CN113922721B - Model predictive control method for permanent magnet synchronous linear motor with continuous control set - Google Patents
Model predictive control method for permanent magnet synchronous linear motor with continuous control set Download PDFInfo
- Publication number
- CN113922721B CN113922721B CN202111204943.2A CN202111204943A CN113922721B CN 113922721 B CN113922721 B CN 113922721B CN 202111204943 A CN202111204943 A CN 202111204943A CN 113922721 B CN113922721 B CN 113922721B
- Authority
- CN
- China
- Prior art keywords
- permanent magnet
- linear motor
- magnet synchronous
- stator
- synchronous linear
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 37
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 37
- 239000013598 vector Substances 0.000 claims abstract description 46
- 238000005457 optimization Methods 0.000 claims abstract description 21
- 230000009471 action Effects 0.000 claims abstract description 9
- 238000013178 mathematical model Methods 0.000 claims abstract description 7
- 230000004907 flux Effects 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 238000005096 rolling process Methods 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 2
- 238000004364 calculation method Methods 0.000 abstract description 9
- 230000006870 function Effects 0.000 description 22
- 238000010586 diagram Methods 0.000 description 15
- 238000004590 computer program Methods 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 6
- 238000005070 sampling Methods 0.000 description 6
- 238000004422 calculation algorithm Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 244000145845 chattering Species 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000009347 mechanical transmission Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/0003—Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/0003—Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
- H02P21/0007—Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control using sliding mode control
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P25/00—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
- H02P25/02—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
- H02P25/06—Linear motors
- H02P25/064—Linear motors of the synchronous type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P2207/00—Indexing scheme relating to controlling arrangements characterised by the type of motor
- H02P2207/05—Synchronous machines, e.g. with permanent magnets or DC excitation
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
Description
技术领域technical field
本发明涉及永磁同步直线电机控制技术领域,尤其是指一种连续控制集永磁同步直线电机模型预测控制方法。The invention relates to the technical field of permanent magnet synchronous linear motor control, in particular to a continuous control set permanent magnet synchronous linear motor model predictive control method.
背景技术Background technique
永磁同步直线电机,由于取消了机械传动环节,具有高速、高精和零传动特性,因此其机械损耗小,推力密度大,动态响应快而受到广泛关注,已被大量应用于电梯、半导体制造设备和计算机数控机床等精密应用领域。The permanent magnet synchronous linear motor, because of the cancellation of the mechanical transmission link, has high speed, high precision and zero transmission characteristics, so its mechanical loss is small, the thrust density is high, and the dynamic response is fast, so it has attracted wide attention and has been widely used in elevators and semiconductor manufacturing. Precision applications such as equipment and computer numerical control machine tools.
目前应用较广泛的主要是矢量控制,直接转矩控制以及有限控制集模型预测控制等。相对于直接转矩控制,模型预测控制在矢量选择上更加准确有效,它通过对电机状态进行预测来选取当前时刻的最优电压矢量,从而能够获得更好的稳态性能。上述模型预测控制具有动态响应快、电流控制性能好、易于考虑系统非线性约束以及控制灵活等特点。传统的电流预测控制通过一步电流预测就可以得到较好的控制效果,但是一步电流预测控制方法忽略了算法计算和系统采样耗时,如果采样时间小,计算耗时长,从检测到应用开关状态之间就会出现延时问题,系统就会一直应用前一个时刻的开关状态,电流预测出现偏差从而导致控制精度不准,在系统进入稳态过程中转速波动较大且进入稳态后电流谐波较大。还有,使用传统遍历方法的多步预测控制虽然可以带来更好的控制效果,但随之而来的是呈指数增长的计算量,不利于系统的在线执行。其中,有限控制集模型预测控制在一个周期内只选择一个开关状态直接送入逆变器,其避免了PWM调制,控制简单,但是该算法会带来较大的电流脉动和转矩脉动,控制精度较差。而且传统的滑模控制算法一般采用线性滑模面,状态误差收敛时间长,且会带来严重的抖振问题。Currently, vector control, direct torque control and finite control set model predictive control are widely used. Compared with direct torque control, model predictive control is more accurate and effective in vector selection. It selects the optimal voltage vector at the current moment by predicting the state of the motor, so that better steady-state performance can be obtained. The above model predictive control has the characteristics of fast dynamic response, good current control performance, easy consideration of system nonlinear constraints, and flexible control. The traditional current predictive control can get a better control effect through one-step current prediction, but the one-step current predictive control method ignores the time-consuming algorithm calculation and system sampling. If the sampling time is small, the calculation time will be long. There will be a time delay problem, the system will always use the switch state at the previous moment, and the current prediction will deviate, resulting in inaccurate control accuracy. When the system enters the steady state, the speed fluctuates greatly and the current harmonics larger. In addition, although the multi-step predictive control using the traditional ergodic method can bring better control effects, it is followed by an exponentially increasing calculation amount, which is not conducive to the online execution of the system. Among them, the finite control set model predictive control only selects one switch state in one cycle and directly sends it to the inverter, which avoids PWM modulation and is easy to control, but this algorithm will bring large current ripples and torque ripples. The accuracy is poor. Moreover, the traditional sliding mode control algorithm generally uses a linear sliding mode surface, which takes a long time to converge state errors and causes serious chattering problems.
发明内容Contents of the invention
为此,本发明所要解决的技术问题在于克服现有技术存在的问题,提出一种连续控制集永磁同步直线电机模型预测控制方法,对实现永磁同步直线电机高性能控制具有重要意义。Therefore, the technical problem to be solved by the present invention is to overcome the problems existing in the prior art, and to propose a model predictive control method for continuous control of integrated permanent magnet synchronous linear motors, which is of great significance for realizing high-performance control of permanent magnet synchronous linear motors.
为解决上述技术问题,本发明提供一种连续控制集永磁同步直线电机模型预测控制方法,包括以下步骤:In order to solve the above technical problems, the present invention provides a model predictive control method for continuous control integrated permanent magnet synchronous linear motor, comprising the following steps:
利用永磁同步直线电机的数学模型得到旋转坐标系下的定子电流状态方程;Using the mathematical model of the permanent magnet synchronous linear motor, the state equation of the stator current in the rotating coordinate system is obtained;
根据所述定子电流状态方程确定成本函数,并将所述成本函数转换为二次优化方程;determining a cost function according to the stator current state equation, and converting the cost function into a quadratic optimization equation;
计算所述二次优化方程的最优解,得到理想状态下的逆变器连续开关状态,并确定所述最优解所在的扇区;Calculating the optimal solution of the quadratic optimization equation, obtaining the continuous switching state of the inverter in an ideal state, and determining the sector where the optimal solution is located;
确定所述扇区合成最优电压矢量的三个电压矢量,计算所述三个电压矢量分别的作用时间,对三个电压矢量的时间进行PWM波形调制,并将调制过后的PWM波形输入到所述逆变器中,同时定义电机的参考转速与反馈转速之间的误差为状态变量,根据所述状态变量确定非奇异终端滑模面,对所述滑模面进行微分得到滑模控制器的输出表达式。Determine the three voltage vectors of the sector-combined optimal voltage vectors, calculate the respective action times of the three voltage vectors, perform PWM waveform modulation on the time of the three voltage vectors, and input the modulated PWM waveforms to the In the above inverter, the error between the reference speed and the feedback speed of the motor is defined as the state variable at the same time, and the non-singular terminal sliding mode surface is determined according to the state variable, and the sliding mode surface is differentiated to obtain the sliding mode controller. output expression.
在本发明的一个实施例中,利用永磁同步直线电机的数学模型得到旋转坐标系下的定子电流状态方程包括:In one embodiment of the present invention, using the mathematical model of the permanent magnet synchronous linear motor to obtain the stator current state equation under the rotating coordinate system includes:
所述定子电流状态方程如下:The state equation of the stator current is as follows:
其中,ud与uq分别为定子直轴电压与电子交轴电压,id与iq分别为定子直轴电流与定子交轴电流,Rs为定子阻,ψd与ψq为定子直轴磁链与定子交轴磁链,ψd=Ldid+ψf,ψq=Lqiq,ψf是永磁体磁链。Among them, u d and u q are stator direct axis voltage and electron quadrature axis voltage respectively, id and i q are stator direct axis current and stator quadrature axis current respectively, R s is stator resistance, ψ d and ψ q are stator direct Shaft flux linkage and stator quadrature axis flux linkage, ψ d =L d i d +ψ f , ψ q =L q i q , ψ f is permanent magnet flux linkage.
在本发明的一个实施例中,在得到定子电流状态方程后,根据欧拉公式得到电流的微分形式,以使k+1周期的电流值可以从第k周期获得。In one embodiment of the present invention, after obtaining the state equation of the stator current, the differential form of the current is obtained according to Euler's formula, so that the current value of the k+1 period can be obtained from the kth period.
在本发明的一个实施例中,根据所述定子电流状态方程确定成本函数包括:In one embodiment of the present invention, determining the cost function according to the stator current state equation includes:
定义变量Δs(k|k)=s(k|k)-s(k-1|k),将所述成本函数的形式表示为/>式中λ>0为权重因子电流的极限值,Δs(k|k)为前后开关状态之间的开关损耗,λ为权重系数;define variable Δs(k|k)=s(k|k)-s(k-1|k), the form of the cost function is expressed as /> In the formula, λ>0 is the limit value of the weight factor current, Δs(k|k) is the switching loss between the front and rear switch states, and λ is the weight coefficient;
引入切换序列S(k|k)=[s(k|k)T,...,s(k+N-1|k)T]T构造出定子交、直轴电流预测值在滚动时域下的向量形式如下,其中,N为预测步数,S(k|k)∈M、s(k|k)代表逆变器k时刻开关位置的开关状态,Ms×s...×s表示为离散开关状态s的N次笛卡尔乘积:Introduce the switching sequence S(k|k)=[s(k|k) T ,...,s(k+N-1|k) T ] T to construct the stator cross-axis and direct-axis current prediction values in the rolling time domain The following vector form is as follows, where N is the number of prediction steps, S(k|k)∈M, s(k|k) represents the switch state of the switch position of the inverter at time k, and Ms×s...×s represents is the N times Cartesian product of the discrete switch state s:
xdq(k+N|k)=AN(k|k)xdq(k|k)+[AN-1(k|k)B+...+A0(k|k)B]s(k|k)+[AN-1(k|k)F(k|k)+...+A0(k|k)F];x dq (k+N|k)=A N (k|k)x dq (k|k)+[A N-1 (k|k)B+...+A 0 (k|k)B]s (k|k)+[A N-1 (k|k)F(k|k)+...+A 0 (k|k)F];
令Ydq表示k+1时刻到k+N时刻预测步长范围内交、直轴电流预测值的输出,Y* dq为相应的参考输出:Let Y dq represent the output of the predicted value of the orthogonal and direct axis current within the prediction step range from k+1 time to k+N time, and Y * dq is the corresponding reference output:
Ydq=Γxdq(k|k)+ΥS(k|k)+ΠY dq =Γx dq (k|k)+YS(k|k)+Π
式中,Γ=[A,A2,…,AN]T,/> In the formula, Γ=[A, A 2 ,…,A N ] T , />
将成本函数修改为并定义:Modify the cost function to and define:
Ξ(k|k)=((Γxdq(k|k)-Ω(k|k))TΥ-λ(Es(k-1|k))TW)T,Q=ΥTΥ+λWTW;Ξ(k|k)=((Γx dq (k|k)-Ω(k|k)) T Υ-λ(Es(k-1|k)) T W) T , Q=Υ T Υ+λW T W;
确定所述成本函数为J=ξ(k|k)+2(Ξ(k|k))TS(k|k)+S(k|k)TQS(k|k),式中Determine the cost function as J=ξ(k|k)+2(Ξ(k|k)) T S(k|k)+S(k|k) T QS(k|k), where
在本发明的一个实施例中,将所述成本函数转换为二次优化方程包括:In one embodiment of the present invention, converting the cost function into a quadratic optimization equation includes:
通过矩阵变换将成本函数J=ξ(k|k)+2(Ξ(k|k))TS(k|k)+S(k|k)TQS(k|k)转换为二次优化方程如下:Transform the cost function J=ξ(k|k)+2(Ξ(k|k)) T S(k|k)+S(k|k) T QS(k|k) into quadratic optimization by matrix transformation The equation is as follows:
J=(S(k|k)+Q-1Ξ(k|k))TQ(S(k|k)+Q-1Ξ(k|k))+c(k|k)J=(S(k|k)+Q -1 Ξ(k|k)) T Q(S(k|k)+Q -1 Ξ(k|k))+c(k|k)
其中,c(k)为一个常数项。Among them, c(k) is a constant term.
在本发明的一个实施例中,计算所述二次优化方程的最优解包括:In one embodiment of the present invention, calculating the optimal solution of the quadratic optimization equation includes:
在无约束条件下计算所述二次优化方程的最优解为Sunc(k|k)=-HQ-1Ξ(k),其中最优解Sunc(k|k)为3N行的列向量,其前三个元素表示某一时刻的最优开关状态sopt=[Sunc(1) Sunc(2) Sunc(3)]T。Calculating the optimal solution of the quadratic optimization equation under unconstrained conditions is S unc (k | k)=-HQ- 1 Ξ (k), wherein the optimal solution S unc (k | k) is the column of 3N rows Vector, the first three elements of which represent the optimal switch state s opt =[S unc (1) S unc (2) S unc (3)] T at a certain moment.
在本发明的一个实施例中,确定所述最优解所在的扇区包括:In an embodiment of the present invention, determining the sector where the optimal solution is located includes:
计算所述最优开关状态sopt在α-β轴上的分量ua,uβ;calculating the components u a , u β of the optimal switching state s opt on the α-β axis;
定义归一化向量和/>其中得到P与扇区/>的关系;Define the normalization vector and /> in get P with sector /> Relationship;
根据所述P与扇区的关系确定所述最优解所在的扇区。According to the P and sector The relationship of determines the sector where the optimal solution is located.
在本发明的一个实施例中,计算所述三个电压矢量分别的作用时间包括:In one embodiment of the present invention, calculating the respective action times of the three voltage vectors includes:
令得到所述三个电压矢量的作用时间,其中所述三个电压矢量包括一个零电压矢量和两个非零电压矢量。make The action times of the three voltage vectors are obtained, wherein the three voltage vectors include one zero voltage vector and two non-zero voltage vectors.
在本发明的一个实施例中,定义电机的参考转速与反馈转速之间的误差为状态变量,根据所述状态变量确定非奇异终端滑模面包括:In one embodiment of the present invention, the error between the reference speed and the feedback speed of the motor is defined as a state variable, and determining the non-singular terminal sliding surface according to the state variable includes:
定义速度误差e=v*-v,根据永磁同步直线电机的电磁推力公式得到公式为/> Define the speed error e=v * -v, according to the electromagnetic thrust formula of the permanent magnet synchronous linear motor get the formula as />
确定非奇异终端滑模面为其中k,α,β均大于0,g,h,p,q,均为正奇数,并且1<p/q<2,p/q<g/h。Determine the non-singular terminal sliding mode surface as Among them, k, α, β are all greater than 0, g, h, p, q are all positive odd numbers, and 1<p/q<2, p/q<g/h.
在本发明的一个实施例中,对所述滑模面进行微分得到滑模控制器的输出表达式包括:In one embodiment of the present invention, the output expression of the sliding mode controller obtained by differentiating the sliding mode surface includes:
令对终端滑模面进行微分得到:make Differentiating the terminal sliding mode surface yields:
即滑模控制器的输出为其中ξ>0,γ>0; That is, the output of the sliding mode controller is Where ξ>0, γ>0;
定义切换函数其中δ=π/(2Δ),Δ是边界层厚度,即滑模控制器的输出为/> define switch function Where δ=π/(2Δ), Δ is the thickness of the boundary layer, that is, the output of the sliding mode controller is />
本发明的上述技术方案相比现有技术具有以下优点:The above technical solution of the present invention has the following advantages compared with the prior art:
本发明通过矩阵转换将耦合多变量的成本函数转变为易于计算的二次优化方程,通过二次优化方程,减少多步预测的在线计算量,解决因为算法计算和系统采样造成的时延问题,且在不考虑对开关状态的相关约束后得到一个非布尔量的最优开关状态,显著提高了控制性能,同时采用非奇异终端滑模控制器提高了整个系统的抗扰能力,对实现永磁同步直线电机高性能控制具有重要意义。The present invention converts the coupling multivariable cost function into an easy-to-calculate quadratic optimization equation through matrix conversion, reduces the online calculation amount of multi-step prediction through the quadratic optimization equation, and solves the time delay problem caused by algorithm calculation and system sampling, And without considering the relevant constraints on the switch state, a non-Boolean optimal switch state is obtained, which significantly improves the control performance. At the same time, the non-singular terminal sliding mode controller is used to improve the anti-disturbance ability of the entire system, which is beneficial to the realization of permanent magnet The high performance control of synchronous linear motor is of great significance.
附图说明Description of drawings
为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明。In order to make the content of the present invention more clearly understood, the present invention will be further described in detail below according to the specific embodiments of the present invention and in conjunction with the accompanying drawings.
图1是本发明连续控制集永磁同步直线电机模型预测控制方法的流程示意图。Fig. 1 is a schematic flow chart of the method for model predictive control of the continuous control integrated permanent magnet synchronous linear motor of the present invention.
图2是本发明连续控制集永磁同步直线电机模型预测控制方法的系统控制框图。Fig. 2 is a system control block diagram of the method for model predictive control of the continuous control integrated permanent magnet synchronous linear motor of the present invention.
图3是本发明连续控制集永磁同步直线电机模型预测控制方法的逆变器框图。Fig. 3 is a block diagram of the inverter for the model predictive control method of the continuous control integrated permanent magnet synchronous linear motor of the present invention.
图4是本发明连续控制集永磁同步直线电机模型预测控制方法的扇区划分示意图。Fig. 4 is a schematic diagram of sector division of the method for model predictive control of the continuous control integrated permanent magnet synchronous linear motor of the present invention.
图5是本发明连续控制集永磁同步直线电机模型预测控制方法的扇区与P的关系示意图。Fig. 5 is the sector of the model predictive control method for the continuous control set permanent magnet synchronous linear motor of the present invention Schematic diagram of the relationship with P.
图6是本发明连续控制集永磁同步直线电机模型预测控制方法的三个电压矢量的作用时间图。Fig. 6 is an action time diagram of three voltage vectors in the model predictive control method of the continuous control integrated permanent magnet synchronous linear motor of the present invention.
图7是本发明连续控制集永磁同步直线电机模型预测控制方法的三步预测控制下且未加扰动补偿的转速波形图。Fig. 7 is a waveform diagram of the rotational speed under the three-step predictive control of the model predictive control method of the continuous control integrated permanent magnet synchronous linear motor of the present invention without disturbance compensation.
图8是本发明连续控制集永磁同步直线电机模型预测控制方法的三步预测控制下且加扰动补偿的转速波形图。Fig. 8 is a waveform diagram of the rotational speed under the three-step predictive control and disturbance compensation of the model predictive control method of the continuous control integrated permanent magnet synchronous linear motor of the present invention.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments, so that those skilled in the art can better understand the present invention and implement it, but the examples given are not intended to limit the present invention.
请参阅图1至6所示,本实施例提供一种连续控制集永磁同步直线电机模型预测控制方法,包括以下步骤:Referring to FIGS. 1 to 6, this embodiment provides a model predictive control method for continuous control set permanent magnet synchronous linear motor, including the following steps:
S100:利用永磁同步直线电机的数学模型得到旋转坐标系下的定子电流状态方程;S100: Using the mathematical model of the permanent magnet synchronous linear motor to obtain the state equation of the stator current in the rotating coordinate system;
S200:根据所述定子电流状态方程确定成本函数,并将所述成本函数转换为二次优化方程;S200: Determine a cost function according to the stator current state equation, and convert the cost function into a quadratic optimization equation;
S300:计算所述二次优化方程的最优解,得到理想状态下的逆变器连续开关状态,并确定所述最优解所在的扇区;S300: Calculate the optimal solution of the quadratic optimization equation, obtain the continuous switching state of the inverter in an ideal state, and determine the sector where the optimal solution is located;
S400:确定所述扇区合成最优电压矢量的三个电压矢量,计算所述三个电压矢量分别的作用时间,对三个电压矢量的时间进行PWM波形调制,并将调制过后的PWM波形输入到所述逆变器中,同时定义电机的参考转速与反馈转速之间的误差为状态变量,根据所述状态变量确定非奇异终端滑模面,对所述滑模面进行微分得到滑模控制器的输出表达式。S400: Determine the three voltage vectors of the sector-combined optimal voltage vectors, calculate the respective action times of the three voltage vectors, perform PWM waveform modulation on the time of the three voltage vectors, and input the modulated PWM waveforms In the inverter, the error between the reference speed and the feedback speed of the motor is defined as the state variable at the same time, and the non-singular terminal sliding mode surface is determined according to the state variable, and the sliding mode control is obtained by differentiating the sliding mode surface The output expression of the device.
本发明通过矩阵转换将耦合多变量的成本函数转变为易于计算的二次优化方程,通过二次优化方程,减少多步预测的在线计算量,解决因为算法计算和系统采样造成的时延问题,且在不考虑对开关状态的相关约束后得到一个非布尔量的最优开关状态,显著提高了控制性能,同时采用非奇异终端滑模控制器提高了整个系统的抗扰能力,对实现永磁同步直线电机高性能控制具有重要意义。The present invention converts the coupling multivariable cost function into an easy-to-calculate quadratic optimization equation through matrix conversion, reduces the online calculation amount of multi-step prediction through the quadratic optimization equation, and solves the time delay problem caused by algorithm calculation and system sampling, And without considering the relevant constraints on the switch state, a non-Boolean optimal switch state is obtained, which significantly improves the control performance. At the same time, the non-singular terminal sliding mode controller is used to improve the anti-disturbance ability of the entire system, which is beneficial to the realization of permanent magnet The high performance control of synchronous linear motor is of great significance.
其中,在步骤S100中,利用永磁同步直线电机的数学模型得到旋转坐标系下的定子电流状态方程包括:Wherein, in step S100, using the mathematical model of the permanent magnet synchronous linear motor to obtain the state equation of the stator current in the rotating coordinate system includes:
所述定子电流状态方程如下:The state equation of the stator current is as follows:
其中,ud与uq分别为定子直轴电压与电子交轴电压,id与iq分别为定子直轴电流与定子交轴电流,Rs为定子阻,ψd与ψq为定子直轴磁链与定子交轴磁链,ψd=Ldid+ψf,ψq=Lqiq,ψf是永磁体磁链。Among them, u d and u q are stator direct axis voltage and electron quadrature axis voltage respectively, id and i q are stator direct axis current and stator quadrature axis current respectively, R s is stator resistance, ψ d and ψ q are stator direct Shaft flux linkage and stator quadrature axis flux linkage, ψ d =L d i d +ψ f , ψ q =L q i q , ψ f is permanent magnet flux linkage.
在得到定子电流状态方程后,根据欧拉公式得到电流的微分形式为:After obtaining the state equation of the stator current, the differential form of the current is obtained according to Euler's formula:
以使k+1周期的电流值可以从第k周期获得: So that the current value of the k+1 period can be obtained from the kth period:
式中: In the formula:
其中s(k)表示k时刻的开关状态,Udc为直流侧电压,G2/2,G3/2为坐标变换矩阵。令xdq=[id,iq]T为系统的状态向量,/>为对应的参考值。·(k+i|k)表示为在k时刻预测的k+i时刻的值。 Among them, s(k) represents the switching state at time k, U dc is the DC side voltage, G 2/2 and G 3/2 are coordinate transformation matrices. Let x dq =[i d ,i q ] T is the state vector of the system, /> is the corresponding reference value. ·(k+i|k) is expressed as the value at time k+i predicted at time k.
其中,在步骤S200中,根据所述定子电流状态方程确定成本函数包括:Wherein, in step S200, determining the cost function according to the stator current state equation includes:
定义变量Δs(k|k)=s(k|k)-s(k-1|k),考虑电流预测值与参考值之间的误差以及前后时刻开关变化产生的开关损耗,将成本函数的形式表示为/>式中λ>0为权重因子电流的极限值,Δs(k|k)为前后开关状态之间的开关损耗,λ为权重系数;define variables Δs(k|k)=s(k|k)-s(k-1|k), considering the error between the current prediction value and the reference value and the switching loss caused by the switch change at the front and back moments, the form of the cost function is expressed for /> In the formula, λ>0 is the limit value of the weight factor current, Δs(k|k) is the switching loss between the front and rear switch states, and λ is the weight coefficient;
引入切换序列S(k|k)=[s(k|k)T,...,s(k+N-1|k)T]T构造出定子交、直轴电流预测值在滚动时域下的向量形式如下,其中,N为预测步数,S(k|k)∈M、s(k|k)代表逆变器k时刻开关位置的开关状态,M s×s...×s表示为离散开关状态s的N次笛卡尔乘积:Introduce the switching sequence S(k|k)=[s(k|k) T ,...,s(k+N-1|k) T ] T to construct the stator cross-axis and direct-axis current prediction values in the rolling time domain The following vector form is as follows, where N is the number of prediction steps, S(k|k)∈M, s(k|k) represents the switching state of the switch position of the inverter at time k, M s×s...×s Expressed as N times Cartesian product of discrete switch states s:
xdq(k+N|k)=AN(k|k)xdq(k|k)+[AN-1(k|k)B+...+A0(k|k)B]s(k|k)+[AN-1(k|k)F(k|k)+...+A0(k|k)F];x dq (k+N|k)=A N (k|k)x dq (k|k)+[A N-1 (k|k)B+...+A 0 (k|k)B]s (k|k)+[A N-1 (k|k)F(k|k)+...+A 0 (k|k)F];
令Ydq表示k+1时刻到k+N时刻预测步长范围内交、直轴电流预测值的输出,Y* dq为相应的参考输出:Let Y dq represent the output of the predicted value of the orthogonal and direct axis current within the prediction step range from k+1 time to k+N time, and Y * dq is the corresponding reference output:
Ydq=Γxdq(k|k)+ΥS(k|k)+ΠY dq =Γx dq (k|k)+YS(k|k)+Π
式中,Γ=[A,A2,…,AN]T,/> In the formula, Γ=[A, A 2 ,…,A N ] T , />
将成本函数修改为并定义:Modify the cost function to and define:
Ξ(k|k)=((Γxdq(k|k)-Ω(k|k))TΥ-λ(Es(k-1|k))TW)T,Q=ΥTΥ+λWTW;Ξ(k|k)=((Γx dq (k|k)-Ω(k|k)) T Υ-λ(Es(k-1|k)) T W) T , Q=Υ T Υ+λW T W;
确定所述成本函数为J=ξ(k|k)+2(Ξ(k|k))TS(k|k)+S(k|k)TQS(k|k),式中Determine the cost function as J=ξ(k|k)+2(Ξ(k|k)) T S(k|k)+S(k|k) T QS(k|k), where
将成本函数转换为二次优化方程为J=(S(k|k)+Q-1Ξ(k|k))TQ(S(k|k)+Q-1Ξ(k|k))+c(k|k),其中c(k)为一个常数项,仅在采样时刻发生变化时变化。Convert the cost function into a quadratic optimization equation as J=(S(k|k)+Q- 1 Ξ(k|k)) T Q(S(k|k)+Q- 1 Ξ(k|k)) +c(k|k), where c(k) is a constant term that only changes when the sampling moment changes.
其中,在步骤S300中,在此引入k时刻无约束情况下的开关状态最优解,因为Q是正定的,无约束条件下最优解Sunc(k|k)=-HQ-1Ξ(k)。由前面的计算推倒可知Sunc(k|k)是一个3N行的列向量,其前三个元素表示k时刻的最优开关状态sopt=[Sunc(1) Sunc(2) Sunc(3)]T注意到sopt并不是布尔量,他是一个连续的开关状态表达形式,因此不能被直接送入逆变器。Wherein, in step S300, the optimal solution of the switch state under the unconstrained condition at time k is introduced here, because Q is positive definite, and the optimal solution S unc (k|k)=-HQ -1 Ξ( k). It can be deduced from the previous calculation that S unc (k|k) is a column vector of 3N rows, and its first three elements represent the optimal switch state s opt = [S unc (1) S unc (2) S unc (3)] T noticed that s opt is not a Boolean quantity, it is a continuous switch state expression, so it cannot be directly fed into the inverter.
得到最优的连续开关状态后,确定最优电压矢量处于哪一个扇区之中。首先要求出sopt在α-β轴上的分量ua,uβ:After obtaining the optimal continuous switching state, determine which sector the optimal voltage vector is in. Firstly, the components u a , u β of s opt on the α-β axis are required:
在这里定义一个归一化向量和/>其中:Define a normalization vector here and /> in:
最终得到P与扇区的关系如图5所示。Finally get P and sector The relationship is shown in Figure 5.
其中,在步骤S400中,计算三个电压矢量分别的作用时间包括:Wherein, in step S400, calculating the respective action times of the three voltage vectors includes:
令得到三个电压矢量的作用时间如图6所示,其中三个电压矢量包括一个零电压矢量和两个非零电压矢量。make Figure 6 shows the action time of the three voltage vectors, where the three voltage vectors include a zero voltage vector and two non-zero voltage vectors.
其中,在步骤S400中,定义电机的参考转速与反馈转速之间的误差为状态变量,根据状态变量确定非奇异终端滑模面,对所述滑模面进行微分得到滑模控制器的输出表达式包括:Wherein, in step S400, the error between the reference speed of the motor and the feedback speed is defined as the state variable, and the non-singular terminal sliding mode surface is determined according to the state variable, and the sliding mode surface is differentiated to obtain the output expression of the sliding mode controller formulas include:
定义速度误差e=v*-v,根据永磁同步直线电机的电磁推力公式得到公式为/>考虑到控制器的输出频率远大于扰动的变化频率,因此在一个采样周期内扰动d可视为一个常数,因此:Define the speed error e=v * -v, according to the electromagnetic thrust formula of the permanent magnet synchronous linear motor get the formula as /> Considering that the output frequency of the controller is much greater than the change frequency of the disturbance, the disturbance d can be regarded as a constant within a sampling period, so:
确定非奇异终端滑模面为其中k,α,β均大于0,g,h,p,q,均为正奇数,并且1<p/q<2,p/q<g/h;Determine the non-singular terminal sliding mode surface as Among them, k, α, β are all greater than 0, g, h, p, q are all positive odd numbers, and 1<p/q<2, p/q<g/h;
令对终端滑模面进行微分得到:make Differentiating the terminal sliding mode surface yields:
即滑模控制器的输出为其中ξ>0,γ>0; That is, the output of the sliding mode controller is Where ξ>0, γ>0;
为了减小滑模面的抖振,定义切换函数其中δ=π/(2Δ),Δ是边界层厚度,即滑模控制器的输出为/>经过积分过后整个q轴的参考电流为:In order to reduce the chattering of the sliding mode surface, define the switching function Where δ=π/(2Δ), Δ is the thickness of the boundary layer, that is, the output of the sliding mode controller is /> After integration, the reference current of the entire q-axis is:
为了进一步降低扰动影响,本发明还设计了一种扰动观测器对速度环控制器进行补偿。In order to further reduce the influence of the disturbance, the present invention also designs a disturbance observer to compensate the speed loop controller.
下面对扰动观测器的设计进行介绍。The design of the disturbance observer is introduced below.
第一步:建立如下的状态空间方程:The first step: establish the following state space equation:
其中x=[v d]T,u=Fe,矩阵如下所示:where x=[vd] T , u=F e , The matrix looks like this:
根据状态方程构建状态观测器如下:The state observer is constructed according to the state equation as follows:
其中代表x的观测值,K=[k1 k2]为反馈系数矩阵。in Represents the observed value of x, K=[k 1 k 2 ] is the feedback coefficient matrix.
第二步:根据上述公式可以得出误差方程为;The second step: According to the above formula, the error equation can be obtained as;
可得矩阵特征方程为:The matrix characteristic equation can be obtained as:
假定期望的特征方程为:Suppose the desired characteristic equation is:
η2-(σ1+σ2)η+σ1σ2=0。η 2 −(σ 1 +σ 2 ) η+σ 1 σ 2 =0.
第三步:根据期望可以得到反馈系数如下:Step 3: According to the expectation, the feedback coefficient can be obtained as follows:
第四步:最终扰动观测器设计如下:Step 4: The final disturbance observer design is as follows:
第五步:将扰动观测器的输出进行补偿得到速度环的滑模控制器,最终滑模控制器输出如下:Step 5: Compensate the output of the disturbance observer to obtain the sliding mode controller of the speed loop. The final output of the sliding mode controller is as follows:
其中为反馈增益。in is the feedback gain.
图7和图8分别是本发明未加扰动补偿的转速波形图和加扰动补偿的转速波形图,从仿真结果对比来看,可以看出在负载扰动不断变换的情况下,采用滑模控制器的速度波形更加平稳,可见传统的PI控制器得到观测器补偿后,速度稳定性有了明显改善,但是仍然不如滑模控制器配合负载观测器的效果。Fig. 7 and Fig. 8 are respectively the rotational speed waveform diagram without disturbance compensation and the rotational speed waveform diagram with disturbance compensation in the present invention. From the comparison of the simulation results, it can be seen that under the condition that the load disturbance is constantly changing, the sliding mode controller is adopted The speed waveform is more stable. It can be seen that after the traditional PI controller is compensated by the observer, the speed stability has been significantly improved, but it is still not as good as the effect of the sliding mode controller with the load observer.
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。Those skilled in the art should understand that the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present application is described with reference to flowcharts and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the present application. It should be understood that each procedure and/or block in the flowchart and/or block diagram, and a combination of procedures and/or blocks in the flowchart and/or block diagram can be realized by computer program instructions. These computer program instructions may be provided to a general purpose computer, special purpose computer, embedded processor, or processor of other programmable data processing equipment to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing equipment produce a An apparatus for realizing the functions specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions The device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded onto a computer or other programmable data processing device, causing a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process, thereby The instructions provide steps for implementing the functions specified in the flow chart or blocks of the flowchart and/or the block or blocks of the block diagrams.
显然,上述实施例仅仅是为清楚地说明所作的举例,并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。Apparently, the above-mentioned embodiments are only examples for clear description, and are not intended to limit the implementation. For those of ordinary skill in the art, on the basis of the above description, other changes or changes in various forms can also be made. It is not necessary and impossible to exhaustively list all the implementation manners here. However, the obvious changes or changes derived therefrom are still within the scope of protection of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111204943.2A CN113922721B (en) | 2021-10-15 | 2021-10-15 | Model predictive control method for permanent magnet synchronous linear motor with continuous control set |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111204943.2A CN113922721B (en) | 2021-10-15 | 2021-10-15 | Model predictive control method for permanent magnet synchronous linear motor with continuous control set |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113922721A CN113922721A (en) | 2022-01-11 |
CN113922721B true CN113922721B (en) | 2023-08-01 |
Family
ID=79240680
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111204943.2A Active CN113922721B (en) | 2021-10-15 | 2021-10-15 | Model predictive control method for permanent magnet synchronous linear motor with continuous control set |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113922721B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115694277B (en) * | 2022-10-26 | 2025-05-09 | 东南大学 | Permanent magnet linear generator model prediction current control method, device and storage medium |
CN117526781A (en) * | 2023-11-07 | 2024-02-06 | 苏州馥昶空间技术有限公司 | Satellite sailboard driving motor control method and device, electronic equipment and storage medium |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109742991A (en) * | 2019-01-30 | 2019-05-10 | 江南大学 | Multi-step predictive control method of permanent magnet synchronous motor based on sector division algorithm |
CN110022105A (en) * | 2019-04-25 | 2019-07-16 | 西安理工大学 | Permanent magnet synchronous motor predictive-current control method and system based on FOSMC |
-
2021
- 2021-10-15 CN CN202111204943.2A patent/CN113922721B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109742991A (en) * | 2019-01-30 | 2019-05-10 | 江南大学 | Multi-step predictive control method of permanent magnet synchronous motor based on sector division algorithm |
CN110022105A (en) * | 2019-04-25 | 2019-07-16 | 西安理工大学 | Permanent magnet synchronous motor predictive-current control method and system based on FOSMC |
Non-Patent Citations (2)
Title |
---|
基于有限控制集的永磁同步电机模型预测控制方法;张闻涛等;《自动化仪表》;第41卷(第5期);第42-49页 * |
基于连续控制集的永磁同步直线电机模型预测控制;杨玮林等;《控制理论与应用》;第38卷(第10期);第1671-1682页 * |
Also Published As
Publication number | Publication date |
---|---|
CN113922721A (en) | 2022-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Robust continuous model predictive speed and current control for PMSM with adaptive integral sliding-mode approach | |
CN110429881B (en) | A kind of active disturbance rejection control method of permanent magnet synchronous motor | |
CN110165951B (en) | A Double-loop Deadbeat Predictive Control Method for Permanent Magnet Synchronous Motor Based on Disturbance Estimation and Compensation | |
CN111092583B (en) | A three-phase permanent magnet synchronous motor drive system current loop delay compensation method | |
CN112422004B (en) | Disturbance suppression method for permanent magnet synchronous motor in weak magnetic control mode | |
CN111342720A (en) | Adaptive Continuous Sliding Mode Control Method for Permanent Magnet Synchronous Motor Based on Load Torque Observation | |
CN113922721B (en) | Model predictive control method for permanent magnet synchronous linear motor with continuous control set | |
CN112910362B (en) | Model-free predictive current control method for permanent magnet synchronous motor | |
CN112532131B (en) | Sliding mode active disturbance rejection control method and system based on simulated annealing particle swarm algorithm | |
CN109495050B (en) | Dual-motor torque synchronous model predictive control method based on quadratic value function | |
CN109067275A (en) | A kind of permanent-magnetism linear motor chaotic control method based on decoupling self-adaptive sliding formwork | |
CN114374346A (en) | High-performance control method for permanent magnet synchronous motor | |
CN115250085A (en) | Complementary terminal sliding mode speed control method, system, device and storage medium | |
CN111211717B (en) | IPMSM (intelligent power management system) position-sensorless motor closed-loop control method of nonsingular sliding mode structure | |
CN112953335A (en) | Finite time self-adaptive composite control method and system for permanent magnet synchronous motor | |
CN114280944B (en) | PMSM system finite time dynamic surface control method with output constraint | |
CN114039522B (en) | Permanent magnet synchronous linear motor continuous control set model predictive control method based on secondary optimization | |
CN115102443A (en) | Control method and device for permanent magnet synchronous linear motor and storage medium | |
CN114726276A (en) | Permanent magnet synchronous motor model prediction control method | |
CN105846741A (en) | Double-permanent magnet synchronous motor chaos synchronization control method based on extended state observer | |
CN118748528A (en) | A speed control strategy for PMLSM drive system based on RBF adaptive super-twisted sliding mode | |
CN114257130A (en) | A Quadratic Value Function-Based Predictive Speed Synchronization Control Method for Dual Permanent Magnet Motor Systems | |
Wang et al. | An offset‐free robust model predictive control with incremental model and improved current observer for induction motor | |
CN108880383B (en) | Discretization design method for proportional resonant controller of permanent magnet motor | |
CN116505824A (en) | Permanent magnet synchronous motor control method based on double-prediction control |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |