CN113913882B - Method for preparing aluminum-titanium alloy by taking titanium oxycarbide as raw material through low-temperature electrodeposition - Google Patents
Method for preparing aluminum-titanium alloy by taking titanium oxycarbide as raw material through low-temperature electrodeposition Download PDFInfo
- Publication number
- CN113913882B CN113913882B CN202111337225.2A CN202111337225A CN113913882B CN 113913882 B CN113913882 B CN 113913882B CN 202111337225 A CN202111337225 A CN 202111337225A CN 113913882 B CN113913882 B CN 113913882B
- Authority
- CN
- China
- Prior art keywords
- aluminum
- titanium
- electrodeposition
- titanium alloy
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- 229910001069 Ti alloy Inorganic materials 0.000 title claims abstract description 35
- UQZIWOQVLUASCR-UHFFFAOYSA-N alumane;titanium Chemical compound [AlH3].[Ti] UQZIWOQVLUASCR-UHFFFAOYSA-N 0.000 title claims abstract description 35
- 238000004070 electrodeposition Methods 0.000 title claims abstract description 35
- 229910052719 titanium Inorganic materials 0.000 title claims abstract description 18
- 239000010936 titanium Substances 0.000 title claims abstract description 18
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title claims abstract description 17
- 239000002994 raw material Substances 0.000 title claims abstract description 12
- 238000003756 stirring Methods 0.000 claims abstract description 20
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000002608 ionic liquid Substances 0.000 claims abstract description 11
- 239000003792 electrolyte Substances 0.000 claims abstract description 8
- 238000001035 drying Methods 0.000 claims abstract description 4
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 claims description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- 229910003074 TiCl4 Inorganic materials 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 5
- 238000002360 preparation method Methods 0.000 claims description 5
- FOQQJHCZDOPOPX-UHFFFAOYSA-N [Ti].[C]=O Chemical compound [Ti].[C]=O FOQQJHCZDOPOPX-UHFFFAOYSA-N 0.000 claims description 4
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 claims description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 3
- 239000005977 Ethylene Substances 0.000 claims description 3
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 2
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 claims description 2
- 238000005265 energy consumption Methods 0.000 abstract description 6
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 239000011248 coating agent Substances 0.000 abstract description 2
- 238000000576 coating method Methods 0.000 abstract description 2
- 230000007613 environmental effect Effects 0.000 abstract description 2
- 230000003647 oxidation Effects 0.000 abstract description 2
- 238000007254 oxidation reaction Methods 0.000 abstract description 2
- 238000005204 segregation Methods 0.000 abstract description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract 1
- 229910052799 carbon Inorganic materials 0.000 abstract 1
- 238000004140 cleaning Methods 0.000 abstract 1
- 238000004134 energy conservation Methods 0.000 abstract 1
- 238000007614 solvation Methods 0.000 abstract 1
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 239000004408 titanium dioxide Substances 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000617 Mangalloy Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/66—Electroplating: Baths therefor from melts
- C25D3/665—Electroplating: Baths therefor from melts from ionic liquids
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrolytic Production Of Metals (AREA)
Abstract
Description
技术领域technical field
本发明属于冶金技术领域,特别涉及一种以碳氧化钛为原料低温电沉积制备铝钛合金的方法。The invention belongs to the technical field of metallurgy, and in particular relates to a method for preparing an aluminum-titanium alloy by low-temperature electrodeposition using titanium oxycarbide as a raw material.
背景技术Background technique
铝钛合金是当今世界新兴热门的合金结构材料,其有许多优秀的性能,比如强度大,一般而言铝钛合金的比强度远远大于其他金属;热强度高,铝钛合金的使用温度要比铝合金高几百摄氏度;抗腐蚀性能好,铝钛合金的抗腐蚀性能远优于不锈钢、锰钢等;低温性能好,在低温及超低温的情况下,铝钛合金仍能保持优秀的力学性能;因此,铝钛合金被广泛用于航空航天、海洋、汽车工业、生物医学等领域。Aluminum-titanium alloy is an emerging and popular alloy structural material in the world today. It has many excellent properties, such as high strength. Generally speaking, the specific strength of aluminum-titanium alloy is much greater than that of other metals; It is hundreds of degrees Celsius higher than aluminum alloy; good corrosion resistance, the corrosion resistance of aluminum-titanium alloy is much better than stainless steel, manganese steel, etc.; low temperature performance is good, in the case of low temperature and ultra-low temperature, aluminum-titanium alloy can still maintain excellent mechanical properties Performance; therefore, aluminum-titanium alloys are widely used in aerospace, marine, automotive industry, biomedicine and other fields.
传统制备铝钛合金的方法主要有:(1)直接溶配法:是在高温熔炼炉中,直接将铝与钛两种纯金属溶解在其中,至今仍是工业上生产铝钛合金的主要方法,操作简单,但耗能严重,生产成本高,影响合金质量,降低抗腐蚀性能;(2)烧结法:在冶金炉中加入铝粉和二氧化钛,加入还原剂,用粉末冶金的方法,烧结制成。该方法设备复杂,生产成本较高;(3)还原法:二氧化钛加入单质铝,通过铝热法来制备单质钛,进而制备成合金。这种方法,生产出合金不均匀,并且不可以大批量生产,生产成本高;(4)电沉积法:将二氧化钛和氧化铝加入电解槽中直接通电制成合金。该方法得到铝钛合金的质量比较好成分均匀,但是存在问题有,反应温度高,能耗高,熔盐腐蚀性强,设备使用周期短,对基体要求高。The traditional methods of preparing aluminum-titanium alloys mainly include: (1) Direct dissolving method: in a high-temperature melting furnace, two pure metals, aluminum and titanium, are directly dissolved in it, which is still the main method for industrial production of aluminum-titanium alloys. , the operation is simple, but the energy consumption is serious, the production cost is high, the quality of the alloy is affected, and the corrosion resistance is reduced; (2) Sintering method: adding aluminum powder and titanium dioxide in a metallurgical furnace, adding a reducing agent, using powder metallurgy method, sintering become. The method has complicated equipment and high production cost; (3) Reduction method: add elemental aluminum to titanium dioxide, prepare elemental titanium by aluminothermic method, and then prepare alloy. This method produces uneven alloys, and cannot be produced in large quantities, and the production cost is high; (4) Electrodeposition method: adding titanium dioxide and aluminum oxide to an electrolytic cell and directly electrifying it to form an alloy. The quality of the aluminum-titanium alloy obtained by this method is relatively good and the composition is uniform, but there are problems such as high reaction temperature, high energy consumption, strong corrosion of molten salt, short service life of equipment, and high requirements for the substrate.
若能在室温条件下电沉积制备铝钛合金,不仅操作简单容易控制,而且耗能少成本低。与传统的高温熔盐制备金属及合金的方法相比,离子液体绿色无污染,有较宽的电化学窗口,能耗低,成本低,应用前景十分广泛。If the aluminum-titanium alloy can be prepared by electrodeposition at room temperature, not only the operation is simple and easy to control, but also the energy consumption is low and the cost is low. Compared with the traditional method of preparing metals and alloys from high-temperature molten salts, ionic liquids are green and pollution-free, have a wide electrochemical window, low energy consumption, low cost, and have broad application prospects.
发明内容Contents of the invention
针对现有工艺的不足,本发明提供一种以碳氧化钛为原料低温电沉积制备铝钛合金的方法。Aiming at the deficiencies of the existing technology, the invention provides a method for preparing an aluminum-titanium alloy by low-temperature electrodeposition using titanium carbide as a raw material.
本发明的方法包括以下步骤:Method of the present invention comprises the following steps:
(1)将无水AlCl3溶解在碳酸乙烯酯中,然后加入TiCl4搅拌均匀,制成碳酸乙烯酯-AlCl3-TiCl4溶剂化离子液体;(1) Dissolving anhydrous AlCl3 in ethylene carbonate, then adding TiCl4 and stirring evenly to make ethylene carbonate- AlCl3 - TiCl4 solvated ionic liquid;
(2)将溶剂化离子液体作为电解质,组成电解池系统,采用三电极体系进行电沉积;其中,工作电极即阴极为纯铝片,对电极即阳极为碳氧化钛,参比电极为铝丝;(2) The solvated ionic liquid is used as the electrolyte to form an electrolytic cell system, and a three-electrode system is used for electrodeposition; wherein, the working electrode, the cathode, is a pure aluminum sheet, the counter electrode, the anode, is titanium carbon oxide, and the reference electrode is an aluminum wire ;
(3)电沉积完成后取出阴极,清洗去除表面粘附的电解质,干燥后在阴极表面得到铝钛合金。(3) After the electrodeposition is completed, the cathode is taken out, the electrolyte adhering to the surface is cleaned and removed, and an aluminum-titanium alloy is obtained on the surface of the cathode after drying.
上述的步骤(1)中,碳酸乙烯酯、无水AlCl3和TiCl4的摩尔比为1:(0.2~0.8):(0.1~0.5)。In the above step (1), the molar ratio of ethylene carbonate, anhydrous AlCl 3 and TiCl 4 is 1:(0.2-0.8):(0.1-0.5).
上述的步骤(1)中,搅拌速度为350~550r/min,搅拌时间为15~35min。In the above step (1), the stirring speed is 350-550 r/min, and the stirring time is 15-35 min.
上述的步骤(2)中,进行电沉积时电解池系统的温度为50~80℃,施加电动势为-1.7至-3V vs Al,电沉积时间为0.5~2.5h。In the above step (2), the temperature of the electrolytic cell system is 50-80°C during electrodeposition, the applied electromotive force is -1.7 to -3V vs Al, and the electrodeposition time is 0.5-2.5h.
上述的步骤(2)中,所述工作电极和对电极之间的极间距为15mm。In the above step (2), the electrode spacing between the working electrode and the counter electrode is 15 mm.
上述的步骤(2)中,阳极的碳氧化钛的成分为TiCxOy,其制备方法为:将TiC和TiO2按摩尔比2:1混合均匀,然后在真空和900±10℃条件下,烧结12h制成的可溶阳极。In the above step (2), the composition of the titanium oxycarbide of the anode is TiC x O y , and its preparation method is: mix TiC and TiO 2 uniformly in a molar ratio of 2:1, and then vacuum and 900±10°C , A soluble anode made by sintering for 12h.
本发明的有益效果为:The beneficial effects of the present invention are:
1、与传统制备铝钛合金工艺相比,工艺流程简单,显著降低能耗和生产成本;1. Compared with the traditional preparation process of aluminum-titanium alloy, the process flow is simple, which significantly reduces energy consumption and production cost;
2、采用低温离子液体进行电沉积,有较宽的电化学窗口,避免副反应发生;2. Low-temperature ionic liquid is used for electrodeposition, which has a wide electrochemical window and avoids side reactions;
3、采用的可溶阳极碳氧化钛可以提高铝钛合金中的含钛量;3. The soluble anode carbon oxide titanium used can increase the titanium content in the aluminum-titanium alloy;
4、与传统方法相比,有效地降低晶粒偏析和铝钛合金被氧化等现象的发生,提高铝钛合金镀层的质量;4. Compared with traditional methods, it can effectively reduce the occurrence of grain segregation and oxidation of aluminum-titanium alloy, and improve the quality of aluminum-titanium alloy coating;
5、使用离子液体低温制备铝钛合金,对比高温熔盐制备金属及合金而言,具有流程短、成本低、操作简单、节能环保的优点,极大提高了本发明的实用性。5. The use of ionic liquids to prepare aluminum-titanium alloys at low temperature has the advantages of short process, low cost, simple operation, energy saving and environmental protection compared with the preparation of metals and alloys by high-temperature molten salts, which greatly improves the practicability of the present invention.
具体实施方式Detailed ways
本发明实施例中阳极的制备方法参考《900℃下合成Ti-C-O固溶体的电化学行为研究》。For the preparation method of the anode in the embodiment of the present invention, refer to "Study on Electrochemical Behavior of Synthesized Ti-C-O Solid Solution at 900°C".
本发明实施例中的铝钛合金按质量百分百含Ti 22~27%。The aluminum-titanium alloy in the embodiment of the present invention contains 22-27% Ti by mass percent.
本发明实施例中的铝钛合金按质量百分百含杂质<0.1%。The aluminum-titanium alloy in the embodiment of the present invention contains impurities <0.1% by mass percent.
本发明实施例中无水AlCl3\碳酸乙烯酯和TiCl4为市购分析出试剂。In the examples of the present invention, anhydrous AlCl 3 \ethylene carbonate and TiCl 4 are commercially available analytical reagents.
本发明实施例中工作电极和参比电极为市购产品。The working electrode and reference electrode in the embodiment of the present invention are commercially available products.
实施例1Example 1
将无水AlCl3溶解在碳酸乙烯酯中,然后加入TiCl4搅拌均匀,制成碳酸乙烯酯-AlCl3-TiCl4溶剂化离子液体;碳酸乙烯酯、无水AlCl3和TiCl4的摩尔比为1:0.2:0.1;搅拌速度为350r/min,搅拌时间为35min;Dissolve anhydrous AlCl3 in ethylene carbonate, then add TiCl4 and stir evenly to make ethylene carbonate- AlCl3 - TiCl4 solvated ionic liquid; the molar ratio of ethylene carbonate, anhydrous AlCl3 and TiCl4 is 1:0.2:0.1; the stirring speed is 350r/min, and the stirring time is 35min;
将溶剂化离子液体作为电解质,组成电解池系统,采用三电极体系进行电沉积;其中,工作电极即阴极为纯铝片,对电极即阳极为碳氧化钛,参比电极为铝丝;进行电沉积时电解池系统的温度为50℃,施加电动势为-1.7V vs Al,电沉积时间为2.5h;工作电极和对电极之间的极间距为15mm;The solvated ionic liquid is used as the electrolyte to form an electrolytic cell system, and a three-electrode system is used for electrodeposition; wherein, the working electrode, the cathode, is pure aluminum sheet, the counter electrode, the anode, is titanium carbon oxide, and the reference electrode is aluminum wire; The temperature of the electrolytic cell system during deposition is 50°C, the applied electromotive force is -1.7V vs Al, and the electrodeposition time is 2.5h; the electrode spacing between the working electrode and the counter electrode is 15mm;
电沉积完成后取出阴极,清洗去除表面粘附的电解质,干燥后在阴极表面得到铝钛合金。After the electrodeposition is completed, the cathode is taken out, the electrolyte adhering to the surface is cleaned and removed, and an aluminum-titanium alloy is obtained on the surface of the cathode after drying.
实施例2Example 2
方法同实施例1,不同点在于;Method is with embodiment 1, and difference is;
(1)碳酸乙烯酯、无水AlCl3和TiCl4的摩尔比为1:0.8:0.5;搅拌速度为550r/min,搅拌时间为15min;(1) The mol ratio of ethylene carbonate, anhydrous AlCl 3 and TiCl 4 is 1:0.8:0.5; Stirring speed is 550r/min, and stirring time is 15min;
(2)电解池系统的温度为80℃,施加电动势为-3V vs Al,电沉积时间为0.5h。(2) The temperature of the electrolytic cell system is 80°C, the applied electromotive force is -3V vs Al, and the electrodeposition time is 0.5h.
实施例3Example 3
方法同实施例1,不同点在于;Method is with embodiment 1, and difference is;
(1)碳酸乙烯酯、无水AlCl3和TiCl4的摩尔比为1:0.5:0.3;搅拌速度为450r/min,搅拌时间为25min;(1) The molar ratio of ethylene carbonate, anhydrous AlCl 3 and TiCl 4 is 1:0.5:0.3; The stirring speed is 450r/min, and the stirring time is 25min;
(2)电解池系统的温度为60℃,施加电动势为-2V vs Al,电沉积时间为1.5h。(2) The temperature of the electrolytic cell system is 60°C, the applied electromotive force is -2V vs Al, and the electrodeposition time is 1.5h.
实施例4Example 4
方法同实施例1,不同点在于;Method is with embodiment 1, and difference is;
(1)碳酸乙烯酯、无水AlCl3和TiCl4的摩尔比为1:0.3:0.2;搅拌速度为400r/min,搅拌时间为20min;(1) The molar ratio of ethylene carbonate, anhydrous AlCl 3 and TiCl 4 is 1:0.3:0.2; the stirring speed is 400r/min, and the stirring time is 20min;
(2)电解池系统的温度为70℃,施加电动势为-2.5V vs Al,电沉积时间为1h。(2) The temperature of the electrolytic cell system is 70°C, the applied electromotive force is -2.5V vs Al, and the electrodeposition time is 1h.
实施例5Example 5
方法同实施例1,不同点在于;Method is with embodiment 1, and difference is;
(1)碳酸乙烯酯、无水AlCl3和TiCl4的摩尔比为1:0.4:0.4;搅拌速度为500r/min,搅拌时间为30min;(1) The mol ratio of ethylene carbonate, anhydrous AlCl 3 and TiCl 4 is 1:0.4:0.4; The stirring speed is 500r/min, and the stirring time is 30min;
(2)电解池系统的温度为75℃,施加电动势为-2V vs Al,电沉积时间为2h。(2) The temperature of the electrolytic cell system is 75°C, the applied electromotive force is -2V vs Al, and the electrodeposition time is 2h.
实施例6Example 6
方法同实施例1,不同点在于;Method is with embodiment 1, and difference is;
(1)碳酸乙烯酯、无水AlCl3和TiCl4的摩尔比为1:0.6:0.4;搅拌速度为450r/min,搅拌时间为30min;(1) The molar ratio of ethylene carbonate, anhydrous AlCl 3 and TiCl 4 is 1:0.6:0.4; The stirring speed is 450r/min, and the stirring time is 30min;
(2)电解池系统的温度为65℃,施加电动势为-2V vs Al,电沉积时间为1.5h。(2) The temperature of the electrolytic cell system is 65°C, the applied electromotive force is -2V vs Al, and the electrodeposition time is 1.5h.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111337225.2A CN113913882B (en) | 2021-11-12 | 2021-11-12 | Method for preparing aluminum-titanium alloy by taking titanium oxycarbide as raw material through low-temperature electrodeposition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111337225.2A CN113913882B (en) | 2021-11-12 | 2021-11-12 | Method for preparing aluminum-titanium alloy by taking titanium oxycarbide as raw material through low-temperature electrodeposition |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113913882A CN113913882A (en) | 2022-01-11 |
CN113913882B true CN113913882B (en) | 2023-04-11 |
Family
ID=79246080
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111337225.2A Active CN113913882B (en) | 2021-11-12 | 2021-11-12 | Method for preparing aluminum-titanium alloy by taking titanium oxycarbide as raw material through low-temperature electrodeposition |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113913882B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115491722B (en) * | 2022-09-22 | 2024-07-23 | 东北大学 | Method for preparing metallic zinc at low temperature by using salt electrolyte in solvent |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101949038B (en) * | 2010-09-21 | 2011-12-14 | 攀钢集团钢铁钒钛股份有限公司 | Method for preparing TiCxOy composite anode with electrolysis method |
CN101994128A (en) * | 2010-11-26 | 2011-03-30 | 昆明理工大学 | Method for preparing Al-Ti alloy or plated Al-Ti alloy by low-temperature electrolytic deposition of ionic liquid |
US10208391B2 (en) * | 2014-10-17 | 2019-02-19 | Ut-Battelle, Llc | Aluminum trihalide-neutral ligand ionic liquids and their use in aluminum deposition |
CN107130264B (en) * | 2017-05-19 | 2018-12-18 | 东北大学 | A kind of method of nearly room temperature electrolytic preparation aluminium-based rare-earth alloy |
CN106967998B (en) * | 2017-05-19 | 2018-10-02 | 东北大学 | The method for preparing Al-Li master alloys as the nearly room temperature electro-deposition of raw material using lithia |
CN107190282B (en) * | 2017-05-19 | 2019-07-30 | 东北大学 | A kind of room temperature molten salt and its preparation method and application |
CN109023431B (en) * | 2018-09-30 | 2020-05-12 | 成都先进金属材料产业技术研究院有限公司 | Method for preparing titanium-aluminum alloy |
CN110983378B (en) * | 2019-11-15 | 2020-12-18 | 北京理工大学 | Device and method for preparing metal aluminum and titanium tetrachloride from soluble anode in molten salt |
-
2021
- 2021-11-12 CN CN202111337225.2A patent/CN113913882B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN113913882A (en) | 2022-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103422123B (en) | A kind of method of electro-deposition of magnesium nickel alloy in ionic liquid | |
CN103643262B (en) | A kind of method of deep eutectic solvent electrodeposition of lead powder | |
CN103060874B (en) | A kind of stainless steel-based β-PbO 2-SnO 2-CeO 2-ZrO 2the preparation method of inertia composite anode materials | |
CN102011144A (en) | Nickel-based alloy material suitable for inert anode of metal molten salt electrolyzer | |
CN102703929B (en) | Method for preparing Ti-Fe alloy by direct reduction of ilmenite | |
CN104480492A (en) | Method for preparing Ni-La alloy through ionic liquid electro-deposition | |
CN108441886A (en) | A method of preparing metal using ionic liquid electrolytic metal oxide | |
CN108315763A (en) | A method of preparing metallic zinc using ionic liquid electrolytic oxidation zinc | |
CN113913882B (en) | Method for preparing aluminum-titanium alloy by taking titanium oxycarbide as raw material through low-temperature electrodeposition | |
CN115058727A (en) | Surface modification method for titanium-based bipolar plate of proton exchange membrane electrolytic cell | |
Han et al. | Preparation and electrochemical properties of Al/TiB2/β-PbO2 layered composite electrode materials for electrowinning of nonferrous metals | |
CN108823619B (en) | A method for depositing Ni-Mo-SiC-TiN composite coating on the surface of closed-cell aluminum foam | |
CN106567110A (en) | Method of electro-deposition of chromium-manganese alloy coating through deep-eutectic solvents | |
CN113881977B (en) | Method for preparing zinc-titanium alloy at low temperature by taking titanium oxycarbide as anode | |
CN113846353A (en) | Method for preparing aluminum magnesium alloy by using polar aprotic organic solvent | |
CN103422122B (en) | A kind of method of titanium dioxide direct Preparation of Titanium | |
CN108611664A (en) | A method of preparing metallic lead using ionic liquid electrolytic oxidation lead | |
WO2024208361A1 (en) | Metal electrode for aluminum electrolysis, coating composition thereof, and preparation method therefor | |
CN110205651A (en) | A kind of method that low temperature electrochemical reduction barium oxide prepares vanadium metal | |
CN103540974B (en) | A kind of method for preparing metal lanthanum by low-temperature electrodeposition of dicyandiamide ionic liquid | |
CN103060875B (en) | Preparation method of copper-based SnO2-Sb2O5-CeO2-TiO2 inert composite anode material | |
CN114086218B (en) | Energy-saving high-strength corrosion-resistant cathode aluminum alloy plate for zinc electrodeposition | |
AN et al. | Electrodeposition of cobalt in an ionic liquid electrolyte at ambient temperature | |
CN113913871B (en) | Method for preparing zinc-titanium alloy by ionic liquid low-temperature electrodeposition | |
CN108251871A (en) | A kind of method of electro-deposition Al-Pt alloys in imidazole type ion liquid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |