CN113929221B - A microbial complex flora for treating aquaculture tail water - Google Patents
A microbial complex flora for treating aquaculture tail water Download PDFInfo
- Publication number
- CN113929221B CN113929221B CN202111389787.1A CN202111389787A CN113929221B CN 113929221 B CN113929221 B CN 113929221B CN 202111389787 A CN202111389787 A CN 202111389787A CN 113929221 B CN113929221 B CN 113929221B
- Authority
- CN
- China
- Prior art keywords
- flora
- tail water
- bacillus
- bacteria
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 46
- 238000009360 aquaculture Methods 0.000 title claims abstract description 23
- 244000144974 aquaculture Species 0.000 title claims abstract description 23
- 230000000813 microbial effect Effects 0.000 title claims abstract description 17
- 241000193744 Bacillus amyloliquefaciens Species 0.000 claims abstract description 11
- 241000194108 Bacillus licheniformis Species 0.000 claims abstract description 11
- 244000063299 Bacillus subtilis Species 0.000 claims abstract description 11
- 235000014469 Bacillus subtilis Nutrition 0.000 claims abstract description 11
- 241000194107 Bacillus megaterium Species 0.000 claims abstract description 10
- 241000191938 Micrococcus luteus Species 0.000 claims abstract description 10
- 239000002131 composite material Substances 0.000 claims description 11
- 241000894006 Bacteria Species 0.000 abstract description 27
- 230000000694 effects Effects 0.000 abstract description 20
- 238000002474 experimental method Methods 0.000 abstract description 12
- 244000005700 microbiome Species 0.000 abstract description 8
- 238000012216 screening Methods 0.000 abstract description 4
- 150000001875 compounds Chemical class 0.000 abstract description 3
- 230000002195 synergetic effect Effects 0.000 abstract description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 24
- 230000001580 bacterial effect Effects 0.000 description 15
- 229910052757 nitrogen Inorganic materials 0.000 description 12
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 11
- 229910052698 phosphorus Inorganic materials 0.000 description 11
- 239000011574 phosphorus Substances 0.000 description 11
- 238000004321 preservation Methods 0.000 description 11
- 238000000034 method Methods 0.000 description 9
- 229910019142 PO4 Inorganic materials 0.000 description 8
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 8
- 239000010452 phosphate Substances 0.000 description 8
- MMDJDBSEMBIJBB-UHFFFAOYSA-N [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] MMDJDBSEMBIJBB-UHFFFAOYSA-N 0.000 description 7
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 description 7
- JVMRPSJZNHXORP-UHFFFAOYSA-N ON=O.ON=O.ON=O.N Chemical compound ON=O.ON=O.ON=O.N JVMRPSJZNHXORP-UHFFFAOYSA-N 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 235000015097 nutrients Nutrition 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 3
- 239000003344 environmental pollutant Substances 0.000 description 3
- 231100000719 pollutant Toxicity 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- JGJLWPGRMCADHB-UHFFFAOYSA-N hypobromite Chemical compound Br[O-] JGJLWPGRMCADHB-UHFFFAOYSA-N 0.000 description 2
- 230000000877 morphologic effect Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 235000015170 shellfish Nutrition 0.000 description 2
- 238000002798 spectrophotometry method Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 241000193755 Bacillus cereus Species 0.000 description 1
- 241000006381 Bacillus flexus Species 0.000 description 1
- 241000194103 Bacillus pumilus Species 0.000 description 1
- 241001474374 Blennius Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 241000593508 Garcinia Species 0.000 description 1
- 235000000885 Garcinia xanthochymus Nutrition 0.000 description 1
- 241000192041 Micrococcus Species 0.000 description 1
- YKLFSQROPDRLQF-UHFFFAOYSA-N NCCN.C1=CC=CC2=CC=CC=C21 Chemical compound NCCN.C1=CC=CC2=CC=CC=C21 YKLFSQROPDRLQF-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000012851 eutrophication Methods 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 238000009630 liquid culture Methods 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 235000021049 nutrient content Nutrition 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 150000004968 peroxymonosulfuric acids Chemical class 0.000 description 1
- AMWVZPDSWLOFKA-UHFFFAOYSA-N phosphanylidynemolybdenum Chemical compound [Mo]#P AMWVZPDSWLOFKA-UHFFFAOYSA-N 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 239000003403 water pollutant Substances 0.000 description 1
- 238000003911 water pollution Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/34—Biological treatment of water, waste water, or sewage characterised by the microorganisms used
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/34—Biological treatment of water, waste water, or sewage characterised by the microorganisms used
- C02F3/348—Biological treatment of water, waste water, or sewage characterised by the microorganisms used characterised by the way or the form in which the microorganisms are added or dosed
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/20—Nature of the water, waste water, sewage or sludge to be treated from animal husbandry
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Microbiology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
技术领域technical field
本发明属于环境处理微生物技术领域,具体涉及一种用于处理水产养殖尾水的微生物复合菌群。The invention belongs to the technical field of environmental treatment microorganisms, and in particular relates to a microbial composite flora for treating aquaculture tail water.
背景技术Background technique
随着水产养殖业集约化、规模化发展,其带来的尾水污染问题日益严峻。养殖尾水含有大量氮磷污染物,若未经有效处理直接排放,易滋生细菌和病毒及水体富营养化,对水域环境造成极大的破坏。因此,如何高效处理养殖尾水成为养殖业面临的重要难题,亟需解决。其中,生物处理法因其成本低、无二次污染的特性具有独特优势。With the intensive and large-scale development of the aquaculture industry, the problem of tail water pollution has become increasingly serious. Aquaculture tail water contains a large amount of nitrogen and phosphorus pollutants. If it is discharged directly without effective treatment, it is easy to breed bacteria and viruses and cause eutrophication of the water body, causing great damage to the water environment. Therefore, how to efficiently treat the tail water of aquaculture has become an important problem faced by the aquaculture industry and needs to be solved urgently. Among them, the biological treatment method has unique advantages because of its low cost and no secondary pollution.
目前对生物处理法的研究相对较少,且多集中于利用单一的滤食性贝类、鱼类或大型藻类对尾水进行处理。微生物功能基因的研究表明,部分微生物展现出极大的去除营养元素的优势,可将水体中的元素吸收为自身生长所需元素,这为其处理水产养殖尾水提供了理论上的可行性。At present, there are relatively few studies on biological treatment methods, and most of them focus on the treatment of tail water by using a single filter-feeding shellfish, fish or macroalgae. Studies on microbial functional genes have shown that some microorganisms show great advantages in removing nutrient elements, and can absorb elements in water as elements needed for their own growth, which provides theoretical feasibility for them to treat aquaculture tail water.
然而当前研究多局限于揭示单一菌种对养殖尾水处理的代谢潜力,但单一菌种的环境适应力较差,在实际应用中效果往往远不如预期。因此急需找出针对性去除氮磷元素的功能菌种,并以一定配比组合成微生物复合菌群,将其添加至尾水处理系统中,使其充分发挥处理效能。However, current research is mostly limited to revealing the metabolic potential of a single strain of aquaculture tail water treatment, but the environmental adaptability of a single strain is poor, and the effect in practical applications is often far below expectations. Therefore, it is urgent to find functional strains that specifically remove nitrogen and phosphorus elements, and combine them into a microbial complex flora in a certain ratio, and add them to the tail water treatment system to make them fully exert their treatment efficiency.
发明内容Contents of the invention
本发明的目的是提供一种可用于处理水产养殖尾水的微生物复合菌群,从而有效提高养殖尾水的处理效率。The purpose of the present invention is to provide a microbial complex flora that can be used to treat aquaculture tail water, thereby effectively improving the treatment efficiency of aquaculture tail water.
本发明所提供的微生物复合菌群,其中包含有枯草芽孢杆菌、巨大芽孢杆菌、解淀粉芽孢杆菌、地衣芽孢杆菌和藤黄微球菌;The microbial complex flora provided by the present invention comprises Bacillus subtilis, Bacillus megaterium, Bacillus amyloliquefaciens, Bacillus licheniformis and Micrococcus luteus;
所述的微生物复合菌群中藤黄微球菌、枯草芽孢杆菌、解淀粉芽孢杆菌、地衣芽孢杆菌、巨大芽孢杆菌的数量比优选为2:6:9:5:4。The quantitative ratio of Micrococcus luteus, Bacillus subtilis, Bacillus amyloliquefaciens, Bacillus licheniformis and Bacillus megaterium in the microbial complex flora is preferably 2:6:9:5:4.
本发明所提供的微生物复合菌群在处理水产养殖尾水中的应用;Application of the microbial composite flora provided by the present invention in the treatment of aquaculture tail water;
本发明还提供所提供的微生物复合菌还用于制备生物膜;The present invention also provides that the provided microbial complex bacteria are also used to prepare biofilms;
所述的生物膜,是附着生长有所述的微生物复合菌的毛刷或陶粒。The biofilm is a brush or ceramsite attached to and growing the microbial composite bacteria.
本发明还提供微生物复合菌群在制备水产养殖尾水处理系统中的应用。The invention also provides the application of the microbial compound flora in the preparation of the aquaculture tail water treatment system.
本发明通过筛选菌种,并对具体菌株的数量进行优化后获得了复合菌群,实验结果表明获得的复合菌群可以高效处理养殖尾水。在实际应用中,可将优选配比的菌群定着在由毛刷、陶粒等构筑的生物膜上,经中试实验验证效果良好。本发明充分发挥了菌间的协同效果,从而显著提高对养殖水体的处理效果。The present invention obtains a composite flora by screening strains and optimizing the quantity of specific strains, and the experimental results show that the obtained composite flora can efficiently treat aquaculture tail water. In practical applications, the optimal ratio of bacteria can be fixed on the biofilm constructed by brushes, ceramsite, etc., and the effect is verified by pilot experiments. The invention fully exerts the synergistic effect among the bacteria, thereby significantly improving the treatment effect on the aquaculture water body.
附图说明Description of drawings
图1:各实验组处理尾水照片图;Figure 1: Photos of tail water treated by each experimental group;
图2:最优比例菌群对养殖尾水污染物的去除率图;Figure 2: The figure of the removal rate of the optimal proportion of bacteria to the pollutants in the tail water of aquaculture;
图3:中试实验流程图;Figure 3: Pilot test flow chart;
图4:添加复合菌群后系统对养殖尾水营养盐的处理效果图。Figure 4: The effect of the system on the treatment of nutrients in the tail water of the culture after adding the complex flora.
具体实施方式Detailed ways
本发明利用微生物复合菌群对养殖尾水进行处理,经应用效果研究发现菌群处理后的尾水水体中营养盐含量显著降低。The present invention utilizes microbial composite flora to treat the tail water of aquaculture, and it is found through application effect research that the nutrient salt content in the tail water after the flora treatment is significantly reduced.
本发明实施例中所使用的菌株的来源信息如下:The source information of the bacterial strain used in the embodiment of the present invention is as follows:
所述的枯草芽孢杆菌(Bacillus subtilis),保藏在北纳生物微生物菌种保藏库,保藏编号为BNCC109047;保藏地址为河南省信阳市;The Bacillus subtilis (Bacillus subtilis) is preserved in the Beina Biological Microorganisms Collection Bank, and the preservation number is BNCC109047; the preservation address is Xinyang City, Henan Province;
所述的巨大芽孢杆菌(Bacillus megaterium de Bary),保藏在北纳生物微生物菌种保藏库,保藏编号为BNCC336464;保藏地址为河南省信阳市;The Bacillus megaterium de Bary is preserved in the Beina Biological Microorganisms Collection, and the preservation number is BNCC336464; the preservation address is Xinyang City, Henan Province;
所述的解淀粉芽孢杆菌(Bacillus amyloliquefaciens),保藏在北纳生物微生物菌种保藏库,保藏编号为BNCC336388;保藏地址为河南省信阳市;The Bacillus amyloliquefaciens (Bacillus amyloliquefaciens) is preserved in the Beina Biological Microorganisms Collection Bank, the preservation number is BNCC336388; the preservation address is Xinyang City, Henan Province;
所述的地衣芽孢杆菌(Bacillus licheniformis),保藏在北纳生物微生物菌种保藏库,保藏编号为BNCC336463;保藏地址为河南省信阳市;The Bacillus licheniformis (Bacillus licheniformis) is preserved in the Beina Biological Microorganisms Preservation Bank, and the preservation number is BNCC336463; the preservation address is Xinyang City, Henan Province;
所述的藤黄微球菌(Micrococcus luteus),保藏在北纳生物微生物菌种保藏库,保藏编号为BNCC102589;保藏地址为河南省信阳市;The Micrococcus luteus (Micrococcus luteus) is preserved in the Beina Biological Microorganisms Collection Bank, and the preservation number is BNCC102589; the preservation address is Xinyang City, Henan Province;
但本领域技术人员在本发明说明书公开内容的基础上,还可以选择其它来源的,具有类似功能的枯草芽孢杆菌、巨大芽孢杆菌、解淀粉芽孢杆菌、地衣芽孢杆菌和藤黄微球菌菌株。However, those skilled in the art can also select Bacillus subtilis, Bacillus megaterium, Bacillus amyloliquefaciens, Bacillus licheniformis and Micrococcus luteus strains from other sources with similar functions on the basis of the disclosure content of the specification of the present invention.
下面结合实施例和附图对本发明进行详细的描述。The present invention will be described in detail below in conjunction with the embodiments and the accompanying drawings.
实施例1:复合菌群中菌株的筛选和比例优化Example 1: Screening and ratio optimization of bacterial strains in complex flora
通过前期实验确定以下8种去除尾水中的氮磷效果较好的菌株,分别为枯草芽孢杆菌(Bacillus subtilis)、巨大芽孢杆菌(Bacillus megaterium de Bary)、解淀粉芽孢杆菌(Bacillus amyloliquefaciens)、地衣芽孢杆菌(Bacillus licheniformis)、藤黄微球菌(Micrococcus luteus)、短小芽孢杆菌(Bacillus pumilus)、弯曲芽孢杆菌(Bacillusflexus)、蜡样芽孢杆菌(Bacillus cereus)。通过预培养实验筛选确定了前5种菌进一步研究。Through preliminary experiments, the following 8 strains with good nitrogen and phosphorus removal effects in tail water were determined, namely Bacillus subtilis, Bacillus megaterium de Bary, Bacillus amyloliquefaciens, Bacillus licheniformis Bacillus licheniformis, Micrococcus luteus, Bacillus pumilus, Bacillus flexus, Bacillus cereus. The first five strains were identified by pre-culture experiment screening for further research.
其中本发明方法中养殖尾水中亚硝氮、硝氮、磷酸盐、氨氮、总氮、总磷指标使用SmartChem450水质分析仪进行测定,COD使用碱性高锰酸钾法测定。其中亚硝氮用萘乙二胺分光光度法,硝氮用镉柱还原法,磷酸盐采用磷钼蓝分光光度法,氨氮含量用次溴酸盐氧化法测定,总氮、总磷采用过硫酸钾氧化法。Wherein in the method of the present invention, the indicators of nitrite nitrogen, nitrate nitrogen, phosphate, ammonia nitrogen, total nitrogen, and total phosphorus in the tail water of the breeding water are measured using a SmartChem450 water quality analyzer, and COD is measured using an alkaline potassium permanganate method. Among them, nitrite nitrogen is determined by naphthalene ethylenediamine spectrophotometry, nitrate nitrogen is determined by cadmium column reduction method, phosphate is determined by phosphorus molybdenum blue spectrophotometry method, ammonia nitrogen content is determined by hypobromite oxidation method, and total nitrogen and total phosphorus are determined by persulfuric acid Potassium oxidation method.
1、单菌实验1. Single bacteria experiment
将预先培养好的各菌液放入离心机中,4000rpm离心10min,再使用生理盐水洗涤三次,然后用已灭菌的水样稀释,调节菌液的OD600值为0.5,投菌量设置五个梯度1‰、2‰、3‰、4‰、5‰,投加到500mL尾水中,以未投加菌液的水样作为空白对照,每个样品设置三个平行,取样测定亚硝氮、硝氮、磷酸盐、氨氮、总氮、总磷、COD指标,比较得出不同投加量下水体指标的最佳去除效果。Put the pre-cultured bacterial solutions into a centrifuge, centrifuge at 4000rpm for 10 minutes, wash with normal saline three times, and then dilute with sterilized water samples, adjust the OD600 value of the bacterial solution to 0.5, and set the bacterial dosage to five Gradients 1‰, 2‰, 3‰, 4‰, 5‰ were added to 500mL tail water, and the water sample without bacterial solution was used as a blank control. Each sample was set in three parallels, and samples were taken to determine nitrite nitrogen, Nitrate nitrogen, phosphate, ammonia nitrogen, total nitrogen, total phosphorus, and COD indicators are compared to obtain the best removal effect of water body indicators under different dosages.
2、组合菌实验2. Combination bacteria experiment
单菌实验中所得出的各单菌对亚硝氮、硝氮、磷酸盐、氨氮、总氮、总磷、COD具最佳去除率的投加量,为各单菌的投加量设置三个不同接种量‰水平(表1),根据该水平表设计五因素三水平的正交试验(表2)。The dosage of each single bacteria with the best removal rate for nitrite nitrogen, nitrate nitrogen, phosphate, ammonia nitrogen, total nitrogen, total phosphorus, and COD obtained in the single bacteria experiment is set for the dosage of each single bacteria. According to the level table, an orthogonal experiment with five factors and three levels was designed (Table 2).
表1:正交设计因素、水平表Table 1: Orthogonal Design Factors, Level Table
表2:正交实验分析表Table 2: Orthogonal experiment analysis table
将预先培养好的菌液放入离心机中,4000rpm离心10min,再使用生理盐水洗涤三次,然后用已灭菌的水样稀释,调节菌液的OD600值为0.5,依照水平表配置菌悬液,按比例投入1L养殖尾水中,以未投加菌液的水样作为空白对照,采取将锥形瓶静置于实验桌上进行试验的方式(图1),取样测定亚硝氮、硝氮、磷酸盐、氨氮、总氮、总磷、COD指标并进行比较,筛选得出不同比例的微生物复合菌群对水体污染物指标的最佳去除效果(表3)。Put the pre-cultured bacterial solution into a centrifuge, centrifuge at 4000rpm for 10 minutes, wash with normal saline three times, then dilute with sterilized water samples, adjust the OD600 value of the bacterial solution to 0.5, and configure the bacterial suspension according to the level table , put into 1L of cultured tail water in proportion, and take the water sample without adding bacteria solution as the blank control, take the method of putting the Erlenmeyer flask still on the experimental table for the test (Figure 1), and take samples to determine the nitrite nitrogen and nitrate nitrogen. , phosphate, ammonia nitrogen, total nitrogen, total phosphorus, and COD indicators were compared and screened to obtain the best removal effect of different proportions of microbial complex flora on water pollutant indicators (Table 3).
表3各实验组别对养殖尾水污染物的去除率Table 3 The removal rate of each experimental group to the pollutants in the tail water of aquaculture
根据实验结果,对亚硝氮去除效果最好的菌群为组别11,即藤黄微球菌、枯草芽孢杆菌、解淀粉芽孢杆菌、地衣芽孢杆菌、巨大芽孢杆菌的比例为1:6:7:5:5。对硝氮去除效果最好的菌群为组别2,菌群比例为1:6:8:6:4。对磷酸盐去除效果最好的菌群为组别3,菌群比例为1:7:9:7:5。对氨氮去除效果最好的菌群为组别13,菌群比例为2:5:8:7:3。对总氮去除效果最好的菌群为组别14,菌群比例为2:6:9:5:4。对总磷去除效果最好的菌群为组别1,菌群比例为1:5:7:5:3。对COD去除效果最好的菌群为组别13和17,菌群比例分别为2:5:8:7:3和3:6:7:7:3。According to the experimental results, the bacterial group with the best removal effect on nitrite nitrogen is group 11, that is, the ratio of Micrococcus luteus, Bacillus subtilis, Bacillus amyloliquefaciens, Bacillus licheniformis and Bacillus megaterium is 1:6:7 :5:5. The bacteria group with the best removal effect on nitrate nitrogen was group 2, and the ratio of the bacteria group was 1:6:8:6:4. The bacteria group with the best effect on phosphate removal was
根据实验结果,考虑养殖尾水中总氮、总磷、COD三项指标为关键因素,其中又以总氮最为关键,由此确定组别14为处理尾水的最佳复合菌群,即藤黄微球菌、枯草芽孢杆菌、解淀粉芽孢杆菌、地衣芽孢杆菌、巨大芽孢杆菌的比例为2:6:9:5:4,该复合菌群对亚硝氮、硝氮、磷酸盐、氨氮、总氮、总磷、COD的去除率分别为72%、48%、32%、25%、75%、6%、74%(图2)。According to the experimental results, considering the three indicators of total nitrogen, total phosphorus, and COD in the tail water of aquaculture as the key factors, among which total nitrogen is the most critical, it is determined that group 14 is the best composite bacterial flora for tail water treatment, that is, Garcinia cambogia The ratio of Micrococcus, Bacillus subtilis, Bacillus amyloliquefaciens, Bacillus licheniformis and Bacillus megaterium is 2:6:9:5:4. The removal rates of nitrogen, total phosphorus, and COD were 72%, 48%, 32%, 25%, 75%, 6%, and 74% respectively (Figure 2).
实施例2:制备复合菌群Embodiment 2: Preparation of composite flora
首先对菌进行活化,具体步骤如下:First, activate the bacteria, the specific steps are as follows:
①各种菌分别准备1支含有5-10mL液体培养基的试管和2个平板,配制方法见表4;①Prepare a test tube containing 5-10mL liquid medium and 2 plates for each type of bacteria, see Table 4 for the preparation method;
②安全柜中分别打开装有5种菌粉的冻干管,用酒精灯灼烧项部,后迅速滴上无菌水使之破裂,随后用镊子将其敲碎;② Open the freeze-dried tubes containing 5 kinds of bacteria powder in the safety cabinet, burn the neck with an alcohol lamp, then quickly drop sterile water to break it, and then smash it with tweezers;
③吸取0.5mL液体培养基打入冻干管,充分溶解后重新打回液体试管中,混匀;③Pipe 0.5mL of liquid culture medium into the freeze-drying tube, dissolve it fully, put it back into the liquid test tube, and mix well;
④吸取0.2mL菌悬液打入平板中,涂布均匀,重复两次获得两个平板;⑤将液体试管和平板全部置于下述条件:30℃,好氧,放置24h,菌种长出后观察液体培养基与平板中菌落生长情况,确认液体培养基浑浊且平板中菌落形态符合各菌的形态特征后(表5),即可使用。④Pipe 0.2mL of bacterial suspension into the plate, spread it evenly, and repeat twice to obtain two plates; Then observe the growth of the colony in the liquid medium and the plate, and confirm that the liquid medium is turbid and the shape of the colony in the plate conforms to the morphological characteristics of each bacteria (Table 5), then it can be used.
表4:培养基配方表Table 4: Medium formula table
表5:菌的形态特征表Table 5: Morphological characteristics of bacteria
实施例3:利用微生物复合菌群生物处理水产养殖尾水Example 3: Utilizing microbial complex flora to biologically treat aquaculture tail water
将复合菌群投入中试实验模拟综合生物修复系统中进行实验,监测实验过程中尾水中营养盐含量变化。图3为中试实验流程图,系统共设置5个处理步骤,除常规处理沉淀区、滤食性贝类区、人工湿地区外,将本发明优选后菌群分别定着于毛刷区、陶粒区,利用其处理100L水产养殖尾水,系统运行10天后,尾水处理效果如图4所示,可知系统添加复合菌群后对硝氮、磷酸盐、氨氮营养盐有较好的去除效果,尤其是磷酸盐达到83.09%的去除效果,而未添加菌群的系统仅为38.60%。Put the complex flora into the pilot test to simulate the comprehensive bioremediation system for experiments, and monitor the changes of nutrient content in the tail water during the experiment. Fig. 3 is the flow chart of the pilot test experiment. The system is equipped with 5 processing steps. In addition to the conventional treatment of the sedimentation area, the filter-feeding shellfish area, and the artificial wet area, the optimized flora of the present invention are respectively fixed on the brush area, ceramsite After 10 days of system operation, the tail water treatment effect is shown in Figure 4. It can be seen that the system has a good removal effect on nitrate nitrogen, phosphate, and ammonia nitrogen nutrients after adding complex bacteria. Especially the removal effect of phosphate reached 83.09%, while the system without adding flora was only 38.60%.
本发明所筛选的微生物复合菌群环境适应力好,且应用效果良好,可为日后评价和优化尾水处理技术提供新思路,为实现水产养殖的绿色发展作贡献。The microbial complex flora screened by the invention has good environmental adaptability and good application effect, which can provide new ideas for evaluating and optimizing tail water treatment technology in the future, and contribute to the realization of green development of aquaculture.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111389787.1A CN113929221B (en) | 2021-11-22 | 2021-11-22 | A microbial complex flora for treating aquaculture tail water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111389787.1A CN113929221B (en) | 2021-11-22 | 2021-11-22 | A microbial complex flora for treating aquaculture tail water |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113929221A CN113929221A (en) | 2022-01-14 |
CN113929221B true CN113929221B (en) | 2023-07-14 |
Family
ID=79287311
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111389787.1A Active CN113929221B (en) | 2021-11-22 | 2021-11-22 | A microbial complex flora for treating aquaculture tail water |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113929221B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2957222A1 (en) * | 2014-08-06 | 2016-02-11 | Envera, Llc | Bacterial spore compositions for industrial uses |
EP3223834A2 (en) * | 2014-11-25 | 2017-10-04 | Evelo Biosciences, Inc. | Probiotic and prebiotic compositions, and methods of use thereof for modulation of the microbiome |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MX2007007040A (en) * | 2004-12-17 | 2008-10-24 | Metanomics Gmbh | Process for the control of production of fine chemicals. |
CN104630101B (en) * | 2015-01-22 | 2018-07-13 | 陈静 | It is a kind of to be used to handle biological agent of ammonia-nitrogen sewage and preparation method thereof |
CN109650556A (en) * | 2019-01-23 | 2019-04-19 | 武汉丰甜生物科技有限公司 | The composite bacillus microbial inoculum and its application of ammonia nitrogen and nitrite in degradation water body |
CN114007694A (en) * | 2019-03-25 | 2022-02-01 | 以色列国家农业部、农村发展农业研究组织·沃尔卡尼机构 | Method for treating bovine mastitis |
-
2021
- 2021-11-22 CN CN202111389787.1A patent/CN113929221B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2957222A1 (en) * | 2014-08-06 | 2016-02-11 | Envera, Llc | Bacterial spore compositions for industrial uses |
EP3223834A2 (en) * | 2014-11-25 | 2017-10-04 | Evelo Biosciences, Inc. | Probiotic and prebiotic compositions, and methods of use thereof for modulation of the microbiome |
Also Published As
Publication number | Publication date |
---|---|
CN113929221A (en) | 2022-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Weber et al. | Microbial composition and structure of aerobic granular sewage biofilms | |
Pekkoh et al. | Dual-bioaugmentation strategy to enhance the formation of algal-bacteria symbiosis biofloc in aquaculture wastewater supplemented with agricultural wastes as an alternative nutrient sources and biomass support materials | |
CN107523516B (en) | A strain of tetracycline antibiotics degrading bacteria and its application | |
Kee et al. | Development of bio-granules using selected mixed culture of decolorizing bacteria for the treatment of textile wastewater | |
CN101538541B (en) | Culture method of biological cleaning strains in low-concentration volatile mixed organic waste gas | |
CN115491312B (en) | A kind of preparation method and application of aerobic denitrifying bacteria-chlorella algae biofilm | |
Wang et al. | Efficiency of Nannochloropsis oculata and Bacillus polymyxa symbiotic composite at ammonium and phosphate removal from synthetic wastewater | |
CN108998386B (en) | A phage-type bacterium for deep dewatering of sludge | |
Gong et al. | Effect of different size microplastic particles on the construction of algal-bacterial biofilms and microbial communities | |
CN117342707B (en) | Algae-bacteria symbiotic capsule, preparation method thereof and wastewater treatment method | |
CN116162550A (en) | A method for screening aerobic denitrifying fungi and repairing low-carbon-nitrogen ratio water bodies | |
Wei et al. | Treatment efficiency and microbial community analysis in the integrated bioremediation system of aquaculture wastewater with the ceramsite and compound bacteria | |
Han et al. | Improved nitrate removal by polyvinyl alcohol/sodium alginate hydrogel beads entrapping salt-tolerant composite bioagent AHM M3 | |
CN113929221B (en) | A microbial complex flora for treating aquaculture tail water | |
CN118420117B (en) | Domestication method of sulfur-iron mixed autotrophic active sludge for degrading drugs and sewage treatment method for degrading drugs | |
CN102864098A (en) | A denitrifying phosphorus-accumulating bacterium H-hrb02 and its screening method and application | |
Li et al. | Hydrodynamic cultivation of aeration-free oxygenic photogranules is favored by sufficient amounts of organic carbon | |
CN111349626A (en) | Immobilized microorganism for sewage treatment and preparation method and application thereof | |
CN113699060B (en) | Low-carbon high-nitrogen-resistant heterotrophic nitrification-aerobic denitrification sphingosine box fungus and application thereof | |
CN105174654B (en) | A method of being used for landscape water body deodorization | |
CN100339487C (en) | Method of separating screening heterotrophic nitration bacteria | |
CN113428987A (en) | Method for removing multiple antibiotics and heavy metals in sewage | |
CN110218722A (en) | It is a kind of for removing the dry bacteria of low concentration copper ion in waste water | |
CN113699141B (en) | A slow-release carbon source immobilized aerobic denitrification compound bacterial agent and its preparation method and application | |
Dai et al. | The characteristics of H6 against Microcystis aeruginosa |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |