[go: up one dir, main page]

CN113929467B - 带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件制备方法 - Google Patents

带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件制备方法 Download PDF

Info

Publication number
CN113929467B
CN113929467B CN202111199678.3A CN202111199678A CN113929467B CN 113929467 B CN113929467 B CN 113929467B CN 202111199678 A CN202111199678 A CN 202111199678A CN 113929467 B CN113929467 B CN 113929467B
Authority
CN
China
Prior art keywords
sic
blade body
gap
flow
ceramic composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111199678.3A
Other languages
English (en)
Other versions
CN113929467A (zh
Inventor
宋海龙
张少博
康志杰
史思涛
马文科
陈静
姜伟光
王鹏
付志强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Xinyao Ceramic Composite Material Co Ltd
Original Assignee
Xi'an Golden Mountain Ceramic Composites Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xi'an Golden Mountain Ceramic Composites Co ltd filed Critical Xi'an Golden Mountain Ceramic Composites Co ltd
Priority to CN202111199678.3A priority Critical patent/CN113929467B/zh
Publication of CN113929467A publication Critical patent/CN113929467A/zh
Application granted granted Critical
Publication of CN113929467B publication Critical patent/CN113929467B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/282Selecting composite materials, e.g. blades with reinforcing filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/284Selection of ceramic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5252Fibers having a specific pre-form
    • C04B2235/5256Two-dimensional, e.g. woven structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/614Gas infiltration of green bodies or pre-forms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Ceramic Products (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

本发明涉及一种SiC/SiC陶瓷复合叶身构件制备方法,具体涉及一种带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件制备方法,其目的是解决现有SiC/SiC陶瓷复合叶身类构件存在出气孔加工难度较大,难以通过调整出气孔的尺寸实现叶身类构件透气降温的技术问题。该方法将SiC/SiC二维平纹布缠绕至叶身内模定型模具上,在叶身后端的出气孔端预制宽度为0.7mm缝隙,经界面层沉积、高温处理、碳化硅基体层沉积,达到一定密度后,加工成满足相应要求规格的叶身零件,再经过在保证叶身预留缝隙前提下,在叶身后端按一定尺寸铆接碳化硅销钉,再进行碳化硅基体层沉积,使得叶身构件最终达到满足要求的密度和性能要求,制造出满足设计使用要求的叶身构件。

Description

带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件制备 方法
技术领域
本发明涉及一种SiC/SiC陶瓷复合叶身构件制备方法,具体涉及一种带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件制备方法。
背景技术
SiC/SiC陶瓷复合材料叶身构件属于典型航空发动机高温热结构件,除需具有优异的防热性能外,还需具有较好的承载能力,随着发动机技术的不断发展,发动机对叶身构件的结构强度、刚度以及抗疲劳性能提出了更严苛的要求,故需要进一步探索SiC/SiC陶瓷复合材料耐受更高温度的工艺方法。但是,现有叶身类构件出气孔的加工难度较大,难以通过调整出气孔的尺寸实现叶身类构件的透气降温。
发明内容
本发明的目的是解决现有SiC/SiC陶瓷复合叶身类构件存在出气孔加工难度较大,难以通过调整出气孔的尺寸实现叶身类构件透气降温的技术问题,提供一种带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件制备方法。
为解决上述技术问题,本发明提供的技术解决方案如下:
一种带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件制备方法,其特殊之处在于,包括以下步骤:
1)原材料选用和叶身内外模定型模具加工
A)选用高强石墨,加工制造叶身内外模定型模具;
B)选用SiC/SiC二维平纹布;
2)定型
利用叶身内外模定型模具,采用二维叠层、原位缝制法,定型并缝制满足工艺要求的预制体,在预制体透气孔处预留缝隙;
3)氮化硼界面层制备
将预制体放入化学气相沉积炉内,按照预设的温度、压力、流量和时间在预制体纤维表面沉积一定厚度的氮化硼界面层;
4)碳化硅基体层制备
将已沉积氮化硼界面层的预制体在化学气相沉积炉内,按照预设的温度、压力、流量和时间,在表面沉积一定厚度的碳化硅基体层;
5)数铣
按照预先设定的加工数学模型及数控加工程序,对沉积了碳化硅基体层的预制体加工叶身外型尺寸;
6)扰流柱加工
清理预留的所述缝隙,在预制体叶身后缘加工扰流柱孔,并在扰流柱孔处铆接SiC/SiC销钉作为扰流柱;
7)碳化硅基体沉积
将铆接完成的预制体再次放入化学气相沉积炉内,按照预设的温度、压力、流量和时间,在预制体表面沉积满足一定密度要求的碳化硅基体层,得到带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件。
进一步地,步骤2)中,所述的利用叶身内外模定型模具,采用二维叠层、原位缝制法,定型并缝制满足工艺要求的预制体,具体是指:
2.1)将SiC/SiC二维平纹布缠绕于叶身内模定型模具上;
2.2)使用碳化硅纤维对缠绕后的SiC/SiC二维平纹布进行缝制,使得SiC/SiC二维平纹布与叶身内模定型模具紧密贴合;
2.3)使用外模模具对缝制后的SiC/SiC二维平纹布进行固定,利用内外模具之间的间隙得到满足预定厚度的预制体。
进一步地,步骤3)中,所述预设的温度、压强、流量和时间具体为:
温度为200-1000℃,压强为<1500Pa,时间为24~100h;
流量为:稀释氩气流量0.2~1.5L/min、稀释氢气流量0.2~1.5L/min、氨气流量0.05~0.8L/min、三氯化硼流量0.01~0.8L/min。
进一步地,步骤4)中,所述预设的温度、压强、流量和时间具体为:
温度为500~1500℃,压强为<3500Pa,时间为24~180h;
流量为:鼓泡氢气1~10L/min、稀释氢气0.1~10L/min、稀释氩气0.1~10L/min、甲基三氯硅烷5~70L/min。
进一步地,步骤7)中,所述预设的温度、压强、流量和时间具体为:
温度为500~1500℃,压强为<3500Pa,时间为24~180h;
流量为:鼓泡氢气1~10L/min、稀释氢气0.1~10L/min、稀释氩气0.1~10L/min、甲基三氯硅烷5~70L/min。
进一步地,步骤6)中清理预留的所述缝隙,直至预留缝隙处平整,无凹凸点。
进一步地,步骤2)中,所述缝隙的宽度为0.7mm。
本发明相比现有技术具有的有益效果如下:
1、本发明提供的带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件制备方法,将SiC/SiC二维平纹布缠绕至叶身内模定型模具上,在叶身后端的出气孔端预制宽度为0.7mm缝隙,经界面层沉积、高温处理、碳化硅基体层沉积,达到一定密度后,加工成满足相应要求规格的叶身零件,然后在保证叶身预留缝隙前提下,在叶身后端按一定尺寸铆接碳化硅销钉(即扰流柱),之后再进行碳化硅基体层沉积,使得叶身构件最终达到密度和性能要求,制造出满足设计使用要求的叶身构件(零件)。本发明的方法,创新性地在叶身零件缝隙(劈缝)中增加了扰流柱,增大了冷空气在叶身内部的接触面积及延长了冷空气的留滞时间,大大提升了陶瓷基复合材料叶身类零件的透气降温性能,有效解决了叶身类零件出气孔加工难度大的问题,对提升SiC/SiC陶瓷复合材料叶身零件防热性能具有非常重要的意义和积极的作用。
2、本发明提供的带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件制备方法,工艺稳定,质量可控;工艺性强,对预制体预留缝隙的要求不高;工艺适应性好,可满足多种规格叶身类零件的生产。
附图说明
图1为本发明带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件的预定厚度的预制体的制备流程图,图中,A为叶身内模定型模具,B为SiC/SiC二维平纹布,C1为外模模具下半部,C2为外模模具上半部;
图2为本发明带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件的结构示意图;
图3为本发明带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件的侧视图;
图4为图3中扰流柱处的局部放大图;
附图标记说明:
1-叶身构件、2-缝隙、3-扰流柱。
具体实施方式
下面结合附图和实施例对本发明作进一步地说明。
一种带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件制备方法,包括以下步骤:
1)原材料选用和叶身内外模定型模具加工
A)选用高强石墨(体积密度为≥1.75g/cm3,电阻率≤8USLm,抗折强度≥13MPa,抗压强度≥30MPa,热膨胀系数≤2.5,灰度≤0.3%),加工制造叶身内外模定型模具(石墨内模模具);
B)选用SiC/SiC二维平纹布(碳化硅布);
2)定型
利用叶身内外模定型模具,采用二维叠层、原位缝制法,定型并缝制满足工艺要求的预制体,在预制体透气孔处预留0.7mm宽的缝隙,所述工艺要求具体是指:
如图1所示,具体方法如下:
2.1)将SiC/SiC二维平纹布缠绕于叶身内模定型模具上;
2.2)使用碳化硅纤维对缠绕后的SiC/SiC二维平纹布进行缝制,保证SiC/SiC二维平纹布与叶身内模定型模具紧密贴合;
2.3)使用外模模具对缝制后的SiC/SiC二维平纹布进行固定,利用内外模具之间的间隙得到满足预定厚度的预制体(即控制碳化硅布铺层厚度);
其中,外模模具通过本领域现有常规技术手段可以制备得到,只要保证其与叶身内模定型模具配合使用后,能够得到满足预定厚度的预制体即可;
3)氮化硼界面层制备
将预制体放入化学气相沉积炉内,按照预设的温度450℃,压强<1200Pa,时间48h,流量:稀释氩气0.9L/min、稀释氢气0.9L/min、氨气0.75L/min、三氯化硼0.7L/min,在预制体纤维表面沉积一定厚度的氮化硼界面层;
4)碳化硅基体层制备
将已沉积氮化硼界面层的预制体在化学气相沉积炉内,按照预设的温度800℃,压强2300Pa,时间120h,流量:鼓泡氢气8L/min、稀释氢气8L/min、稀释氩气6.8L/min、甲基三氯硅烷25L/min,在表面沉积一定厚度的碳化硅基体层;
5)数铣
按照预先设定的加工数学模型及数控加工程序,如图1所示,对沉积了碳化硅基体层的预制体加工叶身外型尺寸;
6)扰流柱加工
清理预留的所述缝隙,保证预留缝隙处平整,无凹凸点,在预制体叶身后缘加工扰流柱孔,并在扰流柱孔处铆接SiC/SiC销钉作为扰流柱;扰流柱孔位在叶身后缘排布成品字形,孔间距为8~10mm,但不局限于品字形排布,也可设计为曲线阵列或直线阵列;
7)碳化硅基体沉积
将铆接完成的预制体再次放入化学气相沉积炉内,按照预设的温度800℃,压强2300Pa,时间96h,流量:鼓泡氢气7L/min、稀释氢气7L/min、稀释氩气5L/min、甲基三氯硅烷20L/min,在预制体表面沉积满足一定密度要求的碳化硅基体层,最终得到如图2至图4所示的带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件。
制备完成后,按照相关技术要求对所得叶身构件的尺寸、外观、密度、强度进行检验,结果表明:扰流柱及叶身缝隙(劈缝)尺寸稳定可控,满足零件(叶身构件)使用要求。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制,对于本领域的普通专业技术人员来说,可以对前述实施例所记载的具体技术方案进行修改,或者对其中部分技术特征进行等同替换,而这些修改或者替换,并不使相应技术方案的本质脱离本发明所保护技术方案的范围。

Claims (5)

1.一种带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件制备方法,其特征在于,包括以下步骤:
1)原材料选用和叶身内外模定型模具加工
A)选用高强石墨,加工制造叶身内外模定型模具;
B)选用SiC/SiC二维平纹布;
2)定型
利用叶身内外模定型模具,采用二维叠层、原位缝制法,定型并缝制满足工艺要求的预制体,在预制体透气孔处预留缝隙;
所述的利用叶身内外模定型模具,采用二维叠层、原位缝制法,定型并缝制满足工艺要求的预制体,具体是指:
2.1)将SiC/SiC二维平纹布缠绕于叶身内模定型模具上;
2.2)使用碳化硅纤维对缠绕后的SiC/SiC二维平纹布进行缝制,使得SiC/SiC二维平纹布与叶身内模定型模具紧密贴合;
2.3)使用外模模具对缝制后的SiC/SiC二维平纹布进行固定,利用内外模具之间的间隙得到满足预定厚度的预制体;
3)氮化硼界面层制备
将预制体放入化学气相沉积炉内,按照预设的温度、压力、流量和时间在预制体纤维表面沉积一定厚度的氮化硼界面层;
4)碳化硅基体层制备
将已沉积氮化硼界面层的预制体在化学气相沉积炉内,按照预设的温度、压力、流量和时间,在表面沉积一定厚度的碳化硅基体层;
5)数铣
按照预先设定的加工数学模型及数控加工程序,对沉积了碳化硅基体层的预制体加工叶身外型尺寸;
6)扰流柱加工
清理预留的所述缝隙,直至预留缝隙处平整,无凹凸点,在预制体叶身后缘加工扰流柱孔,并在扰流柱孔处铆接SiC/SiC销钉作为扰流柱;
7)碳化硅基体沉积
将铆接完成的预制体再次放入化学气相沉积炉内,按照预设的温度、压力、流量和时间,在预制体表面沉积满足一定密度要求的碳化硅基体层,得到带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件。
2.根据权利要求1所述的带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件制备方法,其特征在于:
步骤3)中,所述预设的温度、压强、流量和时间具体为:
温度为200-1000℃,压强为<1500Pa,时间为24~100h;
流量为:稀释氩气流量0.2~1.5L/min、稀释氢气流量0.2~1.5L/min、氨气流量0.05~0.8L/min、三氯化硼流量0.01~0.8L/min。
3.根据权利要求2所述的带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件制备方法,其特征在于:
步骤4)中,所述预设的温度、压强、流量和时间具体为:
温度为500~1500℃,压强为<3500Pa,时间为24~180h;
流量为:鼓泡氢气1~10L/min、稀释氢气0.1~10L/min、稀释氩气0.1~10L/min、甲基三氯硅烷5~70L/min。
4.根据权利要求3所述的带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件制备方法,其特征在于:
步骤7)中,所述预设的温度、压强、流量和时间具体为:
温度为500~1500℃,压强为<3500Pa,时间为24~180h;
流量为:鼓泡氢气1~10L/min、稀释氢气0.1~10L/min、稀释氩气0.1~10L/min、甲基三氯硅烷5~70L/min。
5.根据权利要求4所述的带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件制备方法,其特征在于:
步骤2)中,所述缝隙的宽度为0.7mm。
CN202111199678.3A 2021-10-14 2021-10-14 带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件制备方法 Active CN113929467B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111199678.3A CN113929467B (zh) 2021-10-14 2021-10-14 带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111199678.3A CN113929467B (zh) 2021-10-14 2021-10-14 带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件制备方法

Publications (2)

Publication Number Publication Date
CN113929467A CN113929467A (zh) 2022-01-14
CN113929467B true CN113929467B (zh) 2023-02-14

Family

ID=79279289

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111199678.3A Active CN113929467B (zh) 2021-10-14 2021-10-14 带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件制备方法

Country Status (1)

Country Link
CN (1) CN113929467B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114714476B (zh) * 2022-03-23 2025-02-18 西安鑫垚陶瓷复合材料股份有限公司 一种连续纤维增强陶瓷基复合材料u型梁的制备方法
CN115093231B (zh) * 2022-06-23 2023-09-01 西安鑫垚陶瓷复合材料有限公司 一种具有尾缘劈缝的陶瓷基复合材料导向叶片及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109736899A (zh) * 2019-01-13 2019-05-10 中国航发四川燃气涡轮研究院 一种具有微通道的涡轮叶片尾缘半劈缝冷却结构
CN110143824A (zh) * 2019-05-29 2019-08-20 中南大学 一种无残余应力均质耐高温型SiCf/SiC涡轮整体叶盘的制备方法
JP6569018B2 (ja) * 2016-01-13 2019-08-28 エコマンダ アーゲーEcomanda Ag 燃料添加物
CN111516988A (zh) * 2020-04-30 2020-08-11 中国航发北京航空材料研究院 内腔带扰流柱结构的薄壁空心叶片尾劈缝的保护工装
CN211715181U (zh) * 2020-03-18 2020-10-20 厦门大学 一种带开缝圆形扰流柱的层板冷却结构
CN112279664A (zh) * 2020-11-04 2021-01-29 西安鑫垚陶瓷复合材料有限公司 一种连续纤维增强陶瓷基复合材料高强度连接件制备工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6569018B2 (ja) * 2016-01-13 2019-08-28 エコマンダ アーゲーEcomanda Ag 燃料添加物
CN109736899A (zh) * 2019-01-13 2019-05-10 中国航发四川燃气涡轮研究院 一种具有微通道的涡轮叶片尾缘半劈缝冷却结构
CN110143824A (zh) * 2019-05-29 2019-08-20 中南大学 一种无残余应力均质耐高温型SiCf/SiC涡轮整体叶盘的制备方法
CN211715181U (zh) * 2020-03-18 2020-10-20 厦门大学 一种带开缝圆形扰流柱的层板冷却结构
CN111516988A (zh) * 2020-04-30 2020-08-11 中国航发北京航空材料研究院 内腔带扰流柱结构的薄壁空心叶片尾劈缝的保护工装
CN112279664A (zh) * 2020-11-04 2021-01-29 西安鑫垚陶瓷复合材料有限公司 一种连续纤维增强陶瓷基复合材料高强度连接件制备工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陶瓷基复合材料及其环境障涂层发展现状研究;江舟等;《航空制造技术》;20200715(第14期);第36-52页 *

Also Published As

Publication number Publication date
CN113929467A (zh) 2022-01-14

Similar Documents

Publication Publication Date Title
CN113929467B (zh) 带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件制备方法
US9174365B2 (en) Method of manufacturing a mold part
CN1925964A (zh) 用于制备大结构的模具、制备模具的方法以及模具的用途
CN110834095A (zh) 一种选区激光熔化成形致密-疏松一体化模具零件的方法
CN108545914B (zh) 一种解决氧化的防起层的热解氮化硼涂层热弯模具的制备方法
CN105296897A (zh) 碳纤维增强钛合金复合材料的制备方法
CN112125673B (zh) 一种基于先驱体浸渍裂解工艺制备直角形长桁的方法
CN206308248U (zh) 一种玻璃加热石墨模具
CN104525681B (zh) 冷冲模具及其制备方法
CN206644258U (zh) 一种生产塑料制品的注塑模具
CN217617592U (zh) 一种钛合金石墨型铸造模具
CN110303693A (zh) 一种小型翼面复合材料夹芯件的模压成型方法
CN115157516A (zh) 一种新型碳纤维保温板的制备方法
CN110106539A (zh) 一种塑料的电镀成型工艺
CN113649528A (zh) 一种制备薄壁高强度熔模铸造模壳的方法
CN109228052B (zh) 一种散热部件中冷却管道的制造方法
CN113102775A (zh) 一种电弧增材制造制备泡沫铝构件的方法
CN115838294B (zh) 陶瓷基复合材料调节片或密封片的制备方法及定型模具
JP5303708B2 (ja) 成形型の製造方法
CN115974570B (zh) 一种陶瓷/树脂杂化基体复合材料薄壁构件制备方法
CN115286222B (zh) 一种3d玻璃热弯石墨模具及其制备方法
CN206092146U (zh) 一种新型排气歧管隔热罩
CN106273093B (zh) 一种高效热交换成型模具及其应用方法
CN211194783U (zh) 一种热流道分流板用的隔热垫子
CN119410947A (zh) 一种局部多孔且位置可控的钛合金功能材料制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 710117 West Section 912 of Biyuan Road, Xi'an High-tech Zone, Shaanxi Province

Patentee after: Xi'an Xinyao Ceramic Composite Co.,Ltd.

Country or region after: China

Address before: 710117 West Section 912 of Biyuan Road, Xi'an High-tech Zone, Shaanxi Province

Patentee before: XI'AN GOLDEN MOUNTAIN CERAMIC COMPOSITES CO.,LTD.

Country or region before: China