[go: up one dir, main page]

CN113943744B - Application of RCA gene of cymbidium floribundum and vector construction method thereof - Google Patents

Application of RCA gene of cymbidium floribundum and vector construction method thereof Download PDF

Info

Publication number
CN113943744B
CN113943744B CN202111290918.0A CN202111290918A CN113943744B CN 113943744 B CN113943744 B CN 113943744B CN 202111290918 A CN202111290918 A CN 202111290918A CN 113943744 B CN113943744 B CN 113943744B
Authority
CN
China
Prior art keywords
rca
gene
dendrobium officinale
rca gene
vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111290918.0A
Other languages
Chinese (zh)
Other versions
CN113943744A (en
Inventor
王玉英
李枝林
陈璐
凌青
李光宏
李志敏
刘丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan Agricultural University
Original Assignee
Yunnan Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan Agricultural University filed Critical Yunnan Agricultural University
Priority to CN202111290918.0A priority Critical patent/CN113943744B/en
Publication of CN113943744A publication Critical patent/CN113943744A/en
Application granted granted Critical
Publication of CN113943744B publication Critical patent/CN113943744B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8245Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/825Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving pigment biosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01039Ribulose-bisphosphate carboxylase (4.1.1.39)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Nutrition Science (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明属于植物基因工程技术领域,具体公开叶斑艺兰花RCA基因的应用及其载体构建方法,通过将叶斑艺兰花RCA转入铁皮石斛中RCA基因能够正常表达,过量表达RCA基因能够增加转基因铁皮石斛中多糖含量,所述RCA基因的核苷酸序列如SEQ ID NO:1所示,过量表达RCA基因能够很大程度的提高增加转基因铁皮石斛中蛋白质含量、可溶性糖含量增加,光合色素含量增加,叶绿体发育良好;而敲除原球茎则无法正常发育,没有叶绿体的存在。

Figure 202111290918

The invention belongs to the technical field of plant genetic engineering, and specifically discloses the application of the RCA gene of the variegated orchid and a vector construction method thereof. The RCA gene can be expressed normally by transferring the RCA of the variegated orchid into Dendrobium officinale, and the overexpression of the RCA gene can increase the transgene The polysaccharide content in Dendrobium officinale, the nucleotide sequence of the RCA gene is shown in SEQ ID NO: 1, and the overexpression of the RCA gene can greatly improve the protein content, the soluble sugar content and the photosynthetic pigment content in the transgenic Dendrobium officinale. The chloroplasts were well developed when increased, while the knockout protocorms could not develop normally and had no chloroplasts.

Figure 202111290918

Description

叶斑艺兰花RCA基因的应用及其载体构建方法The application of RCA gene of variegated orchid and its vector construction method

技术领域technical field

本发明属于植物基因工程技术领域,具体涉及叶斑艺兰花RCA基因的应用及其载体构建方法。The invention belongs to the technical field of plant genetic engineering, and particularly relates to the application of the RCA gene of Spotted orchid and a method for constructing a vector thereof.

背景技术Background technique

中国的野生兰科植物非常丰富,但是野生兰科植物均被列为濒危植物的保护范围中,人们对奇特叶形、花型、花色兰花的需求日益增长。兰花经过长期的选育栽培,出现了很多的变异品种,根据观赏部位的不同,分为花艺、叶艺两大类型,其中的叶斑艺兰花起源于中国,在近些年中逐渐被人们认识。所谓叶艺即是指兰花的叶片上发生的性状相对稳定的变异,包括叶片色彩和叶片形状的变化。传统上的叶艺兰主要是叶片颜色发生变化,大多分为水晶艺兰、斑艺兰、线艺兰三个大类,其中,线艺兰即是指兰花的绿色叶片上出现的黄色或白色等长短不一、粗细各异的条状艺色斑纹,依据线条分布的位置以及形状的不同,大致可以分为爪艺、边艺、缟艺、中透艺。形成叶艺的原因有很多,例如环境发生变化、病毒入侵、某些营养缺乏等等,这些原因使得叶片上出现嵌合的斑纹,从而出现不同的“艺向”。China is very rich in wild orchids, but all wild orchids are listed as endangered plants, and people's demand for orchids with unique leaf shapes, flower shapes and colors is increasing. After a long-term selection and cultivation of orchids, there have been many variant varieties. According to the different ornamental parts, they are divided into two types: flower art and leaf art. Among them, the leaf spot art orchid originated in China and has gradually been recognized by people in recent years. . The so-called leaf art refers to the relatively stable variation of the characters on the leaves of orchids, including changes in leaf color and leaf shape. The traditional Yeyilan mainly changes the color of the leaves, and most of them are divided into three categories: crystal Yelan, variegated Yelan, and Line Yelan. Among them, Lin Yelan refers to the yellow or white that appears on the green leaves of orchids. Different stripes of different thicknesses and colors can be roughly divided into claw art, edge art, clay art, and medium-through art according to the position and shape of the line distribution. There are many reasons for the formation of leaf art, such as environmental changes, virus invasion, certain nutrient deficiencies, etc. These reasons cause mosaic spots on the leaves, resulting in different "artistic orientations".

Rubisco(核酮糖-1,5-二磷酸羧化酶/加氧酶)在植物的叶片当中含量丰富,对于调节植物色素、光合作用碳同化和光呼吸都有着重要作用,而在叶斑艺兰花中,叶片出现的黄色或白色等长短不一、粗细各异的条状艺色斑纹,该基因呈现下调表达形式,而现有研究表明Rubisco活性的表达有赖于RCA的调节作用,在RCA的作用下Rubisco才能表现出羧化或是加氧的活性,针对叶斑艺兰花中调节Rubisco基因表达的RCA(Rubisco activase)基因的探究以及应用成为研究方向,且目前还未见相关报道。Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) is abundant in the leaves of plants and plays an important role in regulating phytochrome, carbon assimilation in photosynthesis and photorespiration. In the leaves, the yellow or white stripes of different lengths and thicknesses appear on the leaves, the gene is down-regulated, and existing studies have shown that the expression of Rubisco activity depends on the regulation of RCA, and the role of RCA in RCA Only Rubisco can show the activity of carboxylation or oxygenation. The research and application of the RCA (Rubisco activase) gene that regulates the expression of Rubisco gene in Orchid variegata has become a research direction, and there is no relevant report yet.

发明内容SUMMARY OF THE INVENTION

本发明的主要目的是提供一个可显著影响铁皮石斛生长的基因片段叶斑艺兰花RCA基因,核苷酸序列为SEQ ID NO:1所示,该基因片段在铁皮石斛中正常表达,且促进铁皮石斛的生长发育以及多糖合成。The main purpose of the present invention is to provide a gene fragment that can significantly affect the growth of Dendrobium officinale orchid RCA gene, the nucleotide sequence is shown in SEQ ID NO: 1, the gene fragment is normally expressed in Dendrobium officinale, and promotes the growth of Dendrobium officinale. Growth and development and polysaccharide synthesis of Dendrobium.

本发明的另一个目的是提供一种铁皮石斛植物模型,该模型通过敲除RCA2基因后,铁皮石斛无叶绿体形成,作为为研究中的对比测试,此技术方法为兰科植物的基因编辑和新品种选育提供参考,具体的RCA2基因核苷酸序列如SEQ ID NO:2所示,是通过与叶斑艺兰花RCA基因序列比对,在铁皮石斛中获得的同源RCA基因。Another object of the present invention is to provide a Dendrobium officinale plant model. After knocking out the RCA2 gene, Dendrobium officinale does not form chloroplasts. As a comparative test in the research, this technical method is used for gene editing and new development of orchid plants. Variety breeding provides a reference. The specific RCA2 gene nucleotide sequence is shown in SEQ ID NO: 2, which is a homologous RCA gene obtained from Dendrobium officinale by aligning with the RCA gene sequence of the variegated orchid.

本发明还提供了上述基因的重组载体及重组载体的构建方法,包括以下步骤,The present invention also provides a recombinant vector of the above-mentioned gene and a construction method of the recombinant vector, comprising the following steps:

(1)叶斑艺兰花RCA基因的扩增;(1) Amplification of the RCA gene of Orchid variegata;

对转录组中获得的RCA基因序列进行比对,发现RCA基因序列具有5’,利用RACE技术对3’进行扩增,得到全长基因片段;根据叶斑艺兰花RCA基因在NCBI中的比对结果获得铁皮石斛中的RCA的同源基因RCA2;The RCA gene sequences obtained in the transcriptome were compared, and it was found that the RCA gene sequence had a 5', and the 3' was amplified by RACE technology to obtain a full-length gene fragment; As a result, the homologous gene RCA2 of RCA in Dendrobium officinale was obtained;

(2)过表达载体pCAMBIA1300-35S-RCA和敲除载体pCAMBIA1300DM-OsU6-Cas9的构建;(2) Construction of overexpression vector pCAMBIA1300-35S-RCA and knockout vector pCAMBIA1300DM-OsU6-Cas9;

根据叶斑艺兰花RCA基因进行引物设计,使用高保真酶克隆基因,并用其双酶切pCAMBIA1300-35S载体,所得到的全长序列和载体序列上带上了互补的粘性末端,将所得到的载体片段进行回收,与RCA的PCR产物进行体外同源重组反应,转化大肠杆菌,挑取单菌落进行鉴定,通过酶切鉴定筛选出重组子,构建起了植物表达的重组载体pCAMBIA1300-35S-RCA,之后获得重组质粒;The primers were designed according to the RCA gene of Orchid variegata, the gene was cloned with a high-fidelity enzyme, and the pCAMBIA1300-35S vector was double-enzyme digested. The full-length sequence and the vector sequence were obtained with complementary sticky ends. The vector fragment was recovered, subjected to in vitro homologous recombination reaction with the PCR product of RCA, transformed into Escherichia coli, picked a single colony for identification, screened out the recombinant by enzyme digestion identification, and constructed a plant-expressed recombinant vector pCAMBIA1300-35S-RCA , and then the recombinant plasmid was obtained;

根据同源比对获得的RCA2基因的cds序列设计2个CRISPR靶位点,根据选择的两个靶位点设计出,用BsaI酶切敲除载体,之后与靶位点退火后的小片段进行连接,之后利用带有BsaI酶切位点的引物进行PCR的扩增,获取含有靶位点的gRNA表达框,回收扩增的靶位点片段并用BsaI进行酶切,与BsaI酶切获得的Cas9载体进行连接,构件敲除载体pCAMBIA1300DM-OsU6-Cas9,连接后的产物电转化到大肠杆菌的感受态细胞当中,涂卡那霉素抗性平板进行培养,挑取单菌落进行阳性克隆的筛选,获得构建好的敲除质粒。Two CRISPR target sites were designed according to the cds sequence of the RCA2 gene obtained by homologous alignment, and designed according to the two selected target sites. After ligation, PCR amplification was performed using primers with BsaI restriction sites to obtain a gRNA expression cassette containing the target site, and the amplified target site fragments were recovered and digested with BsaI, and the Cas9 obtained by BsaI restriction was digested with BsaI. The vector was ligated, the component knocked out the vector pCAMBIA1300DM-OsU6-Cas9, the ligated product was electrotransformed into E. coli competent cells, coated with kanamycin-resistant plates for culture, and a single colony was picked for screening of positive clones. Obtain the constructed knockout plasmid.

进一步的,所述步骤(2)中,2个CRISPR靶位点分别为Target 1:ATCCATGGGAGACTCACCGC;Target 2:TGATCAATC AGATGACCAGC;靶位点的接头引物为分别为Target1F:GCCGATCCATGG GAGACTCACCGC;Target 1R:AAACGCGG TGAGTCTCCCATGGAT;Target 2F:GTTGTGATCAATCAGATGACCAGC;Target 2R:AAACGCTGGTCATCTG ATTGATCA。Further, in the step (2), the two CRISPR target sites are Target 1: ATCCATGGGAGACTCACCGC; Target 2: TGATCAATC AGATGACCAGC; the linker primers of the target sites are Target 1F: GCCGATCCATGG GAGACTCACCGC; Target 1R: AAACGGCG TGAGTCTCCCATGGAT; Target 2F: GTTGTGATCAATCAGATGACCAGC; Target 2R: AAACGCTGGTCATCTG ATTGATCA.

本发明是利用RACE的方法从叶斑艺兰花中克隆出RCA基因,并以此序列比对获得铁皮石斛中RCA基因的同源基因RCA2,在铁皮石斛中进行过量表达及敲除表达,并通过类似叶盘(原球茎)转化法将其转入野生型铁皮石斛中,实验结果表明在过表达转基因铁皮石斛中RCA基因能够正常表达,转入过表达RCA基因的生长情况比对照植株表现为更健壮,过量表达RCA基因能够很大程度的提高增加转基因铁皮石斛中蛋白质含量、可溶性糖含量增加,光合色素含量增加,叶绿体发育良好;而敲除原球茎则无法正常发育,没有叶绿体的存在。The present invention utilizes the method of RACE to clone the RCA gene from the Orchid variegata, obtains the homologous gene RCA2 of the RCA gene in Dendrobium officinale by using the sequence comparison, and over-expresses and knocks out the expression in Dendrobium officinale, and through Similar to the leaf disc (protocorm) transformation method, it was transformed into wild-type Dendrobium officinale. The experimental results showed that the RCA gene could be expressed normally in the overexpressed transgenic Dendrobium officinale, and the growth of the overexpressed RCA gene was better than that of the control plants. Robust, overexpression of the RCA gene can greatly improve the protein content, soluble sugar content, photosynthetic pigment content, and well-developed chloroplast in transgenic Dendrobium officinale.

附图说明:Description of drawings:

图1:RCA基因扩增前后凝胶电泳显示图(A:RCA基因3’端PCR产物,M:maker2000bp;3:3’RACE产物B:RCA基因全长扩增,M:maker10000bp;1:RCA基因全长);Figure 1: Gel electrophoresis before and after amplification of RCA gene (A: PCR product of RCA gene 3' end, M: maker2000bp; 3: 3'RACE product B: full-length amplification of RCA gene, M:maker10000bp; 1: RCA gene full length);

图2:过表达载体PCR验证凝胶电泳显示图;Figure 2: Overexpression vector PCR verification gel electrophoresis display;

图3:基因敲除重组载体构建显示图;Figure 3: Diagram showing the construction of gene knockout recombinant vector;

图4:过表达转化铁皮石斛原球茎(A:侵染;B:侵染后晾干;C:共培养;D:筛选培养;E:增殖分化培养;F:分化生根培养);Figure 4: Overexpression and transformation of Dendrobium officinale protocorm (A: infection; B: drying after infection; C: co-culture; D: screening culture; E: proliferation and differentiation culture; F: differentiation and rooting culture);

图5:敲除转化铁皮石斛原球茎(A:原球茎的处理;B:原球茎侵染;C:共培养;D:转入筛选培养;E:筛选;F:筛选后培养);Figure 5: Knockout transformation of Dendrobium officinale protocorm (A: treatment of protocorm; B: infection of protocorm; C: co-culture; D: transfer into screening culture; E: screening; F: post-screening culture);

图6:PCR检测转基因阳性植株情况显示图(A为过表达,B为敲除,M:DL2000,1:野生型植株,2:阳性对照,其余为转基因植株);Figure 6: PCR detection of transgenic positive plants (A is overexpression, B is knockout, M: DL2000, 1: wild-type plant, 2: positive control, the rest are transgenic plants);

图7:转基因和野生型植株形态显示图(A、B、C为转基因植株;CK为野生植株);Figure 7: Transgenic and wild-type plant morphology display diagram (A, B, C are transgenic plants; CK is wild plant);

图8:野生型和转基因铁皮石斛植株叶片内光合色素含量对比图;Figure 8: Comparison of photosynthetic pigment content in leaves of wild-type and transgenic Dendrobium officinale plants;

图9:野生型和转基因铁皮石斛植株叶片内可溶性蛋白和糖含量对比图;Figure 9: Comparison of soluble protein and sugar content in leaves of wild-type and transgenic Dendrobium officinale plants;

图10:透射电镜观察野生型、过表达、敲除原球茎内叶绿体发育情况对比图(A、B、C为野生型,D、E、F为过表达,G、H、I为敲除;Ch代表叶绿体;CW代表细胞壁;M代表线粒体;O代表嗜饿颗粒;IS代表细胞间隙;GL代表基粒片层;SG代表淀粉粒;N代表细胞核)。Figure 10: Comparison of chloroplast development in wild type, overexpression and knockout protocorm observed by transmission electron microscope (A, B, C are wild type, D, E, F are overexpression, G, H, I are knockout; Ch, chloroplast; CW, cell wall; M, mitochondria; O, ghrelin; IS, intercellular space; GL, grana lamella; SG, starch granules; N, nucleus).

具体实施方式Detailed ways

为了能够更加清楚地理解本发明的技术实质和有益效果,申请人在下面以实施例的方式作详细说明,但是对实施例的描述均不是对本发明方案的限制,任何依据本发明构思所做出的仅仅为形式上的而非实质性的等效变换都应视为本发明的技术方案范畴。In order to be able to understand the technical essence and beneficial effects of the present invention more clearly, the applicant will describe in detail below by way of examples, but the descriptions of the examples are not intended to limit the solution of the present invention. The equivalent transformations that are only formal but not substantial should be regarded as the scope of the technical solutions of the present invention.

为了避免过多不必要的细节,在以下实施例中对属于公知技术将不进行详细描述。除有定义外,以下实施例中所用的技术和科学术语具有与本发明所属领域技术人员普遍理解的相同含义。In order to avoid excessive unnecessary details, the well-known technologies will not be described in detail in the following embodiments. Unless defined otherwise, technical and scientific terms used in the following examples have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.

以下实施例中所用的试验试剂耗材,如无特殊说明,均为常规生化试剂;所述实验方法,如无特殊说明,均为常规方法。The test reagent consumables used in the following examples are conventional biochemical reagents unless otherwise specified; the experimental methods are conventional methods unless otherwise specified.

实施例1Example 1

一、构建RCA的重组载体pCAMBIA1300-35S-RCA和pCAMBIA1300DM-OsU6-Cas91. Construction of RCA recombinant vectors pCAMBIA1300-35S-RCA and pCAMBIA1300DM-OsU6-Cas9

pCAMBIA1300-35S-RCA是重组植物过表达载体,在pCAMBIA1300-35S-RCA植物表达载体中含有叶斑艺兰花的RCA基因,其起始载体为pCAMBIA1301。pCAMBIA1300DM-OsU6-Cas9是敲除载体,含有叶斑艺兰花RCA基因在铁皮石斛中的同源基因RCA2基因。pCAMBIA1300-35S-RCA is a recombinant plant overexpression vector. The pCAMBIA1300-35S-RCA plant expression vector contains the RCA gene of Orchid variegata. The starting vector is pCAMBIA1301. pCAMBIA1300DM-OsU6-Cas9 is a knockout vector, which contains the RCA2 gene, the homologous gene of the Orchid variegata RCA gene in Dendrobium officinale.

本发明所得到的pCAMBIA1300-35S-RCA植物表达载体,它含有35S启动子,其后紧接RCA基因。pCAMBIA1300DM-OsU6-Cas9,含有启动子U6,以叶艺兰RCA基因在铁皮石斛中的同源基因RCA2基因作为敲除的目的基因。The pCAMBIA1300-35S-RCA plant expression vector obtained by the present invention contains the 35S promoter followed by the RCA gene. pCAMBIA1300DM-OsU6-Cas9 contains promoter U6, and the RCA2 gene, the homologous gene of the RCA gene of Yeyilan in Dendrobium officinale, is used as the target gene for knockout.

所谓RCA基因,是在我们构建的转录组数据中的EST序列的基础上,通过RACE技术获得的,其命名为RCA,核苷酸序列如SEQ ID NO:1所示,ORF Finder分析表明RCA基因具有序列较长且完整的开放阅读框,共1317bp,起始密码子为ATG,终止密码子为TAG,共编码541个氨基酸。经ExPASy分析蛋白质的总平均亲水性为-0.285,表明该蛋白质是亲水性蛋白。RCA2基因为序列比对后获得的叶艺兰RCA基因的同源基因核苷酸序列如SEQ ID NO:2所示。The so-called RCA gene is obtained by RACE technology on the basis of the EST sequence in the transcriptome data we constructed. It is named RCA, and the nucleotide sequence is shown in SEQ ID NO: 1. ORF Finder analysis shows that the RCA gene It has a long and complete open reading frame with a total of 1317 bp, the start codon is ATG, and the stop codon is TAG, encoding a total of 541 amino acids. The overall average hydrophilicity of the protein analyzed by ExPASy was -0.285, indicating that the protein was a hydrophilic protein. The RCA2 gene is the nucleotide sequence of the homologous gene of the RCA gene of Yeyilan obtained after the sequence alignment is shown in SEQ ID NO: 2.

二、重组载体pCAMBIA1300-35S-RCA和pCAMBIA1300DM-OsU6-Cas9由下述方法构建而成:2. The recombinant vectors pCAMBIA1300-35S-RCA and pCAMBIA1300DM-OsU6-Cas9 are constructed by the following methods:

(1)叶斑艺兰花RCA基因的扩增(1) Amplification of the RCA gene of Orchid variegata

对我们转录组中获得的RCA基因序列进行比对,发现RCA基因序列具有5’,利用RACE技术对3’进行扩增,得到全长基因序列。The RCA gene sequences obtained in our transcriptome were compared, and it was found that the RCA gene sequence had a 5', and the 3' was amplified by RACE technology to obtain the full-length gene sequence.

①PCR引物①PCR primers

根据我们转录组中获得的RCA基因片段设计引物:Primers were designed based on RCA gene fragments obtained from our transcriptome:

B26:5’-GACTCTAGACGACATCGATTTTTTTTTTTTTTTTT-3’;B26: 5'-GACTCTAGACGACATCGATTTTTTTTTTTTTTTTTT-3';

RCA-1:5’-GTTCAGCTCCCAGGTCTATACAACA-3’;RCA-1: 5'-GTTCAGCTCCCCAGGTCTATACAACA-3';

RCA-2:5’-AACCCACTTTCTCACTTCATCATCATAC-3’。RCA-2: 5'-AACCCACTTTCTCACTTCATCATCATAC-3'.

②用上述反转录产物进行PCR,体系如下:10xPCR buffer 2.5ul、dNTP mixture(10mM)2.5ul、RCA1 10.5ul、B26 0.5ul、cDNA 1.5ul、Taq plus0.25ul和H2O 16.25ul,总容量为25ul;② Carry out PCR with the above-mentioned reverse transcription products, the system is as follows: 10xPCR buffer 2.5ul, dNTP mixture (10mM) 2.5ul, RCA1 10.5ul, B26 0.5ul, cDNA 1.5ul, Taq plus 0.25ul and H2O 16.25ul, the total capacity is 25ul;

③PCR反应程序如下:96℃预变性5min;94℃变性30sec,60℃退火30sec,72℃延伸2min,35个循环;72℃延伸10min,4℃终止反应。③The PCR reaction procedure was as follows: pre-denaturation at 96°C for 5 min; denaturation at 94°C for 30 sec, annealing at 60°C for 30 sec, extension at 72°C for 2 min, 35 cycles; extension at 72°C for 10 min, termination of the reaction at 4°C.

④同样的体系和反应程序,以第一轮的RCR产物为模板做第二轮PCR,引物为RCA-2和B26。④Same system and reaction procedure, use the RCR product of the first round as the template to do the second round of PCR, and the primers are RCA-2 and B26.

⑤将所得片段连入pMDl8-T,酶切鉴定后进行序列测定。⑤ The obtained fragment was linked into pMD18-T, and the sequence was determined after restriction enzyme digestion and identification.

⑥根据已测定序列及其重叠区域,拼接出目的基因的全长cDNA,分别设计引物RCA-3:5’-CAAGGTCCCCCTCATTTTGGGTGTT-3’和RCA-4:5’-CTCATTTTGGGTGTTTGGGGAGGCA-3’。PCR扩增全长序列做进一步的验证。如图1,目的基因片段清晰,大小与预期结果一致。⑥ According to the determined sequence and its overlapping region, splicing out the full-length cDNA of the target gene, and designing primers RCA-3: 5'-CAAGGTCCCCCTCATTTTGGGTGTT-3' and RCA-4: 5'-CTCATTTTGGGTGTTTGGGGAGGCA-3' respectively. The full-length sequence was amplified by PCR for further verification. As shown in Figure 1, the target gene fragment is clear and the size is consistent with the expected result.

(2)RCA基因植物过表达载体pCAMBIA1300-35S-RCA和敲除载体pCAMBIA1300DM-OsU6-Cas9的构建(2) Construction of RCA gene plant overexpression vector pCAMBIA1300-35S-RCA and knockout vector pCAMBIA1300DM-OsU6-Cas9

根据叶艺兰的RCA基因进行引物设计(RCA-BamHIF(5’-3’):TCTGATCAA GAGACAGGATCCATGGCCTCCTCTGTTTCAAC;RCA-SalIR(5’-3’):CATCGGTGCACTAGTGTCGACCTAACGATAGAAAGATCCAG),使用高保真酶克隆基因,并用BamHI和SalI双酶切pCAMBIA1300-35S载体,所得到的全长序列和载体序列上带上了互补的粘性末端,将所得到的载体片段进行回收,与RCA的PCR产物进行体外同源重组反应,转化大肠杆菌,通过酶切鉴定筛选出重组子,构建起了植物表达的重组载体pCAMBIA1300-35S-RCA,之后获得重组质粒。目的基因片段清晰,大小与预期结果一致(1317bp),无非特异性扩增带,过表达载体成功构建;图2为过表达载体图。Primers were designed according to the RCA gene of Ye Yilan (RCA-BamHIF(5'-3'): TCTGATCAA GAGACAGGATCCATGGCCTCCTCTGTTTCAAC; RCA-SalIR(5'-3'): CATCGGTGCACTAGTGTCGACCTAACGATAGAAAGATCCAG), the gene was cloned with high fidelity enzyme, and BamHI and SalI double enzymes were used. The pCAMBIA1300-35S vector was cut, and the obtained full-length sequence and the vector sequence were brought with complementary sticky ends, the obtained vector fragment was recovered, and the PCR product of RCA was subjected to in vitro homologous recombination reaction, transformed into Escherichia coli, through Recombinant was screened out by restriction enzyme digestion, and the recombinant vector pCAMBIA1300-35S-RCA for plant expression was constructed, and then the recombinant plasmid was obtained. The target gene fragment is clear, the size is consistent with the expected result (1317bp), there is no non-specific amplification band, and the overexpression vector is successfully constructed; Figure 2 shows the overexpression vector diagram.

根据同源比对获得的铁皮石斛RCA2基因的cds序列设计2个CRISPR靶位点(Target1:ATCCAT GGGAGACTCACCGC;Target 2:TGATCAATCAGATGACCAGC),根据选择的两个靶位点设计出靶位点的接头引物:Two CRISPR target sites (Target1: ATCCAT GGGAGACTCACCGC; Target 2: TGATCAATCAGATGACCAGC) were designed according to the cds sequence of the Dendrobium officinale RCA2 gene obtained by homology alignment, and the linker primers of the target sites were designed according to the two selected target sites:

Target 1F:GCCGATCCATGG GAGACTCACCGC;Target 1F: GCCGATCCATGG GAGACTCACCGC;

Target 1R:AAACGCGGTGAGTCTCCCATGGAT;Target 1R: AAACGCGGTGAGTCTCCCATGGAT;

Target2F:GTTGTGATCAATCAGATGACCAGC;Target2F: GTTGTGATCAATCAGATGACCAGC;

Target2R:AAACGCTGGTCATCTG ATTGATCA;Target2R: AAACGCTGGTCATCTG ATTGATCA;

用BsaI酶切敲除载体,之后与靶位点退火后的小片段进行连接,之后利用带有BsaI酶切位点的引物进行PCR的扩增,获取含有靶位点的gRNA表达框。回收扩增的靶位点片段并用BsaI进行酶切,与BsaI酶切获得的Cas9载体进行连接,连接后的产物电转化到大肠杆菌的感受态细胞当中,涂卡那霉素抗性平板进行培养,挑取单菌落进行阳性克隆的筛选,获得构建好的敲除质粒。目的基因片段清晰,大小与预期结果一致(432bp),敲除载体成功构建;图3为敲除载体构建示意图。The vector was knocked out by digestion with BsaI, and then ligated with the small fragments annealed to the target site, and then PCR amplification was performed using primers with a BsaI digestion site to obtain a gRNA expression cassette containing the target site. The amplified target site fragment was recovered and digested with BsaI, and then ligated with the Cas9 vector obtained by BsaI digestion. The ligated product was electrotransformed into competent cells of E. coli, and cultured on kanamycin-resistant plates. , pick a single colony to screen for positive clones, and obtain a constructed knockout plasmid. The target gene fragment was clear, the size was consistent with the expected result (432bp), and the knockout vector was successfully constructed; Figure 3 is a schematic diagram of the construction of the knockout vector.

三、农杆菌的遗传转化和转化子的检测3. Genetic transformation of Agrobacterium and detection of transformants

制备农杆菌的感受态细胞,用电脉冲法将上述构建好的植物表达载体pCAMBIA1300-35S-RCA和pCAMBIA1300DM-OsU6-Cas9转入农杆菌(EHA105)中,在加有潮霉素的平板上筛选转化子菌落。以农杆菌菌落的裂解液作为PCR反应的模板,用RCA基因的特异引物RCA-BamHIF和RCA-SalIR以及Target 2F和Target 2R做PCR检测,经菌落PCR确认的转化子菌落用于转化植物。The competent cells of Agrobacterium were prepared, and the above-constructed plant expression vectors pCAMBIA1300-35S-RCA and pCAMBIA1300DM-OsU6-Cas9 were transferred into Agrobacterium (EHA105) by electric pulse method, and screened on a plate with hygromycin. Transformant colonies. The lysate of Agrobacterium colonies was used as the template of PCR reaction, and the specific primers RCA-BamHIF and RCA-SalIR, Target 2F and Target 2R were used for PCR detection, and the transformant colonies confirmed by colony PCR were used to transform plants.

四、用含有RCA基因的植物过表达和敲除载体的农杆菌转化植物4. Transforming plants with Agrobacterium containing RCA gene plant overexpression and knockout vectors

挑取携带有质粒pCAMBIA1300-35S-RCA和pCAMBIA1300DM-OsU6-Cas9的农杆菌单菌落接种于液体培养基中培养,离心收集菌体,再用MS液体培养基悬浮。用悬浮的农杆菌感染容易分化的植物组织,然后通过组织培养获得转基因小苗,再利用抗生素筛选获得转基因植株,过表达遗传转化流程见图4,敲除转化遗传转化流程见图5,获得了阳性植株或原球茎。A single colony of Agrobacterium carrying plasmids pCAMBIA1300-35S-RCA and pCAMBIA1300DM-OsU6-Cas9 was picked and inoculated into liquid medium for culture, and the cells were collected by centrifugation, and then suspended in MS liquid medium. Infect easily differentiated plant tissues with suspended Agrobacterium, and then obtain transgenic seedlings through tissue culture, and then use antibiotics to screen to obtain transgenic plants. The overexpression genetic transformation process is shown in Figure 4, and the knockout transformation genetic transformation process is shown in Figure 5, and positive results were obtained. Plant or protocorm.

五、RCA基因在转基因植物中的插入情况的检测5. Detection of RCA gene insertion in transgenic plants

为了确认用抗生素(潮霉素)筛选获得的转基因植物确实含有RCA基因,用利用2XT5 Direct PCR Kit(Plant)试剂盒对筛选到的转基因植物做进一步的鉴定。首先提取转基因植物的基因组DNA,然后以植物基因组DNA为模板,用潮霉素特异性引物(HygR F:ACGCGTCGACA TGTCTAAGGGCGAGGAACTC;HygR R:GGACTAGTTTATTTATAGAGTTCGTC CAT)做PCR检测,鉴定是否为阳性植株,鉴定结果如图6所示。六、转基因植株形态和生理指标变化的实验In order to confirm that the transgenic plants obtained by screening with antibiotics (hygromycin) indeed contain the RCA gene, the screened transgenic plants were further identified by using the 2XT5 Direct PCR Kit (Plant). First, the genomic DNA of the transgenic plants was extracted, and then using the plant genomic DNA as a template, hygromycin-specific primers (HygRF: ACGCGTCGACA TGTCTAAGGGCGAGGAACTC; HygR R: GGACTAGTTTATTTATAGAGTTCGTC CAT) were used for PCR detection to identify whether they were positive plants. The identification results are shown in the figure. 6 shown. 6. Experiments on the changes of morphological and physiological indexes of transgenic plants

将转基因以及对照野生型原球茎在培养基中培养成苗,过表达RCA基因的植物铁皮石斛植株生长健壮,进行各项生理指标的测定,得到了图7、表1、表2、图8、图9、图10的测定结果,实验结果表明在转基因过表达铁皮石斛中RCA基因能够正常表达,转入RCA基因的生长情况相比对照植株(未转基因的野生型),转基因植株表现为更健壮,过表达RCA基因能够很大程度的提高增加转基因铁皮石斛光合色素含量增加,叶绿体发育情况优于野生型,而敲除原球茎无法发育成苗且透射电镜下没有叶绿体的存在;同过表达RCA基因植株的蛋白质和可溶性糖含量增加,采用GC-MS技术对糖类物质成分检测,结果表明与野生型石斛相比,过表达植株的蔗糖、阿拉伯糖、鼠李糖、岩藻糖、肌醇、山梨醇、木糖醇、麦芽糖的含量上升,说明RCA基因的过表达影响石斛体内糖代谢途径,在光合碳同化过程中发挥重要作用,促进了主要糖代谢物有机物的合成与积累。The transgenic and control wild-type protocorm were cultivated into seedlings in the medium, and the plant Dendrobium officinale overexpressing the RCA gene grew robustly, carried out the measurement of various physiological indicators, and obtained Figure 7, Table 1, Table 2, Figure 8, The measurement results of Figure 9 and Figure 10, the experimental results show that the RCA gene can be expressed normally in the transgenic overexpressed Dendrobium officinale, and the growth of the transgenic RCA gene is compared to the control plant (non-transgenic wild type), and the transgenic plant is more robust. , overexpression of the RCA gene can greatly increase the photosynthetic pigment content of transgenic Dendrobium officinale, and the chloroplast development is better than that of the wild type, while the knockout protocorm cannot develop into seedlings and there is no chloroplast under the transmission electron microscope. The protein and soluble sugar content of gene plants increased, and the sugar components were detected by GC-MS technology. The results showed that compared with wild-type Dendrobium, the overexpression plants had higher levels of sucrose, arabinose, rhamnose, fucose, and inositol. The contents of , sorbitol, xylitol and maltose increased, indicating that the overexpression of RCA gene affects the glucose metabolism pathway in Dendrobium, plays an important role in the process of photosynthetic carbon assimilation, and promotes the synthesis and accumulation of main carbohydrate metabolites.

表1阳性植株形态指标的检测Table 1 Detection of positive plant morphological indicators

Figure BDA0003334758410000101
Figure BDA0003334758410000101

表2转RCA基因植株糖类物质Table 2 Carbohydrates in transgenic RCA plants

物质substance 物质类别Substance class WTWT RCARCA TypeType 麦芽糖maltose 二糖disaccharide 0.193±0.005a0.193±0.005a 0.382±0.139a0.382±0.139a upup 蔗糖sucrose 二糖disaccharide 19.420±1.990a19.420±1.990a 20.559±1.486a20.559±1.486a upup 海藻糖trehalose 二糖disaccharide 0.656±0.048a0.656±0.048a 0.491±0.027b0.491±0.027b downdown D-阿拉伯糖D-arabinose 单糖Monosaccharide 0.225±0.056a0.225±0.056a 0.260±0.030a0.260±0.030a upup D-果糖D-Fructose 单糖Monosaccharide 10.051±1.443a10.051±1.443a 5.197±0.726b5.197±0.726b downdown L-岩藻糖L-fucose 单糖Monosaccharide 0.083±0.005B0.083±0.005B 0.139±0.008A0.139±0.008A upup D-半乳糖D-galactose 单糖Monosaccharide 0.536±0.042a0.536±0.042a 0.499±0.046a0.499±0.046a downdown 葡萄糖glucose 单糖Monosaccharide 28.006±4.401a28.006±4.401a 17.239±2.809a17.239±2.809a downdown 肌醇Inositol 单糖Monosaccharide 1.850±0.212a1.850±0.212a 2.533±0.541a2.533±0.541a upup L-鼠李糖L-Rhamnose 单糖Monosaccharide 0.309±0.009a0.309±0.009a 0.310±0.005a0.310±0.005a upup D-山梨醇D-Sorbitol 单糖Monosaccharide 0.015±0.0001a0.015±0.0001a 0.019±0.004a0.019±0.004a upup 木糖醇Xylitol 单糖Monosaccharide 0.012±0.0003a0.012±0.0003a 0.013±0.0002a0.013±0.0002a upup

Figure BDA0003334758410000121
Figure BDA0003334758410000121

Figure BDA0003334758410000131
Figure BDA0003334758410000131

<110> 云南农业大学<110> Yunnan Agricultural University

<120> 叶斑艺兰花RCA基因的应用及其载体构建方法<120> Application of RCA gene of Orchid variegata and its vector construction method

<160> 2<160> 2

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 1317<211> 1317

<212> DNA<212> DNA

<213> 叶斑艺兰花(Cymbidium)<213> Cymbidium

<400> 1<400> 1

atggcctcct ctgtttcaac tgtgggggcc gtcaatagag taccactcag cttgcatggc 60atggcctcct ctgtttcaac tgtgggggcc gtcaatagag taccactcag cttgcatggc 60

tcaggctcag gagtttcagc accaagctca gcaatcttcg gcaacagctt gaagaaggtg 120tcaggctcag gagtttcagc accaagctca gcaatcttcg gcaacagctt gaagaaggtg 120

aactcaggcg ttagccatgg aaggatctct actgcgacgt tcaaagtcat ggcagctgat 180aactcaggcg ttagccatgg aaggatctct actgcgacgt tcaaagtcat ggcagctgat 180

caggatgaat caaagcagac taagacggac aggtgggccg ggcttgccta tgacatatca 240caggatgaat caaagcagac taagacggac aggtgggccg ggcttgccta tgacatatca 240

gatgaccagc aggacattac cagaggaaag ggaatggtgg actccctctt ccaagctccc 300gatgaccagc aggacattac cagaggaaag ggaatggtgg actccctctt ccaagctccc 300

atgggtgatg gaactcatgt tgctgtcatg aactcctatg agtacataag ccagggcctc 360atgggtgatg gaactcatgt tgctgtcatg aactcctatg agtacataag ccagggcctc 360

cgacaataca agctcgacaa cacaatagat ggtttttata ttgctccagc tttcatggac 420cgacaataca agctcgacaa cacaatagat ggtttttata ttgctccagc tttcatggac 420

aagcttgttg tgcacatcag caagaacttc atgaccctgc ccaatatcaa ggtccccctc 480aagcttgttg tgcacatcag caagaacttc atgaccctgc ccaatatcaa ggtccccctc 480

attttgggtg tttggggagg caaaggacag ggaaaatctt tccaatgcga gcttgtgttt 540attttgggtg tttggggagg caaaggacag ggaaaatctt tccaatgcga gcttgtgttt 540

gccaagatgg gtataaaccc aatcatgatg agcgctggag aactagaaag cggaaatgct 600gccaagatgg gtataaaccc aatcatgatg agcgctggag aactagaaag cggaaatgct 600

ggagagcctg caaaattgat aagacagaga taccgcgagg ccgctgatat cataaagaaa 660ggagagcctg caaaattgat aagacagaga taccgcgagg ccgctgatat cataaagaaa 660

ggaaaaatgt gctgcctctt cataaatgac cttgacgcag gagcaggcag gatgggaggc 720ggaaaaatgt gctgcctctt cataaatgac cttgacgcag gagcaggcag gatgggaggc 720

actacacagt acactgttaa caaccaaatg gttaatgcca cccttatgaa catcgctgat 780actacacagt acactgttaa caaccaaatg gttaatgcca cccttatgaa catcgctgat 780

agccccacca acgttcagct cccaggtcta tacaacaaac aggagaatcc aagagttcct 840agccccacca acgttcagct cccaggtcta tacaacaaac aggagaatcc aagagttcct 840

attatcgtca ctggaaacga cttctccacc ttgtatgccc ctctcattcg tgatggtcgc 900attatcgtca ctggaaacga cttctccacc ttgtatgccc ctctcattcg tgatggtcgc 900

atggagaaat tctactgggc gccgaccaga gaggacagga ttggtgtttg tctgggaatt 960atggagaaat tctactgggc gccgaccaga gaggacagga ttggtgtttg tctgggaatt 960

ttcagaactg acaatattcc tcaggaagac atcgtcaagc ttgttgatac cttcccaggc 1020ttcagaactg acaatattcc tcaggaagac atcgtcaagc ttgttgatac cttcccaggc 1020

cagtccattg acttcttcgg tgctctcagg gcgagagtgt atgatgatga agtgagaaag 1080cagtccattg acttcttcgg tgctctcagg gcgagagtgt atgatgatga agtgagaaag 1080

tgggttgaaa aagttggggt tgatttggtt gggaagaagc ttgtgaactc gcgagagggg 1140tgggttgaaa aagttggggt tgatttggtt gggaagaagc ttgtgaactc gcgagagggg 1140

cctccgaatt tcgaacagcc gaaaatgacc gttgagaagc tccttgagta cggtaacatg 1200cctccgaatt tcgaacagcc gaaaatgacc gttgagaagc tccttgagta cggtaacatg 1200

ttggtgaagg agcaggagaa cgtgaagagg gtgcagctgg ctgacaagta cttaagcgaa 1260ttggtgaagg agcaggagaa cgtgaagagg gtgcagctgg ctgacaagta cttaagcgaa 1260

gctgctcttg gagatgccaa tgaagatgcc atgaagactg gatctttcta tcgttag 1317gctgctcttg gagatgccaa tgaagatgcc atgaagactg gatctttcta tcgttag 1317

<210> 2<210> 2

<211> 1730<211> 1730

<212> DNA<212> DNA

<213> 铁皮石斛( Dendrobium officina)<213> Dendrobium officina

<400> 2<400> 2

acatgggaca ctgttcttaa ataagcctcc catatcttcg gtgcgcttaa tccacaggat 60acatgggaca ctgttcttaa ataagcctcc catatcttcg gtgcgcttaa tccacaggat 60

cttcttccct caccttcagc tatggccacc gccgtctcga ccatcggagc tgtcaaccga 120cttcttccct caccttcagc tatggccacc gccgtctcga ccatcggagc tgtcaaccga 120

gttccattgc agcttacctt acatggctcg ggctcggcaa cttcagctcc gagctcaacc 180gttccattgc agcttacctt acatggctcg ggctcggcaa cttcagctcc gagctcaacc 180

ttctttggca acaacttgaa gaaggttaac caaagtatca tccatgggag actcaccgct 240ttctttggca acaacttgaa gaaggttaac caaagtatca tccatgggag actcaccgct 240

ggaaccttca aggtcttggc tgctgacctc gacgagacga agcagactca gaaggacagg 300ggaaccttca aggtcttggc tgctgacctc gacgagacga agcagactca gaaggacagg 300

tggggtgggc ttgcctatga tcaatcagat gaccagcagg acataaccag aggaaagggg 360tggggtgggc ttgcctatga tcaatcagat gaccagcagg acataaccag aggaaagggg 360

atggtggact ccctcttcca agctcccatg ggagatggaa cccatgttgc tgtcatgaat 420atggtggact ccctcttcca agctcccatg ggagatggaa cccatgttgc tgtcatgaat 420

tcctatgagt acctcagcaa aggtcttcgc acgtacaatc tggacaacac agtggatggt 480tcctatgagt acctcagcaa aggtcttcgc acgtacaatc tggacaacac agtggatggt 480

ttttacatag ctccagcttt catggacaag cttgttgtac acatcactaa gaatttcatg 540ttttacatag ctccagcttt catggacaag cttgttgtac acatcactaa gaatttcatg 540

actttgccta atatcaaggt acccctcatt ttgggcgttt ggggaggcaa aggtcaggga 600actttgccta atatcaaggt acccctcatt ttgggcgttt ggggaggcaa aggtcaggga 600

aagtccttcc aatgtgaact tgtatttgct aagatgggaa tcaacccaat catgatgagc 660aagtccttcc aatgtgaact tgtatttgct aagatgggaa tcaacccaat catgatgagc 660

gctggagaac tcgaaagcgg caatgcagga gagcctgcaa aattgatcag acaaagatat 720gctggagaac tcgaaagcgg caatgcagga gagcctgcaa aattgatcag acaaagatat 720

cgcgaggctg cagagatcat caagaaggga aaaatgtgtt gcctcttcat caatgatctt 780cgcgaggctg cagagatcat caagaaggga aaaatgtgtt gcctcttcat caatgatctt 780

gatgcaggag caggaaggat gggaggcacc acccagtaca ctgttaacaa ccaaatggtg 840gatgcaggag caggaaggat gggaggcacc acccagtaca ctgttaacaa ccaaatggtg 840

aatgccaccc tcatgaatat cgccgataac ccaacgaatg ttcagctccc cggactgtat 900aatgccaccc tcatgaatat cgccgataac ccaacgaatg ttcagctccc cggactgtat 900

aacaagcagg agaatgctag agttcctatt atagtcactg gtaatgattt ctccactttg 960aacaagcagg agaatgctag agttcctatt atagtcactg gtaatgattt ctccactttg 960

tatgcccctc ttattcgaga tggtcgtatg gagaaattct actgggcacc aactagagaa 1020tatgcccctc ttattcgaga tggtcgtatg gagaaattct actgggcacc aactagagaa 1020

gacagaattg gtgtctgcat tggcatcttc agaactgata atattgctca ggaagacatt 1080gacagaattg gtgtctgcat tggcatcttc agaactgata atattgctca ggaagacatt 1080

gtgaagcttg ttgacacttt cccaggccag tccattgatt tctttggagc actaagggcc 1140gtgaagcttg ttgacacttt cccaggccag tccattgatt tctttggagc actaagggcc 1140

agagtctatg atgatgaagt gagaaagtgg attgaggatg ttggagttga cagggttggg 1200agagtctatg atgatgaagt gagaaagtgg attgaggatg ttggagttga cagggttggg 1200

aagaggcttg tgaattcccg cgagggacct ccgacattcg agcagcctaa gatgagcttg 1260aagaggcttg tgaattcccg cgagggacct ccgacattcg agcagcctaa gatgagcttg 1260

gagaagctgc ttgagtatgg aaacatgctg gtccaggagc aggagaatgt gaagagggtg 1320gagaagctgc ttgagtatgg aaacatgctg gtccaggagc aggagaatgt gaagagggtg 1320

cagctggctg acaagtattt gagtgaagct gcgcttgggg atgccaatga agatgctatg 1380cagctggctg acaagtattt gagtgaagct gcgcttgggg atgccaatga agatgctatg 1380

aagactggtt ctttctatgg ttagctctta aaccctcggg cactggccgg aggtaaagga 1440aagactggtt ctttctatgg ttagctctta aaccctcggg cactggccgg aggtaaagga 1440

gctcagcaag tgcagattcc tgtccctgaa ggttgcactg atccgcaggc aaagaacttt 1500gctcagcaag tgcagattcc tgtccctgaa ggttgcactg atccgcaggc aaagaacttt 1500

gatcccactg cgaggagtga taatggaagt tgcacataca ttgcctagag ttcctagttg 1560gatcccactg cgaggagtga taatggaagt tgcacataca ttgcctagag ttcctagttg 1560

tcttttgtgg aaactataag gatgcagtgt tttctggtag agtaagggtg cactaattaa 1620tcttttgtgg aaactataag gatgcagtgt tttctggtag agtaagggtg cactaattaa 1620

tttgtacaac tccatgtcta gatgcatgta atttttctgt gcttcactgc atgaagcctt 1680tttgtacaac tccatgtcta gatgcatgta atttttctgt gcttcactgc atgaagcctt 1680

tgtattgtta tcaaatgctc tatttataca ttatattcac aaaaaaaaaa 1730tgtattgtta tcaaatgctc tatttataca ttatattcac aaaaaaaaaa 1730

Claims (1)

1.叶斑艺兰花RCA基因的应用,其特征在于,过表达转基因铁皮石斛中RCA基因能够正常表达,过量表达RCA基因能够增加转基因铁皮石斛中糖类物质的含量,所述RCA基因的核苷酸序列如SEQ ID NO:1所示;所述糖类物质为麦芽糖、蔗糖、D-阿拉伯糖、L-岩藻糖、肌醇、L-鼠李糖、D-山梨醇或木糖醇。1. the application of leaf spot art orchid RCA gene, it is characterized in that, RCA gene can be expressed normally in overexpressing transgenic Dendrobium officinale, and overexpressing RCA gene can increase the content of carbohydrate substance in transgenic Dendrobium officinale, the nucleoside of described RCA gene The acid sequence is shown in SEQ ID NO: 1; the carbohydrate is maltose, sucrose, D-arabinose, L-fucose, inositol, L-rhamnose, D-sorbitol or xylitol.
CN202111290918.0A 2021-11-02 2021-11-02 Application of RCA gene of cymbidium floribundum and vector construction method thereof Active CN113943744B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111290918.0A CN113943744B (en) 2021-11-02 2021-11-02 Application of RCA gene of cymbidium floribundum and vector construction method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111290918.0A CN113943744B (en) 2021-11-02 2021-11-02 Application of RCA gene of cymbidium floribundum and vector construction method thereof

Publications (2)

Publication Number Publication Date
CN113943744A CN113943744A (en) 2022-01-18
CN113943744B true CN113943744B (en) 2022-07-29

Family

ID=79337668

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111290918.0A Active CN113943744B (en) 2021-11-02 2021-11-02 Application of RCA gene of cymbidium floribundum and vector construction method thereof

Country Status (1)

Country Link
CN (1) CN113943744B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116200424B (en) * 2022-08-09 2024-02-02 云南农业大学 Application of She Banyi orchid CcMYB24 gene
CN116286863B (en) * 2023-02-07 2023-11-28 深圳市兰科植物保护研究中心 Application of polynucleotide in promoting growth of orchid plant buds

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101092632A (en) * 1999-09-10 2007-12-26 得克萨斯技术大学 Transgenic fiber producing plants with increased expression of sucrose phosphate synthase
CN105543341A (en) * 2015-11-23 2016-05-04 浙江农林大学 Detection and analysis method of hickory nut RCA gene clone
CN106282260A (en) * 2016-08-16 2017-01-04 集美大学 A kind of method of enzyme process assisted extraction Dendrobium officinale polysaccharide
CN113774059A (en) * 2021-08-30 2021-12-10 中国科学院华南植物园 A Tissue-Preferenced and Stress-inducible Promoter ProDoWOX4 of Dendrobium officinale Flower and Its Application

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0615073A2 (en) * 2005-08-24 2011-05-10 Pioneer Hi Bred Int Isolated nucleic acid molecule, vector, host cell, isolated polypeptide, transgenic plant and method of increasing heat tolerance in plants
CN102876580B (en) * 2010-12-08 2014-12-10 云南农业大学 Separation and application of Nectria fungi for promoting growth of Cymbidium wenshanense tissue culture plants
AU2016209022B2 (en) * 2015-01-22 2021-10-07 Macquarie University Thermostable rubisco activase complexes
CN105349527A (en) * 2015-11-23 2016-02-24 浙江农林大学 Carya cathayensis RCA gene cloning method
WO2018009632A1 (en) * 2016-07-08 2018-01-11 The United States Of America, As Represented By The Secretary Of Agriculture Mutated rubisco activase
US10487368B2 (en) * 2016-09-30 2019-11-26 Uchicago Argonne, Llc Stabilization of rubisco activase for enhanced photosynthesis and crop yields
MX2021000087A (en) * 2018-06-27 2021-05-31 Basf Se Thermostable rubisco activase and uses thereof.
CN109055424A (en) * 2018-08-16 2018-12-21 四川农业大学 A kind of method improving polysaccharide content of dendrobium candidum and the dendrobium candidum obtained using this method
JP2022130752A (en) * 2019-07-19 2022-09-07 国立大学法人滋賀医科大学 Rubisco Production Method
CN111593067A (en) * 2020-06-18 2020-08-28 云南农业大学 Construction and application of plant expression vector of F3'5' H gene of phyllanthus floridulus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101092632A (en) * 1999-09-10 2007-12-26 得克萨斯技术大学 Transgenic fiber producing plants with increased expression of sucrose phosphate synthase
CN105543341A (en) * 2015-11-23 2016-05-04 浙江农林大学 Detection and analysis method of hickory nut RCA gene clone
CN106282260A (en) * 2016-08-16 2017-01-04 集美大学 A kind of method of enzyme process assisted extraction Dendrobium officinale polysaccharide
CN113774059A (en) * 2021-08-30 2021-12-10 中国科学院华南植物园 A Tissue-Preferenced and Stress-inducible Promoter ProDoWOX4 of Dendrobium officinale Flower and Its Application

Also Published As

Publication number Publication date
CN113943744A (en) 2022-01-18

Similar Documents

Publication Publication Date Title
CN113943744B (en) Application of RCA gene of cymbidium floribundum and vector construction method thereof
CN114717241B (en) A rice salt tolerance-related gene OsMSRFP and its encoded protein and applications
CN116121292B (en) Application of a rice MYB transcription factor and its encoded protein
CN114292855B (en) A PagARR9 gene that regulates the development of the poplar plastid and its application
CN110438134A (en) Plant leaf blade frizzled related protein OsRoc8 and its encoding gene and application
CN116987168B (en) A method that can stably change the color of orchid leaves
CN116200424B (en) Application of She Banyi orchid CcMYB24 gene
CN116535478B (en) Swallow flower MYB4 protein and application thereof in color regulation and control
CN117568361A (en) A gene that regulates poplar plant shape development and its application
CN117604020A (en) Application of OsTB1 gene and protein in regulating rice resistance to sheath blight and bacterial blight
CN108424910A (en) A kind of RNA segments and its application for target gene interference
CN114591984B (en) Application of OsAP79 gene in inducing rice to resist brown planthoppers
CN106434692A (en) Applications of rice OsPCF7 gene in culturing high-tillering rice varieties
CN118879719B (en) A tobacco leaf development regulatory gene Ntfb1 and its application
CN117210487B (en) Application of BnaMATE43b gene in improving plant antioxidant activity and/or improving plant aluminum toxicity tolerance
US20110265225A1 (en) Transgenic plant having increased seed size
CN116640786B (en) A key enzyme gene HCT-45178 for chlorogenic acid synthesis and its application
CN116083436B (en) Tomato TCP transcription factor SlTCP15 gene and its use
CN114656544B (en) Protein GH3.9, biological material thereof and method for cultivating high stress tolerance plant
CN117486988A (en) A protein OsNPR3.1 related to plant stress resistance and its encoding gene and application
CN118240832A (en) Cold-resistant gene OsACT A of rice in booting stage and application thereof
US20120070900A1 (en) T-dna/protein nano-complexes for plant transformation
CN118955665A (en) OsWRKY10 gene and its application in regulating rice grain width and 1000-grain weight
CN118853705A (en) Wheat TaPIP5K-B gene and its application in improving wheat immature embryo regeneration ability
CN118240873A (en) Application of HTA1 gene or its encoded protein in regulating heat tolerance in rice

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant