CN113969351B - A method for preparing silicon-manganese alloy by synergistic reduction and electrolysis by multi-circuit DC electrode arc heating - Google Patents
A method for preparing silicon-manganese alloy by synergistic reduction and electrolysis by multi-circuit DC electrode arc heating Download PDFInfo
- Publication number
- CN113969351B CN113969351B CN202111382195.7A CN202111382195A CN113969351B CN 113969351 B CN113969351 B CN 113969351B CN 202111382195 A CN202111382195 A CN 202111382195A CN 113969351 B CN113969351 B CN 113969351B
- Authority
- CN
- China
- Prior art keywords
- silicon
- preparing
- reduction
- manganese alloy
- carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000914 Mn alloy Inorganic materials 0.000 title claims abstract description 33
- PYLLWONICXJARP-UHFFFAOYSA-N manganese silicon Chemical compound [Si].[Mn] PYLLWONICXJARP-UHFFFAOYSA-N 0.000 title claims abstract description 33
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000005868 electrolysis reaction Methods 0.000 title claims abstract description 23
- 238000010438 heat treatment Methods 0.000 title claims abstract description 18
- 230000002195 synergetic effect Effects 0.000 title description 6
- 229910052751 metal Inorganic materials 0.000 claims abstract description 37
- 239000002184 metal Substances 0.000 claims abstract description 37
- 238000006722 reduction reaction Methods 0.000 claims abstract description 31
- 238000009826 distribution Methods 0.000 claims abstract description 22
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 16
- 238000003487 electrochemical reaction Methods 0.000 claims abstract description 7
- 238000002360 preparation method Methods 0.000 claims abstract description 6
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 5
- 239000000956 alloy Substances 0.000 claims abstract description 5
- 239000000571 coke Substances 0.000 claims description 17
- 239000002245 particle Substances 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 11
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 9
- 239000011707 mineral Substances 0.000 claims description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 4
- 229910000720 Silicomanganese Inorganic materials 0.000 claims description 4
- 229910006639 Si—Mn Inorganic materials 0.000 claims 2
- 229910052592 oxide mineral Inorganic materials 0.000 claims 2
- 238000010891 electric arc Methods 0.000 claims 1
- 238000002156 mixing Methods 0.000 claims 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229910052748 manganese Inorganic materials 0.000 description 5
- 239000011572 manganese Substances 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000003723 Smelting Methods 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 229910000975 Carbon steel Inorganic materials 0.000 description 2
- GDJWXDKMRWCHJH-UHFFFAOYSA-N [Si+4].[O-2].[Mn+2].[O-2].[O-2] Chemical compound [Si+4].[O-2].[Mn+2].[O-2].[O-2] GDJWXDKMRWCHJH-UHFFFAOYSA-N 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 239000010962 carbon steel Substances 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229910000805 Pig iron Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B4/00—Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys
- C22B4/06—Alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B4/00—Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys
- C22B4/08—Apparatus
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B5/00—General methods of reducing to metals
- C22B5/02—Dry methods smelting of sulfides or formation of mattes
- C22B5/10—Dry methods smelting of sulfides or formation of mattes by solid carbonaceous reducing agents
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C22/00—Alloys based on manganese
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C3/00—Electrolytic production, recovery or refining of metals by electrolysis of melts
- C25C3/36—Alloys obtained by cathodic reduction of all their ions
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C7/00—Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
- C25C7/06—Operating or servicing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Silicon Compounds (AREA)
- Vertical, Hearth, Or Arc Furnaces (AREA)
Abstract
Description
技术领域technical field
本发明属于合金制备技术领域,具体涉及一种多回路直流电极电弧加热利用还原与电解协同制备硅锰合金的方法。The invention belongs to the technical field of alloy preparation, and in particular relates to a method for preparing a silicon-manganese alloy by means of reduction and electrolysis synergistically heated by a multi-circuit DC electrode arc.
背景技术Background technique
锰和硅都是碳钢中所用的主要合金元素。锰是炼钢过程中最主要的脱氧剂之一,几乎所有的钢种都需要用锰来脱氧。硅是生铁和碳钢中仅次于锰的最重要的合金元素。硅锰合金的制备有两种方法,碳热还原法和电解法。Both manganese and silicon are the main alloying elements used in carbon steel. Manganese is one of the most important deoxidizers in the steelmaking process, and almost all steel grades require manganese to deoxidize. Silicon is the most important alloying element after manganese in pig iron and carbon steel. There are two methods for the preparation of silicon-manganese alloy, carbothermic reduction method and electrolytic method.
硅锰合金熔炼传统工艺是采用还原法,即矿热炉冶炼,它是一种耗电量和耗碳量均巨大的工业电炉。矿热炉分为交流矿热炉和直流矿热炉。目前,应用较为广泛的是交流矿热炉,它采用三根电极,在冶炼过程中会发生电弧转移,即由于侧部电流问题而降低能效。并且交流矿热炉电弧燃烧是间断性的,电压交变每一周期,电弧都要经历两次熄弧-点燃过程,引起噪声。交流矿热炉存在短网感抗和阻抗过大,导致交流矿热炉的有效功率较低,一般交流矿热炉功率因数0.85左右。同时三根电极的消耗不均匀,加热效率较低。近年来,由于大功率晶闸管技术的发展和应用,大功率直流电源设备的制造技术难题已经解决,因而直流电弧技术得到重视。直流矿热炉技术回避了传统交流炉生产无法解决的涡流、集肤效应、噪音、粉尘等弊端,功率因数高达0.93,节能降耗效果显著。但由于技术的不成熟,在实际生产中出现了很多问题,比如电极焙烧效果差、二次电压高、部分设备耐温及处理能力不足。The traditional process of smelting silicon-manganese alloy is reduction method, that is, submerged arc furnace smelting, which is an industrial electric furnace with huge power consumption and carbon consumption. Submerged arc furnaces are divided into alternating current submerged arc furnaces and direct current submerged arc furnaces. At present, the AC submerged arc furnace is widely used, which uses three electrodes, and arc transfer occurs during the smelting process, that is, the energy efficiency is reduced due to the side current problem. In addition, the arc combustion of the AC submerged arc furnace is intermittent, and the arc has to go through two arc-extinguishing-ignition processes for each cycle of voltage alternating, causing noise. The AC submerged arc furnace has short-circuit inductive reactance and excessive impedance, resulting in a low effective power of the AC submerged arc furnace. Generally, the power factor of the AC submerged arc furnace is about 0.85. At the same time, the consumption of the three electrodes is uneven, and the heating efficiency is low. In recent years, due to the development and application of high-power thyristor technology, the manufacturing technical difficulties of high-power DC power supply equipment have been solved, so DC arc technology has received attention. The DC submerged arc furnace technology avoids the disadvantages of eddy current, skin effect, noise and dust that cannot be solved by traditional AC furnace production. The power factor is as high as 0.93, and the effect of energy saving and consumption reduction is remarkable. However, due to the immaturity of the technology, many problems have arisen in actual production, such as poor electrode baking effect, high secondary voltage, and insufficient temperature resistance and processing capacity of some equipment.
电解法制备硅锰合金,需要进行阴极的制备,熔盐预处理,预电解,电解等步骤,耗电量巨大,效率低下。The preparation of silicon-manganese alloy by electrolysis requires steps such as cathode preparation, molten salt pretreatment, pre-electrolysis, electrolysis, etc., which consumes a lot of electricity and has low efficiency.
发明内容SUMMARY OF THE INVENTION
本发明提供一种多回路直流电极电弧加热利用还原与电解协同制备硅锰合金的方法,生产硅锰合金时能够节约能源、减少碳消耗。The invention provides a method for preparing a silicon-manganese alloy by means of reduction and electrolysis synergistically heated by a multi-circuit DC electrode arc, which can save energy and reduce carbon consumption when producing the silicon-manganese alloy.
本发明的技术方案如下:The technical scheme of the present invention is as follows:
一种多回路直流电极电弧加热利用还原与电解协同制备硅锰合金的方法,直流矿热炉的炉体采用方形槽式结构,在直流矿热炉中采用两排平行设置的多回路金属电极,在所述金属电极之间进行无碳布料,在所述炉体的其它部位进行配碳布料;在所述金属电极之间利用电化学反应制备硅锰合金,在所述炉体的其它部位利用还原反应制备硅锰合金。A multi-circuit direct current electrode arc heating method for preparing silicon-manganese alloy by synergistic reduction and electrolysis. Carbon-free cloth is carried out between the metal electrodes, and carbon cloth is carried out in other parts of the furnace body; silicon-manganese alloy is prepared by electrochemical reaction between the metal electrodes, and is used in other parts of the furnace body. Reduction reaction to prepare silicon manganese alloy.
进一步地,所述的多回路直流电极电弧加热利用还原与电解协同制备硅锰合金的方法,具体包括如下步骤:Further, the method for preparing a silicon-manganese alloy by means of reduction and electrolysis synergistically heated by multi-circuit DC electrode arc heating specifically includes the following steps:
(1)直流矿热炉的炉盖上分别设有无碳布料口和配碳布料口,所述无碳布料口位于两个所述金属电极之间的中心位置或四个所述金属电极之间的中心处;所述配碳布料口位于所述金属电极的外围;(1) A carbon-free distribution port and a carbon distribution port are respectively provided on the furnace cover of the DC submerged arc furnace, and the carbon-free distribution port is located at the center position between the two metal electrodes or between the four metal electrodes. the center of the space; the carbon distribution port is located at the periphery of the metal electrode;
(2)将所述金属电极浸入位于炉底的硅锰氧化物矿料中,采用电弧加热方式使硅锰氧化物矿料形成熔融体;(2) immersing the metal electrode in the silicon-manganese oxide ore material at the bottom of the furnace, and using arc heating to make the silicon-manganese oxide ore material form a melt;
(3)通过所述无碳布料口加入小粒度且不加入焦炭的混合矿料,在所述金属电极之间形成电化学反应体系,利用电解方法制备硅锰合金;(3) adding a mixed mineral material of small particle size and not adding coke through the carbon-free cloth opening, forming an electrochemical reaction system between the metal electrodes, and using an electrolytic method to prepare a silicon-manganese alloy;
(4)炉内升温后,通过所述配碳布料口加入正常粒度且配入焦炭的混合矿料,在所述金属电极外围形成还原反应体系,利用还原方法制备硅锰合金。(4) After the temperature in the furnace is heated up, the mixed ore with normal particle size and coke is added through the carbon distribution port, and a reduction reaction system is formed around the metal electrode, and the silicon-manganese alloy is prepared by the reduction method.
进一步地,所述的多回路直流电极电弧加热利用还原与电解协同制备硅锰合金的方法,所述金属电极为镍棒。Further, in the method for preparing a silicon-manganese alloy by means of reduction and electrolysis synergistically heated by a multi-circuit DC electrode arc, the metal electrode is a nickel rod.
进一步地,所述的多回路直流电极电弧加热利用还原与电解协同制备硅锰合金的方法,小粒度且不加入焦炭的混合矿料的粒径为15-25mm。Further, in the multi-circuit DC electrode arc heating method for preparing silicon-manganese alloy by synergistic reduction and electrolysis, the particle size of the mixed ore with small particle size and without adding coke is 15-25 mm.
进一步地,所述的多回路直流电极电弧加热利用还原与电解协同制备硅锰合金的方法,正常粒度且配入焦炭的混合矿料的粒径为75-85mm。Further, in the multi-circuit DC electrode arc heating method for preparing silicon-manganese alloy by synergistic reduction and electrolysis, the particle size of the mixed ore with normal particle size and mixed with coke is 75-85mm.
本发明的有益效果为:本发明利用还原与电解方式协同制备硅锰合金,能够提高电效率,延长电极的使用寿命,并且减少短网感抗,提高功率因数,降低电耗;同时,减少焦炭等还原剂的用量,降低成本;直流电弧加热熔化速度快,加热效率高,加热效果好。The beneficial effects of the present invention are as follows: the present invention utilizes reduction and electrolysis to synergistically prepare silicon-manganese alloy, which can improve electrical efficiency, prolong the service life of electrodes, reduce short-circuit inductance, improve power factor, and reduce power consumption; at the same time, reduce coke Equal the amount of reducing agent to reduce costs; DC arc heating has fast melting speed, high heating efficiency and good heating effect.
附图说明Description of drawings
图1为直流矿热炉中利用还原与电解协同方法制备硅锰合金示意图;Fig. 1 is the schematic diagram of utilizing reduction and electrolysis synergistic method to prepare silicon-manganese alloy in DC submerged arc furnace;
图2为直流矿热炉俯视图。Figure 2 is a top view of the DC submerged arc furnace.
图中:1为炉体;2为炉盖;3为金属电极;4为无碳布料口;5为配碳布料口;6为电化学反应体系;7为还原反应体系。In the figure: 1 is the furnace body; 2 is the furnace cover; 3 is the metal electrode; 4 is the carbon-free distribution port; 5 is the carbon distribution port; 6 is the electrochemical reaction system; 7 is the reduction reaction system.
具体实施方式Detailed ways
硅锰合金的成分要求:锰的含量为60~63%,硅的含量为20~23%。硅锰矿料包括澳矿,碳酸矿,缅原生矿,广西矿,缅矿,烧结矿,砂矿以及干渣比例为21:15:20:12:8:10:8:6。不同种类矿料的化学成分如表1所示。The composition requirements of silicon-manganese alloy: the content of manganese is 60-63%, and the content of silicon is 20-23%. The silicomanganese minerals include Australian ore, carbonate ore, Myanmar primary ore, Guangxi ore, Myanmar ore, sinter, placer and dry slag in a ratio of 21:15:20:12:8:10:8:6. The chemical compositions of different types of minerals are shown in Table 1.
表1矿料的化学成分(质量分数wt%)Table 1 Chemical composition of mineral material (mass fraction wt%)
将一部分混合矿料处理为粒径为20mm的小粒度且不加入焦炭的混合矿料。A part of the mixed ore is processed into a mixed ore with a small particle size of 20 mm and no coke is added.
另一部分混合矿料按照配比,加入一定量的焦炭作为还原剂,将混合矿料处理为粒径为80mm的正常粒度且配入焦炭的混合矿料。Another part of the mixed ore material is added with a certain amount of coke as a reducing agent according to the proportion, and the mixed ore material is processed into a normal particle size with a particle size of 80mm and mixed with coke.
直流矿热炉的炉体1采用方形槽式结构,在直流矿热炉中采用两排平行设置的多回路金属电极3;阴阳金属电极3采用镍棒,通过电极把持器悬挂于直流矿热炉中,金属电极3距炉底的距离为1.1m,金属电极3与直流电源相连。直流矿热炉的炉盖2上分别设有无碳布料口4和配碳布料口5,所述无碳布料口4位于两个所述金属电极3之间的中心位置或四个所述金属电极3之间的中心处;所述配碳布料口5位于所述金属电极3的外围。The furnace body 1 of the DC submerged arc furnace adopts a square trough structure, and two rows of
在金属电极3正下方放置与金属电极等直径的圆柱形铁桶,铁桶内装入焦炭块。通电后将金属电极3与焦炭块做短时间的接触,而后分开保持一定距离,金属电极3与焦炭块之间就会出现电弧。变压器的二次额定电压为125V。A cylindrical iron bucket with the same diameter as the metal electrode is placed directly under the
直流矿热炉内通过电弧热和焦耳热的共同作用使矿料升温,在金属电极3周围形成熔融体,混合矿料的熔化温度范围在1150~1440℃。通过观察电流表和电压表的数值判断熔融体的范围及深度,形成电化学体系。In the DC submerged arc furnace, the ore material is heated up by the combined action of arc heat and Joule heat, and a molten body is formed around the
在熔融体区域,通过所述无碳布料口4加入小粒度且不加入焦炭的混合矿料,在所述金属电极3之间形成电化学反应体系6,利用电解方法制备硅锰合金。In the melt area, a mixed ore with small particle size and no coke is added through the carbon-
通过所述配碳布料口5加入正常粒度且配入焦炭的混合矿料,在所述金属电极3外围形成还原反应体系7,利用还原方法制备硅锰合金。Mixed minerals with normal particle size and coke are added through the
利用还原与电解协同方法制备硅锰合金,直流矿热炉节能效果达到10%,减碳效果达到3%~5%。The silicon-manganese alloy is prepared by the synergistic method of reduction and electrolysis. The energy saving effect of the DC submerged arc furnace reaches 10%, and the carbon reduction effect reaches 3% to 5%.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111382195.7A CN113969351B (en) | 2021-11-22 | 2021-11-22 | A method for preparing silicon-manganese alloy by synergistic reduction and electrolysis by multi-circuit DC electrode arc heating |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111382195.7A CN113969351B (en) | 2021-11-22 | 2021-11-22 | A method for preparing silicon-manganese alloy by synergistic reduction and electrolysis by multi-circuit DC electrode arc heating |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113969351A CN113969351A (en) | 2022-01-25 |
CN113969351B true CN113969351B (en) | 2022-09-06 |
Family
ID=79590004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111382195.7A Active CN113969351B (en) | 2021-11-22 | 2021-11-22 | A method for preparing silicon-manganese alloy by synergistic reduction and electrolysis by multi-circuit DC electrode arc heating |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113969351B (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101298641A (en) * | 2008-06-30 | 2008-11-05 | 北京科技大学 | Metallic element carbon hot melting reduction continuous reactor |
CN102220608A (en) * | 2011-06-09 | 2011-10-19 | 河北联合大学 | Preparation method of silicon-manganese alloy |
CN102703704A (en) * | 2012-06-20 | 2012-10-03 | 柳州市金螺机械有限责任公司 | Method for smelting metal ores |
RU2550983C1 (en) * | 2013-11-22 | 2015-05-20 | Общество с Ограниченной Ответственностью Научно-производственное предприятие "ИНЖМЕТ" | Ore-thermal furnace with hot hearth and high-current lead |
CN206069976U (en) * | 2016-09-20 | 2017-04-05 | 中成致远有限公司 | A kind of association type silicomangan production system |
CN108411065A (en) * | 2018-02-13 | 2018-08-17 | 鞍钢股份有限公司 | Method and device for manganese alloying by using manganese ore |
CN109576509A (en) * | 2019-02-14 | 2019-04-05 | 宁夏诚飞商贸有限公司 | A kind of silicomangan and preparation method thereof |
CN111187909A (en) * | 2020-02-21 | 2020-05-22 | 北京欧菲金太科技有限责任公司 | DC Al-Si alloy ore-smelting furnace |
CN112430755A (en) * | 2020-09-29 | 2021-03-02 | 嘉峪关宏电铁合金有限责任公司 | Process for smelting common silicon-manganese alloy and rapidly converting high-silicon-manganese alloy in submerged arc furnace |
-
2021
- 2021-11-22 CN CN202111382195.7A patent/CN113969351B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101298641A (en) * | 2008-06-30 | 2008-11-05 | 北京科技大学 | Metallic element carbon hot melting reduction continuous reactor |
CN102220608A (en) * | 2011-06-09 | 2011-10-19 | 河北联合大学 | Preparation method of silicon-manganese alloy |
CN102703704A (en) * | 2012-06-20 | 2012-10-03 | 柳州市金螺机械有限责任公司 | Method for smelting metal ores |
RU2550983C1 (en) * | 2013-11-22 | 2015-05-20 | Общество с Ограниченной Ответственностью Научно-производственное предприятие "ИНЖМЕТ" | Ore-thermal furnace with hot hearth and high-current lead |
CN206069976U (en) * | 2016-09-20 | 2017-04-05 | 中成致远有限公司 | A kind of association type silicomangan production system |
CN108411065A (en) * | 2018-02-13 | 2018-08-17 | 鞍钢股份有限公司 | Method and device for manganese alloying by using manganese ore |
CN109576509A (en) * | 2019-02-14 | 2019-04-05 | 宁夏诚飞商贸有限公司 | A kind of silicomangan and preparation method thereof |
CN111187909A (en) * | 2020-02-21 | 2020-05-22 | 北京欧菲金太科技有限责任公司 | DC Al-Si alloy ore-smelting furnace |
CN112430755A (en) * | 2020-09-29 | 2021-03-02 | 嘉峪关宏电铁合金有限责任公司 | Process for smelting common silicon-manganese alloy and rapidly converting high-silicon-manganese alloy in submerged arc furnace |
Also Published As
Publication number | Publication date |
---|---|
CN113969351A (en) | 2022-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101906646B (en) | Method for preparing iron metal by molten salt electrolysis of iron ore | |
CN103436699B (en) | A kind of microwave silicothermic process produces the method for low carbon ferrochromium | |
CN109023161A (en) | A kind of Fe-Ni-P-C system amorphous alloy elctro-catalyst and its preparation method and application | |
CN107502945A (en) | A kind of graphene aluminium alloy conductor and preparation method | |
CN102703929B (en) | Method for preparing Ti-Fe alloy by direct reduction of ilmenite | |
CN108914156A (en) | A kind of Fe-Co-Mo-P-C system amorphous alloy elctro-catalyst and its preparation method and application | |
CN107012361A (en) | A kind of electrodepositing zinc rare earth alloy anode and preparation method thereof | |
CN102220608B (en) | Preparation method of silicon-manganese alloy | |
CN101293317A (en) | A preparation method of a high-strength and high-conductivity integral dispersed copper spot welding electrode | |
CN106521557A (en) | Anode steel stud for electrolytic aluminum | |
WO2023246367A1 (en) | Antimony-sulfide-containing ore-based molten salt electrolysis continuous production method and apparatus | |
CN113969351B (en) | A method for preparing silicon-manganese alloy by synergistic reduction and electrolysis by multi-circuit DC electrode arc heating | |
KR20150022994A (en) | Inert alloy anode used for aluminum electrolysis and preparation method therefor | |
CN105714332A (en) | Method for electrodepositing vanadium through fused salt | |
CN105908031B (en) | Aluminum alloy materials of high conductivity and preparation method thereof | |
CN101817538A (en) | Method for preparing titanium boride by arc melting method | |
CN106811563B (en) | Method for iron ore reduction iron making by applying electric field | |
CN203258979U (en) | Direct current electric arc furnace | |
CN105937040B (en) | It is a kind of to handle the technique that cathode zinc unit dc consumption is reduced in high miscellaneous ore deposit zinc hydrometallurgy | |
CN104975132A (en) | Method for reducing oxidability of furnace slag by applying electric field | |
CN115613080A (en) | Method and system for preparing molten iron by gas pre-reduction-electrolysis final reduction of iron ore | |
CN105839142B (en) | Aluminum electrolyzing cell used anode steel claw and preparation method thereof | |
CN101597771A (en) | The working method of cathode matched with aluminium electrolyser | |
CN111581857A (en) | Process package design method of electricity-saving submerged arc furnace | |
CN106011943B (en) | A kind of method that pure ferroalloy and carbide-derived carbon are prepared using carbon ferroalloy simultaneously as raw material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |