CN113932753A - Method for calibrating grinding profile of hub flange plate - Google Patents
Method for calibrating grinding profile of hub flange plate Download PDFInfo
- Publication number
- CN113932753A CN113932753A CN202111198903.1A CN202111198903A CN113932753A CN 113932753 A CN113932753 A CN 113932753A CN 202111198903 A CN202111198903 A CN 202111198903A CN 113932753 A CN113932753 A CN 113932753A
- Authority
- CN
- China
- Prior art keywords
- hub flange
- coordinate system
- flange plate
- polished
- workpiece
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B21/00—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
- G01B21/20—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Numerical Control (AREA)
Abstract
本发明公开了一种轮毂法兰盘打磨的轮廓标定方法,包括步骤1,将待打磨轮毂法兰盘工件设置并固定于工作态;步骤2,在工业机器人的机械臂上设置接触探针,并将机械臂的接触探针抵触在轮毂法兰盘的内侧壁;步骤3,定义接触探针第一接触位置为p1,然后在轮毂法兰盘的内侧壁上每间隔45°通过接触探针进行一次位置标定,并记录接触位置的位置坐标信息;步骤4,通过接触位置的位置坐标信息计算待打磨轮毂法兰盘的圆心O0坐标;步骤5,重复步骤3和步骤4,进行多次标定,排除误差并确定待打磨轮毂法兰盘圆心位置,从而标定待打磨轮毂法兰盘轮廓。本发明可实现对于轮毂法兰盘轮廓的坐标系标定,并简化了标定流程,提升了生产效率。
The invention discloses a contour calibration method for wheel hub flange grinding, comprising step 1, setting and fixing a workpiece of the wheel hub flange to be polished in a working state; step 2, setting a contact probe on a mechanical arm of an industrial robot, Put the contact probe of the robotic arm against the inner side wall of the hub flange; step 3, define the first contact position of the contact probe as p1, and then pass the contact probe on the inner side wall of the hub flange at 45° intervals Carry out a position calibration, and record the position coordinate information of the contact position; Step 4, calculate the coordinates of the center O 0 of the hub flange to be polished through the position coordinate information of the contact position; Step 5, repeat steps 3 and 4, carry out multiple Calibration, eliminate errors and determine the center position of the hub flange to be polished, so as to calibrate the contour of the hub flange to be polished. The invention can realize the calibration of the coordinate system for the contour of the hub flange, simplify the calibration process, and improve the production efficiency.
Description
技术领域technical field
本发明涉及一种用于工业机器人打磨领域的轮毂法兰盘打磨的轮廓标定方法。The invention relates to a contour calibration method for wheel hub flange grinding in the field of industrial robot grinding.
背景技术Background technique
随着工业机器人的普及和人力成本的上升,使工业机器人在打磨行业的应用成为可能。与传统人工相比,机器人打磨方式具有工件表面一致性好、生产效率高、成本低的工艺优点。更重要的是,这种方式避免了手工打磨过程中金属粉尘和体力消耗对员工身心健康的损害,也降低了人工操作可能发生的安全事故几率。With the popularity of industrial robots and the rise in labor costs, the application of industrial robots in the grinding industry is possible. Compared with traditional manual grinding, the robotic grinding method has the advantages of good workpiece surface consistency, high production efficiency and low cost. More importantly, this method avoids the damage to employees' physical and mental health caused by metal dust and physical exertion during the manual grinding process, and also reduces the probability of safety accidents that may occur in manual operations.
机器人打磨编程可以采用人工示教和离线编程方式等2种方式。当用于复杂空间曲线和曲面加工时,人工示教方式下点位的精度及其间距控制的质量较差,且点位示教的效率低、随机性大,因而该方式的加工效果不理想。机器人离线编程方式能够在不影响机器人工作的情况下,自动进行编程,具有可达性分析、碰撞干涉检查、节拍计算等功能,程序更加安全合理。各大机器人厂商推出了离线编程软件,如FANUC公司的ROBOGUIDE系统、ABB公司的RobotStudio系统等。如专利“用于打磨机器人离线编程的系统标定方法”(201810764773.5)提供了一种用于打磨机器人离线编程的系统标定方法,但是要求获取实物扫描点云模型,并导入专业软件中处理重构,以得到标定数据。这个分选环节增加了3D扫描的工艺过程,增加了成本,降低了整体效率。Robot grinding programming can be done in two ways: manual teaching and offline programming. When used for complex space curve and curved surface processing, the accuracy of point position and the quality of distance control under manual teaching method are poor, and the efficiency of point position teaching is low and the randomness is large, so the processing effect of this method is not ideal. . The offline programming method of the robot can automatically program without affecting the work of the robot. It has functions such as accessibility analysis, collision interference check, and beat calculation, and the program is safer and more reasonable. Major robot manufacturers have launched off-line programming software, such as FANUC's ROBOGUIDE system and ABB's RobotStudio system. For example, the patent "System Calibration Method for Offline Programming of Grinding Robots" (201810764773.5) provides a system calibration method for offline programming of grinding robots, but requires the acquisition of physical scanning point cloud models and importing them into professional software for processing and reconstruction. to get calibration data. This sorting process increases the process of 3D scanning, which increases the cost and reduces the overall efficiency.
发明内容SUMMARY OF THE INVENTION
本发明的目的是为了克服现有技术的不足,提供一种轮毂法兰盘打磨的轮廓标定方法,针对轮毂法兰盘的轮廓特点,运用离线编程和仿真功能,自动生成离线程序,并解决工件的实际安装偏差问题,满足打磨程序的复用需求。The purpose of the present invention is to overcome the deficiencies of the prior art, to provide a contour calibration method for hub flange grinding, aiming at the contour characteristics of the hub flange, using off-line programming and simulation functions to automatically generate off-line programs, and solve the workpiece The actual installation deviation problem can meet the reuse requirements of the grinding program.
实现上述目的的一种技术方案是:一种轮毂法兰盘打磨的轮廓标定方法,包括如下步骤:A technical solution for achieving the above-mentioned purpose is: a method for calibrating the profile of hub flange grinding, comprising the following steps:
步骤1,将待打磨轮毂法兰盘工件设置并固定于工作态;
步骤2,在工业机器人的机械臂上设置接触探针,并将机械臂的接触探针抵触在轮毂法兰盘的内侧壁;Step 2, set a contact probe on the robotic arm of the industrial robot, and abut the contact probe of the robotic arm against the inner side wall of the hub flange;
步骤3,定义接触探针第一接触位置为p1,然后在轮毂法兰盘的内侧壁上每间隔45°通过接触探针进行一次位置标定,分别定义后续接触位置P2、P3、P4、P5、P6、P7、P8,分别记录接触位置的位置坐标信息;Step 3: Define the first contact position of the contact probe as p1, and then perform position calibration on the inner side wall of the hub flange every 45° by the contact probe, and define the subsequent contact positions P2, P3, P4, P5, P6, P7, P8, respectively record the position coordinate information of the contact position;
步骤4,通过接触位置的位置坐标信息计算待打磨轮毂法兰盘的圆心O0坐标;Step 4, calculate the coordinates of the center O 0 of the hub flange to be polished by the position coordinate information of the contact position;
步骤5,重复步骤3和步骤4,进行多次标定,求得圆心坐标O1、O2、O3…On,若其中任意两点距大于设定值,则放弃该次标定数据点集,然后通过标定数据点所处区域范围确定待打磨轮毂法兰盘圆心位置,从而标定待打磨轮毂法兰盘轮廓。Step 5: Repeat steps 3 and 4 to perform multiple calibrations to obtain the coordinates of the center of the circle O 1 , O 2 , O 3 . , and then determine the center position of the flange of the hub to be polished by calibrating the area where the data points are located, so as to calibrate the contour of the flange of the hub to be polished.
进一步的,步骤3中,所述P1的位置坐标为(x1,y1,z1),所述P2的位置坐标为(x2,y2,z2),所述P1的位置坐标为(x3,y3,z3),以此类推。Further, in step 3, the position coordinates of the P1 are (x 1 , y 1 , z 1 ), the position coordinates of the P2 are (x 2 , y 2 , z 2 ), and the position coordinates of the P1 are (x 3 , y 3 , z 3 ), and so on.
再进一步的,圆心O0的位置采用(X、Y、Z、W、P、R)定义,其中,X、Y、Z用于表示圆心O0在工业机器人的基坐标中位置;W、P、R用于表示工件坐标系的姿态,其中,W值表示工件坐标系绕基坐标X轴旋转的角度,P表示工件坐标系绕基坐标Y轴的旋转角度,R值表示工件坐标系绕基坐标Z轴的旋转角度;Further, the position of the circle center O 0 is defined by (X, Y, Z, W, P, R), where X, Y, and Z are used to indicate the position of the circle center O 0 in the base coordinates of the industrial robot; W, P , R are used to represent the attitude of the workpiece coordinate system, where the W value represents the rotation angle of the workpiece coordinate system around the base coordinate X axis, P represents the rotation angle of the workpiece coordinate system around the base coordinate Y axis, and the R value represents the workpiece coordinate system around the base coordinate. The rotation angle of the coordinate Z axis;
圆心00的坐标为:The coordinates of the center of the circle 0 0 are:
其中,in,
A1=y1z2-y1z3-z1y2+z1y3+y2z3-y3z2 A 1 =y 1 z 2 -y 1 z 3 -z 1 y 2 +z 1 y 3 +y 2 z 3 -y 3 z 2
B1=-x1z2+x1z3+z1x2-z1x3-x2z3+x3z2 B 1 = -x 1 z 2 +x 1 z 3 +z 1 x 2 -z 1 x 3 -x 2 z 3 +x 3 z 2
C1=x1y2-x1y3-y1x2+y1x3+x2y3-x3y2 C 1 =x 1 y 2 -x 1 y 3 -y 1 x 2 +y 1 x 3 +x 2 y 3 -x 3 y 2
D1=-x1y2z3+x1y3z2+x2y1z3-x3y1z2-x2y3z1+x3y2z1 D 1 = -x 1 y 2 z 3 +x 1 y 3 z 2 +x 2 y 1 z 3 -x 3 y 1 z 2 -x 2 y 3 z 1 +x 3 y 2 z 1
A2=2(x2-x1)A 2 =2(x 2 -x 1 )
B2=2(y2-y1)B 2 =2(y 2 -y 1 )
C2=2(z2-z1)C 2 =2(z 2 -z 1 )
D2=x1 2+y1 2+z1 2-x2 2-y2 2-z2 2 D 2 =x 1 2 +y 1 2 +z 1 2 -x 2 2 -y 2 2 -z 2 2
A3=2(x3-x1)A 3 =2(x 3 -x 1 )
B3=2(y3-y1)B 3 =2(y 3 -y 1 )
C3=2(z3-z1)C 3 =2(z 3 -z 1 )
D3=x1 2+y1 2+z1 2-x3 2-y3 2-z3 2 D 3 =x 1 2 +y 1 2 +z 1 2 -x 3 2 -y 3 2 -z 3 2
旋转角度为:The rotation angle is:
R=atan2(uy,yx)R=atan2(u y ,y x )
P=atan2(-uzcosR,ux)P=atan2(-u z cosR,u x )
W=atan2(vz,wz)W=atan2(v z ,w z )
其中,in,
本发明提供的一种轮毂法兰盘打磨的轮廓标定方法,无需经过3D扫描的工艺过程,即可实现对于轮毂法兰盘轮廓的坐标系标定,扩展了打磨机器人离线编程的应用,使复杂轨迹的编程效率得到了显著提高,且满足打磨程序的复用需求,使机器人打磨的打磨质量稳定,提高了生产效率。The invention provides a contour calibration method for wheel hub flange grinding, which can realize the coordinate system calibration of the wheel hub flange contour without going through the process of 3D scanning, expands the application of offline programming of the grinding robot, and makes complex trajectories possible. The programming efficiency of the robot has been significantly improved, and the reuse requirements of the grinding program are met, so that the grinding quality of the robot grinding is stable and the production efficiency is improved.
附图说明Description of drawings
图1为本发明的一种轮毂法兰盘打磨的轮廓标定方法的待打磨轮毂法兰盘工件结构示意图;Fig. 1 is a kind of wheel hub flange workpiece structure schematic diagram to be polished of the profile calibration method of wheel hub flange polishing of the present invention;
图2为本发明的一种轮毂法兰盘打磨的轮廓标定方法的待打磨轮毂法兰盘所在平面结构示意图。FIG. 2 is a schematic view of the plane structure of the hub flange to be polished in a contour calibration method for hub flange polishing according to the present invention.
具体实施方式Detailed ways
为了能更好地对本发明的技术方案进行理解,下面通过具体地实施例进行详细地说明:In order to better understand the technical solutions of the present invention, the following specific examples are described in detail:
本发明在ROBOGUIDE环境下,针对轮毂法兰盘的轮廓特点,运用离线编程和仿真功能,自动生成离线程序,并解决工件的实际安装偏差问题,满足打磨程序的复用需求。Under the ROBOGUIDE environment, according to the contour characteristics of the hub flange, the invention uses offline programming and simulation functions to automatically generate an offline program, solves the problem of actual installation deviation of the workpiece, and meets the reuse requirements of grinding programs.
本实施例的打磨对象是球形轮毂,是风电设备的关键部件,由于其体积和重量大,铸造后的打磨清理难度和风险较高。目前,轮毂的打磨清理方式主要还是采用人工手持刀具或磨轮进行打磨,加工效率低、人工操作差异化大。该风电轮毂高3000mm,质量约为20t,周向匀布3个风叶对接法兰盘,盘外径约为2300mm。由于在毛胚件的铸造工艺过程中会产生飞边、毛刺、分型线等情况,要求对铸件的线边,如叶片对接法兰盘边沿,采用打磨工艺进行初加工清理。采用本发明可用自动化方式取代人工锤击和砂轮打磨。The grinding object in this embodiment is a spherical wheel hub, which is a key component of the wind power equipment. Due to its large size and weight, grinding and cleaning after casting are difficult and risky. At present, the grinding and cleaning method of the wheel hub is mainly carried out by manual hand-held tool or grinding wheel, which has low processing efficiency and large differences in manual operation. The height of the wind turbine hub is 3000mm and the mass is about 20t. Three fan blades are evenly distributed in the circumferential direction to connect to the flange, and the outer diameter of the disk is about 2300mm. Due to the occurrence of flash, burr, parting line, etc. in the casting process of the blank part, it is required to use the grinding process for the initial processing and cleaning of the line edge of the casting, such as the edge of the blade butting flange. By adopting the present invention, manual hammering and grinding wheel grinding can be replaced in an automated manner.
该打磨系统由机器人、末端快换接口、打磨头和探针头、工件旋转工作台等组成。其中,机器人采用FANUC公司的R-2000iC/210L,该机器人最大作用范围可达3100mm,重复精度0.05mm,广泛应用于打磨、焊接、搬运、去毛刺等工作场景。机器人末端安装快换接头,可根据工艺需要,自动进行打磨头和接触探针的更换,其中接触探针用于轮毂工件的位置标定。工件旋转工作台采用蜗轮蜗杆传动形式,可实现台面的旋转定位和加工时的可靠自锁。为利于离线程序的移植复用,工件坐标系原点一般设置在圆心o,但是由于法兰盘中空且尺寸大,o点无法直接而准确的定位。The grinding system consists of a robot, a quick-change interface at the end, a grinding head and a probe head, a workpiece rotating table, etc. Among them, the robot adopts FANUC's R-2000iC/210L. The robot has a maximum range of 3100mm and a repeatability of 0.05mm. It is widely used in grinding, welding, handling, deburring and other work scenarios. A quick-change joint is installed at the end of the robot, which can automatically replace the grinding head and the contact probe according to the process needs. The contact probe is used for the position calibration of the hub workpiece. The workpiece rotary table adopts the worm gear transmission form, which can realize the rotation positioning of the table surface and reliable self-locking during processing. In order to facilitate the transplantation and reuse of offline programs, the origin of the workpiece coordinate system is generally set at the center of the circle o, but because the flange is hollow and large in size, the o point cannot be positioned directly and accurately.
请参阅图1和图2,设法兰盘所在平面为平面Ⅰ,工业机器人的基坐标系为B,圆心o点为待打磨法兰盘工件1坐标系的原点,因而o点在平面Ⅰ上,w为待打磨法兰盘工件1坐标系的第三坐标轴,其他的u、v坐标轴可任意定义。该法兰盘上无需设置接触探针定位销点,这是由于圆形的位置理论上在于圆心o点坐标及其平面Ⅰ的单位法向量w,而与u、v向量无关。Please refer to Figure 1 and Figure 2, set the plane where the flange is located as plane I, the base coordinate system of the industrial robot is B, and the center point o is the origin of the coordinate system of
在现场机器人上复用离线编程程序前,由于工件装夹的误差,需要对工件位置进行检测和标定。本发明的一种轮毂法兰盘打磨的轮廓标定方法,包括如下步骤:Before reusing the offline programming program on the field robot, the workpiece position needs to be detected and calibrated due to the workpiece clamping error. A contour calibration method for wheel hub flange grinding of the present invention includes the following steps:
步骤1,将待打磨轮毂法兰盘工件设置并固定于工作态。
步骤2,在工业机器人的机械臂上设置接触探针,为了提高检测精度,采用高精度高硬度的接触探针。将机械臂的接触探针抵触在轮毂法兰盘的内侧壁。In step 2, a contact probe is set on the mechanical arm of the industrial robot. In order to improve the detection accuracy, a contact probe with high precision and high hardness is used. Touch the contact probe of the robot arm against the inner side wall of the hub flange.
步骤3,定义接触探针第一接触位置为p1,然后在轮毂法兰盘的内侧壁上每间隔45°通过接触探针进行一次位置标定,分别定义后续接触位置P2、P3、P4、P5、P6、P7、P8,分别记录接触位置的位置坐标信息。图2中P1、P2、P3、P4、P5、P6、P7、P8即为探针顺序标定点,设P1点在待打磨法兰盘工件1坐标系的u轴上。P1的位置坐标为(x1,y1,z1),P2的位置坐标为(x2,y2,z2),P1的位置坐标为(x3,y3,z3),以此类推。Step 3: Define the first contact position of the contact probe as p1, and then perform position calibration on the inner wall of the hub flange at intervals of 45° by the contact probe, and define the subsequent contact positions P2, P3, P4, P5, P6, P7, and P8 respectively record the position coordinate information of the contact position. In Figure 2, P1, P2, P3, P4, P5, P6, P7, and P8 are the calibration points of the probe sequence, and the point P1 is set on the u-axis of the coordinate system of the
步骤4,通过接触位置的位置坐标信息计算待打磨轮毂法兰盘的圆心O0坐标。FANUC机器人的工件坐标系标定由6个数值定义,即X、Y、Z、W、P、R。其中,X、Y、Z用于表示原点在机器人的基坐标B中位置;W、P、R用于表示工件坐标系的姿态,其中,W值表示工件坐标系绕X轴旋转的角度,P表示工件坐标系绕Y轴的旋转角度,R值表示工件坐标系绕Z轴的旋转角度。Step 4: Calculate the coordinate O 0 of the center of the flange of the hub to be polished by using the position coordinate information of the contact position. The workpiece coordinate system calibration of the FANUC robot is defined by 6 values, namely X, Y, Z, W, P, R. Among them, X, Y, and Z are used to represent the position of the origin in the base coordinate B of the robot; W, P, and R are used to represent the attitude of the workpiece coordinate system, where the value of W represents the rotation angle of the workpiece coordinate system around the X axis, and P It represents the rotation angle of the workpiece coordinate system around the Y axis, and the R value represents the rotation angle of the workpiece coordinate system around the Z axis.
圆心00的坐标为:The coordinates of the center of the circle 0 0 are:
其中,in,
A1=y1z2-y1z3-z1y2+z1y3+y2z3-y3z2 A 1 =y 1 z 2 -y 1 z 3 -z 1 y 2 +z 1 y 3 +y 2 z 3 -y 3 z 2
B1=-x1z2+x1z3+z1x2-z1x3-x2z3+x3z2 B 1 = -x 1 z 2 +x 1 z 3 +z 1 x 2 -z 1 x 3 -x 2 z 3 +x 3 z 2
C1=x1y2-x1y3-y1x2+y1x3+x2y3-x3y2 C 1 =x 1 y 2 -x 1 y 3 -y 1 x 2 +y 1 x 3 +x 2 y 3 -x 3 y 2
D1=-x1y2z3+x1y3z2+x2y1z3-x3y1z2-x2y3z1+x3y2z1 D 1 = -x 1 y 2 z 3 +x 1 y 3 z 2 +x 2 y 1 z 3 -x 3 y 1 z 2 -x 2 y 3 z 1 +x 3 y 2 z 1
A2=2(x2-x1)A 2 =2(x 2 -x 1 )
B2=2(y2-y1)B 2 =2(y 2 -y 1 )
C2=2(z2-z1)C 2 =2(z 2 -z 1 )
D2=x1 2+y1 2+z1 2-x2 2-y2 2-z2 2 D 2 =x 1 2 +y 1 2 +z 1 2 -x 2 2 -y 2 2 -z 2 2
A3=2(x3-x1)A 3 =2(x 3 -x 1 )
B3=2(y3-y1)B 3 =2(y 3 -y 1 )
C3=2(z3-z1)C 3 =2(z 3 -z 1 )
D3=x1 2+y1 2+z1 2-x3 2-y3 2-z3 2 D 3 =x 1 2 +y 1 2 +z 1 2 -x 3 2 -y 3 2 -z 3 2
旋转角度为:The rotation angle is:
R=atan2(uy,yx)R=atan2(u y ,y x )
P=atan2(-uzcosR,ux)P=atan2(-u z cosR,u x )
W=atan2(vz,wz)W=atan2(v z ,w z )
其中,in,
综上,(X,Y,Z,W,P,R)就是这3点下用户坐标系标定时候的直接输入值。其中(x0,y0,z0)为工件坐标系的原点。To sum up, (X, Y, Z, W, P, R) are the direct input values when the user coordinate system is calibrated under these three points. Where (x 0 , y 0 , z 0 ) is the origin of the workpiece coordinate system.
步骤5,重复步骤3和步骤4,进行多次标定以避免标定操作时的过大人为误差。求得圆心坐标O1、O2、O3…On,若其中任意两点距大于设定值,则放弃该次标定数据点集,然后通过标定数据点所处区域范围确定待打磨轮毂法兰盘圆心位置,从而标定待打磨轮毂法兰盘轮廓。该标定算法可以通过Karel语言形式,嵌入机器人控制器,以程序执行方式调用实现。Step 5: Repeat steps 3 and 4 to perform multiple calibrations to avoid excessive human error during calibration operations. Obtain the circle center coordinates O 1 , O 2 , O 3 ... On , if the distance between any two points is greater than the set value, discard the set of calibration data points, and then determine the hub method to be polished according to the area where the calibration data points are located The center position of the flange, so as to demarcate the contour of the flange of the hub to be polished. The calibration algorithm can be implemented in the form of Karel language, embedded in the robot controller, and invoked in the form of program execution.
实施例1:在ROBOGUIDE中,以本方法对工件的待加工外边沿区域进行多次定位,并运用工件坐标系标定算法,获取标定输入值。工件的目标特征利用CAD-TO-PATH功能中Closed Loop方式自动识别,提取出外边沿轮廓曲线,自动生成法兰面边沿的离线打磨程序。Embodiment 1: In ROBOGUIDE, the method is used to locate the outer edge area of the workpiece to be processed multiple times, and the workpiece coordinate system calibration algorithm is used to obtain the calibration input value. The target feature of the workpiece is automatically identified by the Closed Loop method in the CAD-TO-PATH function, the contour curve of the outer edge is extracted, and the offline grinding program of the flange surface edge is automatically generated.
在该离线自动编程功能中,用户坐标系原点设置在法兰盘中心,z轴垂直于法兰盘平面指向外侧,加工刀具半径设置为20mm,刀具朝向轨迹中心偏转10°。编程的进刀点和出刀点设为P1点,安全距离设置为100mm,机器人进行去毛刺加工作业时,首先将刀具快速移动到安全点,然后以直线方式移动到进刀点,随后沿着加工路径点打磨加工,完成路径的加工之后,即移动到路径终点之后,直线方式抬起刀具至安全点。In this offline automatic programming function, the origin of the user coordinate system is set at the center of the flange, the z-axis is perpendicular to the plane of the flange and points outward, the radius of the machining tool is set to 20mm, and the tool is deflected by 10° toward the center of the track. The programmed entry and exit points are set to P1, and the safety distance is set to 100mm. When the robot performs deburring operations, it first moves the tool to the safety point quickly, then moves to the entry point in a straight line, and then follows the The machining path point is ground and processed. After the machining of the path is completed, that is, after moving to the end point of the path, lift the tool in a straight line to a safe point.
实施例2:当工件发生了一定的偏移,包括位置和姿态,同样运用工件坐标系标定算法,获取标定输入值,更新同一个工件坐标系。再次运行程序FPRG1,重新计算打磨头的轨迹路径。Embodiment 2: When the workpiece has a certain offset, including the position and attitude, the workpiece coordinate system calibration algorithm is also used to obtain the calibration input value and update the same workpiece coordinate system. Run the program FPRG1 again to recalculate the trajectory path of the grinding head.
在两个实施例汇总,轮毂法兰盘边沿的加工轨迹位置均准确,说明上述的用户坐标系标定方法准确;对比实施例1和实施例2,二者的刀具姿态和加工轨迹一致,说明自动生成的离线程序可以在现场机器人中复用;因此,采用ROBOGUIDE自动生成的离线程序,可以用于车间现场轮毂法兰盘的加工操作,而无需在工件上预先设置精确的定位点,也为加工工艺任务的分工提供了条件。In the summary of the two examples, the position of the machining track on the edge of the hub flange is accurate, indicating that the above-mentioned user coordinate system calibration method is accurate; comparing Example 1 and Example 2, the tool attitude of the two is consistent with the machining track, indicating that the automatic The generated offline program can be reused in the field robot; therefore, the offline program automatically generated by ROBOGUIDE can be used for the machining operation of the wheel hub flange in the workshop without the need to pre-set precise positioning points on the workpiece, which is also suitable for machining. The division of process tasks provides the conditions.
本技术领域中的普通技术人员应当认识到,以上的实施例仅是用来说明本发明,而并非用作为对本发明的限定,只要在本发明的实质精神范围内,对以上所述实施例的变化、变型都将落在本发明的权利要求书范围内。Those of ordinary skill in the art should realize that the above embodiments are only used to illustrate the present invention, but not to limit the present invention. Changes and modifications will fall within the scope of the claims of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111198903.1A CN113932753A (en) | 2021-10-14 | 2021-10-14 | Method for calibrating grinding profile of hub flange plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111198903.1A CN113932753A (en) | 2021-10-14 | 2021-10-14 | Method for calibrating grinding profile of hub flange plate |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113932753A true CN113932753A (en) | 2022-01-14 |
Family
ID=79279370
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111198903.1A Pending CN113932753A (en) | 2021-10-14 | 2021-10-14 | Method for calibrating grinding profile of hub flange plate |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113932753A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114888792A (en) * | 2022-04-21 | 2022-08-12 | 北京航空航天大学 | Tool coordinate system calibration method in osteotomy robot system based on TCP method |
CN114952872A (en) * | 2022-08-02 | 2022-08-30 | 天津新松机器人自动化有限公司 | Robot end effector calibration method and device |
CN115555924A (en) * | 2022-09-27 | 2023-01-03 | 上海电气集团自动化工程有限公司 | Equipment and method for detecting machining allowance state of cylindrical workpiece by robot |
CN118404468A (en) * | 2024-07-02 | 2024-07-30 | 山东蜜蜂智能制造有限公司 | Polishing, cleaning and rust removing device for large-sized workpiece |
-
2021
- 2021-10-14 CN CN202111198903.1A patent/CN113932753A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114888792A (en) * | 2022-04-21 | 2022-08-12 | 北京航空航天大学 | Tool coordinate system calibration method in osteotomy robot system based on TCP method |
CN114888792B (en) * | 2022-04-21 | 2023-09-05 | 北京航空航天大学 | Tool coordinate system calibration method in osteotomy robot system based on TCP method |
CN114952872A (en) * | 2022-08-02 | 2022-08-30 | 天津新松机器人自动化有限公司 | Robot end effector calibration method and device |
CN114952872B (en) * | 2022-08-02 | 2022-12-09 | 天津新松机器人自动化有限公司 | Robot end effector calibration method and device |
CN115555924A (en) * | 2022-09-27 | 2023-01-03 | 上海电气集团自动化工程有限公司 | Equipment and method for detecting machining allowance state of cylindrical workpiece by robot |
CN118404468A (en) * | 2024-07-02 | 2024-07-30 | 山东蜜蜂智能制造有限公司 | Polishing, cleaning and rust removing device for large-sized workpiece |
CN118404468B (en) * | 2024-07-02 | 2024-09-20 | 山东蜜蜂智能制造有限公司 | Polishing, cleaning and rust removing device for large-sized workpiece |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113932753A (en) | Method for calibrating grinding profile of hub flange plate | |
CN104858748B (en) | A kind of blade intake and exhaust limit grinding machine people's automated arm | |
CN103063213B (en) | The scaling method of a kind of welding robot and positioner position orientation relation | |
CN104759945B (en) | Mobile hole-making robot standard alignment method based on high precision industrial camera | |
CN109605157B (en) | A method of robot deburring based on 3D laser scanner | |
CN109176505B (en) | Ball arm instrument-based six-axis joint industrial robot spatial error calibration method | |
CN109454281B (en) | Method for calibrating propeller workpiece coordinate system in robot milling | |
CN104816307B (en) | The four-point method of the accurate drilling of industrial robot is to leveling method | |
JP6538503B2 (en) | Geometrical error identification method for machine tool and geometric error identification program | |
CN112833792B (en) | An accuracy calibration and verification method for a six-degree-of-freedom manipulator | |
CN107253102A (en) | A kind of precision grinding machining method of special-shaped thin wall labyrinth workpiece | |
Xie et al. | Pose error estimation using a cylinder in scanner-based robotic belt grinding | |
Guo et al. | A robotic grinding motion planning methodology for a novel automatic seam bead grinding robot manipulator | |
JP2017159376A (en) | Machine accuracy measuring method and device in machine tool | |
CN106312323A (en) | Laser peening straightening method and device for deformed blade | |
CN110076631A (en) | Complex thin-wall constitutional detail wall thickness on-machine measurement method | |
CN112936274A (en) | Robot-clamped flexible grinding wheel pose identification method | |
CN111830900B (en) | A non-interference tool path generation method for robotic grinding and polishing of integral blisks | |
CN113814870B (en) | Method for measuring and calculating pose of magnetorheological polished workpiece and polishing method | |
CN107243715A (en) | The defect correcting method of one class precision castings blank | |
CN115365941B (en) | Automatic workpiece pose calibration method for optical polishing | |
CN105665922B (en) | A kind of finding method of the characteristic point of irregularly shaped three dimensional body | |
JP5765557B2 (en) | Trajectory tracking device and method for machining robot | |
CN106989706B (en) | A method and device for measuring and calculating the center of a high-precision circular suit | |
CN118551506A (en) | A method for polishing and repairing coating of turbine blades |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |