[go: up one dir, main page]

CN113937210B - 硒化制备SnSe/SnSe2复合热电薄膜的方法 - Google Patents

硒化制备SnSe/SnSe2复合热电薄膜的方法 Download PDF

Info

Publication number
CN113937210B
CN113937210B CN202111186758.5A CN202111186758A CN113937210B CN 113937210 B CN113937210 B CN 113937210B CN 202111186758 A CN202111186758 A CN 202111186758A CN 113937210 B CN113937210 B CN 113937210B
Authority
CN
China
Prior art keywords
snse
quartz tube
thermoelectric film
preparing
selenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111186758.5A
Other languages
English (en)
Other versions
CN113937210A (zh
Inventor
薛宇利
王淑芳
李志亮
王艾艾
王景玄
王江龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University
Original Assignee
Hebei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University filed Critical Hebei University
Priority to CN202111186758.5A priority Critical patent/CN113937210B/zh
Publication of CN113937210A publication Critical patent/CN113937210A/zh
Application granted granted Critical
Publication of CN113937210B publication Critical patent/CN113937210B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5866Treatment with sulfur, selenium or tellurium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明提供了一种硒化制备SnSe/SnSe2复合热电薄膜的方法,包括以下步骤:(a)利用脉冲激光沉积技术制备SnSe热电薄膜;(b)将石英管用水和酒精反复进行超声清洗,然后放入恒温干燥箱中进行干燥;(c)利用真空封管技术将SnSe热电薄膜和硒颗粒一起封装在所述石英管中;(d)将石英管放入退火炉中,在10‑60min内升温至225‑350℃,并保持10‑120min,使石英管中的SnSe薄膜硒化,最后自然冷却降至室温,即得到SnSe/SnSe2复合热电薄膜。本发明复合薄膜具有优异的热电性能,在热电微纳器件领域具有广阔的应用前景。

Description

硒化制备SnSe/SnSe2复合热电薄膜的方法
技术领域
本发明涉及热电薄膜制备技术领域,具体地说是涉及一种硒化制备SnSe/SnSe2复合热电薄膜的方法。
背景技术
热电材料是一种可以实现热能和电能相互转换的功能材料。由其制成的温差发电及制冷器件具有体积小、重量轻、无噪声、无污染、可靠性高、无机械传动部件等优点,有着广泛的应用前景。随着世界经济的高速发展,人类对能源的需求日益增多,目前全球仍有约80%的能源来源于传统能源(煤、石油、天然气),但传统能源利用率较低,约一半以上的能源以热能的形式浪费掉,同时传统能源燃烧带来的环境污染问题也越来越严重,热电材料因能回收部分废热能源、提高能源利用率而备受关注。
热电材料的性能通常采用无量纲热电优值zT来衡量,其定义式为zT=(S2σ/κ)T。其中S是材料的塞贝克系数,σ是材料的电导率,κ是材料的热导率(主要包括载流子热导率κc和晶格热导率κL),T是绝对温度。长期以来,热电材料的研究主要集中在由重金属元素组成的化合物半导体和合金材料上,如商用的传统热电材料Bi2Te3、PbTe、SiGe合金等,但这些材料多含有毒和稀有元素,极大地限制了热电材料的实际应用与推广。2014年,Zhao等人在《Nature》上首次报道了简单二元化合物SnSe单晶块体具有优异的热电性能,是目前报道的性能最好的热电材料。该材料不含有毒元素且原料价格便宜,有望成为代替商用中PbTe基材料的候选材料之一。
相比于三维块体样品,二维薄膜材料更易和现代半导体工艺相兼容,在热电微纳器件应用方面具有块体材料无可替代的优势。因此,研究一种电导率、功率因子等热电性能优异的二维薄膜SnSe材料具有重要的现实意义。
发明内容
本发明的目的是提供一种硒化制备SnSe/SnSe2复合热电薄膜的方法,以解决现有材料热电性能不理想,制备难度大的问题。
本发明技术方案为:一种硒化制备SnSe/SnSe2复合热电薄膜的方法,包括以下步骤:
(a)利用脉冲激光沉积技术制备SnSe热电薄膜;
(b)将石英管用水和酒精反复进行超声清洗,然后放入恒温干燥箱中进行干燥;
(c)利用真空封管技术将SnSe热电薄膜和硒颗粒一起封装在所述石英管中;
(d)将石英管放入退火炉中,在10-60min内升温至225-350℃,并保持10-120min,使石英管中的SnSe薄膜硒化,最后自然冷却降至室温,即得到SnSe/SnSe2复合热电薄膜。
步骤(a)中,利用脉冲激光沉积技术制备SnSe热电薄膜包括:
(a-1)将锡粉和硒粉按原子摩尔比Sn:Se=1:1.15-1.25混合均匀后真空封装在石英管中,然后放入马弗炉中熔炼成锭并研磨成粉,之后利用放电等离子烧结技术进行烧结,得到锡化硒多晶靶材;
(a-2)将锡化硒多晶靶材和经过超声清洗的单晶基片放入PLD腔体中,利用脉冲激光沉积技术制备SnSe热电薄膜。
步骤(a)中,所述基片为MgO(001)单晶基片,沉积时,激光频率为3-5Hz,激光密度为1.2-3.0J/cm2,氩气压强为0.05-0.2Pa,基底温度为330-370℃,基片和靶材距离为4-6cm。
步骤(b)中,水为去离子水,酒精纯度≥95%。
步骤(b)中,干燥温度为70-120℃,时间≥30min。
步骤(c)中,石英管的直径为8-12mm,封装好的石英管容积为4~10mL,石英管内的压强为4×10-5Pa-4×10-3Pa。
步骤(c)中,硒颗粒的纯度为99.9%-99.999%,硒颗粒的用量为40~100mg。
本发明制备的SnSe/SnSe2复合热电薄膜具有优异的热电性能,且制备方法简便,易于推广,在热电微纳器件方面具有广阔的应用前景。
附图说明
图1是在MgO(001)单晶基片上制备的SnSe/SnSe2复合热电薄膜的XRD图谱。
图2是在MgO(001)单晶基片上制备的SnSe/SnSe2复合热电薄膜的塞贝克图谱,图中横坐标为温度,纵坐标为塞贝克系数。
图3是在MgO(001)单晶基片上制备的SnSe/SnSe2复合热电薄膜的电阻率图谱,图中横坐标为温度,纵坐标为电阻率。
图4是在MgO(001)单晶基片上制备的SnSe/SnSe2复合热电薄膜的电导率图谱,图中横坐标为温度,纵坐标为电导率。
图5是在MgO(001)单晶基片上制备的SnSe/SnSe2复合热电薄膜的功率因子图谱,图中横坐标为温度,纵坐标为功率因子。
具体实施方式
下面结合实施例对本发明做进一步的阐述,在下述实施例中未详细描述的过程和方法是本领域公知的常规方法,实施例中所用原料或试剂除另有说明外均为市售品,可通过商业渠道购得。
实施例1:制备SnSe/SnSe2复合热电薄膜。
(1)利用脉冲激光沉积技术制备SnSe热电薄膜;
<1>将按原子摩尔计量比Sn:Se=1:1.2称量的高纯锡粉和高纯硒粉利用真空封管技术封装在石英管中,然后放入马弗炉中熔炼成锭并研磨成粉,最后利用放电等离子烧结技术进行烧结,得到富硒的锡化硒多晶靶材。
<2>将靶材和经过超声清洗的单晶基片放入PLD腔体中,通过脉冲激光沉积技术在MgO(001)单晶基底上生长硒化锡热电薄膜,控制沉积条件为激光频率为5Hz,激光密度为1.5J/cm2,背底压强为2×10-4Pa,氩气压强为0.1Pa,基底温度为350℃,基底和靶材距离为5cm。
(2)将石英管用去离子水和98%酒精进行超声清洗,各清洗5次。
(3)将清洗好的石英管放入恒温干燥箱中,干燥温度为70℃,进行20个小时干燥。
(4)将SnSe热电薄膜和70mg硒颗粒(纯度为99.99%)一起封装在直径为10mm的石英管中,石英管内的压强为8×10-4Pa,封装好的石英管的容积7mL。
(5)将封装好的石英管放入退火炉中,从室温经过15min升至275℃,并保持20min,最后经过自然冷却降至室温。即得到SnSe/SnSe2复合热电薄膜。
该实施制备的SnSe/SnSe2复合热电薄膜用XRD进行了测试分析,分析结果见图1,由图1可知本发明制备的薄膜为SnSe/SnSe2复合热电薄膜。
该实施制备的SnSe/SnSe2复合热电薄膜进行了塞贝克系数测试,测试结果见图2,由图2可知本发明制备的SnSe/SnSe2复合热电薄膜在600K时显示塞贝克系数约为360μV/K。
该实施制备的SnSe/SnSe2复合热电薄膜进行了电阻率测试,测试结果见图3和图4,由图3和图4可知本发明制备的SnSe/SnSe2复合热电薄膜在600K时显示电阻率约为220μΩ·m和电导率约为4553S/m。
该实施制备的SnSe/SnSe2复合热电薄膜根据电阻率测试和塞贝克系数测试计算出功率因子,结果见图5,由图5可知本发明制备的SnSe/SnSe2复合热电薄膜在600K时显示功率因子约为5.9μW/cm·K2
实施例2:制备SnSe/SnSe2复合热电薄膜。
(1)利用脉冲激光沉积技术制备SnSe热电薄膜;
<1>将按原子摩尔计量比Sn:Se=1:1.15称量的高纯锡粉和高纯硒粉利用真空封管技术封装在石英管中,然后放入马弗炉中熔炼成锭并研磨成粉,最后利用放电等离子烧结技术进行烧结,得到富硒的锡化硒多晶靶材。
<2>将靶材和经过超声清洗的单晶基片放入PLD腔体中,通过脉冲激光沉积技术在MgO(001)单晶基底上生长硒化锡热电薄膜,控制沉积条件为激光频率为5Hz,激光密度为1.5J/cm2,背底压强为1×10-4Pa,氩气压强为0.1Pa,基底温度为330℃,基底和靶材距离为5cm。
(2)将石英管用去离子水和98%酒精进行超声清洗,各清洗7次。
(3)将清洗好的石英管放入恒温干燥箱中,干燥温度为90℃,进行15个小时干燥。
(4)将SnSe热电薄膜和100mg硒颗粒(纯度为99.9%)一起封装在直径为15mm的石英管中,石英管内的压强为3×10-4Pa,封装好的石英管的容积10mL。
(5)将封装好的石英管放入退火炉中,从室温经过20min升至300℃,并保持10min,最后经过自然冷却降至室温。即得到SnSe/SnSe2复合热电薄膜。此制备SnSe/SnSe2复合热电薄膜在600K时,PF约为4μW/cm·K2
实施例3:制备SnSe/SnSe2复合热电薄膜。
(1)利用脉冲激光沉积技术制备SnSe热电薄膜;
<1>将按原子摩尔计量比Sn:Se=1:1.17称量的高纯锡粉和高纯硒粉利用真空封管技术封装在石英管中,然后放入马弗炉中熔炼成锭并研磨成粉,最后利用放电等离子烧结技术进行烧结,得到富硒的锡化硒多晶靶材。
<2>将靶材和经过超声清洗的单晶基片放入PLD腔体中,通过脉冲激光沉积技术在MgO(001)单晶基底上生长硒化锡热电薄膜,控制沉积条件为激光频率为5Hz,激光密度为1.6J/cm2,背底压强为4×10-4Pa,氩气压强为0.1Pa,基底温度为360℃,基底和靶材距离为5.5cm。
(2)将石英管用去离子水和98%酒精进行超声清洗,各清洗6次。
(3)将清洗好的石英管放入恒温干燥箱中,干燥温度为80℃,进行17个小时干燥。
(4)将SnSe热电薄膜和80mg硒颗粒(纯度为99.99%)一起封装在直径为12mm
的石英管中,石英管内的压强为7×10-4Pa,封装好的石英管的容积8mL。
(5)将封装好的石英管放入退火炉中,从室温经过10min升至250℃,并保持20min,最后经过自然冷却降至室温。即得到SnSe/SnSe2复合热电薄膜。此制备SnSe/SnSe2复合热电薄膜在600K时,PF约为3.17μW/cm·K2
实施例4:制备SnSe/SnSe2复合热电薄膜。
(1)利用脉冲激光沉积技术制备SnSe热电薄膜;
<1>将按原子摩尔计量比Sn:Se=1:1.22称量的高纯锡粉和高纯硒粉利用真空封管技术封装在石英管中,然后放入马弗炉中熔炼成锭并研磨成粉,最后利用放电等离子烧结技术进行烧结,得到富硒的锡化硒多晶靶材。
<2>将靶材和经过超声清洗的单晶基片放入PLD腔体中,通过脉冲激光沉积技术在MgO(001)单晶基底上生长硒化锡热电薄膜,控制沉积条件为激光频率为5Hz,激光密度为1.4J/cm2,背底压强为3×10-4Pa,氩气压强为0.1Pa,基底温度为360℃,基底和靶材距离为4.5cm。
(2)将石英管用去离子水和98%酒精进行超声清洗,各清洗7次。
(3)将清洗好的石英管放入恒温干燥箱中,干燥温度为70℃,进行12个小时干燥。
(4)将SnSe热电薄膜和60mg硒颗粒(纯度为99.99%)一起封装在直径为8mm的石英管中,石英管内的压强为3×10-3Pa,封装好的石英管的容积6mL。
(5)将封装好的石英管放入退火炉中,从室温经过15min升至275℃,并保持60min,最后经过自然冷却降至室温。即得到SnSe/SnSe2复合热电薄膜。此制备SnSe/SnSe2复合热电薄膜在600K时,PF约为4.55μW/cm·K2

Claims (6)

1.一种硒化制备SnSe/SnSe2复合热电薄膜的方法,其特征在于,包括以下步骤:
(a)利用脉冲激光沉积技术制备SnSe热电薄膜;
(b)将石英管用水和酒精反复进行超声清洗,然后放入恒温干燥箱中进行干燥;
(c)利用真空封管技术将SnSe热电薄膜和硒颗粒一起封装在所述石英管中;
(d)将石英管放入退火炉中,在10-60min内升温至225-350℃,并保持10-120min,使石英管中的SnSe薄膜硒化,最后自然冷却降至室温,即得到SnSe/SnSe2复合热电薄膜;
步骤(a)中,利用脉冲激光沉积技术制备SnSe热电薄膜包括:
(a-1)将锡粉和硒粉按原子摩尔比Sn:Se=1:1.15-1.25混合均匀后真空封装在石英管中,然后放入马弗炉中熔炼成锭并研磨成粉,之后利用放电等离子烧结技术进行烧结,得到锡化硒多晶靶材;
(a-2)将锡化硒多晶靶材和经过超声清洗的单晶基片放入PLD腔体中,利用脉冲激光沉积技术制备SnSe热电薄膜。
2. 根据权利要求1所述的硒化制备SnSe/SnSe2复合热电薄膜的方法,其特征在于,步骤(a)中,所述基片为MgO(001)单晶基片,沉积时,激光频率为3-5Hz,激光密度为1.2-3.0J /cm2, 氩气压强为0.05-0.2Pa,基底温度为330-370℃,基片和靶材距离为4-6cm。
3.根据权利要求1所述的硒化制备SnSe/SnSe2复合热电薄膜的方法,其特征在于,步骤(b)中,水为去离子水,酒精纯度≥95%。
4. 根据权利要求1所述的硒化制备SnSe/SnSe2复合热电薄膜的方法,其特征在于,步骤(b)中,干燥温度为70-120℃,时间≥30 min。
5.根据权利要求1所述的硒化制备SnSe/SnSe2复合热电薄膜的方法,其特征在于,步骤(c)中,石英管的直径为8-12mm,封装好的石英管容积为4~10mL,石英管内的压强为4×10- 5Pa-4×10-3Pa。
6.根据权利要求1所述的硒化制备SnSe/SnSe2复合热电薄膜的方法,其特征在于,步骤(c)中,硒颗粒的纯度为99.9%-99.999%,硒颗粒的用量为40~100mg。
CN202111186758.5A 2021-10-12 2021-10-12 硒化制备SnSe/SnSe2复合热电薄膜的方法 Active CN113937210B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111186758.5A CN113937210B (zh) 2021-10-12 2021-10-12 硒化制备SnSe/SnSe2复合热电薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111186758.5A CN113937210B (zh) 2021-10-12 2021-10-12 硒化制备SnSe/SnSe2复合热电薄膜的方法

Publications (2)

Publication Number Publication Date
CN113937210A CN113937210A (zh) 2022-01-14
CN113937210B true CN113937210B (zh) 2024-05-10

Family

ID=79278248

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111186758.5A Active CN113937210B (zh) 2021-10-12 2021-10-12 硒化制备SnSe/SnSe2复合热电薄膜的方法

Country Status (1)

Country Link
CN (1) CN113937210B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114686986B (zh) * 2022-04-02 2023-03-28 齐齐哈尔大学 一种SnSe2单晶的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA94673C2 (en) * 2010-04-26 2011-05-25 Государственное Высшее Учебное Заведение "Ужгородский Национальный Университет" Thermoelectric material
UA98368C2 (ru) * 2010-07-19 2012-05-10 Государственное Высшее Учебное Заведение "Ужгородский Национальный Университет" ТЕРМОЭЛЕКТРИЧЕСКИЙ МАТЕРИАЛ НА ОСНОВЕ ЭВТЕКТИЧЕСКОГО КОМПОЗИТА СИСТЕМЫ SnSe2-Bi2Se3
CN104291279A (zh) * 2014-09-26 2015-01-21 北京航空航天大学 一种SnSe纳米粉体的制备方法
CN107634138A (zh) * 2017-09-08 2018-01-26 河北大学 一种基于硒化锡薄膜横向热电效应的光、热探测器
CN108588838A (zh) * 2018-03-23 2018-09-28 桂林电子科技大学 一种制备具有高热电性能的SnSe多晶块体的方法
CN110129878A (zh) * 2019-05-27 2019-08-16 南京大学 一种具有高载流子浓度的SnSe晶体及其生长方法和应用
CN111139519A (zh) * 2020-01-02 2020-05-12 深圳大学 一种片状SnSe单晶的制备方法
KR20210060849A (ko) * 2019-11-19 2021-05-27 울산과학기술원 주석-셀레나이드 박막의 제조 방법, 이를 사용하여 제조된 주석-셀레나이드 박막 및 이를 포함하는 열전소재

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA94673C2 (en) * 2010-04-26 2011-05-25 Государственное Высшее Учебное Заведение "Ужгородский Национальный Университет" Thermoelectric material
UA98368C2 (ru) * 2010-07-19 2012-05-10 Государственное Высшее Учебное Заведение "Ужгородский Национальный Университет" ТЕРМОЭЛЕКТРИЧЕСКИЙ МАТЕРИАЛ НА ОСНОВЕ ЭВТЕКТИЧЕСКОГО КОМПОЗИТА СИСТЕМЫ SnSe2-Bi2Se3
CN104291279A (zh) * 2014-09-26 2015-01-21 北京航空航天大学 一种SnSe纳米粉体的制备方法
CN107634138A (zh) * 2017-09-08 2018-01-26 河北大学 一种基于硒化锡薄膜横向热电效应的光、热探测器
CN108588838A (zh) * 2018-03-23 2018-09-28 桂林电子科技大学 一种制备具有高热电性能的SnSe多晶块体的方法
CN110129878A (zh) * 2019-05-27 2019-08-16 南京大学 一种具有高载流子浓度的SnSe晶体及其生长方法和应用
KR20210060849A (ko) * 2019-11-19 2021-05-27 울산과학기술원 주석-셀레나이드 박막의 제조 방법, 이를 사용하여 제조된 주석-셀레나이드 박막 및 이를 포함하는 열전소재
CN111139519A (zh) * 2020-01-02 2020-05-12 深圳大学 一种片状SnSe单晶的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Augmentation of the thermoelectric properties of polycrystalline Tin selenides via formation of SnSe/ SnSe2 composites";S. Gowthamaraju et al.;《J Mater Sci: Mater Electron》;20210410;11782-11790 *

Also Published As

Publication number Publication date
CN113937210A (zh) 2022-01-14

Similar Documents

Publication Publication Date Title
CN103872237B (zh) 铜硫基高性能热电材料及其制备方法
CN104211024B (zh) P型可逆相变高性能热电材料及其制备方法
CN112028632A (zh) 一种非化学计量比碲化铋基热电材料及其制备方法
CN104261357B (zh) 一种Bi2O2Se基热电材料及其制备方法
CN108374198B (zh) 一种单晶Bi2Te3热电材料的制备方法
CN106986315B (zh) 一种适用于低温发电的p型碲化铋热电材料及制备方法
CN103130200B (zh) 热电材料化合物及其制备方法
CN105671344B (zh) 一步制备高性能CoSb3基热电材料的方法
CN104851967B (zh) 一种c轴取向铋铜硒氧基氧化物热电薄膜及其制备方法
CN101339906A (zh) 新型环境半导体光电子材料β-FeSi2薄膜的制备工艺
CN113937210B (zh) 硒化制备SnSe/SnSe2复合热电薄膜的方法
CN111640853B (zh) 通过Sb和Cu2Te共掺杂提高n型PbTe热电性能的方法
CN109534303A (zh) 一种高性能低温热电材料及其制备方法
CN106399937A (zh) 一种制备择优取向碲化铋热电薄膜的方法
CN105990510B (zh) 一种铜硒基高性能热电材料及其制备方法
CN107359231B (zh) 一种低导热硫银锗矿热电材料及其制备方法
CN108666045A (zh) 一种放电等离子体烧结技术制备铁硒超导材料的方法
CN108842184A (zh) 一种P型SnS单晶材料及其制备方法
CN111312888A (zh) 通过Bi、Cu、Cd掺杂提高SnTe热电性能的方法
CN118317678A (zh) 一种高择优取向的CuAgSe材料及其制备方法与应用
CN108511588A (zh) 一种MnTe2基新型热电材料及其制备方法
CN111864041B (zh) 一种制备ZnTe掺杂的p型多晶Bi2Te3热电材料的方法
CN105420528B (zh) 一种制备高性能AgInTe2热电材料的方法
CN114890794A (zh) 一种高性能N型PbSe热电材料及其制备方法
CN103924109A (zh) 一种自蔓延燃烧合成超快速制备高性能CoSb3基热电材料的新方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant