc aattaaatgt agtcacccaa accaaacaga gtcgcgcgtc 3840aaaatgacta aaatttaatc aattaaatgt agtcacccaa accaaacaga gtcgcgcgtc 3840

cgacgtgcct cctcaaccgg cgcgtgggag taggtctgga aaaaagctcg agctcgatga 3900cgacgtgcct cctcaaccgg cgcgtgggag taggtctgga aaaaagctcg agctcgatga 3900

gttggcttgg gctcacggta acttgggtcg gctcgacgct caaaacgagt ccaagtccta 3960gttggcttgg gctcacggta acttgggtcg gctcgacgct caaaacgagt ccaagtccta 3960

tttttgtggc tcgtgataag tgtgagctag ctcggctcgg ctcacgaacc gacaacaatt 4020tttttgtggc tcgtgataag tgtgagctag ctcggctcgg ctcacgaacc gacaacaatt 4020

tactacataa aattctgatt agcatataat gttagtacca aatatacaat tagtatatgt 4080tactacataa aattctgatt agcatataat gttagtacca aatatacaat tagtatatgt 4080

tatttgatat ttatatacaa aattaattta tttctatgtt atattagtac tataattatt 4140tatttgatat ttatatacaa aattaattta tttctatgtt atattagtac tataattatt 4140

tattaattta agagatgtaa tttgattatt tttgatattt tatgttataa tttgtaacgt 4200tattaattta agagatgtaa tttgattatt tttgatattt tatgttataa tttgtaacgt 4200

aagctggtgc ttgtggttag actctctact agtcgagttt tcacgctcgt caaaggaccg 4260aagctggtgc ttgtggttag actctctact agtcgagttt tcacgctcgt caaaggaccg 4260

agccgagacg aggcaagctc aacacattac cgagccgacc ggctcgtttc cgccacgtgg 4320agccgagacg aggcaagctc aacacattac cgagccgacc ggctcgtttc cgccacgtgg 4320

tagagcggca gcacccttcc cagatctcgt gtcccgcgcg ccgtgcgcac agccgcgcac 4380tagagcggca gcacccttcc cagatctcgt gtcccgcgcg ccgtgcgcac agccgcgcac 4380

acacacggac tgccgcgtcc gggcgcgatc cgttctcgcg aacacaccgg tcgtagccgt 4440acacacggac tgccgcgtcc gggcgcgatc cgttctcgcg aacacaccgg tcgtagccgt 4440

ccgtaatttg tactagtatg gcacgcggaa cacgagtcgg cgccagcacc ggcacgtcac 4500ccgtaatttg tactagtatg gcacgcggaa cacgagtcgg cgccagcacc ggcacgtcac 4500

catcggggcc gctggcccca tacgggcagc caattaataa atccttgctc tgcgacagac 4560catcggggcc gctggcccca tacgggcagc caattaataa atccttgctc tgcgacagac 4560

gcgcaggggc acgtcacgca gccgtagtcg atcggtgcac ggtgctcgcg cccccgttgc 4620gcgcaggggc acgtcacgca gccgtagtcg atcggtgcac ggtgctcgcg cccccgttgc 4620

agcgcgcagc tctcccgcgc tataaatgcc ccggctcggc ctcgctccca cagccacagc 4680agcgcgcagc tctcccgcgc tataaatgcc ccggctcggc ctcgctccca cagccacagc 4680

ctcacacaga caccaacgcc actgcactgc aaaagcaaga gcagctagct agtaaagatg 4740ctcacacaga caccaacgcc actgcactgc aaaagcaaga gcagctagct agtaaagatg 4740

ctgagcggga tcatcgacgg gctgacgggg gcgaacaagc atgcgcggct caagggcacg 4800ctgagcggga tcatcgacgg gctgacgggg gcgaacaagc atgcgcggct caagggcacg 4800

gtggtgctca tgcgcaagaa cgtgctggac ctcaacgact tcggcgccac cgtcgttgac 4860gtggtgctca tgcgcaagaa cgtgctggac ctcaacgact tcggcgccac cgtcgttgac 4860

agcatcagcg agttcctcgg caagggggtc acctgccagc tcatcagctc caccctcgtc 4920agcatcagcg agttcctcgg caagggggtc acctgccagc tcatcagctc caccctcgtc 4920

gacgccagtg agtaccgcgc cgcgccgccg gcacctctcc gatctgcgct tccccatgtc 4980gacgccagtg agtaccgcgc cgcgccgccg gcacctctcc gatctgcgct tccccatgtc 4980

gatcgatctc gatctctcta ggctctagag ctatagctct ctcggccccc actttttacc 5040gatcgatctc gatctctcta ggctctagag ctatagctct ctcggccccc actttttacc 5040

tttgcaagca ttttccctgc atgcgaaaca agcgatagtt tactatttgg gcggccatgc 5100tttgcaagca ttttccctgc atgcgaaaca agcgatagtt tactatttgg gcggccatgc 5100

tgctgctgct tcggctacct tgcctccgtc atctttgacg ggacatggaa agaaagaaag 5160tgctgctgct tcggctacct tgcctccgtc atctttgacg ggacatggaa agaaagaaag 5160

aatagagaga gagacagaga gagagagaga gcaaacaccg agaaaaagac agcaaagcta 5220aatagagaga gagacagaga gagagagaga gcaaacaccg agaaaaagac agcaaagcta 5220

gttgtagcct gggcgcagaa cacagcacca gatgctggct agctcgtgac aaagtaaaaa 5280gttgtagcct gggcgcagaa cacagcacca gatgctggct agctcgtgac aaagtaaaaa 5280

aagagaggaa cgaacacagt agtaccaaga gatcagggac gagacctttc tactttgaac 5340aagagaggaa cgaacacagt agtaccaaga gatcagggac gagacctttc tactttgaac 5340

tggattatat attggattct ttatcagtaa cttactgctg ctagtatacc cctaccctag 5400tggattatat attggattct ttatcagtaa cttactgctg ctagtatacc cctaccctag 5400

tctcggggcg acgtgcctgc gtgcatgccc gacgcgtacg aaacacatcg acggactcac 5460tctcggggcg acgtgcctgc gtgcatgccc gacgcgtacg aaacacatcg acggactcac 5460

atgggccacc gcgcgcgcgc gtgcctgctt taactttcgc tgtgcagaca acggcaaccg 5520atgggccacc gcgcgcgcgc gtgcctgctt taactttcgc tgtgcagaca acggcaaccg 5520

cgggcgggtc ggggcggagg cgaacctgga gcagtggctg acgagcctgc cgtcgctgac 5580cgggcgggtc ggggcggagg cgaacctgga gcagtggctg acgagcctgc cgtcgctgac 5580

gaccggcgag tccaagttcg gcgtcacgtt cgactgggag gtggagaagc tgggagtgcc 5640gaccggcgag tccaagttcg gcgtcacgtt cgactgggag gtggagaagc tgggagtgcc 5640

gggggccgtc gtcgtcaaga acaaccacgc cgccgagttc ttcctcaaga ccatcaccct 5700gggggccgtc gtcgtcaaga acaaccacgc cgccgagttc ttcctcaaga ccatcaccct 5700

cgacgacgtg cccggccgcg gcgccgtcac cttcgtcgcc aactcctggg tctaccccgc 5760cgacgacgtg cccggccgcg gcgccgtcac cttcgtcgcc aactcctggg tctaccccgc 5760

gggcaagtac cgctacaacc gcgtcttctt ctccaacgat gtgagtcctt tctcgataga 5820gggcaagtac cgctacaacc gcgtcttctt ctccaacgat gtgagtcctt tctcgataga 5820

tcattatgtt tgtttgttta ttggtatcat gtagctagcc gccatgtcgt cagttggagt 5880tcattatgtt tgtttgttta ttggtatcat gtagctagcc gccatgtcgt cagttggagt 5880

gcagtaggta ggaaaaagga cgacatggga tgggagtggt taagaaaatc catgcaagtg 5940gcagtaggta ggaaaaagga cgacatggga tgggagtggt taagaaaatc catgcaagtg 5940

ggactagtgt gtaactggta gtatagctga agaatctagt ggtagaatga tcttgtacgt 6000ggactagtgt gtaactggta gtatagctga agaatctagt ggtagaatga tcttgtacgt 6000

gaataatgtt tctgacgctg agcgctgagg ctatccgcaa ccgttaaccc taaatttttc 6060gaataatgtt tctgacgctg agcgctgagg ctatccgcaa ccgttaaccc taaatttttc 6060

cctctatatc attttttccc ctattttcct ccctattttt tcatctcccg cagcggttcc 6120cctctatatc attttttccc ctattttcct ccctattttt tcatctcccg cagcggttcc 6120

ccctaaatac tccccctata tcccactacc actataaaat attattttct ataccaatta 6180ccctaaatac tccccctata tccccactacc actataaaat attattttct ataccaatta 6180

tcaatttttt atctactaac aattactcgt ggacccacag cacagtgttt agggtgatga 6240tcaatttttt atctactaac aattactcgt ggacccacag cacagtgttt agggtgatga 6240

acagtgacac gctagatctg aagggagaga gaaggggacc gacacgtagg gagcctgtag 6300acagtgacac gctagatctg aagggagaga gaaggggacc gacacgtagg gagcctgtag 6300

agggcaccgc tgcggccgta gggtgctccc tacgcgccgc atacaagggg agggggggga 6360agggcaccgc tgcggccgta gggtgctccc tacgcgccgc atacaagggg agggggggga 6360

gaggcagcgg taaccgctgc gcacagcctg agggcgaggc atgtgagttc accacgtgag 6420gaggcagcgg taaccgctgc gcacagcctg agggcgaggc atgtgagttc accacgtgag 6420

tagcagcaaa aggaaacaac ccttcttcac ccggctatca tctaacgtat cgccccggga 6480tagcagcaaa aggaaacaac ccttcttcac ccggctatca tctaacgtat cgccccggga 6480

gaatcaataa ctttaacgag atgacgaaaa gtcaaaaata aagtcgtgtg atggccatga 6540gaatcaataa ctttaacgag atgacgaaaa gtcaaaaata aagtcgtgtg atggccatga 6540

aagtcagtca agcaaatcag ctgctaacac gtgtccctta tctacaggtg taagagagta 6600aagtcagtca agcaaatcag ctgctaacac gtgtccctta tctacaggtg taagagagta 6600

gagtcttgtc aatcaacctg ggttgttttc tatctgcgtt tt 6642gagtcttgtc aatcaacctg ggttgttttc tatctgcgtt tt 6642

Claims (7)

1. A key DNA for regulating and controlling corn ear rot resistance is characterized in that the polynucleotide is shown as SEQ ID No. 1.
2. The mutant of the key DNA according to claim 1, wherein the polynucleotide sequence is shown in SEQ ID No.2 or SEQ ID No. 14.
3. The critical DNA of claim 1 or the mutant of the critical DNA of claim 2 is in regulationZmLOX3The application of the gene in the expression level of corn or the regulation of the corn cob rot resistance; the saidZmLOX3The amino acid sequence of the protein coded by the gene is shown as SEQ ID No. 13.
4. A method of reducing the risk of corn for developing or increasing resistance to ear rot comprising: at the position ofZmLOX3A fragment of 151bp shown in SEQ ID No.3 is deleted in a gene promoter region Indel 151; or in the presence ofZmLOX3The second intron Indel363 of the gene is inserted with the base fragment shown in SEQ ID No.4 or SEQ ID No. 5; or in the presence ofZmLOX3151bp fragment shown in SEQ ID No.3 deleted in gene promoter region Indel151 and its use inZmLOX3The second intron Indel363 of the gene is inserted with the base fragment shown in SEQ ID No.4 or SEQ ID No. 5; the saidZmLOX3The amino acid sequence of the protein coded by the gene is shown as SEQ ID No. 13.
Indel151 or Indel363 asZmLOX3The application of the molecular marker expressed by the genes in corn ears and kernels; wherein the DNA sequence of Indel151 is shown as SEQ ID No.3, and the DNA sequence of Indel363 is shown as SEQ ID No.4 or SEQ ID No. 5; the saidZmLOX3The amino acid sequence of the protein coded by the gene is shown as SEQ ID No. 13.
6. Indel151 deleted Agents are regulatedZmLOX3Gene expression in corn or regulation of corn resistanceThe application of the corn with spike rot resistance in cultivating new varieties of corn with spike rot resistance; or Indel363 is regulatingZmLOX3The application of the gene in the expression quantity of corn or in regulating and controlling the corn spike rot resistance and cultivating new corn varieties with spike rot resistance; wherein the DNA sequence of Indel151 is shown as SEQ ID No.3, and the DNA sequence of Indel363 is shown as SEQ ID No.4 or SEQ ID No. 5; said controllingZmLOX3The expression level of the gene in corn is reducedZmLOX3The expression level of the gene in corn; the regulation of the corn ear rot resistance is to improve the corn ear rot resistance; the saidZmLOX3The amino acid sequence of the protein coded by the gene is shown as SEQ ID No. 13.
7. A method for detecting whether Indel151 or Indel363 exist in corn materials by using a detection primer, which is characterized in that the DNA sequence of Indel151 is shown as SEQ ID No.3, and the DNA sequence of Indel363 is shown as SEQ ID No.4 or SEQ ID No. 5; wherein, the nucleotide sequences of the detection primers for detecting whether Indel151 exists in the corn material are respectively shown in SEQ ID No.6 and SEQ ID No. 7; the nucleotide sequences of the detection primers used to detect whether Indel363 is present in corn material are shown as SEQ ID No.8 and SEQ ID No.9, respectively.
CN202111065285.3A 2021-09-12 2021-09-12 DNA sequence for regulating and controlling corn ear rot resistance, mutant, molecular marker and application thereof Active CN113980919B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111065285.3A CN113980919B (en) 2021-09-12 2021-09-12 DNA sequence for regulating and controlling corn ear rot resistance, mutant, molecular marker and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111065285.3A CN113980919B (en) 2021-09-12 2021-09-12 DNA sequence for regulating and controlling corn ear rot resistance, mutant, molecular marker and application thereof

Publications (2)

Publication Number Publication Date
CN113980919A CN113980919A (en) 2022-01-28
CN113980919B true CN113980919B (en) 2024-03-01

Family

ID=79735644

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111065285.3A Active CN113980919B (en) 2021-09-12 2021-09-12 DNA sequence for regulating and controlling corn ear rot resistance, mutant, molecular marker and application thereof

Country Status (1)

Country Link
CN (1) CN113980919B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115491380B (en) * 2022-06-15 2024-05-17 山东大学 Plant lipoxygenase gene LOX and its application in plant broad-spectrum disease resistance
CN115125329A (en) * 2022-08-30 2022-09-30 河南农业大学 Genome-wide predictive marker group and application of maize ear rot disease

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Disruption of a Maize 9-Lipoxygenase Results in Increased Resistance to Fungal Pathogens and Reduced Levels of Contamination with Mycotoxin Fumonisin;Xiquan Gao等;MPMI;第20卷(第8期);摘要,第922页第1段 *

Also Published As

Publication number Publication date
CN113980919A (en) 2022-01-28

Similar Documents

Publication Publication Date Title
AU2016216734B2 (en) Maize cytoplasmic male sterility (CMS) C-type restorer RF4 gene, molecular markers and their use
CN111118030B (en) DNA sequence regulating corn leaf angle and its mutants, molecular markers, detection primers and applications
CN110791525B (en) Method for knocking out rice tillering number regulation gene OsFW L4 to increase rice tillering number and yield
CN110079534B (en) Gene, promoter and application of regulating maize flowering period
AU2013362921B2 (en) Plant regulatory elements and uses thereof
CN110218810B (en) Promoter for regulating and controlling maize tassel configuration, molecular marker and application thereof
CN113121664A (en) Method for identifying, selecting and generating disease resistant crops
CN102702337A (en) Rice blast disease-resisting protein, coding gene and application thereof
CN113980919B (en) DNA sequence for regulating and controlling corn ear rot resistance, mutant, molecular marker and application thereof
KR100990370B1 (en) Genes and their Uses to Promote Resistance to Rice Blasts
CN101484465A (en) Maize genes for controlling plant growth and organ size and their use in improving crop plants
CN104072596A (en) Rice blast resisting protein of rice, coding gene and application thereof
CN102041262B (en) Rice blast resistance gene Pik-p and application thereof
JP3051874B2 (en) How to make plants dwarf
CN102732531B (en) A rice blast resistance gene RMg7 or RMg8 or RMg9 and its application
CN109295071B (en) A rice flower organ development regulatory gene PEH1 and its encoded protein and application
CN115873824B (en) Application of Rice RSB11 Gene in Resistance to Sheath Blight
CN106939039A (en) The albumen related to paddy rice grain length and seed holding and its encoding gene and application
CN114292861A (en) Rice Immunonegative Regulator Protein OsPHD1 and Its Mutants and Applications
CN114539371A (en) Wheat powdery mildew resistance-related proteins MlWE18 and MlIW172 and their applications
JP2002524044A (en) Plant disease resistance signaling gene: Materials and methods related thereto
CN114540375B (en) Genes, molecular markers and their applications regulating maize flowering period and photoperiod adaptability
CN114350836B (en) QTL qHD1b for promoting rice heading and application thereof
CN114644701B (en) Use of proteins derived from corn and related biomaterials
CN108892712B (en) Application of protein TabZIP60 in regulation and control of plant yield

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant