CN113929467B - 带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件制备方法 - Google Patents
带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件制备方法 Download PDFInfo
- Publication number
- CN113929467B CN113929467B CN202111199678.3A CN202111199678A CN113929467B CN 113929467 B CN113929467 B CN 113929467B CN 202111199678 A CN202111199678 A CN 202111199678A CN 113929467 B CN113929467 B CN 113929467B
- Authority
- CN
- China
- Prior art keywords
- sic
- blade body
- gap
- flow
- ceramic composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 27
- 239000002131 composite material Substances 0.000 title claims abstract description 27
- 238000001816 cooling Methods 0.000 title claims abstract description 24
- 238000002360 preparation method Methods 0.000 title claims abstract description 22
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims abstract description 120
- 229910010271 silicon carbide Inorganic materials 0.000 claims abstract description 120
- 238000007493 shaping process Methods 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims abstract description 26
- 238000012545 processing Methods 0.000 claims abstract description 21
- 239000004744 fabric Substances 0.000 claims abstract description 20
- 238000000151 deposition Methods 0.000 claims abstract description 18
- 230000008021 deposition Effects 0.000 claims abstract description 8
- 239000011159 matrix material Substances 0.000 claims abstract description 6
- 238000004519 manufacturing process Methods 0.000 claims abstract description 4
- 238000004804 winding Methods 0.000 claims abstract description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 18
- 238000007865 diluting Methods 0.000 claims description 13
- 239000000758 substrate Substances 0.000 claims description 13
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 12
- 238000009958 sewing Methods 0.000 claims description 11
- 229910052582 BN Inorganic materials 0.000 claims description 9
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 9
- 229910052786 argon Inorganic materials 0.000 claims description 9
- 238000005229 chemical vapour deposition Methods 0.000 claims description 9
- 230000005587 bubbling Effects 0.000 claims description 6
- 239000000835 fiber Substances 0.000 claims description 6
- 239000007789 gas Substances 0.000 claims description 6
- 239000005055 methyl trichlorosilane Substances 0.000 claims description 6
- JLUFWMXJHAVVNN-UHFFFAOYSA-N methyltrichlorosilane Chemical compound C[Si](Cl)(Cl)Cl JLUFWMXJHAVVNN-UHFFFAOYSA-N 0.000 claims description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 5
- 238000011065 in-situ storage Methods 0.000 claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- 238000004140 cleaning Methods 0.000 claims description 4
- 229910002804 graphite Inorganic materials 0.000 claims description 4
- 239000010439 graphite Substances 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 238000010030 laminating Methods 0.000 claims description 4
- 238000013178 mathematical model Methods 0.000 claims description 3
- 238000003801 milling Methods 0.000 claims description 3
- 239000002994 raw material Substances 0.000 claims description 3
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 claims description 3
- 229910021529 ammonia Inorganic materials 0.000 claims description 2
- 238000009423 ventilation Methods 0.000 abstract description 3
- 150000002431 hydrogen Chemical class 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011153 ceramic matrix composite Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
- C04B35/78—Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
- C04B35/80—Fibres, filaments, whiskers, platelets, or the like
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/282—Selecting composite materials, e.g. blades with reinforcing filaments
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/284—Selection of ceramic materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/386—Boron nitrides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5216—Inorganic
- C04B2235/524—Non-oxidic, e.g. borides, carbides, silicides or nitrides
- C04B2235/5244—Silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5252—Fibers having a specific pre-form
- C04B2235/5256—Two-dimensional, e.g. woven structures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/614—Gas infiltration of green bodies or pre-forms
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Ceramic Products (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
本发明涉及一种SiC/SiC陶瓷复合叶身构件制备方法,具体涉及一种带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件制备方法,其目的是解决现有SiC/SiC陶瓷复合叶身类构件存在出气孔加工难度较大,难以通过调整出气孔的尺寸实现叶身类构件透气降温的技术问题。该方法将SiC/SiC二维平纹布缠绕至叶身内模定型模具上,在叶身后端的出气孔端预制宽度为0.7mm缝隙,经界面层沉积、高温处理、碳化硅基体层沉积,达到一定密度后,加工成满足相应要求规格的叶身零件,再经过在保证叶身预留缝隙前提下,在叶身后端按一定尺寸铆接碳化硅销钉,再进行碳化硅基体层沉积,使得叶身构件最终达到满足要求的密度和性能要求,制造出满足设计使用要求的叶身构件。
Description
技术领域
本发明涉及一种SiC/SiC陶瓷复合叶身构件制备方法,具体涉及一种带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件制备方法。
背景技术
SiC/SiC陶瓷复合材料叶身构件属于典型航空发动机高温热结构件,除需具有优异的防热性能外,还需具有较好的承载能力,随着发动机技术的不断发展,发动机对叶身构件的结构强度、刚度以及抗疲劳性能提出了更严苛的要求,故需要进一步探索SiC/SiC陶瓷复合材料耐受更高温度的工艺方法。但是,现有叶身类构件出气孔的加工难度较大,难以通过调整出气孔的尺寸实现叶身类构件的透气降温。
发明内容
本发明的目的是解决现有SiC/SiC陶瓷复合叶身类构件存在出气孔加工难度较大,难以通过调整出气孔的尺寸实现叶身类构件透气降温的技术问题,提供一种带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件制备方法。
为解决上述技术问题,本发明提供的技术解决方案如下:
一种带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件制备方法,其特殊之处在于,包括以下步骤:
1)原材料选用和叶身内外模定型模具加工
A)选用高强石墨,加工制造叶身内外模定型模具;
B)选用SiC/SiC二维平纹布;
2)定型
利用叶身内外模定型模具,采用二维叠层、原位缝制法,定型并缝制满足工艺要求的预制体,在预制体透气孔处预留缝隙;
3)氮化硼界面层制备
将预制体放入化学气相沉积炉内,按照预设的温度、压力、流量和时间在预制体纤维表面沉积一定厚度的氮化硼界面层;
4)碳化硅基体层制备
将已沉积氮化硼界面层的预制体在化学气相沉积炉内,按照预设的温度、压力、流量和时间,在表面沉积一定厚度的碳化硅基体层;
5)数铣
按照预先设定的加工数学模型及数控加工程序,对沉积了碳化硅基体层的预制体加工叶身外型尺寸;
6)扰流柱加工
清理预留的所述缝隙,在预制体叶身后缘加工扰流柱孔,并在扰流柱孔处铆接SiC/SiC销钉作为扰流柱;
7)碳化硅基体沉积
将铆接完成的预制体再次放入化学气相沉积炉内,按照预设的温度、压力、流量和时间,在预制体表面沉积满足一定密度要求的碳化硅基体层,得到带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件。
进一步地,步骤2)中,所述的利用叶身内外模定型模具,采用二维叠层、原位缝制法,定型并缝制满足工艺要求的预制体,具体是指:
2.1)将SiC/SiC二维平纹布缠绕于叶身内模定型模具上;
2.2)使用碳化硅纤维对缠绕后的SiC/SiC二维平纹布进行缝制,使得SiC/SiC二维平纹布与叶身内模定型模具紧密贴合;
2.3)使用外模模具对缝制后的SiC/SiC二维平纹布进行固定,利用内外模具之间的间隙得到满足预定厚度的预制体。
进一步地,步骤3)中,所述预设的温度、压强、流量和时间具体为:
温度为200-1000℃,压强为<1500Pa,时间为24~100h;
流量为:稀释氩气流量0.2~1.5L/min、稀释氢气流量0.2~1.5L/min、氨气流量0.05~0.8L/min、三氯化硼流量0.01~0.8L/min。
进一步地,步骤4)中,所述预设的温度、压强、流量和时间具体为:
温度为500~1500℃,压强为<3500Pa,时间为24~180h;
流量为:鼓泡氢气1~10L/min、稀释氢气0.1~10L/min、稀释氩气0.1~10L/min、甲基三氯硅烷5~70L/min。
进一步地,步骤7)中,所述预设的温度、压强、流量和时间具体为:
温度为500~1500℃,压强为<3500Pa,时间为24~180h;
流量为:鼓泡氢气1~10L/min、稀释氢气0.1~10L/min、稀释氩气0.1~10L/min、甲基三氯硅烷5~70L/min。
进一步地,步骤6)中清理预留的所述缝隙,直至预留缝隙处平整,无凹凸点。
进一步地,步骤2)中,所述缝隙的宽度为0.7mm。
本发明相比现有技术具有的有益效果如下:
1、本发明提供的带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件制备方法,将SiC/SiC二维平纹布缠绕至叶身内模定型模具上,在叶身后端的出气孔端预制宽度为0.7mm缝隙,经界面层沉积、高温处理、碳化硅基体层沉积,达到一定密度后,加工成满足相应要求规格的叶身零件,然后在保证叶身预留缝隙前提下,在叶身后端按一定尺寸铆接碳化硅销钉(即扰流柱),之后再进行碳化硅基体层沉积,使得叶身构件最终达到密度和性能要求,制造出满足设计使用要求的叶身构件(零件)。本发明的方法,创新性地在叶身零件缝隙(劈缝)中增加了扰流柱,增大了冷空气在叶身内部的接触面积及延长了冷空气的留滞时间,大大提升了陶瓷基复合材料叶身类零件的透气降温性能,有效解决了叶身类零件出气孔加工难度大的问题,对提升SiC/SiC陶瓷复合材料叶身零件防热性能具有非常重要的意义和积极的作用。
2、本发明提供的带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件制备方法,工艺稳定,质量可控;工艺性强,对预制体预留缝隙的要求不高;工艺适应性好,可满足多种规格叶身类零件的生产。
附图说明
图1为本发明带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件的预定厚度的预制体的制备流程图,图中,A为叶身内模定型模具,B为SiC/SiC二维平纹布,C1为外模模具下半部,C2为外模模具上半部;
图2为本发明带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件的结构示意图;
图3为本发明带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件的侧视图;
图4为图3中扰流柱处的局部放大图;
附图标记说明:
1-叶身构件、2-缝隙、3-扰流柱。
具体实施方式
下面结合附图和实施例对本发明作进一步地说明。
一种带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件制备方法,包括以下步骤:
1)原材料选用和叶身内外模定型模具加工
A)选用高强石墨(体积密度为≥1.75g/cm3,电阻率≤8USLm,抗折强度≥13MPa,抗压强度≥30MPa,热膨胀系数≤2.5,灰度≤0.3%),加工制造叶身内外模定型模具(石墨内模模具);
B)选用SiC/SiC二维平纹布(碳化硅布);
2)定型
利用叶身内外模定型模具,采用二维叠层、原位缝制法,定型并缝制满足工艺要求的预制体,在预制体透气孔处预留0.7mm宽的缝隙,所述工艺要求具体是指:
如图1所示,具体方法如下:
2.1)将SiC/SiC二维平纹布缠绕于叶身内模定型模具上;
2.2)使用碳化硅纤维对缠绕后的SiC/SiC二维平纹布进行缝制,保证SiC/SiC二维平纹布与叶身内模定型模具紧密贴合;
2.3)使用外模模具对缝制后的SiC/SiC二维平纹布进行固定,利用内外模具之间的间隙得到满足预定厚度的预制体(即控制碳化硅布铺层厚度);
其中,外模模具通过本领域现有常规技术手段可以制备得到,只要保证其与叶身内模定型模具配合使用后,能够得到满足预定厚度的预制体即可;
3)氮化硼界面层制备
将预制体放入化学气相沉积炉内,按照预设的温度450℃,压强<1200Pa,时间48h,流量:稀释氩气0.9L/min、稀释氢气0.9L/min、氨气0.75L/min、三氯化硼0.7L/min,在预制体纤维表面沉积一定厚度的氮化硼界面层;
4)碳化硅基体层制备
将已沉积氮化硼界面层的预制体在化学气相沉积炉内,按照预设的温度800℃,压强2300Pa,时间120h,流量:鼓泡氢气8L/min、稀释氢气8L/min、稀释氩气6.8L/min、甲基三氯硅烷25L/min,在表面沉积一定厚度的碳化硅基体层;
5)数铣
按照预先设定的加工数学模型及数控加工程序,如图1所示,对沉积了碳化硅基体层的预制体加工叶身外型尺寸;
6)扰流柱加工
清理预留的所述缝隙,保证预留缝隙处平整,无凹凸点,在预制体叶身后缘加工扰流柱孔,并在扰流柱孔处铆接SiC/SiC销钉作为扰流柱;扰流柱孔位在叶身后缘排布成品字形,孔间距为8~10mm,但不局限于品字形排布,也可设计为曲线阵列或直线阵列;
7)碳化硅基体沉积
将铆接完成的预制体再次放入化学气相沉积炉内,按照预设的温度800℃,压强2300Pa,时间96h,流量:鼓泡氢气7L/min、稀释氢气7L/min、稀释氩气5L/min、甲基三氯硅烷20L/min,在预制体表面沉积满足一定密度要求的碳化硅基体层,最终得到如图2至图4所示的带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件。
制备完成后,按照相关技术要求对所得叶身构件的尺寸、外观、密度、强度进行检验,结果表明:扰流柱及叶身缝隙(劈缝)尺寸稳定可控,满足零件(叶身构件)使用要求。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制,对于本领域的普通专业技术人员来说,可以对前述实施例所记载的具体技术方案进行修改,或者对其中部分技术特征进行等同替换,而这些修改或者替换,并不使相应技术方案的本质脱离本发明所保护技术方案的范围。
Claims (5)
1.一种带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件制备方法,其特征在于,包括以下步骤:
1)原材料选用和叶身内外模定型模具加工
A)选用高强石墨,加工制造叶身内外模定型模具;
B)选用SiC/SiC二维平纹布;
2)定型
利用叶身内外模定型模具,采用二维叠层、原位缝制法,定型并缝制满足工艺要求的预制体,在预制体透气孔处预留缝隙;
所述的利用叶身内外模定型模具,采用二维叠层、原位缝制法,定型并缝制满足工艺要求的预制体,具体是指:
2.1)将SiC/SiC二维平纹布缠绕于叶身内模定型模具上;
2.2)使用碳化硅纤维对缠绕后的SiC/SiC二维平纹布进行缝制,使得SiC/SiC二维平纹布与叶身内模定型模具紧密贴合;
2.3)使用外模模具对缝制后的SiC/SiC二维平纹布进行固定,利用内外模具之间的间隙得到满足预定厚度的预制体;
3)氮化硼界面层制备
将预制体放入化学气相沉积炉内,按照预设的温度、压力、流量和时间在预制体纤维表面沉积一定厚度的氮化硼界面层;
4)碳化硅基体层制备
将已沉积氮化硼界面层的预制体在化学气相沉积炉内,按照预设的温度、压力、流量和时间,在表面沉积一定厚度的碳化硅基体层;
5)数铣
按照预先设定的加工数学模型及数控加工程序,对沉积了碳化硅基体层的预制体加工叶身外型尺寸;
6)扰流柱加工
清理预留的所述缝隙,直至预留缝隙处平整,无凹凸点,在预制体叶身后缘加工扰流柱孔,并在扰流柱孔处铆接SiC/SiC销钉作为扰流柱;
7)碳化硅基体沉积
将铆接完成的预制体再次放入化学气相沉积炉内,按照预设的温度、压力、流量和时间,在预制体表面沉积满足一定密度要求的碳化硅基体层,得到带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件。
2.根据权利要求1所述的带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件制备方法,其特征在于:
步骤3)中,所述预设的温度、压强、流量和时间具体为:
温度为200-1000℃,压强为<1500Pa,时间为24~100h;
流量为:稀释氩气流量0.2~1.5L/min、稀释氢气流量0.2~1.5L/min、氨气流量0.05~0.8L/min、三氯化硼流量0.01~0.8L/min。
3.根据权利要求2所述的带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件制备方法,其特征在于:
步骤4)中,所述预设的温度、压强、流量和时间具体为:
温度为500~1500℃,压强为<3500Pa,时间为24~180h;
流量为:鼓泡氢气1~10L/min、稀释氢气0.1~10L/min、稀释氩气0.1~10L/min、甲基三氯硅烷5~70L/min。
4.根据权利要求3所述的带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件制备方法,其特征在于:
步骤7)中,所述预设的温度、压强、流量和时间具体为:
温度为500~1500℃,压强为<3500Pa,时间为24~180h;
流量为:鼓泡氢气1~10L/min、稀释氢气0.1~10L/min、稀释氩气0.1~10L/min、甲基三氯硅烷5~70L/min。
5.根据权利要求4所述的带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件制备方法,其特征在于:
步骤2)中,所述缝隙的宽度为0.7mm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111199678.3A CN113929467B (zh) | 2021-10-14 | 2021-10-14 | 带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111199678.3A CN113929467B (zh) | 2021-10-14 | 2021-10-14 | 带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113929467A CN113929467A (zh) | 2022-01-14 |
CN113929467B true CN113929467B (zh) | 2023-02-14 |
Family
ID=79279289
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111199678.3A Active CN113929467B (zh) | 2021-10-14 | 2021-10-14 | 带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113929467B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114714476B (zh) * | 2022-03-23 | 2025-02-18 | 西安鑫垚陶瓷复合材料股份有限公司 | 一种连续纤维增强陶瓷基复合材料u型梁的制备方法 |
CN115093231B (zh) * | 2022-06-23 | 2023-09-01 | 西安鑫垚陶瓷复合材料有限公司 | 一种具有尾缘劈缝的陶瓷基复合材料导向叶片及其制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109736899A (zh) * | 2019-01-13 | 2019-05-10 | 中国航发四川燃气涡轮研究院 | 一种具有微通道的涡轮叶片尾缘半劈缝冷却结构 |
CN110143824A (zh) * | 2019-05-29 | 2019-08-20 | 中南大学 | 一种无残余应力均质耐高温型SiCf/SiC涡轮整体叶盘的制备方法 |
JP6569018B2 (ja) * | 2016-01-13 | 2019-08-28 | エコマンダ アーゲーEcomanda Ag | 燃料添加物 |
CN111516988A (zh) * | 2020-04-30 | 2020-08-11 | 中国航发北京航空材料研究院 | 内腔带扰流柱结构的薄壁空心叶片尾劈缝的保护工装 |
CN211715181U (zh) * | 2020-03-18 | 2020-10-20 | 厦门大学 | 一种带开缝圆形扰流柱的层板冷却结构 |
CN112279664A (zh) * | 2020-11-04 | 2021-01-29 | 西安鑫垚陶瓷复合材料有限公司 | 一种连续纤维增强陶瓷基复合材料高强度连接件制备工艺 |
-
2021
- 2021-10-14 CN CN202111199678.3A patent/CN113929467B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6569018B2 (ja) * | 2016-01-13 | 2019-08-28 | エコマンダ アーゲーEcomanda Ag | 燃料添加物 |
CN109736899A (zh) * | 2019-01-13 | 2019-05-10 | 中国航发四川燃气涡轮研究院 | 一种具有微通道的涡轮叶片尾缘半劈缝冷却结构 |
CN110143824A (zh) * | 2019-05-29 | 2019-08-20 | 中南大学 | 一种无残余应力均质耐高温型SiCf/SiC涡轮整体叶盘的制备方法 |
CN211715181U (zh) * | 2020-03-18 | 2020-10-20 | 厦门大学 | 一种带开缝圆形扰流柱的层板冷却结构 |
CN111516988A (zh) * | 2020-04-30 | 2020-08-11 | 中国航发北京航空材料研究院 | 内腔带扰流柱结构的薄壁空心叶片尾劈缝的保护工装 |
CN112279664A (zh) * | 2020-11-04 | 2021-01-29 | 西安鑫垚陶瓷复合材料有限公司 | 一种连续纤维增强陶瓷基复合材料高强度连接件制备工艺 |
Non-Patent Citations (1)
Title |
---|
陶瓷基复合材料及其环境障涂层发展现状研究;江舟等;《航空制造技术》;20200715(第14期);第36-52页 * |
Also Published As
Publication number | Publication date |
---|---|
CN113929467A (zh) | 2022-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113929467B (zh) | 带有微小扰流柱降温缝隙的SiC/SiC陶瓷复合叶身构件制备方法 | |
US9174365B2 (en) | Method of manufacturing a mold part | |
CN1925964A (zh) | 用于制备大结构的模具、制备模具的方法以及模具的用途 | |
CN110834095A (zh) | 一种选区激光熔化成形致密-疏松一体化模具零件的方法 | |
CN108545914B (zh) | 一种解决氧化的防起层的热解氮化硼涂层热弯模具的制备方法 | |
CN105296897A (zh) | 碳纤维增强钛合金复合材料的制备方法 | |
CN112125673B (zh) | 一种基于先驱体浸渍裂解工艺制备直角形长桁的方法 | |
CN206308248U (zh) | 一种玻璃加热石墨模具 | |
CN104525681B (zh) | 冷冲模具及其制备方法 | |
CN206644258U (zh) | 一种生产塑料制品的注塑模具 | |
CN217617592U (zh) | 一种钛合金石墨型铸造模具 | |
CN110303693A (zh) | 一种小型翼面复合材料夹芯件的模压成型方法 | |
CN115157516A (zh) | 一种新型碳纤维保温板的制备方法 | |
CN110106539A (zh) | 一种塑料的电镀成型工艺 | |
CN113649528A (zh) | 一种制备薄壁高强度熔模铸造模壳的方法 | |
CN109228052B (zh) | 一种散热部件中冷却管道的制造方法 | |
CN113102775A (zh) | 一种电弧增材制造制备泡沫铝构件的方法 | |
CN115838294B (zh) | 陶瓷基复合材料调节片或密封片的制备方法及定型模具 | |
JP5303708B2 (ja) | 成形型の製造方法 | |
CN115974570B (zh) | 一种陶瓷/树脂杂化基体复合材料薄壁构件制备方法 | |
CN115286222B (zh) | 一种3d玻璃热弯石墨模具及其制备方法 | |
CN206092146U (zh) | 一种新型排气歧管隔热罩 | |
CN106273093B (zh) | 一种高效热交换成型模具及其应用方法 | |
CN211194783U (zh) | 一种热流道分流板用的隔热垫子 | |
CN119410947A (zh) | 一种局部多孔且位置可控的钛合金功能材料制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address | ||
CP03 | Change of name, title or address |
Address after: 710117 West Section 912 of Biyuan Road, Xi'an High-tech Zone, Shaanxi Province Patentee after: Xi'an Xinyao Ceramic Composite Co.,Ltd. Country or region after: China Address before: 710117 West Section 912 of Biyuan Road, Xi'an High-tech Zone, Shaanxi Province Patentee before: XI'AN GOLDEN MOUNTAIN CERAMIC COMPOSITES CO.,LTD. Country or region before: China |