CN113940650B - Method and storage device for detecting influence of massage on hemodynamics - Google Patents
Method and storage device for detecting influence of massage on hemodynamics Download PDFInfo
- Publication number
- CN113940650B CN113940650B CN202111214040.2A CN202111214040A CN113940650B CN 113940650 B CN113940650 B CN 113940650B CN 202111214040 A CN202111214040 A CN 202111214040A CN 113940650 B CN113940650 B CN 113940650B
- Authority
- CN
- China
- Prior art keywords
- massage
- rlc
- simulation model
- human
- artery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 60
- 230000000004 hemodynamic effect Effects 0.000 title claims abstract description 45
- 238000003860 storage Methods 0.000 title claims abstract description 14
- 210000001367 artery Anatomy 0.000 claims abstract description 103
- 238000004088 simulation Methods 0.000 claims abstract description 74
- 230000017531 blood circulation Effects 0.000 claims description 13
- 230000005284 excitation Effects 0.000 claims description 10
- 230000008859 change Effects 0.000 claims description 8
- 230000005428 wave function Effects 0.000 claims description 8
- 230000000007 visual effect Effects 0.000 claims description 6
- 210000000709 aorta Anatomy 0.000 claims 2
- 210000004204 blood vessel Anatomy 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 13
- 230000036772 blood pressure Effects 0.000 description 7
- 239000008280 blood Substances 0.000 description 6
- 210000004369 blood Anatomy 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 210000001364 upper extremity Anatomy 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 210000002376 aorta thoracic Anatomy 0.000 description 2
- 238000009530 blood pressure measurement Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 208000031481 Pathologic Constriction Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000329 molecular dynamics simulation Methods 0.000 description 1
- 208000037804 stenosis Diseases 0.000 description 1
- 230000036262 stenosis Effects 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/026—Measuring blood flow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4848—Monitoring or testing the effects of treatment, e.g. of medication
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H37/00—Accessories for massage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Heart & Thoracic Surgery (AREA)
- Pathology (AREA)
- Surgery (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Biomedical Technology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Physiology (AREA)
- Pain & Pain Management (AREA)
- Rehabilitation Therapy (AREA)
- Epidemiology (AREA)
- Cardiology (AREA)
- Hematology (AREA)
- Physical Education & Sports Medicine (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Psychiatry (AREA)
- Signal Processing (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
本发明涉及动脉血流动力学领域,特别涉及一种检测按摩推拿对血流动力学影响的方法和存储设备。所述一种检测按摩推拿对血流动力学影响的方法,包括步骤:构建人体动脉的集中参数等效电路网络仿真模型;采用时变RLC(t)电路取代RLC电路,形成新的人体动脉的集中参数等效电路网络仿真模型;运行所述新的人体动脉的集中参数等效电路网络仿真模型,得到不同按摩推拿手法对不同段动脉血流动力学的影响变化。通过上述方法得到的仿真模型在运行过程中可直观地给出人体不同动脉血流动力学随不同按摩推拿手法的变化情况,进而可以为制定更为合理科学的按摩推拿治疗方案提供参考。
The invention relates to the field of arterial hemodynamics, in particular to a method and storage device for detecting the influence of massage on hemodynamics. The method for detecting the influence of massage and massage on hemodynamics comprises the steps of: constructing a concentrated parameter equivalent circuit network simulation model of human arteries; adopting time-varying RLC (t) circuits to replace RLC circuits to form new human arteries A centralized parameter equivalent circuit network simulation model; the new centralized parameter equivalent circuit network simulation model of human arteries is run to obtain the influence changes of different massage and massage techniques on different arterial hemodynamics. The simulation model obtained by the above method can intuitively show the changes of human arterial hemodynamics with different massage and massage techniques during operation, and can provide a reference for formulating a more reasonable and scientific massage and massage treatment plan.
Description
技术领域technical field
本发明涉及动脉血流动力学领域,特别涉及一种检测按摩推拿对血流动力学影响的方法和存储设备。The invention relates to the field of arterial hemodynamics, in particular to a method and storage device for detecting the influence of massage on hemodynamics.
背景技术Background technique
中医按摩推拿是我国传统医学的一部分,是中华文明的璀璨果实。在中医现代化的历程中,人们尝试通过现代科学技术对中医按摩推拿的机理进行循证研究。目前,研究按摩推拿对动脉血管的血流动力力学的方法有基于运动狭窄模型的有限元分析方法、有基于格子玻尔兹曼的数值方法、有基于毛细血管-组织血液动力学模型的方法。然而,受限于人体动脉血管系统的复杂性,这些方法往往难以实现对多段动脉血管的模拟和分析。Massage and massage of traditional Chinese medicine is a part of traditional Chinese medicine and a brilliant fruit of Chinese civilization. In the course of the modernization of TCM, people try to conduct evidence-based research on the mechanism of TCM massage and massage through modern science and technology. At present, there are finite element analysis methods based on the motion stenosis model, numerical methods based on lattice Boltzmann, and methods based on capillary-tissue hemodynamics models to study the hemodynamics of arterial vessels by massage and massage. However, limited by the complexity of the human arterial system, these methods are often difficult to simulate and analyze multi-segment arteries.
且其中对于有限元分析方法,由于血管系统的有限元网格模型数量庞大、边界条件复杂、流体力学动力学方程求解困难,使得大多数研究仅限于对某小段动脉血管的建模和分析,难以展开对较大规模动脉系统的科学研究。Moreover, for the finite element analysis method, due to the large number of finite element mesh models of the vascular system, the complex boundary conditions, and the difficulty in solving the hydrodynamic equations, most studies are limited to the modeling and analysis of a small segment of arteries, which is difficult to solve. To carry out the scientific study of the arterial system on a larger scale.
对于格子玻尔兹曼方法,这是介于微观分子动力学模型和宏观连续模型的介观模型,具有相对有限元方法的优势,但是对于模拟动脉血管的宏观系统,其格子玻尔兹曼方程相对比较复杂。For the lattice Boltzmann method, which is a mesoscopic model between the microscopic molecular dynamics model and the macroscopic continuous model, it has advantages over the finite element method, but for the macroscopic system of simulating arteries, the lattice Boltzmann equation Relatively more complicated.
故此如何研究按摩推拿对多段动脉血管的血流动力学的影响则成了亟需解决的技术问题。Therefore, how to study the influence of massage and massage on the hemodynamics of multi-segment arteries has become a technical problem that needs to be solved urgently.
发明内容Contents of the invention
为此,需要提供一种检测按摩推拿对血流动力学影响的方法,用以解决现有技术无法研究按摩推拿对多段动脉血管的血流动力学的影响的技术问题,具体技术方案如下:For this reason, it is necessary to provide a method for detecting the influence of massage and massage on hemodynamics, so as to solve the technical problem that the existing technology cannot study the influence of massage and massage on the hemodynamics of multiple arterial vessels. The specific technical scheme is as follows:
一种检测按摩推拿对血流动力学影响的方法,包括步骤:A method for detecting the influence of massage and massage on hemodynamics, comprising the steps of:
构建人体动脉的集中参数等效电路网络仿真模型,所述人体动脉的集中参数等效电路网络仿真模型中的每段动脉血管被抽象为RLC电路;A concentrated parameter equivalent circuit network simulation model of human arteries is constructed, and each arterial vessel in the concentrated parameter equivalent circuit network simulation model of human arteries is abstracted as an RLC circuit;
采用时变RLC(t)电路取代RLC电路,形成新的人体动脉的集中参数等效电路网络仿真模型,所述时变RLC(t)电路中随时间变化的动脉血管半径由不同的波形函数表示,所述不同的波形函数代表动脉血管半径随不同按摩推拿手法的变化规律;The time-varying RLC (t) circuit is used to replace the RLC circuit to form a new centralized parameter equivalent circuit network simulation model of human arteries, and the arterial vessel radius changing with time in the time-varying RLC (t) circuit is represented by different waveform functions , the different waveform functions represent the changing law of the arterial vessel radius with different massage and massage techniques;
运行所述新的人体动脉的集中参数等效电路网络仿真模型,得到不同按摩推拿手法对不同段动脉血流动力学的影响变化。By running the new centralized parameter equivalent circuit network simulation model of human arteries, the influence of different massage and massage techniques on the hemodynamics of different arteries can be obtained.
进一步的,所述“构建人体动脉的集中参数等效电路网络仿真模型”,具体还包括步骤:Further, the "constructing a centralized parameter equivalent circuit network simulation model of human arteries" specifically includes steps:
将人体动脉血管划分为若干段,每段动脉血管抽象等效为RLC电路;Divide human arteries into several segments, and each segment of arteries is abstractly equivalent to an RLC circuit;
根据人体的动脉树模型构建集中参数等效电路网络仿真模型;Construct a centralized parameter equivalent circuit network simulation model based on the arterial tree model of the human body;
根据人体主动脉血流量波形构建所述仿真模型的激励源。The excitation source of the simulation model is constructed according to the human aortic blood flow waveform.
进一步的,所述时变RLC(t)电路为在RLC电路上引入扰动生成时变的RLC(t)电路。Further, the time-varying RLC(t) circuit is a time-varying RLC(t) circuit generated by introducing a disturbance into the RLC circuit.
进一步的,所述“运行所述新的人体动脉的集中参数等效电路网络仿真模型,得到不同按摩推拿手法对不同段动脉血流动力学的影响变化”,具体还包括步骤:Further, the "running the new centralized parameter equivalent circuit network simulation model of the human artery to obtain the influence of different massage and massage techniques on the hemodynamics of different segments of the artery" specifically includes steps:
通过仿真软件运行所述新的人体动脉的集中参数等效电路网络仿真模型,以可视化界面形式呈现模型运行结果。The new centralized parameter equivalent circuit network simulation model of human arteries is run through simulation software, and the model operation results are presented in the form of a visual interface.
进一步的,所述“将人体动脉血管划分为若干段”,具体还包括步骤:Further, the "dividing human arteries into several segments" specifically includes the steps of:
将人体动脉血管划分为55段。Divide human arteries into 55 segments.
为解决上述技术问题,还提供了一种存储设备,具体技术方案如下:In order to solve the above technical problems, a storage device is also provided, and the specific technical solution is as follows:
一种存储设备,其中存储有指令集,所述指令集用于执行:A storage device having stored therein a set of instructions for performing:
构建人体动脉的集中参数等效电路网络仿真模型,所述人体动脉的集中参数等效电路网络仿真模型中的每段动脉血管被抽象为RLC电路;A concentrated parameter equivalent circuit network simulation model of human arteries is constructed, and each arterial vessel in the concentrated parameter equivalent circuit network simulation model of human arteries is abstracted as an RLC circuit;
采用时变RLC(t)电路取代RLC电路,形成新的人体动脉的集中参数等效电路网络仿真模型,所述时变RLC(t)电路中随时间变化的动脉血管半径由不同的波形函数表示,所述不同的波形函数代表动脉血管半径随不同按摩推拿手法的变化规律;The time-varying RLC (t) circuit is used to replace the RLC circuit to form a new centralized parameter equivalent circuit network simulation model of human arteries, and the arterial vessel radius changing with time in the time-varying RLC (t) circuit is represented by different waveform functions , the different waveform functions represent the changing law of the arterial vessel radius with different massage and massage techniques;
运行所述新的人体动脉的集中参数等效电路网络仿真模型,得到不同按摩推拿手法对不同段动脉血流动力学的影响变化。By running the new centralized parameter equivalent circuit network simulation model of human arteries, the influence of different massage and massage techniques on the hemodynamics of different arteries can be obtained.
进一步的,所述指令集还用于执行:Further, the instruction set is also used to execute:
所述“构建人体动脉的集中参数等效电路网络仿真模型”,具体还包括步骤:The "constructing a centralized parameter equivalent circuit network simulation model of human arteries" also specifically includes steps:
将人体动脉血管划分为若干段,每段动脉血管抽象等效为RLC电路;Divide human arteries into several segments, and each segment of arteries is abstractly equivalent to an RLC circuit;
根据人体的动脉树模型构建集中参数等效电路网络仿真模型;Construct a centralized parameter equivalent circuit network simulation model based on the arterial tree model of the human body;
根据人体主动脉血流量波形构建所述仿真模型的激励源。The excitation source of the simulation model is constructed according to the human aortic blood flow waveform.
进一步的,所述时变RLC(t)电路为在RLC电路上引入扰动生成时变的RLC(t)电路。Further, the time-varying RLC(t) circuit is a time-varying RLC(t) circuit generated by introducing a disturbance into the RLC circuit.
进一步的,所述指令集还用于执行:Further, the instruction set is also used to execute:
所述“运行所述新的人体动脉的集中参数等效电路网络仿真模型,得到不同按摩推拿手法对不同段动脉血流动力学的影响变化”,具体还包括步骤:The "running the new concentrated parameter equivalent circuit network simulation model of the human artery to obtain the influence of different massage and massage techniques on the hemodynamics of different segments of the artery" specifically includes steps:
通过仿真软件运行所述新的人体动脉的集中参数等效电路网络仿真模型,以可视化界面形式呈现模型运行结果。The new centralized parameter equivalent circuit network simulation model of human arteries is run through simulation software, and the model operation results are presented in the form of a visual interface.
进一步的,所述指令集还用于执行:所述“将人体动脉血管划分为若干段”,具体还包括步骤:Further, the instruction set is also used to execute: the "dividing the human arteries into several segments" specifically includes the steps of:
将人体动脉血管划分为55段。Divide human arteries into 55 segments.
本发明的有益效果是:一种检测按摩推拿对血流动力学影响的方法,包括步骤:构建人体动脉的集中参数等效电路网络仿真模型,所述人体动脉的集中参数等效电路网络仿真模型中的每段动脉血管被抽象为RLC电路;采用时变RLC(t)电路取代RLC电路,形成新的人体动脉的集中参数等效电路网络仿真模型,所述时变RLC(t)电路中随时间变化的动脉血管半径由不同的波形函数表示,所述不同的波形函数代表动脉血管半径随不同按摩推拿手法的变化规律;运行所述新的人体动脉的集中参数等效电路网络仿真模型,得到不同按摩推拿手法对不同段动脉血流动力学的影响变化。通过上述方法,将不同按摩推拿手法对动脉血管半径的影响用波形函数表示,该波形函数做RLC(t)电路的参数之一,用RLC(t)电路取代原有的RLC电路,形成的新的人体动脉的集中参数等效电路网络仿真模型,该仿真模型在运行过程中可直观地给出人体不同动脉血流动力学随不同按摩推拿手法的变化情况,进而可以为制定更为合理科学的按摩推拿治疗方案提供参考。The beneficial effects of the present invention are: a method for detecting the influence of massage and massage on hemodynamics, comprising the steps of: constructing a centralized parameter equivalent circuit network simulation model of human arteries, the concentrated parameter equivalent circuit network simulation model of human arteries Each arterial vessel in is abstracted as an RLC circuit; a time-varying RLC(t) circuit is used to replace the RLC circuit to form a new centralized parameter equivalent circuit network simulation model of the human artery, in which the time-varying RLC(t) circuit follows The time-varying arterial vessel radius is represented by different waveform functions, and the different waveform functions represent the change law of the arterial vessel radius with different massage and massage techniques; the centralized parameter equivalent circuit network simulation model of the new human artery is operated to obtain The effect of different massage and massage techniques on the hemodynamics of different segments of arteries. Through the above method, the influence of different massage and massage techniques on the radius of the arterial vessel is represented by a waveform function. The waveform function is used as one of the parameters of the RLC(t) circuit, and the original RLC circuit is replaced by the RLC(t) circuit to form a new The centralized parameter equivalent circuit network simulation model of human arteries can intuitively show the changes of human arterial hemodynamics with different massage and massage techniques during the operation process, and then can be used for formulating a more reasonable and scientific Massage massage treatment program provides reference.
附图说明Description of drawings
图1为具体实施方式所述一种检测按摩推拿对血流动力学影响的方法的流程图;Fig. 1 is a flow chart of a method for detecting the influence of massage and massage on hemodynamics described in the specific embodiment;
图2为具体实施方式所述构建人体动脉的集中参数等效电路网络仿真模型的流程图;Fig. 2 is the flow chart of the concentrated parameter equivalent circuit network simulation model of constructing human artery described in the specific embodiment;
图3a为具体实施方式所述每一段动脉的RLC集中参数等效电路模型;Fig. 3 a is the RLC centralized parameter equivalent circuit model of each section of artery described in the specific embodiment;
图3b为具体实施方式所述55段动脉树模型示意图;Fig. 3b is a schematic diagram of the 55-segment arterial tree model described in the specific embodiment;
图3c为具体实施方式所述左上肢7段集中参数等效电路模型示意图;Fig. 3c is a schematic diagram of the equivalent circuit model of the 7-segment centralized parameters of the left upper limb described in the specific embodiment;
图4a为具体实施方式所述时变电阻示意图;Fig. 4a is a schematic diagram of the time-varying resistance described in the specific embodiment;
图4b为具体实施方式所述时变电容示意图;Fig. 4b is a schematic diagram of the time-varying capacitor described in the specific embodiment;
图4c为具体实施方式所述时变电感示意图;Fig. 4c is a schematic diagram of the time-varying inductance described in the specific embodiment;
图5为具体实施方式所述不同频率下的正弦波和三角波形状示意图;Fig. 5 is the sine wave and the triangular wave shape schematic diagram under the different frequencies described in the specific embodiment;
图6为具体实施方式所述时变电阻R(t)模型的构建流程示意图;Fig. 6 is the schematic flow chart of the construction of the time-varying resistance R (t) model described in the specific embodiment;
图7a为具体实施方式所述血压变化示意图;Fig. 7a is a schematic diagram of changes in blood pressure described in the specific embodiment;
图7b为具体实施方式所述血流量变化示意图;Fig. 7b is a schematic diagram of changes in blood flow described in specific embodiments;
图8为具体实施方式所述一种存储设备的模块示意图。Fig. 8 is a schematic diagram of modules of a storage device described in a specific embodiment.
附图标记说明:Explanation of reference signs:
800、存储设备。800. Storage device.
具体实施方式Detailed ways
为详细说明技术方案的技术内容、构造特征、所实现目的及效果,以下结合具体实施例并配合附图详予说明。In order to explain in detail the technical content, structural features, achieved goals and effects of the technical solution, the following will be described in detail in conjunction with specific embodiments and accompanying drawings.
请参阅图1至图7b,在本实施方式中,一种检测按摩推拿对血流动力学影响的方法可应用在一种存储设备上,所述存储设备包括但不限于:个人计算机、服务器、通用计算机、专用计算机、网络设备、嵌入式设备、可编程设备等。具体技术方案如下:Please refer to FIG. 1 to FIG. 7b. In this embodiment, a method for detecting the influence of massage and massage on hemodynamics can be applied to a storage device, which includes but is not limited to: personal computers, servers, General-purpose computers, special-purpose computers, network devices, embedded devices, programmable devices, etc. The specific technical scheme is as follows:
步骤S101:构建人体动脉的集中参数等效电路网络仿真模型,所述人体动脉的集中参数等效电路网络仿真模型中的每段动脉血管被抽象为RLC电路。Step S101: constructing a lumped-parameter equivalent circuit network simulation model of human arteries, each arterial vessel in the lumped-parameter equivalent circuit network simulation model of human arteries is abstracted as an RLC circuit.
步骤S102:采用时变RLC(t)电路取代RLC电路,形成新的人体动脉的集中参数等效电路网络仿真模型,所述时变RLC(t)电路中随时间变化的动脉血管半径由不同的波形函数表示,所述不同的波形函数代表动脉血管半径随不同按摩推拿手法的变化规律。Step S102: replace the RLC circuit with a time-varying RLC(t) circuit to form a new centralized parameter equivalent circuit network simulation model of human arteries, the arterial vessel radius changing with time in the time-varying RLC(t) circuit is determined by different The waveform function indicates that the different waveform functions represent the changing rules of the arterial vessel radius with different massage and massage techniques.
步骤S103:运行所述新的人体动脉的集中参数等效电路网络仿真模型,得到不同按摩推拿手法对不同段动脉血流动力学的影响变化。Step S103: Run the new centralized parameter equivalent circuit network simulation model of the human artery to obtain the influence of different massage and massage techniques on the hemodynamics of different segments of the artery.
如图2所示,步骤S101具体还包括步骤:As shown in Figure 2, step S101 specifically includes steps:
步骤S201:将人体动脉血管划分为若干段,每段动脉血管抽象等效为RLC电路。在本实施方式中,根据先验知识将人体动脉血管分为若干段,例如55段,其中每段动脉血管可基于以下公式抽象等效为RLC电路:Step S201: Divide the arteries of the human body into several segments, and each segment of the arteries is abstractly equivalent to an RLC circuit. In this embodiment, human arterial vessels are divided into several segments according to prior knowledge, for example, 55 segments, wherein each arterial vessel can be abstractly equivalent to an RLC circuit based on the following formula:
R=8ηl/(πr^4)、L=ρl/(πr^2)、C=(2πr^3l)/EhR=8ηl/(πr^4), L=ρl/(πr^2), C=(2πr^3l)/Eh
其中,R、L、C分别对应电路的电阻、电感和电容;η为真实动脉血管内的血液粘度,ρ为真实动脉血管内的血液密度,r、l、h分别为该段真实动脉血管的半径、长度及动脉壁层厚,E为该段真实动脉血管的弹性模量。Among them, R, L, and C correspond to the resistance, inductance, and capacitance of the circuit respectively; η is the blood viscosity in the real arterial vessel, ρ is the blood density in the real arterial vessel, and r, l, and h are the real arterial vessel’s blood density in this segment, respectively. Radius, length and arterial wall thickness, E is the elastic modulus of the real arterial vessel.
如图3a所示为每一段动脉的RLC集中参数等效电路模型,图3b为55段动脉树模型,图3c为左上肢7段集中参数等效电路模型。Figure 3a shows the RLC lumped parameter equivalent circuit model of each artery segment, Figure 3b shows the 55-segment arterial tree model, and Figure 3c shows the 7-segment lumped parameter equivalent circuit model of the left upper limb.
步骤S202:根据人体的动脉树模型构建集中参数等效电路网络仿真模型。并确定仿真模型的所有已知参数。Step S202: Construct a centralized parameter equivalent circuit network simulation model according to the artery tree model of the human body. And determine all known parameters of the simulation model.
步骤S203:根据人体主动脉血流量波形构建所述仿真模型的激励源。例如对于7段左上肢的集中参数模型,采用正常人的标准设定参数,将人体心率设为70beat/min,仿真激励源采用人体主动脉弓血压测量波形进行8阶傅里叶拟合,得到如下的随时间变化的血流量激励源函数;Step S203: Construct the excitation source of the simulation model according to the human aortic blood flow waveform. For example, for the centralized parameter model of the 7-segment left upper limb, the standard setting parameters of normal people are used, and the human heart rate is set to 70 beat/min. The simulation excitation source uses the blood pressure measurement waveform of the human aortic arch to perform 8-order Fourier fitting, and the following is obtained Time-varying blood flow excitation source function;
Blood PressureBlood Pressure
=a0+a1cos(ωt)+b1sin(ωt)+a2cos(2ωt)+b2sin(2ωt)+a3cos(3ωt)+b3sin(3ωt)+a4cos(4ωt)+b4sin(4ωt)+a5cos(5ωt)+b5sin(5ωt)+a6cos(6ωt)+b6sin(6ωt)+a7cos(7ωt)+b7sin(7ωt)+a8cos(8ωt)+b8sin(8ωt)=a 0 +a 1 cos(ωt)+b 1 sin(ωt)+a 2 cos(2ωt)+b 2 sin(2ωt)+a 3 cos(3ωt)+b 3 sin(3ωt)+a 4 cos( 4ωt)+b 4 sin(4ωt)+a 5 cos(5ωt)+b 5 sin(5ωt)+a 6 cos(6ωt)+b 6 sin(6ωt)+a 7 cos (7ωt)+b 7 sin(7ωt )+a 8 cos(8ωt)+b 8 sin(8ωt)
其中a0=70,a1=83.95,b1=102.3,a2=-24.61,b2=98.8,a3=-53.43,b3=20.81,a4=-28.62,b4=19.83,a5=-38.05,b5=-11,a6=-7.822,b6=-17.14,a7=-4.74,b7=-7.411,a8=-0.7815,b8=-8.382,ω=7.328。where a 0 =70, a 1 =83.95, b 1 =102.3, a 2 =-24.61, b 2 =98.8, a 3 =-53.43, b 3 =20.81, a 4 =-28.62, b 4 =19.83, a 5 = -38.05, b 5 = -11, a 6 = -7.822, b 6 = -17.14, a 7 = -4.74, b 7 = -7.411, a 8 = -0.7815, b 8 = -8.382, ω = 7.328 .
步骤S102中基于按摩推拿会导致动脉血管半径r变化的事实,在研究按摩推拿对动脉血流动力学的影响时,采用随时间变化的等效RLC(t)电路模型替换掉按摩推拿所处的原动脉等效RLC电路,例如采用图4a所示的时变电阻,图4b所示的时变电容,图4c所示的时变电感模型。In step S102, based on the fact that massage and massage can cause changes in the radius r of arterial vessels, when studying the influence of massage and massage on arterial hemodynamics, the equivalent RLC(t) circuit model that changes with time is used to replace the position where massage and massage are located. The equivalent RLC circuit of the original artery, for example, adopts the time-varying resistor shown in FIG. 4a, the time-varying capacitor shown in FIG. 4b, and the time-varying inductance model shown in FIG. 4c.
根据按摩推拿手法的特点,动脉血管半径随按摩推拿的变化规律可以用不同的波形函数描述。例如,正弦波函数、三角波函数等等。波形特征参数包括频率、相位、幅值等,可以反映不同按摩推拿手法的技术特征。例如不同频率下的正弦波和三角波形状如图5所示。不同倍频(0.5f、f、2f、4f)的(a)正弦波血管半径时变曲线、(b)三角波血管半径时变曲线、(c)不同相位(0°、90°、180°)的正弦波血管半径时变曲线。According to the characteristics of massage and massage techniques, the variation of arterial vessel radius with massage and massage can be described by different waveform functions. For example, sine wave function, triangle wave function, etc. Waveform characteristic parameters include frequency, phase, amplitude, etc., which can reflect the technical characteristics of different massage techniques. For example, the shapes of sine wave and triangular wave at different frequencies are shown in Figure 5. (a) time-varying curve of sine wave vessel radius, (b) time-varying curve of triangular wave vessel radius, (c) different phases (0°, 90°, 180°) of different multiplied frequencies (0.5f, f, 2f, 4f) The time-varying curve of sine wave vessel radius.
为了便于研究不同按摩推拿部位对动脉血流动力学的影响,时变RLC(t)电路模型采用在原地常RLC电路模型上引入扰动产生时变的RLC。时变电阻R(t)模型的构建流程如图6所示,图6左上角为定常电阻R模型,左下角为扰动,两者汇集为时变电阻R(t),并封装为一个模块。In order to facilitate the study of the influence of different massage parts on arterial hemodynamics, the time-varying RLC(t) circuit model adopts the time-varying RLC by introducing disturbances into the in-situ normal RLC circuit model. The construction process of the time-varying resistance R(t) model is shown in Figure 6. The upper left corner of Figure 6 is the constant resistance R model, and the lower left corner is the disturbance. The two are combined into a time-varying resistance R(t) and packaged as a module.
步骤S103中,为了让结果更直观的显示,所述“运行所述新的人体动脉的集中参数等效电路网络仿真模型,得到不同按摩推拿手法对不同段动脉血流动力学的影响变化”,具体还包括步骤:In step S103, in order to display the results more intuitively, the "operate the new human artery centralized parameter equivalent circuit network simulation model to obtain the influence of different massage and massage techniques on the hemodynamic changes of different segments of arteries", Specifically, it also includes steps:
通过仿真软件运行所述新的人体动脉的集中参数等效电路网络仿真模型,以可视化界面形式呈现模型运行结果。The new centralized parameter equivalent circuit network simulation model of human arteries is run through simulation software, and the model operation results are presented in the form of a visual interface.
即模型构建完成后,通过仿真软件的运算和展示,可以查看不同段动脉血流动力学的变化,例如血压、血流量等。如图7a为血压变化示意图,图7b为血流量变化示意图。That is, after the model is built, through the calculation and display of the simulation software, you can view the changes in arterial hemodynamics in different segments, such as blood pressure and blood flow. Figure 7a is a schematic diagram of blood pressure changes, and Figure 7b is a schematic diagram of blood flow changes.
一种检测按摩推拿对血流动力学影响的方法,包括步骤:构建人体动脉的集中参数等效电路网络仿真模型,所述人体动脉的集中参数等效电路网络仿真模型中的每段动脉血管被抽象为RLC电路;采用时变RLC(t)电路取代RLC电路,形成新的人体动脉的集中参数等效电路网络仿真模型,所述时变RLC(t)电路中随时间变化的动脉血管半径由不同的波形函数表示,所述不同的波形函数代表动脉血管半径随不同按摩推拿手法的变化规律;运行所述新的人体动脉的集中参数等效电路网络仿真模型,得到不同按摩推拿手法对不同段动脉血流动力学的影响变化。通过上述方法,将不同按摩推拿手法对动脉血管半径的影响用波形函数表示,该波形函数做RLC(t)电路的参数之一,用RLC(t)电路取代原有的RLC电路,形成的新的人体动脉的集中参数等效电路网络仿真模型,该仿真模型在运行过程中可直观地给出人体不同动脉血流动力学随不同按摩推拿手法的变化情况,进而可以为制定更为合理科学的按摩推拿治疗方案提供参考。A method for detecting the influence of massage and massage on hemodynamics, comprising the steps of: constructing a centralized parameter equivalent circuit network simulation model of human arteries, each arterial vessel in the centralized parameter equivalent circuit network simulation model of human arteries is It is abstracted as an RLC circuit; a time-varying RLC (t) circuit is used to replace the RLC circuit to form a new centralized parameter equivalent circuit network simulation model of human arteries, and the time-varying arterial vessel radius in the time-varying RLC (t) circuit is given by Different waveform functions represent that the different waveform functions represent the change law of the arterial vessel radius with different massage and massage techniques; run the new concentrated parameter equivalent circuit network simulation model of human arteries to obtain different massage and massage techniques for different segments. Influencing changes in arterial hemodynamics. Through the above method, the influence of different massage and massage techniques on the radius of the arterial vessel is represented by a waveform function. The waveform function is used as one of the parameters of the RLC(t) circuit, and the original RLC circuit is replaced by the RLC(t) circuit to form a new The centralized parameter equivalent circuit network simulation model of human arteries can intuitively show the changes of human arterial hemodynamics with different massage and massage techniques during the operation process, and then can be used for formulating a more reasonable and scientific Massage massage treatment program provides reference.
请参阅图3a至图8,在本实施方式中,一种存储设备800的具体实施方式如下:Referring to FIG. 3a to FIG. 8, in this implementation manner, a specific implementation manner of a
一种存储设备800,其中存储有指令集,所述指令集用于执行:A
构建人体动脉的集中参数等效电路网络仿真模型,所述人体动脉的集中参数等效电路网络仿真模型中的每段动脉血管被抽象为RLC电路;A concentrated parameter equivalent circuit network simulation model of human arteries is constructed, and each arterial vessel in the concentrated parameter equivalent circuit network simulation model of human arteries is abstracted as an RLC circuit;
采用时变RLC(t)电路取代RLC电路,形成新的人体动脉的集中参数等效电路网络仿真模型,所述时变RLC(t)电路中随时间变化的动脉血管半径由不同的波形函数表示,所述不同的波形函数代表动脉血管半径随不同按摩推拿手法的变化规律;The time-varying RLC (t) circuit is used to replace the RLC circuit to form a new centralized parameter equivalent circuit network simulation model of human arteries, and the arterial vessel radius changing with time in the time-varying RLC (t) circuit is represented by different waveform functions , the different waveform functions represent the changing law of the arterial vessel radius with different massage and massage techniques;
运行所述新的人体动脉的集中参数等效电路网络仿真模型,得到不同按摩推拿手法对不同段动脉血流动力学的影响变化。By running the new centralized parameter equivalent circuit network simulation model of human arteries, the influence of different massage and massage techniques on the hemodynamics of different arteries can be obtained.
进一步的,所述指令集还用于执行:Further, the instruction set is also used to execute:
所述“构建人体动脉的集中参数等效电路网络仿真模型”,具体还包括步骤:The "constructing a centralized parameter equivalent circuit network simulation model of human arteries" also specifically includes steps:
将人体动脉血管划分为若干段,每段动脉血管抽象等效为RLC电路。在本实施方式中,根据先验知识将人体动脉血管分为若干段,例如55段,其中每段动脉血管可基于以下公式抽象等效为RLC电路:The human arteries are divided into several segments, and each segment of arteries is abstractly equivalent to an RLC circuit. In this embodiment, human arterial vessels are divided into several segments according to prior knowledge, for example, 55 segments, wherein each arterial vessel can be abstractly equivalent to an RLC circuit based on the following formula:
R=8ηl/(πr^4)、L=ρl/(πr^2)、C=(2πr^3l)/EhR=8ηl/(πr^4), L=ρl/(πr^2), C=(2πr^3l)/Eh
其中,R、L、C分别对应电路的电阻、电感和电容;η为真实动脉血管内的血液粘度,ρ为真实动脉血管内的血液密度,r、l、h分别为该段真实动脉血管的半径、长度及动脉壁层厚,E为该段真实动脉血管的弹性模量。Among them, R, L, and C correspond to the resistance, inductance, and capacitance of the circuit respectively; η is the blood viscosity in the real arterial vessel, ρ is the blood density in the real arterial vessel, and r, l, and h are the real arterial vessel’s blood density in this segment, respectively. Radius, length and arterial wall thickness, E is the elastic modulus of the real arterial vessel.
如图3a所示为每一段动脉的RLC集中参数等效电路模型,图3b为55段动脉树模型,图3c为左上肢7段集中参数等效电路模型。Figure 3a shows the RLC lumped parameter equivalent circuit model of each artery segment, Figure 3b shows the 55-segment arterial tree model, and Figure 3c shows the 7-segment lumped parameter equivalent circuit model of the left upper limb.
根据人体的动脉树模型构建集中参数等效电路网络仿真模型。并确定仿真模型的所有已知参数。Based on the arterial tree model of the human body, a centralized parameter equivalent circuit network simulation model is constructed. And determine all known parameters of the simulation model.
根据人体主动脉血流量波形构建所述仿真模型的激励源。例如对于7段左上肢的集中参数模型,采用正常人的标准设定参数,将人体心率设为70beat/min,仿真激励源采用人体主动脉弓血压测量波形进行8阶傅里叶拟合,得到如下的随时间变化的血流量激励源函数;The excitation source of the simulation model is constructed according to the human aortic blood flow waveform. For example, for the centralized parameter model of the 7-segment left upper limb, the standard setting parameters of normal people are used, and the human heart rate is set to 70 beat/min. The simulation excitation source uses the blood pressure measurement waveform of the human aortic arch to perform 8-order Fourier fitting, and the following is obtained Time-varying blood flow excitation source function;
Blood PressureBlood Pressure
=a0+a1cos(ωt)+b1sin(ωt)+a2cos(2ωt)+b2sin(2ωt)+a3cos(3ωt)+b3sin(3ωt)+a4cos(4ωt)+b4sin(4ωt)+a5cos(5ωt)+b5sin(5ωt)+a6cos(6ωt)+b6sin(6ωt)+a7cos(7ωt)+b7sin(7ωt)+a8cos(8ωt)+b8sin(8ωt)=a 0 +a 1 cos(ωt)+b 1 sin(ωt)+a 2 cos(2ωt)+b 2 sin(2ωt)+a 3 cos(3ωt)+b 3 sin(3ωt)+a 4 cos( 4ωt)+b 4 sin(4ωt)+a 5 cos(5ωt)+b 5 sin(5ωt)+a 6 cos(6ωt)+b 6 sin(6ωt)+a 7 cos(7ωt)+b 7 sin(7ωt )+a 8 cos(8ωt)+b 8 sin(8ωt)
其中a0=70,a1=83.95,b1=102.3,a2=-24.61,b2=98.8,a3=-53.43,b3=20.81,a4=-28.62,b4=19.83,a5=-38.05,b5=-11,a6=-7.822,b6=-17.14,a7=-4.74,b7=-7.411,a8=-0.7815,b8=-8.382,ω=7.328。where a 0 =70, a 1 =83.95, b 1 =102.3, a 2 =-24.61, b 2 =98.8, a 3 =-53.43, b 3 =20.81, a 4 =-28.62, b 4 =19.83, a 5 = -38.05, b 5 = -11, a 6 = -7.822, b 6 = -17.14, a 7 = -4.74, b 7 = -7.411, a 8 = -0.7815, b 8 = -8.382, ω = 7.328 .
进一步的,基于按摩推拿会导致动脉血管半径r变化的事实,在研究按摩推拿对动脉血流动力学的影响时,采用随时间变化的等效RLC(t)电路模型替换掉按摩推拿所处的原动脉等效RLC电路,例如采用图4a所示的时变电阻,图4b所示的时变电容,图4c所示的时变电感模型。Further, based on the fact that massage and massage can cause changes in the radius r of arterial vessels, when studying the influence of massage and massage on arterial hemodynamics, the equivalent RLC(t) circuit model that changes over time is used to replace the The equivalent RLC circuit of the original artery, for example, adopts the time-varying resistor shown in FIG. 4a, the time-varying capacitor shown in FIG. 4b, and the time-varying inductance model shown in FIG. 4c.
根据按摩推拿手法的特点,动脉血管半径随按摩推拿的变化规律可以用不同的波形函数描述。例如,正弦波函数、三角波函数等等。波形特征参数包括频率、相位、幅值等,可以反映不同按摩推拿手法的技术特征。例如不同频率下的正弦波和三角波形状如图5所示。不同倍频(0.5f、f、2f、4f)的(a)正弦波血管半径时变曲线、(b)三角波血管半径时变曲线、(c)不同相位(0°、90°、180°)的正弦波血管半径时变曲线。According to the characteristics of massage and massage techniques, the variation of arterial vessel radius with massage and massage can be described by different waveform functions. For example, sine wave function, triangle wave function, etc. Waveform characteristic parameters include frequency, phase, amplitude, etc., which can reflect the technical characteristics of different massage techniques. For example, the shapes of sine wave and triangular wave at different frequencies are shown in Figure 5. (a) time-varying curve of sine wave vessel radius, (b) time-varying curve of triangular wave vessel radius, (c) different phases (0°, 90°, 180°) of different multiplied frequencies (0.5f, f, 2f, 4f) The time-varying curve of sine wave vessel radius.
为了便于研究不同按摩推拿部位对动脉血流动力学的影响,时变RLC(t)电路模型采用在原地常RLC电路模型上引入扰动产生时变的RLC。时变电阻R(t)模型的构建流程如图6所示,图6左上角为定常电阻R模型,左下角为扰动,两者汇集为时变电阻R(t),并封装为一个模块。In order to facilitate the study of the influence of different massage parts on arterial hemodynamics, the time-varying RLC(t) circuit model adopts the time-varying RLC by introducing disturbances into the in-situ normal RLC circuit model. The construction process of the time-varying resistance R(t) model is shown in Figure 6. The upper left corner of Figure 6 is the constant resistance R model, and the lower left corner is the disturbance. The two are combined into a time-varying resistance R(t) and packaged as a module.
进一步的,为了让结果更直观的显示,所述指令集还用于执行:Further, in order to display the results more intuitively, the instruction set is also used to execute:
所述“运行所述新的人体动脉的集中参数等效电路网络仿真模型,得到不同按摩推拿手法对不同段动脉血流动力学的影响变化”,具体还包括步骤:The "running the new concentrated parameter equivalent circuit network simulation model of the human artery to obtain the influence of different massage and massage techniques on the hemodynamics of different segments of the artery" specifically includes steps:
通过仿真软件运行所述新的人体动脉的集中参数等效电路网络仿真模型,以可视化界面形式呈现模型运行结果。The new centralized parameter equivalent circuit network simulation model of human arteries is run through simulation software, and the model operation results are presented in the form of a visual interface.
即模型构建完成后,通过仿真软件的运算和展示,可以查看不同段动脉血流动力学的变化,例如血压、血流量等。如图7a为血压变化示意图,图7b为血流量变化示意图。That is, after the model is built, through the calculation and display of the simulation software, you can view the changes in arterial hemodynamics in different segments, such as blood pressure and blood flow. Figure 7a is a schematic diagram of blood pressure changes, and Figure 7b is a schematic diagram of blood flow changes.
通过执行上述存储设备800中的指令集,将不同按摩推拿手法对动脉血管半径的影响用波形函数表示,该波形函数做RLC(t)电路的参数之一,用RLC(t)电路取代原有的RLC电路,形成的新的人体动脉的集中参数等效电路网络仿真模型,该仿真模型在运行过程中可直观地给出人体不同动脉血流动力学随不同按摩推拿手法的变化情况,进而可以为制定更为合理科学的按摩推拿治疗方案提供参考。By executing the instruction set in the above-mentioned
需要说明的是,尽管在本文中已经对上述各实施例进行了描述,但并非因此限制本发明的专利保护范围。因此,基于本发明的创新理念,对本文所述实施例进行的变更和修改,或利用本发明说明书及附图内容所作的等效结构或等效流程变换,直接或间接地将以上技术方案运用在其他相关的技术领域,均包括在本发明的专利保护范围之内。It should be noted that although the foregoing embodiments have been described herein, the scope of protection of the present invention is not limited thereby. Therefore, based on the innovative concept of the present invention, the changes and modifications made to the embodiments described herein, or the equivalent structure or equivalent process conversion made by using the description of the present invention and the contents of the accompanying drawings, directly or indirectly apply the above technical solutions In other related technical fields, all are included in the patent protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111214040.2A CN113940650B (en) | 2021-10-19 | 2021-10-19 | Method and storage device for detecting influence of massage on hemodynamics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111214040.2A CN113940650B (en) | 2021-10-19 | 2021-10-19 | Method and storage device for detecting influence of massage on hemodynamics |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113940650A CN113940650A (en) | 2022-01-18 |
CN113940650B true CN113940650B (en) | 2023-04-11 |
Family
ID=79331712
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111214040.2A Active CN113940650B (en) | 2021-10-19 | 2021-10-19 | Method and storage device for detecting influence of massage on hemodynamics |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113940650B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114743638B (en) * | 2022-03-03 | 2024-06-25 | 福州大学 | Massage efficacy simulation method based on multidimensional model |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5535753A (en) * | 1994-10-04 | 1996-07-16 | Rutgers University | Apparatus and methods for the noninvasive measurement of cardiovascular system parameters |
CN103892818A (en) * | 2012-12-28 | 2014-07-02 | 吴健康 | Non-invasive central aortic blood pressure measuring method and device |
CN104050857A (en) * | 2014-07-08 | 2014-09-17 | 南京邮电大学 | Cardiovascular system simulation model based on lumped parameters |
CN108922580A (en) * | 2018-05-25 | 2018-11-30 | 杭州脉流科技有限公司 | A kind of method, apparatus, system and computer storage medium obtaining blood flow reserve score |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11317889B2 (en) * | 2018-02-22 | 2022-05-03 | Board Of Regents Of The University Of Nebraska | Time-varying quantification of capacitive and resistive arterial blood flow |
-
2021
- 2021-10-19 CN CN202111214040.2A patent/CN113940650B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5535753A (en) * | 1994-10-04 | 1996-07-16 | Rutgers University | Apparatus and methods for the noninvasive measurement of cardiovascular system parameters |
CN103892818A (en) * | 2012-12-28 | 2014-07-02 | 吴健康 | Non-invasive central aortic blood pressure measuring method and device |
CN104050857A (en) * | 2014-07-08 | 2014-09-17 | 南京邮电大学 | Cardiovascular system simulation model based on lumped parameters |
CN108922580A (en) * | 2018-05-25 | 2018-11-30 | 杭州脉流科技有限公司 | A kind of method, apparatus, system and computer storage medium obtaining blood flow reserve score |
Also Published As
Publication number | Publication date |
---|---|
CN113940650A (en) | 2022-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Secomb | Hemodynamics | |
Sankaran et al. | A stochastic collocation method for uncertainty quantification and propagation in cardiovascular simulations | |
Brown et al. | Accuracy vs. computational time: translating aortic simulations to the clinic | |
Caballero et al. | A review on computational fluid dynamics modelling in human thoracic aorta | |
Troianowski et al. | Three-dimensional simulations in Glenn patients: clinically based boundary conditions, hemodynamic results and sensitivity to input data | |
Morbiducci et al. | Inflow boundary conditions for image-based computational hemodynamics: impact of idealized versus measured velocity profiles in the human aorta | |
Olufsen | Structured tree outflow condition for blood flow in larger systemic arteries | |
Pasipoularides | Heart's vortex: intracardiac blood flow phenomena | |
CN113940650B (en) | Method and storage device for detecting influence of massage on hemodynamics | |
Xiao et al. | Effects of cardiac timing and peripheral resistance on measurement of pulse wave velocity for assessment of arterial stiffness | |
Bartolo et al. | Numerical predictions of shear stress and cyclic stretch in pulmonary hypertension due to left heart failure | |
Blanco et al. | On the anatomical definition of arterial networks in blood flow simulations: comparison of detailed and simplified models | |
Hsia et al. | Computational modeling to support surgical decision making in single ventricle physiology | |
JP2002501774A (en) | Brain circulation model and applications | |
CN117877674A (en) | An intelligent intravenous fluid therapy control method and system | |
Fytanidis et al. | Patient-specific arterial system flow oscillation | |
CN103606120A (en) | Progress note inputting device and method based on template | |
McCullough et al. | High fidelity blood flow in a patient-specific arteriovenous fistula | |
Factor et al. | A parallel software architecture for building intelligent medical monitors | |
Kofránek et al. | HumMod-Golem Edition: large scale model of integrative physiology for virtual patient simulators | |
Shen et al. | A theoretical computerized study for the electrical conductivity of arterial pulsatile blood flow by an elastic tube model | |
Yang et al. | Computational fluid dynamics in the numerical simulation analysis of end-to-side anastomosis for coarctation of the aorta | |
He et al. | A seepage outlet boundary condition in hemodynamics modeling | |
Song et al. | Non-invasive hemodynamic diagnosis based on non-linear pulse wave theory applied to four limbs | |
US20210353160A1 (en) | Mathematical biomarker for arterial viscoelasticity assessment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |