[go: up one dir, main page]

CN113972366B - A kind of positive electrode sheet of secondary battery and secondary battery - Google Patents

A kind of positive electrode sheet of secondary battery and secondary battery Download PDF

Info

Publication number
CN113972366B
CN113972366B CN202111194256.7A CN202111194256A CN113972366B CN 113972366 B CN113972366 B CN 113972366B CN 202111194256 A CN202111194256 A CN 202111194256A CN 113972366 B CN113972366 B CN 113972366B
Authority
CN
China
Prior art keywords
positive electrode
material layer
phosphate
secondary battery
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111194256.7A
Other languages
Chinese (zh)
Other versions
CN113972366A (en
Inventor
钱韫娴
胡时光
邓永红
李红梅
向晓霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Capchem Technology Co Ltd
Original Assignee
Shenzhen Capchem Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Capchem Technology Co Ltd filed Critical Shenzhen Capchem Technology Co Ltd
Priority to CN202111194256.7A priority Critical patent/CN113972366B/en
Priority to PCT/CN2021/141755 priority patent/WO2023060770A1/en
Publication of CN113972366A publication Critical patent/CN113972366A/en
Application granted granted Critical
Publication of CN113972366B publication Critical patent/CN113972366B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

为克服现有二次电池存在安全性能不足的问题,本发明提供了一种二次电池正极片,包括正极材料层,所述正极材料层包括正极活性材料和结构式1所示的化合物:所述正极活性材料包括M元素,M元素选自Mn和Al中的一种或两种,所述正极材料层满足以下条件:0.05≤p·u/v≤15其中,u为正极材料层中磷元素的质量百分含量,单位为wt%;v为正极材料层中M元素的质量百分含量,单位为wt%;p为正极材料层的单面面密度,单位为mg/cm2。同时,本发明还公开了包括上述正极片的二次电池。本发明将结构式1所示的化合物、Mn和Al元素以及单面面密度的因素合理量化,得到了一种能量密度高且安全性能优异的二次电池。

In order to overcome the problem of insufficient safety performance of existing secondary batteries, the present invention provides a secondary battery positive electrode sheet, which includes a positive electrode material layer. The positive electrode material layer includes a positive electrode active material and a compound represented by structural formula 1: The positive electrode active material includes M element, and the M element is selected from one or two types of Mn and Al. The positive electrode material layer satisfies the following conditions: 0.05≤p·u/v≤15, where u is the positive electrode material layer. The mass percentage content of phosphorus element, unit is wt%; v is the mass percentage content of M element in the cathode material layer, unit is wt%; p is the single surface density of the cathode material layer, unit is mg/cm 2 . At the same time, the invention also discloses a secondary battery including the above-mentioned positive electrode sheet. The present invention rationally quantifies the factors of the compound shown in Structural Formula 1, Mn and Al elements, and single surface density, and obtains a secondary battery with high energy density and excellent safety performance.

Description

一种二次电池正极片及二次电池A secondary battery positive electrode sheet and secondary battery

技术领域Technical Field

本发明属于储能电子件技术领域,具体涉及一种二次电池正极片及二次电池。The invention belongs to the technical field of energy storage electronic components, and in particular relates to a secondary battery positive electrode sheet and a secondary battery.

背景技术Background Art

锂离子电池因为具有工作电压高,循环寿命长,能量密度大,无记忆效应等优势,自1991年投入市场后,迅速实现了在移动通讯,笔记本电脑等领域的广泛应用。锂离子电池充放电的过程就是锂离子在正,负极脱嵌与嵌入的过程。其中由正极材料制备而成的正极极片是锂离子电池中锂离子的唯一(或主要)提供者,正极材料种类也决定了锂离子电池的能量密度的高低。Since lithium-ion batteries were put on the market in 1991, they have been widely used in mobile communications, laptops and other fields because of their advantages such as high operating voltage, long cycle life, high energy density and no memory effect. The charging and discharging process of lithium-ion batteries is the process of lithium ions being embedded and de-embedded in the positive and negative electrodes. The positive electrode sheet made of positive electrode materials is the only (or main) provider of lithium ions in lithium-ion batteries. The type of positive electrode material also determines the energy density of lithium-ion batteries.

随着锂离子二次电池的应用越来越广泛,人们对锂离子二次电池的安全性能提出了更高的要求。采用三元体系正极活性物质的锂离子二次电池放电容量大、能量密度高,是非常有潜力的锂离子二次电池,但该种锂离子二次电池的安全性能较差。随着人们对锂离子二次电池的性能提出了越来越高的要求,除了具备优异的高温存储及循环性能外,如何使锂离子二次电池兼具较高的安全性能成为亟待攻克的技术难题。尤其是,锂离子二次电池作为电动汽车或电子产品的电源,其在不同条件下的安全性直接关系到操作者的生命安全。As lithium-ion secondary batteries are increasingly used, people have put forward higher requirements for the safety performance of lithium-ion secondary batteries. Lithium-ion secondary batteries using ternary system positive electrode active materials have large discharge capacity and high energy density, and are very potential lithium-ion secondary batteries, but the safety performance of this type of lithium-ion secondary battery is poor. As people put forward higher and higher requirements for the performance of lithium-ion secondary batteries, in addition to having excellent high-temperature storage and cycle performance, how to make lithium-ion secondary batteries have high safety performance has become a technical problem that needs to be overcome. In particular, as a power source for electric vehicles or electronic products, the safety of lithium-ion secondary batteries under different conditions is directly related to the life safety of the operator.

发明内容Summary of the invention

针对现有锂离子二次电池存在安全性能不足的问题,本发明提供了一种二次电池正极片及二次电池。In view of the problem that existing lithium-ion secondary batteries have insufficient safety performance, the present invention provides a secondary battery positive electrode sheet and a secondary battery.

本发明解决上述技术问题所采用的技术方案如下:The technical solution adopted by the present invention to solve the above technical problems is as follows:

一方面,本发明提供了一种二次电池正极片,包括正极材料层,所述正极材料层包括正极活性材料和结构式1所示的化合物:In one aspect, the present invention provides a secondary battery positive electrode sheet, comprising a positive electrode material layer, wherein the positive electrode material layer comprises a positive electrode active material and a compound shown in structural formula 1:

其中,R1、R2、R3各自独立地选自1-5个碳原子的烷基、1-5个碳原子的氟代烷基、1-5个碳原子的醚基、1-5个碳原子的氟代醚基、2-5个碳原子的不饱和烃基,且R1、R2、R3中的至少一个为2-5个碳原子的不饱和烃基;wherein R 1 , R 2 , and R 3 are each independently selected from an alkyl group of 1 to 5 carbon atoms, a fluoroalkyl group of 1 to 5 carbon atoms, an ether group of 1 to 5 carbon atoms, a fluoroether group of 1 to 5 carbon atoms, and an unsaturated hydrocarbon group of 2 to 5 carbon atoms, and at least one of R 1 , R 2 , and R 3 is an unsaturated hydrocarbon group of 2 to 5 carbon atoms;

所述正极活性材料包括M元素,M元素选自Mn和Al中的一种或两种;The positive electrode active material includes an M element, and the M element is selected from one or both of Mn and Al;

所述正极材料层满足以下条件:The positive electrode material layer meets the following conditions:

0.05≤p·u/v≤150.05≤p·u/v≤15

其中,u为正极材料层中磷元素的质量百分含量,单位为wt%;Wherein, u is the mass percentage of phosphorus in the positive electrode material layer, in wt%;

v为正极材料层中M元素的质量百分含量,单位为wt%;v is the mass percentage of the M element in the positive electrode material layer, in wt%;

p为正极材料层的单面面密度,单位为mg/cm2p is the single-surface density of the positive electrode material layer, and its unit is mg/cm 2 .

可选的,所述正极材料层满足以下条件:Optionally, the positive electrode material layer meets the following conditions:

0.1≤p·u/v≤10;0.1≤p·u/v≤10;

优选的,所述正极材料层满足以下条件:Preferably, the positive electrode material layer meets the following conditions:

0.5≤p·u/v≤5。0.5≤p·u/v≤5.

可选的,所述结构式1所示的化合物包括磷酸三炔丙酯、二炔丙基甲基磷酸酯、二炔丙基氟代甲基磷酸酯、二炔丙基甲氧基甲基磷酸酯、二炔丙基乙基磷酸酯、二炔丙基丙基磷酸酯、三氟甲基二炔丙基磷酸酯、二炔丙基2,2,2-三氟乙基磷酸酯、二炔丙基3,3,3-三氟丙基磷酸酯、六氟异丙基二炔丙基磷酸酯、磷酸三烯丙酯、二烯丙基甲基磷酸酯、二烯丙基乙基磷酸酯、二烯丙基丙基磷酸酯、三氟甲基二烯丙基磷酸酯、2,2,2-三氟乙基二烯丙基磷酸酯、二炔丙基甲醚磷酸酯、二炔丙基氟代甲醚磷酸酯、二烯丙基3,3,3-三氟丙基磷酸酯或二烯丙基六氟异丙基磷酸酯中的至少一种。Optionally, the compound shown in structural formula 1 includes at least one of tripropargyl phosphate, dipropargyl methyl phosphate, dipropargyl fluoromethyl phosphate, dipropargyl methoxymethyl phosphate, dipropargyl ethyl phosphate, dipropargyl propyl phosphate, trifluoromethyl dipropargyl phosphate, dipropargyl 2,2,2-trifluoroethyl phosphate, dipropargyl 3,3,3-trifluoropropyl phosphate, hexafluoroisopropyl dipropargyl phosphate, triallyl phosphate, diallyl methyl phosphate, diallyl ethyl phosphate, diallyl propyl phosphate, trifluoromethyl diallyl phosphate, 2,2,2-trifluoroethyl diallyl phosphate, dipropargyl methyl ether phosphate, dipropargyl fluoromethyl ether phosphate, diallyl 3,3,3-trifluoropropyl phosphate or diallyl hexafluoroisopropyl phosphate.

可选的,所述正极材料层表面通过X-射线光电子能谱法检测,当在284.5eV处获得碳的1s峰时,在130~140eV的区域出现磷元素的特征峰。Optionally, the surface of the positive electrode material layer is detected by X-ray photoelectron spectroscopy, and when the 1s peak of carbon is obtained at 284.5 eV, a characteristic peak of phosphorus element appears in the region of 130 to 140 eV.

可选的,所述正极材料层中,磷元素的质量百分含量u为0.1wt%~3wt%;Optionally, in the positive electrode material layer, the mass percentage content u of phosphorus element is 0.1wt% to 3wt%;

优选的,所述正极材料层中,磷元素的质量百分含量u为0.1wt%~2wt%。Preferably, in the positive electrode material layer, the mass percentage content u of phosphorus element is 0.1wt% to 2wt%.

可选的,所述正极材料层中,M元素的质量百分含量v为3wt%~60wt%;Optionally, in the positive electrode material layer, the mass percentage content v of the M element is 3wt% to 60wt%;

优选的,所述正极材料层中,M元素的质量百分含量v为3wt%~30wt%。Preferably, in the positive electrode material layer, the mass percentage v of the M element is 3wt% to 30wt%.

可选的,所述正极材料层的单面面密度p为10~30mg/cm2Optionally, the single-surface density p of the positive electrode material layer is 10 to 30 mg/cm 2 ;

优选的,所述正极材料层的单面面密度p为15~20mg/cm2Preferably, the single surface density p of the positive electrode material layer is 15-20 mg/cm 2 .

可选的,所述结构式1所示的化合物形成于所述正极材料层的表面,或所述结构式1所示的化合物掺混于所述正极材料层的内部。Optionally, the compound represented by structural formula 1 is formed on the surface of the positive electrode material layer, or the compound represented by structural formula 1 is mixed in the interior of the positive electrode material layer.

另一方面,本发明提供了一种二次电池,包括负极片、非水电解液以及如上所述的二次电池正极片,所述非水电解液包括非水有机溶剂,所述非水有机溶剂包括环状碳酸酯。On the other hand, the present invention provides a secondary battery, comprising a negative electrode, a non-aqueous electrolyte and the secondary battery positive electrode as described above, wherein the non-aqueous electrolyte comprises a non-aqueous organic solvent, and the non-aqueous organic solvent comprises a cyclic carbonate.

可选的,所述非水电解液还包括有锂盐,所述锂盐包括LiPF6、LiBOB、LiDFOB、LiPO2F2、LiBF4、LiSbF6、LiAsF6、LiN(SO2CF3)2、LiN(SO2C2F5)2、LiC(SO2CF3)3、LiN(SO2F)2、LiClO4、LiAlCl4、LiCF3SO3、Li2B10Cl10、低级脂肪族羧酸锂盐中的一种或多种。Optionally, the non-aqueous electrolyte also includes a lithium salt, and the lithium salt includes one or more of LiPF6 , LiBOB , LiDFOB, LiPO2F2, LiBF4 , LiSbF6, LiAsF6 , LiN( SO2CF3 ) 2 , LiN( SO2C2F5 ) 2 , LiC( SO2CF3 ) , LiN ( SO2F) 2 , LiClO4 , LiAlCl4 , LiCF3SO3 , Li2B10Cl10 , and lower aliphatic carboxylic acid lithium salts.

根据本发明提供的正极,在正极材料层中加入了结构式1所示的化合物,同时合理设计正极材料层中磷元素的质量百分含量u、Mn和/或Al元素的质量百分含量v以及正极材料层的单面面密度p之间的关系,当正极材料层满足条件0.05≤p·u/v≤15时,能够充分发挥结构式1所示的化合物与正极活性材料的元素选择和单面面密度之间的协同效应,使正极活性材料具有较高的结构稳定性,正极材料层表面非水电解液的副反应明显减少,尤其是,电池的抗热冲击性能也得到了显著的提高,电池安全性能提升幅度较大。According to the positive electrode provided by the present invention, the compound shown in structural formula 1 is added to the positive electrode material layer, and the relationship between the mass percentage content u of phosphorus element, the mass percentage content v of Mn and/or Al element and the single-surface surface density p of the positive electrode material layer is reasonably designed. When the positive electrode material layer satisfies the condition 0.05≤p·u/v≤15, the synergistic effect between the compound shown in structural formula 1 and the element selection and single-surface surface density of the positive electrode active material can be fully exerted, so that the positive electrode active material has a higher structural stability, the side reaction of the non-aqueous electrolyte on the surface of the positive electrode material layer is significantly reduced, and in particular, the thermal shock resistance of the battery is also significantly improved, and the battery safety performance is greatly improved.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1是本发明实施例3提供的二次电池中正极片XPS图谱。FIG. 1 is an XPS spectrum of the positive electrode sheet in the secondary battery provided in Example 3 of the present invention.

具体实施方式DETAILED DESCRIPTION

为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the technical problems, technical solutions and beneficial effects solved by the present invention more clearly understood, the present invention is further described in detail below in conjunction with the embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention and are not used to limit the present invention.

本发明实施例提供了一种二次电池正极片,包括正极材料层,所述正极材料层包括正极活性材料和结构式1所示的化合物:An embodiment of the present invention provides a secondary battery positive electrode sheet, comprising a positive electrode material layer, wherein the positive electrode material layer comprises a positive electrode active material and a compound shown in structural formula 1:

其中,R1、R2、R3各自独立地选自1-5个碳原子的烷基、1-5个碳原子的氟代烷基、1-5个碳原子的醚基、1-5个碳原子的氟代醚基、2-5个碳原子的不饱和烃基,且R1、R2、R3中的至少一个为2-5个碳原子的不饱和烃基;wherein R 1 , R 2 , and R 3 are each independently selected from an alkyl group of 1 to 5 carbon atoms, a fluoroalkyl group of 1 to 5 carbon atoms, an ether group of 1 to 5 carbon atoms, a fluoroether group of 1 to 5 carbon atoms, and an unsaturated hydrocarbon group of 2 to 5 carbon atoms, and at least one of R 1 , R 2 , and R 3 is an unsaturated hydrocarbon group of 2 to 5 carbon atoms;

所述正极活性材料包括M元素,M元素选自Mn和Al中的一种或多种,所述正极材料层满足以下条件:The positive electrode active material includes an M element, and the M element is selected from one or more of Mn and Al. The positive electrode material layer meets the following conditions:

0.05≤p·u/v≤150.05≤p·u/v≤15

其中,u为正极材料层中磷元素的质量百分含量,单位为wt%;Wherein, u is the mass percentage of phosphorus in the positive electrode material layer, in wt%;

v为正极材料层中M元素的质量百分含量,单位为wt%;v is the mass percentage of the M element in the positive electrode material layer, in wt%;

p为正极材料层的单面面密度,单位为mg/cm2p is the single-surface density of the positive electrode material layer, and its unit is mg/cm 2 .

在本发明中,在正极材料层中加入结构式1所示的化合物,由于结构式1所示的化合物为特定结构的不饱和磷酸酯,其覆盖于正极活性材料的表面,对于正极材料层的阻燃性能具有较大的提升,同时,发明人发现,结构式1所示的化合物与不同正极活性材料以及不同单面面密度的正极材料层的配合效果具有较大差异性,尤其是,结构式1所示的化合物与Mn和Al元素具有较好的亲和效果,两者配合对于正极活性材料在长期循环中的稳定性具有一定的提升作用,另外,结构式1所示的化合物不可避免地会占据正极活性材料的碱金属离子嵌入脱出位点,在正极材料层的单面面密度过高或过低的条件下尤其明显,推测是加入结构式1所示的化合物后,其与Mn和Al元素以及单面面密度的相互配合影响正极材料层中碱金属离子的迁移,对电池内阻和高倍率充放电性能有着直接的影响,同时,结构式1所示的化合物,正极活性材料的选择以及正极材料层的单面面密度也影响着正极材料层表面钝化膜的稳定性,因此,发明人通过设计实验综合考量,总结了0.05≤p·u/v的关系式,将结构式1所示的化合物、Mn和Al元素以及单面面密度的因素合理量化,得到了一种能量密度高且安全性能优异的电池。In the present invention, the compound shown in structural formula 1 is added to the positive electrode material layer. Since the compound shown in structural formula 1 is an unsaturated phosphate ester with a specific structure, it covers the surface of the positive electrode active material, which greatly improves the flame retardant performance of the positive electrode material layer. At the same time, the inventors found that the compound shown in structural formula 1 has a large difference in the coordination effect with different positive electrode active materials and positive electrode material layers with different single-sided surface densities. In particular, the compound shown in structural formula 1 has a good affinity with Mn and Al elements, and the coordination of the two has a certain improvement effect on the stability of the positive electrode active material in long-term cycles. In addition, the compound shown in structural formula 1 will inevitably occupy the alkali metal ion insertion and extraction sites of the positive electrode active material. This is particularly evident when the single-surface surface density of the positive electrode material layer is too high or too low. It is speculated that after the compound shown in structural formula 1 is added, its interaction with the Mn and Al elements and the single-surface surface density affects the migration of alkali metal ions in the positive electrode material layer, and has a direct impact on the internal resistance and high-rate charge and discharge performance of the battery. At the same time, the compound shown in structural formula 1, the selection of the positive electrode active material and the single-surface surface density of the positive electrode material layer also affect the stability of the passivation film on the surface of the positive electrode material layer. Therefore, the inventors comprehensively considered the design of experiments and summarized the relationship of 0.05≤p·u/v, and rationally quantified the factors of the compound shown in structural formula 1, the Mn and Al elements and the single-surface surface density, thereby obtaining a battery with high energy density and excellent safety performance.

在优选实施例中,所述正极材料层满足以下条件:In a preferred embodiment, the positive electrode material layer satisfies the following conditions:

0.1≤p·u/v≤10。0.1≤p·u/v≤10.

在更优选的实施例中,所述正极材料层满足以下条件:In a more preferred embodiment, the positive electrode material layer satisfies the following conditions:

0.5≤p·u/v≤5。0.5≤p·u/v≤5.

当正极材料层中磷元素的质量百分含量u、Mn和/或Al元素的质量百分含量v以及正极材料层的单面面密度p处于上述关系范围中时,能够进一步改善电池的抗热冲击性能。When the mass percentage u of phosphorus element, the mass percentage v of Mn and/or Al element in the positive electrode material layer and the single surface density p of the positive electrode material layer are within the above relationship range, the thermal shock resistance of the battery can be further improved.

需要说明的是,以上关系式中,正极材料层中磷元素仅表示来源于结构式1所示化合物的磷元素,正极材料层中M元素仅表示来源于正极活性材料的Mn和/或Al元素。It should be noted that in the above relationship, the phosphorus element in the positive electrode material layer only represents the phosphorus element derived from the compound shown in Structural Formula 1, and the M element in the positive electrode material layer only represents the Mn and/or Al element derived from the positive electrode active material.

在本发明中,当正极活性材料仅含有Mn元素时,正极材料层中M元素的质量百分含量指代Mn元素的质量百分含量;当正极活性材料仅含有Al元素时,正极材料层中M元素的质量百分含量指代Al元素的质量百分含量;当正极活性材料同时含有Al和Mn元素时,正极材料层中M元素的质量百分含量指代Al元素和Mn元素的质量百分含量总和。In the present invention, when the positive electrode active material contains only Mn element, the mass percentage of M element in the positive electrode material layer refers to the mass percentage of Mn element; when the positive electrode active material contains only Al element, the mass percentage of M element in the positive electrode material layer refers to the mass percentage of Al element; when the positive electrode active material contains both Al and Mn elements, the mass percentage of M element in the positive electrode material layer refers to the sum of the mass percentages of Al element and Mn element.

在本发明的描述中,术语“正极材料层的单面面密度”指的是单位面积的正极单面上正极材料层的涂布重量,涂布重量测试方法可采用如下方式:取集流体箔材30片,其中每一片的面积均为S1,分别称其重量,取其平均值,记为W1;在每一片集流体箔材的单面涂覆相同重量的浆料,涂覆均匀后,在120℃下干燥1小时,经检测基本不含溶剂后,分别对干燥后的单面涂覆浆料的集流体箔材称取重量,取其平均值,记为W2;则可得到位于集流体上的单面的活性物质层的面密度W=(W2-W1)/S1。In the description of the present invention, the term "single-sided surface density of the positive electrode material layer" refers to the coating weight of the positive electrode material layer on a single side of the positive electrode per unit area. The coating weight test method can be adopted as follows: take 30 pieces of current collector foil, each of which has an area of S1, weigh them respectively, and take the average value, which is recorded as W1; coat the same weight of slurry on a single side of each piece of current collector foil, and after coating evenly, dry it at 120°C for 1 hour. After testing to find that it is basically free of solvent, weigh the current collector foil coated with slurry on a single side after drying, and take the average value, which is recorded as W2; then the surface density of the single-sided active material layer on the current collector can be obtained as W=(W2-W1)/S1.

在本发明中,1-5个碳原子的烷基可选自例如甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、正戊基、异戊基、仲戊基或新戊基;1-5个碳原子的氟代烷基选自该1-5个碳原子的烷基中的一个或多个氢元素被氟元素取代所得的基团。In the present invention, the alkyl group of 1-5 carbon atoms can be selected from, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl or neopentyl; the fluoroalkyl group of 1-5 carbon atoms is selected from the group obtained by replacing one or more hydrogen elements in the alkyl group of 1-5 carbon atoms with fluorine elements.

2-5个碳原子的不饱和烃基可选自例如乙烯基、丙烯基、烯丙基、丁烯基、戊烯基、甲基乙烯基、甲基烯丙基、乙炔基、丙炔基、炔丙基、丁炔基、戊炔基。The unsaturated hydrocarbon group of 2 to 5 carbon atoms may be selected from, for example, vinyl, propenyl, allyl, butenyl, pentenyl, methylvinyl, methylallyl, ethynyl, propynyl, propargyl, butynyl, pentynyl.

1-5个碳原子的醚基可选自例如甲醚、乙醚、甲乙醚、丙醚、甲丙醚、乙丙醚。The ether group of 1 to 5 carbon atoms may be selected, for example, from methyl ether, ethyl ether, methyl ethyl ether, propyl ether, methyl propyl ether, ethyl propyl ether.

1-5个碳原子的氟代醚基可选自例如氟代甲醚、氟代乙醚、氟代甲乙醚、氟代丙醚、氟代甲丙醚、氟代乙丙醚。The fluorinated ether group of 1 to 5 carbon atoms may be selected from, for example, fluoromethyl ether, fluoroethyl ether, fluoromethylethyl ether, fluoropropyl ether, fluoromethylpropyl ether, fluoroethylpropyl ether.

在一些实施例中,所述结构式1所示的化合物包括磷酸三炔丙酯、二炔丙基甲基磷酸酯、二炔丙基氟代甲基磷酸酯、二炔丙基甲氧基甲基磷酸酯、二炔丙基乙基磷酸酯、二炔丙基丙基磷酸酯、三氟甲基二炔丙基磷酸酯、二炔丙基2,2,2-三氟乙基磷酸酯、二炔丙基3,3,3-三氟丙基磷酸酯、六氟异丙基二炔丙基磷酸酯、磷酸三烯丙酯、二烯丙基甲基磷酸酯、二烯丙基乙基磷酸酯、二烯丙基丙基磷酸酯、三氟甲基二烯丙基磷酸酯、2,2,2-三氟乙基二烯丙基磷酸酯、二炔丙基甲醚磷酸酯、二炔丙基氟代甲醚磷酸酯、二烯丙基3,3,3-三氟丙基磷酸酯或二烯丙基六氟异丙基磷酸酯中的至少一种。In some embodiments, the compound shown in structural formula 1 includes at least one of tripropargyl phosphate, dipropargyl methyl phosphate, dipropargyl fluoromethyl phosphate, dipropargyl methoxymethyl phosphate, dipropargyl ethyl phosphate, dipropargyl propyl phosphate, trifluoromethyl dipropargyl phosphate, dipropargyl 2,2,2-trifluoroethyl phosphate, dipropargyl 3,3,3-trifluoropropyl phosphate, hexafluoroisopropyl dipropargyl phosphate, triallyl phosphate, diallyl methyl phosphate, diallyl ethyl phosphate, diallyl propyl phosphate, trifluoromethyl diallyl phosphate, 2,2,2-trifluoroethyl diallyl phosphate, dipropargyl methyl ether phosphate, dipropargyl fluoromethyl ether phosphate, diallyl 3,3,3-trifluoropropyl phosphate or diallyl hexafluoroisopropyl phosphate.

上述化合物可单独使用,也可两种或以上组合使用。The above compounds may be used alone or in combination of two or more.

在一些实施例中,所述正极材料层表面通过X-射线光电子能谱法检测,当在284.5eV处获得碳的1s峰时,在130~140eV的区域出现磷元素的特征峰,如图1所示,说明结构式1所示的化合物参与了正极材料层表层钝化膜的形成。In some embodiments, the surface of the positive electrode material layer is detected by X-ray photoelectron spectroscopy. When the 1s peak of carbon is obtained at 284.5 eV, a characteristic peak of phosphorus element appears in the region of 130 to 140 eV, as shown in FIG. 1 , indicating that the compound shown in structural formula 1 participates in the formation of a passivation film on the surface of the positive electrode material layer.

在一些实施例中,所述正极材料层中,磷元素的质量百分含量u为0.1wt%~3wt%。In some embodiments, in the positive electrode material layer, the mass percentage content u of phosphorus element is 0.1wt% to 3wt%.

在优选的实施例中,所述正极材料层中,磷元素的质量百分含量u为0.1wt%~2wt%。In a preferred embodiment, in the positive electrode material layer, the mass percentage content u of phosphorus element is 0.1wt% to 2wt%.

具体的,所述正极材料层中,磷元素的质量百分含量u可以为0.1wt%、0.2wt%、0.5wt%、0.8wt%、1.0wt%、1.5wt%、2.0wt%、2.5wt%或3wt%。Specifically, in the positive electrode material layer, the mass percentage u of phosphorus element can be 0.1wt%, 0.2wt%, 0.5wt%, 0.8wt%, 1.0wt%, 1.5wt%, 2.0wt%, 2.5wt% or 3wt%.

所述磷元素来源于结构式1所示的化合物,其质量百分含量与结构式1所示的化合物的添加量呈正相关,由于结构式1所示的化合物中有含磷基团,具备良好的阻燃特性;且其能在正极材料层与非水电解液接触的界面上形成稳定的含磷元素的钝化膜,该钝化膜能够抑制正极材料层与非水电解液之间的过度副反应,有效阻止了正极活性材料中溶出的锰或铝离子进入至负极活性物质内部,提高正负极活性材料的结构稳定性,进而提高锂离子电池的热稳定性能。The phosphorus element is derived from the compound shown in Structural Formula 1, and its mass percentage is positively correlated with the added amount of the compound shown in Structural Formula 1. Since the compound shown in Structural Formula 1 contains phosphorus-containing groups, it has good flame retardant properties; and it can form a stable phosphorus-containing passivation film on the interface where the positive electrode material layer contacts the non-aqueous electrolyte. The passivation film can inhibit excessive side reactions between the positive electrode material layer and the non-aqueous electrolyte, effectively preventing manganese or aluminum ions dissolved in the positive electrode active material from entering the negative electrode active material, thereby improving the structural stability of the positive and negative electrode active materials, and thus improving the thermal stability of the lithium ion battery.

在一些实施例中,所述正极材料层中,磷元素的质量百分含量u为0.1wt%~3wt%;In some embodiments, in the positive electrode material layer, the mass percentage content u of phosphorus element is 0.1wt% to 3wt%;

在优选的实施例中,所述正极材料层中,M元素的质量百分含量v为3wt%~60wt%。In a preferred embodiment, in the positive electrode material layer, the mass percentage v of the M element is 3wt% to 60wt%.

具体的,所述M元素的质量百分含量v可以为3wt%、5wt%、8wt%、10wt%、12wt%、15wt%、21wt%、23wt%、27wt%、30wt%、36wt%、42wt%、48wt%、50wt%、55wt%或60wt%。Specifically, the mass percentage v of the M element can be 3wt%, 5wt%, 8wt%, 10wt%, 12wt%, 15wt%, 21wt%, 23wt%, 27wt%, 30wt%, 36wt%, 42wt%, 48wt%, 50wt%, 55wt% or 60wt%.

正极活性材料中的锰元素或铝元素可保证正极活性材料的结构稳定性,减少了正极活性材料的分解释氧,抑制产气、减少产热量,从而降低二次电池发生失控的风险,使得二次电池具有较高的安全性能。The manganese element or aluminum element in the positive electrode active material can ensure the structural stability of the positive electrode active material, reduce the decomposition and deoxygenation of the positive electrode active material, inhibit gas production, reduce heat production, thereby reducing the risk of runaway of the secondary battery, and making the secondary battery have higher safety performance.

在一些实施例中,所述正极材料层的单面面密度p为10~30mg/cm2In some embodiments, the single-surface density p of the positive electrode material layer is 10 to 30 mg/cm 2 ;

在优选的实施例中,所述正极材料层的单面面密度p为15~20mg/cm2In a preferred embodiment, the single-surface density p of the positive electrode material layer is 15-20 mg/cm 2 .

具体的,所述正极材料层的单面面密度p可以为10mg/cm2、12mg/cm2、14mg/cm2、16mg/cm2、18mg/cm2、21mg/cm2、24mg/cm2、28mg/cm2或30mg/cm2Specifically, the single-surface density p of the positive electrode material layer may be 10 mg/cm 2 , 12 mg/cm 2 , 14 mg/cm 2 , 16 mg/cm 2 , 18 mg/cm 2 , 21 mg/cm 2 , 24 mg/cm 2 , 28 mg/cm 2 or 30 mg/cm 2 .

所述正极材料层的单面面密度是二次电池设计及制作中的关键技术参数。在相同正极极片长度下,正极材料层的单面面密度大,则电池的容量增大,电池在充电过程中的温升增大,影响安全性能;而正极极片的单面面密度小,则电池的容量降低,电池在充电过程中的温升较小。The single-sided surface density of the positive electrode material layer is a key technical parameter in the design and production of secondary batteries. Under the same length of the positive electrode plate, if the single-sided surface density of the positive electrode material layer is large, the capacity of the battery will increase, and the temperature rise of the battery during charging will increase, affecting the safety performance; while if the single-sided surface density of the positive electrode plate is small, the capacity of the battery will decrease, and the temperature rise of the battery during charging will be small.

以上分析仅基于每个参数单独存在时对电池的影响,但实际电池应用过程中,以上三个参数是相互关联,密不可分的。本发明给出的关系式将三者关联,三者共同影响电池的容量和抗热冲击性能,因此调节正极片中磷元素和M元素的质量百分含量的比值和正极材料层设计参数单面面密度,使得0.05≤p·u/v≤15,能够在保证二次电池具有较高的比容量及能量密度的前提下,有效提高锂离子二次电池的安全性能等性能。若p·u/v值过高或过低时,电池将会出现动力学恶化,从而使得电池在极端环境下的容易出现着火的问题,存在安全隐患。The above analysis is only based on the impact of each parameter on the battery when it exists alone, but in the actual battery application process, the above three parameters are interrelated and inseparable. The relationship given by the present invention relates the three, and the three jointly affect the capacity and thermal shock resistance of the battery. Therefore, the ratio of the mass percentage of phosphorus element and M element in the positive electrode sheet and the single-sided surface density of the positive electrode material layer design parameters are adjusted to make 0.05≤p·u/v≤15, which can effectively improve the safety performance and other properties of lithium-ion secondary batteries while ensuring that the secondary battery has a higher specific capacity and energy density. If the p·u/v value is too high or too low, the battery will experience kinetic deterioration, which makes the battery prone to fire in extreme environments, posing a safety hazard.

在一些实施例中,所述正极活性材料包括式(1)和式(2)所示的化合物中的一种或多种;In some embodiments, the positive electrode active material includes one or more of the compounds represented by formula (1) and formula (2);

Li1+xNiaCobM1-a-bO2-yAy 式(1)Li 1+x Ni a Co b M 1-ab O 2-y A yFormula (1)

Li1+zMncL2-cO4-dBd 式(2)Li 1+z Mn c L 2-c O 4-d B dFormula (2)

式(1)中,-0.1≤x≤0.2,0<a<1,0≤b<1,0<a+b<1,0≤y<0.2,M包括Mn及Al中的一种或多种,以及可选择地包括Sr、Mg、Ti、Ca、Zr、Zn、Si、Fe,Ce中的零种、一种或多种,A包括S、N、F、Cl、Br及I中的一种或多种;In formula (1), -0.1≤x≤0.2, 0<a<1, 0≤b<1, 0<a+b<1, 0≤y<0.2, M includes one or more of Mn and Al, and optionally includes zero, one or more of Sr, Mg, Ti, Ca, Zr, Zn, Si, Fe, Ce, and A includes one or more of S, N, F, Cl, Br and I;

式(2)中,-0.1≤z≤0.2,0<c≤2,0≤d<1,L包括Ni、Fe、Cr、Ti、Zn、V、Al、Mg、Zr及Ce中的一种或多种,B包括S、N、F、Cl、Br及I中的一种或多种。In formula (2), -0.1≤z≤0.2, 0<c≤2, 0≤d<1, L includes one or more of Ni, Fe, Cr, Ti, Zn, V, Al, Mg, Zr and Ce, and B includes one or more of S, N, F, Cl, Br and I.

在一些实施例中,所述正极材料层还包括有正极粘结剂和正极导电剂,所述正极活性材料、所述结构式1所示的化合物、所述正极粘结剂和所述正极导电剂共混得到所述正极材料层。In some embodiments, the positive electrode material layer further includes a positive electrode binder and a positive electrode conductor, and the positive electrode active material, the compound shown in Structural Formula 1, the positive electrode binder and the positive electrode conductor are blended to obtain the positive electrode material layer.

以所述正极材料层的总质量为100%计,所述正极粘结剂的质量百分含量为1-2%,所述正极导电剂的质量百分含量为0.5-2%。Taking the total mass of the positive electrode material layer as 100%, the mass percentage of the positive electrode binder is 1-2%, and the mass percentage of the positive electrode conductor is 0.5-2%.

所述正极粘结剂包括聚偏氟乙烯、偏氟乙烯的共聚物、聚四氟乙烯、偏氟乙烯-六氟丙烯的共聚物、四氟乙烯-六氟丙烯的共聚物、四氟乙烯-全氟烷基乙烯基醚的共聚物、乙烯-四氟乙烯的共聚物、偏氟乙烯-四氟乙烯的共聚物、偏氟乙烯-三氟乙烯的共聚物、偏氟乙烯-三氯乙烯的共聚物、偏氟乙烯-氟代乙烯的共聚物、偏氟乙烯-六氟丙烯-四氟乙烯的共聚物、热塑性聚酰亚胺、聚乙烯及聚丙烯等热塑性树脂;丙烯酸类树脂;羟甲基纤维素钠;聚乙烯醇缩丁醛;乙烯-醋酸乙烯酯共聚物;聚乙烯醇;以及苯乙烯丁二烯橡胶中的一种或多种。The positive electrode binder includes polyvinylidene fluoride, copolymers of vinylidene fluoride, polytetrafluoroethylene, copolymers of vinylidene fluoride-hexafluoropropylene, copolymers of tetrafluoroethylene-hexafluoropropylene, copolymers of tetrafluoroethylene-perfluoroalkyl vinyl ether, copolymers of ethylene-tetrafluoroethylene, copolymers of vinylidene fluoride-tetrafluoroethylene, copolymers of vinylidene fluoride-trifluoroethylene, copolymers of vinylidene fluoride-trichloroethylene, copolymers of vinylidene fluoride-fluoroethylene, copolymers of vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene, thermoplastic polyimide, thermoplastic resins such as polyethylene and polypropylene; acrylic resin; sodium hydroxymethyl cellulose; polyvinyl butyral; ethylene-vinyl acetate copolymer; polyvinyl alcohol; and one or more of styrene butadiene rubber.

所述正极导电剂包括导电炭黑、导电碳球、导电石墨、导电碳纤维、碳纳米管、石墨烯或还原氧化石墨烯中的一种或多种。The positive electrode conductive agent includes one or more of conductive carbon black, conductive carbon balls, conductive graphite, conductive carbon fibers, carbon nanotubes, graphene or reduced graphene oxide.

在一些实施例中,所述结构式1所示的化合物形成于所述正极材料层的表面,或所述结构式1所示的化合物掺混于所述正极材料层的内部。In some embodiments, the compound represented by Structural Formula 1 is formed on the surface of the positive electrode material layer, or the compound represented by Structural Formula 1 is mixed in the interior of the positive electrode material layer.

当所述结构式1所示的化合物形成于所述正极材料层的表面时,其制备方式可以参照如下方式:When the compound represented by the structural formula 1 is formed on the surface of the positive electrode material layer, the preparation method thereof can refer to the following method:

通过表面涂覆的方式在所述正极材料层的表面形成含有结构式1所示的化合物的涂层,具体的,可先将正极活性材料、正极导电剂和正极粘结剂分散于有机溶剂中,制备得到正极浆料,将正极浆料涂布、干燥形成正极材料层后,再将结构式1所示的化合物分散于有机溶剂中,将得到的结构式1所示的化合物溶液喷涂于正极材料层的表面,干燥去除溶剂后得到包括结构式1所示化合物的正极材料层。A coating containing the compound shown in Structural Formula 1 is formed on the surface of the positive electrode material layer by surface coating. Specifically, the positive electrode active material, the positive electrode conductive agent and the positive electrode binder are first dispersed in an organic solvent to prepare a positive electrode slurry. After the positive electrode slurry is coated and dried to form a positive electrode material layer, the compound shown in Structural Formula 1 is dispersed in an organic solvent, and the obtained compound solution shown in Structural Formula 1 is sprayed on the surface of the positive electrode material layer. After drying and removing the solvent, the positive electrode material layer including the compound shown in Structural Formula 1 is obtained.

当所述结构式1所示的化合物掺混于所述正极材料层的内部时,其制备方式可以参照如下方式:When the compound represented by the structural formula 1 is mixed in the interior of the positive electrode material layer, the preparation method thereof can refer to the following method:

1、制备所述正极材料层的正极浆料中含有结构式1所示的化合物,具体的,可将结构式1所示的化合物、正极活性材料、正极导电剂和正极粘结剂分散于有机溶剂中,制备得到正极浆料,再将正极浆料涂布、干燥形成正极材料层;1. The positive electrode slurry for preparing the positive electrode material layer contains the compound shown in structural formula 1. Specifically, the compound shown in structural formula 1, the positive electrode active material, the positive electrode conductive agent and the positive electrode binder are dispersed in an organic solvent to prepare the positive electrode slurry, and then the positive electrode slurry is coated and dried to form the positive electrode material layer;

2、制备正极材料层后将正极材料层浸润于含有结构式1所示的化合物的溶液中,使结构式1所示的化合物渗透至所述正极材料层的内部,干燥去除溶剂后得到包含结构式1所示化合物的正极材料层。2. After preparing the positive electrode material layer, immerse the positive electrode material layer in a solution containing the compound shown in Structural Formula 1 to allow the compound shown in Structural Formula 1 to penetrate into the interior of the positive electrode material layer, and dry and remove the solvent to obtain a positive electrode material layer containing the compound shown in Structural Formula 1.

在一些实施例中,所述正极片还包括正极集流体,所述正极材料层覆盖于所述正极集流体的表面。In some embodiments, the positive electrode sheet further includes a positive electrode current collector, and the positive electrode material layer covers a surface of the positive electrode current collector.

所述正极集流体选自可传导电子的金属材料,优选的,所述正极集流体包括Al、Ni、锡、铜、不锈钢的一种或多种,在更优选的实施例中,所述正极集流体选自铝箔。The positive electrode current collector is selected from a metal material that can conduct electrons. Preferably, the positive electrode current collector includes one or more of Al, Ni, tin, copper, and stainless steel. In a more preferred embodiment, the positive electrode current collector is selected from aluminum foil.

本发明还提供了一种二次电池,包括负极片、非水电解液以及如上所述的正极片,所述非水电解液包括非水有机溶剂,所述非水有机溶剂包括环状碳酸酯。所述非水电解液中含有较高介电常数的环状碳酸酯溶剂,能够很好地与锂离子形成溶剂化锂离子分子。更优地,所述非水有机溶剂还包括低粘度的链状碳酸酯,能够提高非水电解液的流动性和浸润性。The present invention also provides a secondary battery, comprising a negative electrode sheet, a non-aqueous electrolyte and a positive electrode sheet as described above, wherein the non-aqueous electrolyte comprises a non-aqueous organic solvent, and the non-aqueous organic solvent comprises a cyclic carbonate. The non-aqueous electrolyte contains a cyclic carbonate solvent with a relatively high dielectric constant, which can well form solvated lithium ion molecules with lithium ions. More preferably, the non-aqueous organic solvent also comprises a low-viscosity chain carbonate, which can improve the fluidity and wettability of the non-aqueous electrolyte.

在一些优选实施例中,所述环状碳酸酯具体可以但不限于是碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、γ-丁内酯(GBL)、碳酸亚丁酯(BC)中的一种或多种。所述环状碳酸酯的含量没有特殊限制,在不显著破坏本发明高压实锂离子电池效果的范围内是任意的,但在单独使用一种的情况下其含量的下限相对于非水电解液的溶剂总量来说,通常体积比为3%以上、优选体积比为5%以上。通过设定该范围,可避免由于非水电解液的介电常数降低而导致电导率降低,易于使非水电解质电池的大电流放电特性、相对于负极的稳定性、循环特性达到良好的范围。另外,上限通常体积比为90%以下、优选体积比为85%以下、更优选体积比为80%以下。通过设定该范围,可提高非水电解液的氧化/还原耐性,从而有助于提高高温保存时的稳定性。In some preferred embodiments, the cyclic carbonate can be specifically but not limited to one or more of ethylene carbonate (EC), propylene carbonate (PC), γ-butyrolactone (GBL), and butylene carbonate (BC). The content of the cyclic carbonate is not particularly limited, and is arbitrary within the range that does not significantly damage the effect of the high-pressure lithium-ion battery of the present invention, but when one is used alone, the lower limit of its content is usually 3% or more by volume, preferably 5% or more by volume, relative to the total amount of solvent in the non-aqueous electrolyte. By setting this range, the decrease in conductivity caused by the decrease in the dielectric constant of the non-aqueous electrolyte can be avoided, and it is easy to make the large current discharge characteristics, stability relative to the negative electrode, and cycle characteristics of the non-aqueous electrolyte battery reach a good range. In addition, the upper limit is usually 90% or less by volume, preferably 85% or less by volume, and more preferably 80% or less by volume. By setting this range, the oxidation/reduction resistance of the non-aqueous electrolyte can be improved, thereby helping to improve the stability during high temperature storage.

在一些优选实施例中,所述链状碳酸酯具体可以但不限于是碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)、碳酸二丙酯(DPC)中的一种或多种。所述链状碳酸酯的含量没有特殊限定,相对于非水电解液的溶剂总量,通常为体积比为15%以上、优选体积比为20%以上、更优选体积比为25%以上。另外,通常体积比为90%以下、优选体积比为85%以下、更优选体积比为80%以下。通过使链状碳酸酯的含量在上述范围,容易使非水电解液的粘度达到适当范围,抑制离子电导率的降低,进而有助于使非水电解质电池的输出特性达到良好的范围。在组合使用两种以上链状碳酸酯的情况下,使链状碳酸酯的总量满足上述范围即可。In some preferred embodiments, the chain carbonate can be specifically but not limited to one or more of dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), and dipropyl carbonate (DPC). The content of the chain carbonate is not particularly limited, and relative to the total amount of solvent in the non-aqueous electrolyte, the volume ratio is usually more than 15%, preferably more than 20%, and more preferably more than 25%. In addition, the volume ratio is usually less than 90%, preferably less than 85%, and more preferably less than 80%. By making the content of the chain carbonate in the above range, it is easy to make the viscosity of the non-aqueous electrolyte reach an appropriate range, suppress the reduction of ionic conductivity, and then help to make the output characteristics of the non-aqueous electrolyte battery reach a good range. When two or more chain carbonates are used in combination, the total amount of the chain carbonate is allowed to meet the above range.

在一些实施例中,还可优选使用具有氟原子的链状碳酸酯类(以下简称为“氟化链状碳酸酯”)。氟化链状碳酸酯所具有的氟原子的个数只要为1以上则没有特殊限制,但通常为6以下、优选4以下。氟化链状碳酸酯具有多个氟原子的情况下,这些氟原子相互可以键合于同一个碳上,也可以键合于不同的碳上。作为氟化链状碳酸酯,可列举,氟化碳酸二甲酯衍生物、氟化碳酸甲乙酯衍生物、氟化碳酸二乙酯衍生物等。In certain embodiments, it is also possible to preferably use linear carbonates with fluorine atoms (hereinafter referred to as "fluorinated linear carbonates"). The number of fluorine atoms possessed by the fluorinated linear carbonates is not particularly limited as long as it is more than 1, but is generally less than 6, preferably less than 4. When the fluorinated linear carbonates have a plurality of fluorine atoms, these fluorine atoms can be bonded to the same carbon, or they can be bonded to different carbons. As the fluorinated linear carbonates, fluorinated dimethyl carbonate derivatives, fluorinated ethyl methyl carbonate derivatives, fluorinated diethyl carbonate derivatives, etc. can be enumerated.

在一些实施例中,除环状碳酸酯溶剂外,所述非水有机溶剂还包括醚类溶剂、腈类溶剂和羧酸酯类溶剂中的一种或多种。In some embodiments, in addition to the cyclic carbonate solvent, the non-aqueous organic solvent further comprises one or more of an ether solvent, a nitrile solvent, and a carboxylate solvent.

在一些实施例中,醚类溶剂包括环状醚或链状醚,优选为碳原子数3~10的链状醚及碳原子数3~6的环状醚,环状醚具体可以但不限于是1,3-二氧戊烷In some embodiments, the ether solvent includes a cyclic ether or a chain ether, preferably a chain ether having 3 to 10 carbon atoms and a cyclic ether having 3 to 6 carbon atoms. The cyclic ether may be, but is not limited to, 1,3-dioxolane.

(DOL)、1,4-二氧惡烷(DX)、冠醚、四氢呋喃(THF)、2-甲基四氢呋喃(2-CH3-THF),2-三氟甲基四氢呋喃(2-CF3-THF)中的一种或多种;所述链状醚具体可以但不限于是二甲氧基甲烷、二乙氧基甲烷、乙氧基甲氧基甲烷、乙二醇二正丙基醚、乙二醇二正丁基醚、二乙二醇二甲基醚。由于链状醚与锂离子的溶剂化能力高、可提高离子解离性,因此特别优选粘性低、可赋予高离子电导率的二甲氧基甲烷、二乙氧基甲烷、乙氧基甲氧基甲烷。醚类化合物可以单独使用一种,也可以以任意的组合及比率组合使用两种以上。醚类化合物的添加量没有特殊限制,在不显著破坏本发明高压实锂离子电池效果的范围内是任意的,在非水溶剂体积比为100%中通常体积比为1%以上、优选体积比为2%以上、更优选体积比为3%以上,另外,通常体积比为30%以下、优选体积比为25%以下、更优选体积比为20%以下。在将两种以上醚类化合物组合使用的情况下,使醚类化合物的总量满足上述范围即可。醚类化合物的添加量在上述的优选范围内时,易于确保由链状醚的锂离子离解度的提高和粘度降低所带来的离子电导率的改善效果。另外,负极活性材料为碳素材料的情况下,可抑制因链状醚与锂离子共同发生共嵌入的现象,因此能够使输入输出特性、充放电速率特性达到适当的范围。(DOL), 1,4-dioxane (DX), crown ether, tetrahydrofuran (THF), 2-methyltetrahydrofuran (2-CH 3 -THF), 2-trifluoromethyltetrahydrofuran (2-CF 3 -THF) or one or more thereof; the chain ether may specifically be, but is not limited to, dimethoxymethane, diethoxymethane, ethoxymethoxymethane, ethylene glycol di-n-propyl ether, ethylene glycol di-n-butyl ether, and diethylene glycol dimethyl ether. Since chain ethers have high solvation ability with lithium ions and can improve ion dissociation, dimethoxymethane, diethoxymethane, and ethoxymethoxymethane, which have low viscosity and can impart high ion conductivity, are particularly preferred. The ether compound may be used alone or in any combination and ratio. There is no special restriction on the amount of ether compounds added, and it is arbitrary within the range that does not significantly damage the effect of the high-density lithium-ion battery of the present invention. In the non-aqueous solvent volume ratio of 100%, the volume ratio is usually 1% or more, preferably 2% or more, and more preferably 3% or more. In addition, the volume ratio is usually 30% or less, preferably 25% or less, and more preferably 20% or less. When two or more ether compounds are used in combination, the total amount of the ether compounds can be made to meet the above range. When the amount of ether compounds added is within the above preferred range, it is easy to ensure the improvement of ion conductivity brought about by the increase in lithium ion dissociation degree and the decrease in viscosity of the chain ether. In addition, when the negative electrode active material is a carbon material, the phenomenon of co-embedding of chain ethers and lithium ions can be suppressed, so that the input-output characteristics and charge-discharge rate characteristics can reach an appropriate range.

在一些实施例中,腈类溶剂具体可以但不限于是乙腈、戊二腈、丙二腈中的一种或多种。In some embodiments, the nitrile solvent may specifically be, but is not limited to, one or more of acetonitrile, glutaronitrile, and malononitrile.

羧酸酯类溶剂包括环状羧酸酯和/或链状碳酸酯。作为环状羧酸酯的例子,可以列举如:γ-丁内酯、γ-戊内酯、δ-戊内酯中的一种或多种。作为链状碳酸酯的例子,可以列举如:乙酸甲酯(MA)、乙酸乙酯(EA)、乙酸丙酯(EP)、乙酸丁酯、丙酸丙酯(PP)、丙酸丁酯中的一种或多种。Carboxylate solvents include cyclic carboxylate and/or chain carbonate. Examples of cyclic carboxylate include one or more of γ-butyrolactone, γ-valerolactone, and δ-valerolactone. Examples of chain carbonate include one or more of methyl acetate (MA), ethyl acetate (EA), propyl acetate (EP), butyl acetate, propyl propionate (PP), and butyl propionate.

在一些实施例中,砜类溶剂包括环状砜和链状砜,但优选地,在为环状砜的情况下,通常为碳原子数3~6、优选碳原子数3~5,在为链状砜的情况下,通常为碳原子数2~6、优选碳原子数2~5的化合物。砜类溶剂的添加量没有特殊限制,在不显著破坏本发明高压实锂离子电池效果的范围内是任意的,相对于非水电解液的溶剂总量,通常体积比为0.3%以上、优选体积比为0.5%以上、更优选体积比为1%以上,另外,通常体积比为40%以下、优选体积比为35%以下、更优选体积比为30%以下。在组合使用两种以上砜类溶剂的情况下,使砜类溶剂的总量满足上述范围即可。砜类溶剂的添加量在上述范围内时,倾向于获得高温保存稳定性优异的电解液。In some embodiments, the sulfone solvent includes a cyclic sulfone and a chain sulfone, but preferably, in the case of a cyclic sulfone, it is generally a compound having 3 to 6 carbon atoms, preferably 3 to 5 carbon atoms, and in the case of a chain sulfone, it is generally a compound having 2 to 6 carbon atoms, preferably 2 to 5 carbon atoms. There is no particular limitation on the amount of sulfone solvent added, and it is arbitrary within the range that does not significantly damage the effect of the high-pressure lithium-ion battery of the present invention. Relative to the total amount of solvent in the non-aqueous electrolyte, the volume ratio is generally 0.3% or more, preferably 0.5% or more, and more preferably 1% or more. In addition, the volume ratio is generally 40% or less, preferably 35% or less, and more preferably 30% or less. In the case of using two or more sulfone solvents in combination, the total amount of the sulfone solvents can be made to meet the above range. When the amount of sulfone solvent added is within the above range, an electrolyte with excellent high-temperature storage stability tends to be obtained.

在优选的实施例中,所述溶剂为环状碳酸酯和链状碳酸酯的混合物。In a preferred embodiment, the solvent is a mixture of cyclic carbonate and linear carbonate.

在一些实施例中,所述非水电解液还包括锂盐,所述锂盐包括LiPF6、LiBOB、LiDFOB、LiPO2F2、LiBF4、LiSbF6、LiAsF6、LiN(SO2CF3)2、LiN(SO2C2F5)2、LiC(SO2CF3)3、LiN(SO2F)2、LiClO4、LiAlCl4、LiCF3SO3、Li2B10Cl10、低级脂肪族羧酸锂盐中的一种或多种。In some embodiments, the non-aqueous electrolyte further includes a lithium salt, and the lithium salt includes one or more of LiPF6 , LiBOB , LiDFOB , LiPO2F2 , LiBF4 , LiSbF6 , LiAsF6 , LiN( SO2CF3 ) 2 , LiN ( SO2C2F5 ) 2 , LiC ( SO2CF3) , LiN (SO2F) 2 , LiClO4 , LiAlCl4 , LiCF3SO3 , Li2B10Cl10 , and lower aliphatic carboxylic acid lithium salts.

在优选实施例中,所述非水电解液还包括有锂盐,所述锂盐包括LiPF6和辅助锂盐,所述辅助锂盐包括LiBOB、LiDFOB、LiPO2F2、LiBF4、LiSbF6、LiAsF6、LiN(SO2CF3)2、LiN(SO2C2F5)2、LiC(SO2CF3)3、LiN(SO2F)2、LiClO4、LiAlCl4、LiCF3SO3、Li2B10Cl10、低级脂肪族羧酸锂盐中的一种或多种。In a preferred embodiment, the non-aqueous electrolyte also includes a lithium salt, the lithium salt includes LiPF 6 and an auxiliary lithium salt, the auxiliary lithium salt includes one or more of LiBOB, LiDFOB, LiPO 2 F 2 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 C 2 F 5 ) 2 , LiC(SO 2 CF 3 ) 3 , LiN(SO 2 F) 2 , LiClO 4 , LiAlCl 4 , LiCF 3 SO 3 , Li 2 B 10 Cl 10 , and lower aliphatic carboxylic acid lithium salts.

在满足上述条件下,在非水电解液中加入LiPF6作为主锂盐,以及上述辅助锂盐的配合,能够进一步提高电池的抗热冲击性能,推测是由于正极中含有的结构式1所示的化合物少量溶解于非水电解液中,与上述锂盐组合配合具有提高非水电解液稳定性的作用,避免非水电解液的分解产气。When the above conditions are met, adding LiPF6 as the main lithium salt and the above auxiliary lithium salt to the non-aqueous electrolyte can further improve the thermal shock resistance of the battery. It is speculated that this is because the compound shown in structural formula 1 contained in the positive electrode is dissolved in a small amount in the non-aqueous electrolyte, and the combination with the above lithium salt has the effect of improving the stability of the non-aqueous electrolyte and avoiding the decomposition and gas production of the non-aqueous electrolyte.

在一些实施例中,所述非水电解液中,所述LiPF6的添加量为0.1mol/L~3mol/L,所述辅助锂盐的添加量为0.05mol/L~1.5mol/L。In some embodiments, in the non-aqueous electrolyte, the added amount of LiPF 6 is 0.1 mol/L to 3 mol/L, and the added amount of the auxiliary lithium salt is 0.05 mol/L to 1.5 mol/L.

在优选的实施例中,所述非水电解液中,所述LiPF6的浓度为0.5mol/L-2mol/L。具体的,所述LiPF6的浓度可以为0.5mol/L、1mol/L、1.5mol/L、2mol/L。In a preferred embodiment, in the non-aqueous electrolyte, the concentration of LiPF 6 is 0.5 mol/L-2 mol/L. Specifically, the concentration of LiPF 6 can be 0.5 mol/L, 1 mol/L, 1.5 mol/L, or 2 mol/L.

在优选的实施例中,所述非水电解液中,所述辅助锂盐的浓度为0.1mol/L-1mol/L。具体的,所述辅助锂盐的浓度可以为0.1mol/L、0.3mol/L、0.5mol/L、1mol/L。In a preferred embodiment, in the non-aqueous electrolyte, the concentration of the auxiliary lithium salt is 0.1 mol/L-1 mol/L. Specifically, the concentration of the auxiliary lithium salt may be 0.1 mol/L, 0.3 mol/L, 0.5 mol/L, or 1 mol/L.

在一些实施例中,所述非水电解液还包括辅助添加剂,所述辅助添加剂包括环状硫酸酯类化合物、磺酸内酯类化合物、环状碳酸酯类化合物、不饱和磷酸酯类化合物和腈类化合物中的至少一种;In some embodiments, the non-aqueous electrolyte further comprises an auxiliary additive, wherein the auxiliary additive comprises at least one of a cyclic sulfate compound, a sultone compound, a cyclic carbonate compound, an unsaturated phosphate compound, and a nitrile compound;

优选的,所述环状硫酸酯类化合物选自硫酸乙烯酯、硫酸丙烯酯或甲基硫酸乙烯酯中的至少一种;Preferably, the cyclic sulfate ester compound is selected from at least one of vinyl sulfate, propylene sulfate or methyl vinyl sulfate;

所述磺酸内酯类化合物选自1,3-丙烷磺酸内酯、1,4-丁烷磺酸内酯或1,3-丙烯磺酸内酯中的至少一种;The sultone compound is selected from at least one of 1,3-propane sultone, 1,4-butane sultone or 1,3-propylene sultone;

所述环状碳酸酯类化合物选自碳酸亚乙烯酯、碳酸乙烯亚乙酯、氟代碳酸乙烯酯或结构式2所示化合物中的至少一种,The cyclic carbonate compound is selected from at least one of vinylene carbonate, ethylene carbonate, fluoroethylene carbonate or the compound shown in structural formula 2.

所述结构式2中,R21、R22、R23、R24、R25、R26各自独立地选自氢原子、卤素原子、C1-C5基团中的一种;In the structural formula 2, R 21 , R 22 , R 23 , R 24 , R 25 , and R 26 are each independently selected from a hydrogen atom, a halogen atom, and a C1-C5 group;

所述不饱和磷酸酯类化合物选自结构式3所示化合物中的至少一种:The unsaturated phosphate compound is selected from at least one of the compounds shown in Structural Formula 3:

所述结构式3中,R31、R32、R32各自独立的选自C1-C5的饱和烃基、不饱和烃基、卤代烃基、-Si(CmH2m+1)3,m为1~3的自然数,且R31、R32、R33中至少有一个为不饱和烃基;In the structural formula 3, R 31 , R 32 , and R 33 are each independently selected from a C1-C5 saturated hydrocarbon group, an unsaturated hydrocarbon group, a halogenated hydrocarbon group, and -Si(C m H 2m+1 ) 3 , m is a natural number of 1 to 3, and at least one of R 31 , R 32 , and R 33 is an unsaturated hydrocarbon group;

在优选的实施例中,所述不饱和磷酸酯类化合物可为磷酸三炔丙酯、二炔丙基甲基磷酸酯、二炔丙基乙基磷酸酯、二炔丙基丙基磷酸酯、二炔丙基三氟甲基磷酸酯、二炔丙基-2,2,2-三氟乙基磷酸酯、二炔丙基-3,3,3-三氟丙基磷酸酯、二炔丙基六氟异丙基磷酸酯、磷酸三烯丙酯、二烯丙基甲基磷酸酯、二烯丙基乙基磷酸酯、二烯丙基丙基磷酸酯、二烯丙基三氟甲基磷酸酯、二烯丙基-2,2,2-三氟乙基磷酸酯、二烯丙基-3,3,3-三氟丙基磷酸酯、二烯丙基六氟异丙基磷酸酯中的至少一种。In a preferred embodiment, the unsaturated phosphate compound may be at least one of tripropargyl phosphate, dipropargyl methyl phosphate, dipropargyl ethyl phosphate, dipropargyl propyl phosphate, dipropargyl trifluoromethyl phosphate, dipropargyl-2,2,2-trifluoroethyl phosphate, dipropargyl-3,3,3-trifluoropropyl phosphate, dipropargyl hexafluoroisopropyl phosphate, triallyl phosphate, diallyl methyl phosphate, diallyl ethyl phosphate, diallyl propyl phosphate, diallyl trifluoromethyl phosphate, diallyl-2,2,2-trifluoroethyl phosphate, diallyl-3,3,3-trifluoropropyl phosphate, and diallyl hexafluoroisopropyl phosphate.

所述腈类化合物包括丁二腈、戊二腈、乙二醇双(丙腈)醚、己烷三腈、己二腈、庚二腈、辛二腈、壬二腈、癸二腈中的一种或多种。The nitrile compound includes one or more of succinonitrile, glutaronitrile, ethylene glycol bis(propionitrile) ether, hexanetrinitrile, adiponitrile, pimelonitrile, suberonitrile, azelaic acid dinitrile and sebaconitrile.

在另一些实施例中,所述辅助添加剂还可包括其它能改善电池性能的添加剂:例如,提升电池安全性能的添加剂,具体如氟代磷酸酯、环磷腈等阻燃添加剂,或叔戊基苯、叔丁基苯等防过充添加剂。In other embodiments, the auxiliary additives may also include other additives that can improve battery performance: for example, additives that enhance battery safety performance, such as flame retardant additives such as fluorophosphates and cyclophosphazenes, or overcharge prevention additives such as tert-amylbenzene and tert-butylbenzene.

需要说明的是,除非特殊说明,一般情况下,所述辅助添加剂中任意一种可选物质在非水电解液中的添加量为10%以下,优选的,添加量为0.1-5%,更优选的,添加量为0.1%~2%。具体的,所述辅助添加剂中任意一种可选物质的添加量可以为0.05%、0.08%、0.1%、0.5%、0.8%、1%、1.2%、1.5%、1.8%、2%、2.2%、2.5%、2.8%、3%、3.2%、3.5%、3.8%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、7.8%、8%、8.5%、9%、9.5%、10%。It should be noted that, unless otherwise specified, in general, the amount of any one of the optional substances in the auxiliary additives added to the non-aqueous electrolyte is less than 10%, preferably, the amount added is 0.1-5%, and more preferably, the amount added is 0.1% to 2%. Specifically, the amount of any one of the optional substances in the auxiliary additives can be 0.05%, 0.08%, 0.1%, 0.5%, 0.8%, 1%, 1.2%, 1.5%, 1.8%, 2%, 2.2%, 2.5%, 2.8%, 3%, 3.2%, 3.5%, 3.8%, 4%, 4.5%, 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 7.8%, 8%, 8.5%, 9%, 9.5%, 10%.

在一些实施例中,当辅助添加剂选自氟代碳酸乙烯酯时,以所述非水电解液的总质量为100%计,所述氟代碳酸乙烯酯的添加量为0.05%~30%。In some embodiments, when the auxiliary additive is selected from fluoroethylene carbonate, the amount of the fluoroethylene carbonate added is 0.05% to 30% based on the total mass of the non-aqueous electrolyte as 100%.

在一些实施例中,所述负极片包括负极材料层,所述负极材料层包括负极活性材料,所述负极活性材料选自硅基负极、碳基负极、锂基负极和锡基负极中的至少一种。In some embodiments, the negative electrode sheet includes a negative electrode material layer, the negative electrode material layer includes a negative electrode active material, and the negative electrode active material is selected from at least one of a silicon-based negative electrode, a carbon-based negative electrode, a lithium-based negative electrode, and a tin-based negative electrode.

其中,所述硅基负极包括硅材料、硅的氧化物、硅碳复合材料以及硅合金材料中的一种或多种;所述碳基负极包括石墨、硬碳、软碳、石墨烯、中间相碳微球中的一种或多种;所述锂基负极金属锂或锂合金中的一种或多种。所述锂合金具体可以是锂硅合金、锂钠合金、锂钾合金、锂铝合金、锂锡合金和锂铟合金中的至少一种。所述锡基负极包括锡、锡碳、锡氧、锡金属化合物中的一种或多种。The silicon-based negative electrode includes one or more of silicon materials, silicon oxides, silicon-carbon composite materials and silicon alloy materials; the carbon-based negative electrode includes one or more of graphite, hard carbon, soft carbon, graphene and mesophase carbon microspheres; the lithium-based negative electrode includes one or more of metal lithium or lithium alloys. The lithium alloy can be at least one of lithium silicon alloy, lithium sodium alloy, lithium potassium alloy, lithium aluminum alloy, lithium tin alloy and lithium indium alloy. The tin-based negative electrode includes one or more of tin, tin carbon, tin oxide and tin metal compounds.

在一些实施例中,所述负极材料层还包括有负极粘结剂和负极导电剂,所述负极活性材料、所述负极粘结剂和所述负极导电剂共混得到所述负极材料层。In some embodiments, the negative electrode material layer further includes a negative electrode binder and a negative electrode conductor, and the negative electrode active material, the negative electrode binder and the negative electrode conductor are blended to obtain the negative electrode material layer.

所述负极粘接剂和负极导电剂的可选择范围分别与所述正极粘结剂和正极导电剂相同,在此不再赘述。The selectable ranges of the negative electrode binder and the negative electrode conductor are the same as those of the positive electrode binder and the positive electrode conductor, respectively, and will not be described in detail herein.

在一些实施例中,所述负极片还包括负极集流体,所述负极材料层覆盖于所述负极集流体的表面。In some embodiments, the negative electrode sheet further includes a negative electrode current collector, and the negative electrode material layer covers a surface of the negative electrode current collector.

所述负极集流体选自可传导电子的金属材料,优选的,所述负极集流体包括Al、Ni、锡、铜、不锈钢的一种或多种,在更优选的实施例中,所述负极集流体选自铜箔。The negative electrode current collector is selected from a metal material that can conduct electrons. Preferably, the negative electrode current collector includes one or more of Al, Ni, tin, copper, and stainless steel. In a more preferred embodiment, the negative electrode current collector is selected from copper foil.

在一些实施例中,所述电池中还包括有隔膜,所述隔膜位于所述正极片和所述负极片之间。In some embodiments, the battery further includes a separator, and the separator is located between the positive electrode sheet and the negative electrode sheet.

所述隔膜可为现有常规隔膜,可以是聚合物隔膜、无纺布等,包括但不限于单层PP(聚丙烯)、单层PE(聚乙烯)、双层PP/PE、双层PP/PP和三层PP/PE/PP等隔膜。The diaphragm may be an existing conventional diaphragm, which may be a polymer diaphragm, a non-woven fabric, etc., including but not limited to single-layer PP (polypropylene), single-layer PE (polyethylene), double-layer PP/PE, double-layer PP/PP and triple-layer PP/PE/PP diaphragms.

以下通过实施例对本发明进行进一步的说明。The present invention is further described below by way of examples.

表1实施例和对比例中所采用的结构式1所示的化合物Table 1 Compounds of structural formula 1 used in the examples and comparative examples

表2实施例1-25和对比例1-18的设计Table 2 Design of Examples 1-25 and Comparative Examples 1-18

II.实施例和对比例中使用的锂离子电池的制备II. Preparation of Lithium Ion Batteries Used in Examples and Comparative Examples

1)正极片的制备1) Preparation of positive electrode

第1步:在NMP溶剂中,加入作为粘结剂的PVDF及表2所示的不饱和磷酸酯,充分搅拌均匀,获得添加有不饱和磷酸酯的PVDF胶液。Step 1: Add PVDF as a binder and the unsaturated phosphate ester shown in Table 2 to NMP solvent, stir well to obtain PVDF glue solution added with unsaturated phosphate ester.

第2步:在PVDF胶液中,加入作为导电剂(super P+CNT),充分搅拌均匀。Step 2: Add the conductive agent (super P+CNT) into the PVDF glue and stir thoroughly.

第3步:继续加入表2所示的正极活性材料,充分搅拌均匀,最终获得所需要的正极浆料,结构式1所示的化合物和正极活性材料的添加量以表2所示的磷和M元素含量换算为准。Step 3: Continue to add the positive electrode active material shown in Table 2, stir thoroughly and evenly, and finally obtain the required positive electrode slurry. The added amounts of the compound shown in Structural Formula 1 and the positive electrode active material shall be based on the phosphorus and M element contents shown in Table 2.

第4步:将制备的正极浆料均匀地涂布在正极集流体(例如铝箔)上,涂覆的单面面密度如表2所示,经干燥、辊压、模切或分条获得正极片。Step 4: The prepared positive electrode slurry is evenly coated on the positive electrode current collector (such as aluminum foil), and the single-sided surface density of the coating is shown in Table 2. The positive electrode sheet is obtained by drying, rolling, die-cutting or striping.

2)负极片的制备2) Preparation of negative electrode

第1步:按石墨(上海杉杉,FSN-1):导电碳(super P):羧甲基纤维素钠(CMC):丁苯橡胶(SBR)=96.3:1.0:1.2:1.5(质量比)负极片配比称取各物质。Step 1: Weigh each material according to the negative electrode sheet ratio of graphite (Shanghai Shanshan, FSN-1): conductive carbon (super P): sodium carboxymethyl cellulose (CMC): styrene-butadiene rubber (SBR) = 96.3:1.0:1.2:1.5 (mass ratio).

第2步:首先将CMC按照1.5%的固含量加入到纯水中,充分搅拌均匀(例如搅拌时间120min),制备出透明的CMC胶液。Step 2: First, add CMC into pure water at a solid content of 1.5%, and stir well (for example, stirring time 120 minutes) to prepare a transparent CMC glue solution.

第3步:在CMC胶液中,加入导电碳(super P),充分搅拌均匀(例如搅拌时间90min),制备导电胶。Step 3: Add conductive carbon (super P) to the CMC glue solution and stir it thoroughly (for example, stirring time 90 minutes) to prepare a conductive glue.

第4步:继续加入石墨,充分搅拌均匀,最终获得所需要的负极浆料。Step 4: Continue to add graphite and stir thoroughly to finally obtain the required negative electrode slurry.

第5步:将制备的负极浆料均匀地涂布在铜箔上,经干燥、辊压、模切或分条获得负极片。Step 5: Evenly coat the prepared negative electrode slurry on the copper foil, and obtain the negative electrode sheet by drying, rolling, die-cutting or striping.

3)非水电解液的制备3) Preparation of non-aqueous electrolyte

按表2所示的质量比混合溶剂,加入如表2所示质量百分含量的添加剂,然后加入六氟磷酸锂(LiPF6)至摩尔浓度为1mol/L,加入如表2所示的辅助锂盐和添加剂。The solvents were mixed in the mass ratio shown in Table 2, additives were added in the mass percentages shown in Table 2, lithium hexafluorophosphate (LiPF 6 ) was then added to a molar concentration of 1 mol/L, and auxiliary lithium salts and additives shown in Table 2 were added.

4)锂离子电芯制备4) Lithium-ion battery cell preparation

将上述制备好的正极片与上述负极片组装成叠片式的软包电芯。The prepared positive electrode sheet and the negative electrode sheet are assembled into a laminated soft-pack battery cell.

5)电芯的注液和化成5) Battery filling and formation

在露点控制在-40℃以下的手套箱中,将上述制备的电解液注入电芯中,经真空封装,静止24h。然后按以下步骤进行首次充电的常规化成:0.05C恒流充电180min,0.2C恒流充电至3.95V,二次真空封口,然后进一步以0.2C的电流恒流充电至4.2V,常温搁置24h后,以0.2C的电流恒流放电至3.0V。In a glove box with a dew point controlled below -40°C, the prepared electrolyte was injected into the battery cell, vacuum-sealed, and left to stand for 24 hours. Then, the conventional formation of the first charge was carried out according to the following steps: 0.05C constant current charging for 180 minutes, 0.2C constant current charging to 3.95V, secondary vacuum sealing, and then further 0.2C constant current charging to 4.2V, after standing at room temperature for 24 hours, 0.2C constant current discharge to 3.0V.

III.性能测试III. Performance Testing

对上述实施例和对比例制备得到的正极片和电池进行如下性能测试:The positive electrode sheets and batteries prepared in the above examples and comparative examples were subjected to the following performance tests:

1、锂离子二次电池的高温循环性能测试:在45℃下,将化成后的电池用1C恒流恒压充至4.2V,再恒压充电至电流下降至0.05C,然后以1C的电流恒流放电至3.0V,如此循环,记录第1次的放电容量和最后1次的放电容量。1. High temperature cycle performance test of lithium-ion secondary batteries: At 45°C, charge the formed battery to 4.2V with 1C constant current and constant voltage, then charge it with constant voltage until the current drops to 0.05C, and then discharge it to 3.0V with 1C constant current. Repeat this cycle and record the first discharge capacity and the last discharge capacity.

按下式计算高温循环的容量保持率:The capacity retention rate of high temperature cycle is calculated as follows:

容量保持率=最后1次的放电容量/第1次的放电容量×100%。Capacity retention rate = last discharge capacity/first discharge capacity × 100%.

2、锂离子二次电池的热冲击测试:在25℃下,将实施例和对比例制备得到的锂离子二次电池搁置5分钟,以1C倍率恒流充电至4.2V,再恒压充电至电流小于等于0.05C,之后搁置5分钟。然后将锂离子二次电池放置于烘箱中,设置烘箱温度以2℃/min的升温速率从25℃升温至130℃,保温2小时。在升温过程及保温过程中监控电池表面的温度及电池现象。2. Thermal shock test of lithium-ion secondary battery: At 25°C, the lithium-ion secondary battery prepared in the embodiment and comparative example was placed for 5 minutes, charged to 4.2V at a constant current rate of 1C, and then charged to a current of less than or equal to 0.05C at a constant voltage, and then placed for 5 minutes. The lithium-ion secondary battery was then placed in an oven, and the oven temperature was set to rise from 25°C to 130°C at a heating rate of 2°C/min, and kept warm for 2 hours. The temperature of the battery surface and battery phenomena were monitored during the heating process and the insulation process.

(1)实施例1~7和对比例1~6制作的锂离子电池的性能测试结果如表3所示:(1) The performance test results of the lithium ion batteries prepared in Examples 1 to 7 and Comparative Examples 1 to 6 are shown in Table 3:

表3Table 3

由实施例1-7和对比例1-6可知,锂离子二次电池在正极活性材料类型相同的情况下,正极材料层中磷含量、锰含量和正极单面面密度满足预设关系0.05≤p·u/v≤15时,在热冲击测试中未发生失控、着火现象,锂离子二次电池同时具有较高的安全性能、高温循环性能和初始容量发挥。It can be seen from Examples 1-7 and Comparative Examples 1-6 that when the type of positive electrode active material of the lithium ion secondary battery is the same, when the phosphorus content, manganese content and positive electrode single-sided surface density in the positive electrode material layer satisfy the preset relationship of 0.05≤p·u/v≤15, no runaway or fire occurs in the thermal shock test, and the lithium ion secondary battery has high safety performance, high temperature cycle performance and initial capacity performance.

由实施例1~7的测试结果可知,随着p·u/v值的增大,锂离子二次电池的初始容量、高温循环性能和耐热冲击性能先提升后降低,说明正极材料层中磷含量、锰含量和正极单面面密度与锂离子二次电池的电化学性能和安全性能相关,尤其是,当0.5≤p·u/v≤5是,锂离子二次电池具有最佳的初始容量、高温循环性能和耐热冲击性能。It can be seen from the test results of Examples 1 to 7 that as the p·u/v value increases, the initial capacity, high-temperature cycle performance and heat shock resistance of the lithium-ion secondary battery first increase and then decrease, indicating that the phosphorus content, manganese content and single-surface surface density of the positive electrode in the positive electrode material layer are related to the electrochemical properties and safety performance of the lithium-ion secondary battery, especially when 0.5≤p·u/v≤5, the lithium-ion secondary battery has the best initial capacity, high-temperature cycle performance and heat shock resistance.

在对比例1-3的锂离子二次电池中,正极材料层中不含磷元素,锂离子二次电池进行热冲击测试最高表面温度显著升高,并出现冒烟、着火现象,锂离子二次电池的安全性能较低;在对比例4的锂离子二次电池中,由于正极材料层中磷元素含量很低,锂离子电池进行热冲击测试最高表面温度显著升高,并出现冒烟、着火现象,安全性能较低;对比例5-6的锂离子二次电池中,正极材料层中磷元素的含量较高,在热冲击测试中电池最高表面温度较低,未发生失控、着火现象,但正极材料层中磷含量、锰含量和正极单面面密度不满足预设关系0.05≤p·u/v≤15,电池放电容量低,且循环性能不高,电池无法同时兼顾电化学性能和安全性能。In the lithium-ion secondary batteries of comparative examples 1-3, the positive electrode material layer does not contain phosphorus, and the maximum surface temperature of the lithium-ion secondary batteries during thermal shock tests increases significantly, and smoke and fire occur, and the safety performance of the lithium-ion secondary batteries is low; in the lithium-ion secondary batteries of comparative example 4, since the phosphorus content in the positive electrode material layer is very low, the maximum surface temperature of the lithium-ion battery during thermal shock tests increases significantly, and smoke and fire occur, and the safety performance is low; in the lithium-ion secondary batteries of comparative examples 5-6, the phosphorus content in the positive electrode material layer is high, and the maximum surface temperature of the battery is low in the thermal shock test, and no runaway or fire occurs, but the phosphorus content, manganese content and single-sided surface density of the positive electrode in the positive electrode material layer do not satisfy the preset relationship of 0.05≤p·u/v≤15, the battery discharge capacity is low, and the cycle performance is not high, and the battery cannot take into account both electrochemical performance and safety performance.

由对比例2、对比例3和实施例3的测试结果可知,当结构式1所示的化合物添加至非水电解液中,对于电池的性能提升幅度远不如在将结构式1所示的化合物添加至正极材料层中时对电池的性能提升幅度,这可能是因为结构式1所示的化合物的粘度较大,电导率较低,加入到电解液中会影响电池的首效、内阻和循环等性能。From the test results of Comparative Example 2, Comparative Example 3 and Example 3, it can be seen that when the compound shown in Structural Formula 1 is added to the non-aqueous electrolyte, the performance improvement of the battery is far less than when the compound shown in Structural Formula 1 is added to the positive electrode material layer. This may be because the compound shown in Structural Formula 1 has a large viscosity and a low electrical conductivity. Adding it to the electrolyte will affect the battery's first efficiency, internal resistance, cycle and other performance.

(2)实施例2-4和对比例7-9制作的锂离子电池的性能测试结果如表4所示:(2) The performance test results of the lithium ion batteries prepared in Examples 2-4 and Comparative Examples 7-9 are shown in Table 4:

表4Table 4

由实施例2-4和对比例7~9的测试结果可知看出,电解液中不使用环状碳酸酯溶剂,高温循环后容量保持率明显降低,推测可能是由于无环状碳酸酯会导致电解液电导率低,可迁移的锂离子少,不能形成稳定的SEI膜,电池极化现象严重且会导致电池析锂,造成电池循环提前衰减。From the test results of Examples 2-4 and Comparative Examples 7 to 9, it can be seen that when no cyclic carbonate solvent is used in the electrolyte, the capacity retention rate is significantly reduced after high-temperature cycling. It is speculated that this may be because the absence of cyclic carbonates will lead to low electrolyte conductivity, fewer mobile lithium ions, and an inability to form a stable SEI film. The battery polarization phenomenon is serious and will lead to lithium deposition in the battery, causing premature decay of the battery cycle.

(3)实施例3、8~11和对比例1、10-13制作的锂离子电池的性能测试结果如表5所示:(3) The performance test results of the lithium ion batteries prepared in Examples 3, 8 to 11 and Comparative Examples 1, 10 to 13 are shown in Table 5:

表5Table 5

由实施例3、8~11的测试结果可知看出,在含有本发明提供的正极的电池中,在非水电解液中加入上述的添加剂DTD(硫酸乙烯酯)、VC(碳酸乙烯酯)、FEC(氟代碳酸乙烯酯)或PS(1,3-丙烷磺内酯)对于能够进一步提高电池的高温循环性能,以及降低热冲击测试中电池的最高表面温度,推测是由于正极中的结构式1所示的化合物与上述的添加剂共同参与了电极表面钝化膜的成型,得到一种热稳定性能优异的钝化膜,进而有效降低了电极表面电解液的反应,提高了电池的安全性。It can be seen from the test results of Examples 3 and 8 to 11 that in a battery containing the positive electrode provided by the present invention, adding the above-mentioned additives DTD (vinyl sulfate), VC (vinyl carbonate), FEC (fluoroethylene carbonate) or PS (1,3-propane sultone) to the non-aqueous electrolyte can further improve the high-temperature cycle performance of the battery and reduce the maximum surface temperature of the battery in the thermal shock test. It is speculated that the compound shown in structural formula 1 in the positive electrode and the above-mentioned additives jointly participate in the formation of the passivation film on the electrode surface, thereby obtaining a passivation film with excellent thermal stability, thereby effectively reducing the reaction of the electrolyte on the electrode surface and improving the safety of the battery.

更优选的,在上述添加剂中,可以看出的是,采用DTD配合含有结构式1所示的化合物的正极对于电池的高温循环性能和耐热冲击性能的提升最为明显。More preferably, among the above additives, it can be seen that the use of DTD in combination with a positive electrode containing the compound represented by structural formula 1 has the most significant effect on improving the high temperature cycle performance and heat shock resistance of the battery.

(4)实施例3、12~14制作的锂离子电池的性能测试结果如表6所示:(4) The performance test results of the lithium ion batteries prepared in Examples 3, 12 to 14 are shown in Table 6:

表6Table 6

由实施例3、12-14的测试结果可知看出,在含有本发明提供的正极的电池中,在非水电解液中加入上述的辅助锂盐LiDFOB、LiBOB或LiPO2F2对于能够进一步提高电池的高温循环性能,以及降低热冲击测试中电池的最高表面温度,推测是由于正极中的结构式1所示的化合物部分溶入非水电解液中与特定组合的锂盐形成了较好的配合关系,利于提高非水电解液的稳定性。It can be seen from the test results of Examples 3 and 12-14 that in the battery containing the positive electrode provided by the present invention, adding the above-mentioned auxiliary lithium salt LiDFOB, LiBOB or LiPO2F2 to the non-aqueous electrolyte can further improve the high-temperature cycle performance of the battery and reduce the maximum surface temperature of the battery in the thermal shock test. It is speculated that this is because the compound represented by structural formula 1 in the positive electrode is partially dissolved in the non-aqueous electrolyte and forms a good coordination relationship with the lithium salt of a specific combination, which is beneficial to improving the stability of the non-aqueous electrolyte.

更优选的,在上述辅助锂盐中,可以看出的是,采用LiPF6和LiPO2F2的组合对于电池耐热性能的提升最为明显。More preferably, among the auxiliary lithium salts mentioned above, it can be seen that the combination of LiPF 6 and LiPO 2 F 2 has the most obvious effect on improving the heat resistance of the battery.

(5)实施例3、15~18制作的锂离子电池的性能测试结果如表7所示:(5) The performance test results of the lithium ion batteries prepared in Examples 3, 15 to 18 are shown in Table 7:

表7Table 7

由表7的测试结果可以看出,对于不同的结构式1所示的化合物,当正极材料层中磷含量、锰含量和正极单面面密度满足预设关系0.05≤p·u/v≤15时,其起到的作用相似,均对于电池的电池容量和安全性具有一定的改善作用,说明本发明提供的关系式适用于不同的结构式1所示的化合物。It can be seen from the test results in Table 7 that for different compounds represented by structural formula 1, when the phosphorus content, manganese content and single-surface surface density of the positive electrode in the positive electrode material layer satisfy the preset relationship of 0.05≤p·u/v≤15, the effects they play are similar, and both have a certain improvement effect on the battery capacity and safety of the battery, indicating that the relationship provided by the present invention is applicable to different compounds represented by structural formula 1.

(6)实施例19~28和对比例14~21制作的锂离子电池的性能测试结果如表8所示:(6) The performance test results of the lithium ion batteries prepared in Examples 19 to 28 and Comparative Examples 14 to 21 are shown in Table 8:

表8Table 8

由实施例19和对比例14的测试结果可知,正极活性材料中的M元素为Al,当正极材料层中磷含量、铝含量和正极单面面密度满足预设关系0.05≤p·u/v≤15时,电池同样具有较好的高温循环性能和抗热冲击性能。It can be seen from the test results of Example 19 and Comparative Example 14 that the M element in the positive electrode active material is Al. When the phosphorus content, aluminum content and single-sided surface density of the positive electrode in the positive electrode material layer satisfy the preset relationship of 0.05≤p·u/v≤15, the battery also has good high-temperature cycle performance and thermal shock resistance.

由实施例20-23和对比例15、16的测试结果可知,采用LiNi0.5Co0.2Mn0.3O2作为正极活性材料,当正极材料层中磷含量、铝含量和正极单面面密度满足预设关系0.05≤p·u/v≤15时,电池同样具有较好的高温循环性能和抗热冲击性能。It can be seen from the test results of Examples 20-23 and Comparative Examples 15 and 16 that when LiNi 0.5 Co 0.2 Mn 0.3 O 2 is used as the positive electrode active material, when the phosphorus content, aluminum content and positive electrode single-surface density in the positive electrode material layer satisfy the preset relationship 0.05≤p·u/v≤15, the battery also has good high-temperature cycle performance and thermal shock resistance.

由实施例24-28和对比例17-21的测试结果可知,当锂离子二次电池中正极片锰元素含量偏高,即使正极片中不加入结构式1所示的化合物,也不会发生冒烟、着火现象,表明高含量的锰元素可以提高正极活性材料的结构稳定性,减少了正极活性物质的分解释氧,但电池的能量密度降低,而在正极片中加入结构式1所示的化合物,在正极材料层能形成稳定的含磷元素的固体电解质界面膜,该界面膜能够抑制正极活性材料与电解液之间过度的副反应,进一步通过正极单面面密度的设计,三者协同抑制了电池产气现象,减少产热量,从而降低锂离子二次电池发生失控的风险,提高了锂离子二次电池的高温循环性能,也使得锂离子二次电池具有较高的安全性能和能量密度。It can be seen from the test results of Examples 24-28 and Comparative Examples 17-21 that when the manganese content of the positive electrode sheet in the lithium ion secondary battery is high, even if the compound shown in Structural Formula 1 is not added to the positive electrode sheet, no smoking or fire will occur, indicating that a high content of manganese can improve the structural stability of the positive electrode active material and reduce the decomposition and deoxygenation of the positive electrode active material, but the energy density of the battery is reduced. When the compound shown in Structural Formula 1 is added to the positive electrode sheet, a stable solid electrolyte interface film containing phosphorus can be formed in the positive electrode material layer, and the interface film can inhibit excessive side reactions between the positive electrode active material and the electrolyte. Further, through the design of the single-sided surface density of the positive electrode, the three synergistically inhibit the gas production of the battery and reduce the heat generation, thereby reducing the risk of runaway of the lithium ion secondary battery, improving the high-temperature cycle performance of the lithium ion secondary battery, and also making the lithium ion secondary battery have higher safety performance and energy density.

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above description is only a preferred embodiment of the present invention and is not intended to limit the present invention. Any modifications, equivalent substitutions and improvements made within the spirit and principles of the present invention should be included in the protection scope of the present invention.

Claims (10)

1.一种二次电池正极片,包括正极材料层,其特征在于,所述正极材料层包括正极活性材料和结构式1所示的化合物:1. A secondary battery positive electrode sheet, including a positive electrode material layer, characterized in that the positive electrode material layer includes a positive electrode active material and a compound represented by structural formula 1: 其中,R1、R2、R3各自独立地选自1-5个碳原子的烷基、1-5个碳原子的氟代烷基、1-5个碳原子的醚基、1-5个碳原子的氟代醚基、2-5个碳原子的不饱和烃基,且R1、R2、R3中的至少一个为2-5个碳原子的不饱和烃基;Among them, R 1 , R 2 and R 3 are each independently selected from an alkyl group of 1-5 carbon atoms, a fluoroalkyl group of 1-5 carbon atoms, an ether group of 1-5 carbon atoms, A fluorinated ether group of 2 to 5 carbon atoms, an unsaturated hydrocarbon group of 2 to 5 carbon atoms, and at least one of R 1 , R 2 , and R 3 is an unsaturated hydrocarbon group of 2 to 5 carbon atoms; 通过表面涂覆的方式在所述正极材料层的表面形成含有结构式1所示的化合物的涂层,或所述结构式1所示的化合物掺混于所述正极材料层的内部;A coating containing the compound represented by Structural Formula 1 is formed on the surface of the cathode material layer by surface coating, or the compound represented by Structural Formula 1 is mixed inside the cathode material layer; 所述正极活性材料包括M元素,M元素选自Mn和Al中的一种或两种;The positive active material includes M element, and the M element is selected from one or two types of Mn and Al; 所述正极活性材料包括式(1)和式(2)所示的化合物中的一种或多种;The positive active material includes one or more compounds represented by formula (1) and formula (2); Li1+xNiaCobM1-a-bO2-yAy式(1)Li 1+x Ni a Co b M 1-ab O 2-y A yFormula (1) Li1+zMncL2-cO4-dBd式(2)Li 1+z Mn c L 2-c O 4-d B dFormula (2) 式(1)中,-0.1≤x≤0.2,0<a<1,0≤b<1,0<a+b<1,0≤y<0.2,M包括Mn及Al中的一种或多种,以及可选择地包括Sr、Mg、Ti、Ca、Zr、Zn、Si、Fe,Ce中的零种、一种或多种,A包括S、N、F、Cl、Br及I中的一种或多种;In formula (1), -0.1≤x≤0.2, 0<a<1, 0≤b<1, 0<a+b<1, 0≤y<0.2, M includes one or more of Mn and Al species, and optionally include zero, one or more of Sr, Mg, Ti, Ca, Zr, Zn, Si, Fe, Ce, A includes S, N, F, Cl, Br and I one or more; 式(2)中,-0.1≤z≤0.2,0<c≤2,0≤d<1,L包括Ni、Fe、Cr、Ti、Zn、V、Al、Mg、Zr及Ce中的一种或多种,B包括S、N、F、Cl、Br及I中的一种或多种;In formula (2), -0.1≤z≤0.2, 0<c≤2, 0≤d<1, L includes one of Ni, Fe, Cr, Ti, Zn, V, Al, Mg, Zr and Ce or more, B includes one or more of S, N, F, Cl, Br and I; 所述正极材料层满足以下条件:The positive electrode material layer meets the following conditions: 0.05≤p·u/v≤150.05≤p·u/v≤15 其中,u为正极材料层中磷元素的质量百分含量,单位为wt%;Among them, u is the mass percentage of phosphorus element in the cathode material layer, the unit is wt%; v为正极材料层中M元素的质量百分含量,单位为wt%;v is the mass percentage of M element in the cathode material layer, the unit is wt%; p为正极材料层的单面面密度,单位为mg/cm2p is the single surface density of the positive electrode material layer, in mg/cm 2 ; 以上关系式中,正极材料层中磷元素仅表示来源于结构式1所示化合物的磷元素,正极材料层中M元素仅表示来源于正极活性材料的Mn和/或Al元素;In the above relational formula, the phosphorus element in the cathode material layer only represents the phosphorus element derived from the compound shown in Structural Formula 1, and the M element in the cathode material layer only represents the Mn and/or Al element derived from the cathode active material; 所述正极材料层中,磷元素的质量百分含量u为0.1wt%~3wt%;In the positive electrode material layer, the mass percentage u of phosphorus element is 0.1wt%~3wt%; 所述正极材料层中,M元素的质量百分含量v为3wt%~60wt%;In the positive electrode material layer, the mass percentage v of the M element is 3wt% to 60wt%; 所述正极材料层的单面面密度p为10~30mg/cm2The single surface density p of the positive electrode material layer is 10 to 30 mg/cm 2 . 2.根据权利要求1所述的二次电池正极片,其特征在于,所述正极材料层满足以下条件:2. The secondary battery cathode sheet according to claim 1, wherein the cathode material layer satisfies the following conditions: 0.1≤p·u/v≤10。0.1≤p·u/v≤10. 3.根据权利要求1所述的二次电池正极片,其特征在于,所述正极材料层满足以下条件:3. The secondary battery cathode sheet according to claim 1, wherein the cathode material layer satisfies the following conditions: 0.5≤p·u/v≤5。0.5≤p·u/v≤5. 4.根据权利要求1所述的二次电池正极片,其特征在于,所述结构式1所示的化合物包括磷酸三炔丙酯、二炔丙基甲基磷酸酯、二炔丙基氟代甲基磷酸酯、二炔丙基甲氧基甲基磷酸酯、二炔丙基乙基磷酸酯、二炔丙基丙基磷酸酯、三氟甲基二炔丙基磷酸酯、二炔丙基2,2,2-三氟乙基磷酸酯、二炔丙基3,3,3-三氟丙基磷酸酯、六氟异丙基二炔丙基磷酸酯、磷酸三烯丙酯、二烯丙基甲基磷酸酯、二烯丙基乙基磷酸酯、二烯丙基丙基磷酸酯、三氟甲基二烯丙基磷酸酯、2,2,2-三氟乙基二烯丙基磷酸酯、二炔丙基甲醚磷酸酯、二炔丙基氟代甲醚磷酸酯、二烯丙基3,3,3-三氟丙基磷酸酯或二烯丙基六氟异丙基磷酸酯中的至少一种。4. The secondary battery positive electrode sheet according to claim 1, wherein the compound represented by the structural formula 1 includes trialpargyl phosphate, dipropargyl methyl phosphate, and dipropargyl methyl fluoride. phosphate, dipropargyl methoxymethyl phosphate, dipropargyl ethyl phosphate, dipropargyl propyl phosphate, trifluoromethyl dipropargyl phosphate, dipropargyl 2 ,2,2-trifluoroethyl phosphate, dipropargyl 3,3,3-trifluoropropyl phosphate, hexafluoroisopropyl dipropargyl phosphate, triallyl phosphate, diallyl Diallyl methyl phosphate, diallyl ethyl phosphate, diallyl propyl phosphate, trifluoromethyl diallyl phosphate, 2,2,2-trifluoroethyl diallyl phosphate Ester, diallyl methyl ether phosphate, dipropargyl fluoromethyl ether phosphate, diallyl 3,3,3-trifluoropropyl phosphate or diallyl hexafluoroisopropyl phosphate at least one of them. 5.根据权利要求1所述的二次电池正极片,其特征在于,所述正极材料层表面通过X-射线光电子能谱法检测,当在284.5eV处获得碳的1s峰时,在130~140eV的区域出现磷元素的特征峰。5. The secondary battery cathode sheet according to claim 1, wherein the surface of the cathode material layer is detected by X-ray photoelectron spectroscopy. When the 1s peak of carbon is obtained at 284.5eV, it is between 130 and 130 eV. The characteristic peak of phosphorus element appears in the 140eV region. 6.根据权利要求1所述的二次电池正极片,其特征在于,所述正极材料层中,磷元素的质量百分含量u为0.1wt%~2wt%。6. The secondary battery cathode sheet according to claim 1, wherein the mass percentage u of phosphorus element in the cathode material layer is 0.1 wt% to 2 wt%. 7.根据权利要求1所述的二次电池正极片,其特征在于,所述正极材料层中,M元素的质量百分含量v为3wt%~30wt%。7. The secondary battery cathode sheet according to claim 1, wherein the mass percentage v of the M element in the cathode material layer is 3wt% to 30wt%. 8.根据权利要求1所述的二次电池正极片,其特征在于,所述正极材料层的单面面密度p为15~20mg/cm28. The secondary battery cathode sheet according to claim 1, wherein the single surface density p of the cathode material layer is 15-20 mg/cm 2 . 9.一种二次电池,其特征在于,包括非水电解液以及如权利要求1~8任意一项所述的二次电池正极片,所述非水电解液包括非水有机溶剂,所述非水有机溶剂包括环状碳酸酯。9. A secondary battery, characterized by comprising a non-aqueous electrolyte and the secondary battery positive electrode sheet according to any one of claims 1 to 8, the non-aqueous electrolyte comprising a non-aqueous organic solvent, Non-aqueous organic solvents include cyclic carbonates. 10.根据权利要求9所述的二次电池,其特征在于,所述非水电解液还包括有锂盐,所述锂盐包括LiPF6、LiBOB、LiDFOB、LiPO2F2、LiBF4、LiSbF6、LiAsF6、LiN(SO2CF3)2、LiN(SO2C2F5)2、LiC(SO2CF3)3、LiN(SO2F)2、LiClO4、LiAlCl4、LiCF3SO3、Li2B10Cl10、低级脂肪族羧酸锂盐中的一种或多种。10. The secondary battery according to claim 9, wherein the non-aqueous electrolyte further includes a lithium salt, and the lithium salt includes LiPF 6 , LiBOB, LiDFOB, LiPO 2 F 2 , LiBF 4 , LiSbF 6. LiAsF 6 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 C 2 F 5 ) 2 , LiC(SO 2 CF 3 ) 3 , LiN(SO 2 F) 2 , LiClO 4 , LiAlCl 4 , LiCF 3 One or more of SO 3 , Li 2 B 10 Cl 10 , and lower aliphatic carboxylic acid lithium salt.
CN202111194256.7A 2021-10-13 2021-10-13 A kind of positive electrode sheet of secondary battery and secondary battery Active CN113972366B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202111194256.7A CN113972366B (en) 2021-10-13 2021-10-13 A kind of positive electrode sheet of secondary battery and secondary battery
PCT/CN2021/141755 WO2023060770A1 (en) 2021-10-13 2021-12-27 Secondary battery positive electrode plate and secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111194256.7A CN113972366B (en) 2021-10-13 2021-10-13 A kind of positive electrode sheet of secondary battery and secondary battery

Publications (2)

Publication Number Publication Date
CN113972366A CN113972366A (en) 2022-01-25
CN113972366B true CN113972366B (en) 2023-09-08

Family

ID=79587410

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111194256.7A Active CN113972366B (en) 2021-10-13 2021-10-13 A kind of positive electrode sheet of secondary battery and secondary battery

Country Status (2)

Country Link
CN (1) CN113972366B (en)
WO (1) WO2023060770A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11502300B1 (en) 2021-10-13 2022-11-15 Shenzhen Capchem Technology Co., Ltd. Secondary battery
CN113644275B (en) * 2021-10-13 2022-02-22 深圳新宙邦科技股份有限公司 Secondary battery
CN114883519B (en) * 2022-03-17 2024-05-31 深圳新宙邦科技股份有限公司 Positive plate and lithium ion battery
CN114843512B (en) * 2022-03-22 2024-05-31 深圳新宙邦科技股份有限公司 A positive electrode sheet and lithium ion battery
CN114864922B (en) * 2022-04-29 2024-02-09 深圳新宙邦科技股份有限公司 A lithium-ion battery
CN114975873B (en) * 2022-06-02 2024-02-09 深圳新宙邦科技股份有限公司 Positive plate and lithium ion battery
CN115020651B (en) * 2022-06-09 2023-11-10 广东马车动力科技有限公司 Positive electrode plate and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101192682A (en) * 2006-11-21 2008-06-04 比亚迪股份有限公司 Lithium-ion secondary cell and manufacture method thereof
CN103339783A (en) * 2011-03-04 2013-10-02 株式会社电装 Nonaqueous electrolyte solution for batteries, and nonaqueous electrolyte secondary battery using same
CN104518236A (en) * 2013-09-30 2015-04-15 松下电器产业株式会社 Non-aqueous electrolyte secondary battery
CN109841908A (en) * 2018-12-20 2019-06-04 上海力信能源科技有限责任公司 A kind of high flame retardant preparation method of lithium ion battery
CN109888368A (en) * 2019-03-05 2019-06-14 深圳鸿鹏新能源科技有限公司 Low-temperature lithium ion battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270184A (en) * 2001-03-14 2002-09-20 Hitachi Maxell Ltd Non-aqueous secondary battery
JP2015162356A (en) * 2014-02-27 2015-09-07 トヨタ自動車株式会社 Coated positive electrode active material, method for producing coated positive electrode active material, and lithium battery
CN113644275B (en) * 2021-10-13 2022-02-22 深圳新宙邦科技股份有限公司 Secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101192682A (en) * 2006-11-21 2008-06-04 比亚迪股份有限公司 Lithium-ion secondary cell and manufacture method thereof
CN103339783A (en) * 2011-03-04 2013-10-02 株式会社电装 Nonaqueous electrolyte solution for batteries, and nonaqueous electrolyte secondary battery using same
CN104518236A (en) * 2013-09-30 2015-04-15 松下电器产业株式会社 Non-aqueous electrolyte secondary battery
CN109841908A (en) * 2018-12-20 2019-06-04 上海力信能源科技有限责任公司 A kind of high flame retardant preparation method of lithium ion battery
CN109888368A (en) * 2019-03-05 2019-06-14 深圳鸿鹏新能源科技有限公司 Low-temperature lithium ion battery

Also Published As

Publication number Publication date
WO2023060770A1 (en) 2023-04-20
CN113972366A (en) 2022-01-25

Similar Documents

Publication Publication Date Title
WO2023060771A1 (en) Secondary battery
CN114094109B (en) Lithium ion battery
CN113972366B (en) A kind of positive electrode sheet of secondary battery and secondary battery
CN114464887B (en) Secondary battery
CN114068936B (en) Lithium Ion Battery
CN114447295A (en) Lithium Ion Battery
WO2024174712A1 (en) Lithium ion battery
CN114361588B (en) A lithium ion battery
CN114864922B (en) A lithium-ion battery
WO2023241428A1 (en) Lithium ion battery
CN114843512B (en) A positive electrode sheet and lithium ion battery
CN115663286B (en) A lithium ion battery
CN116454381A (en) A high-voltage lithium-ion battery
CN114975873B (en) Positive plate and lithium ion battery
CN114883519B (en) Positive plate and lithium ion battery
CN116190788A (en) A kind of non-aqueous electrolyte and lithium ion battery
CN115939513A (en) Lithium ion battery
WO2023016411A1 (en) Non-aqueous electrolyte solution and battery
CN118315680A (en) Lithium ion battery
KR102811096B1 (en) Secondary battery
CN117790905A (en) A lithium-ion battery
CN117728026A (en) A lithium-ion battery
CN117219860A (en) Nonaqueous electrolyte and lithium ion battery
CN119340472B (en) A non-aqueous electrolyte and lithium ion battery
JP7470789B2 (en) Lithium-ion battery

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant