[go: up one dir, main page]

CN113900580B - Memory device, electronic device and related reading method - Google Patents

Memory device, electronic device and related reading method Download PDF

Info

Publication number
CN113900580B
CN113900580B CN202010638862.2A CN202010638862A CN113900580B CN 113900580 B CN113900580 B CN 113900580B CN 202010638862 A CN202010638862 A CN 202010638862A CN 113900580 B CN113900580 B CN 113900580B
Authority
CN
China
Prior art keywords
memory module
period
read
control device
memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010638862.2A
Other languages
Chinese (zh)
Other versions
CN113900580A (en
Inventor
吴圣伦
苏俊联
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Macronix International Co Ltd
Original Assignee
Macronix International Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix International Co Ltd filed Critical Macronix International Co Ltd
Priority to CN202010638862.2A priority Critical patent/CN113900580B/en
Publication of CN113900580A publication Critical patent/CN113900580A/en
Application granted granted Critical
Publication of CN113900580B publication Critical patent/CN113900580B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0602Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
    • G06F3/061Improving I/O performance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0629Configuration or reconfiguration of storage systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0668Interfaces specially adapted for storage systems adopting a particular infrastructure
    • G06F3/0671In-line storage system
    • G06F3/0673Single storage device

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Dram (AREA)
  • Techniques For Improving Reliability Of Storages (AREA)
  • Memory System (AREA)

Abstract

The invention discloses a memory device capable of synchronously reading a plurality of memory modules, an electronic device and a reading method related to the memory device. The electronic device comprises a main control device, a first memory module and a second memory module. The main control device executes a read operation on the first memory module and the second memory module simultaneously. When the first memory module generates an update conflict during the read operation, the first memory module reports the update conflict to the master control device. After the synchronous data preparation period passes, the first memory module and the second memory module respectively transmit the first synchronous read data and the second synchronous read data to the master control device in the synchronous data reading period. Wherein the sync data preparation period is greater than the default read delay.

Description

存储器装置、电子装置及与其相关的读取方法Memory device, electronic device and related reading method

技术领域Technical Field

本发明是有关于一种存储器装置、电子装置及与其相关的读取方法,且特别是有关于一种可对多个存储器模块进行同步读取的存储器装置、电子装置及与其相关的读取方法。The present invention relates to a memory device, an electronic device and a related reading method, and in particular to a memory device capable of synchronously reading a plurality of memory modules, an electronic device and a related reading method.

背景技术Background Art

可携式电子装置日益普及,搭配影音应用趋势,使存储器模块的需求有增无减。也因此,存储器模块的存储容量越来越大。然而,随着应用的不同,部分的电子装置并不需要使用很大容量的存储器模块。此外,大容量的存储器模块需占用较多的接脚数(pinnumber),因而成为设计嵌入式系统时的限制。Portable electronic devices are becoming more and more popular, and the trend of audio and video applications has increased the demand for memory modules. Therefore, the storage capacity of memory modules is getting larger and larger. However, due to different applications, some electronic devices do not need to use large-capacity memory modules. In addition, large-capacity memory modules require more pin numbers, which becomes a limitation when designing embedded systems.

请参见图1,其系电子装置内的存储器模块使用动态随机存取存储器DRAM的示意图。电子装置10a包含主控装置13a与存储器模块11a。其中主控装置13a可为嵌入式系统中的控制器(controller)或数字信号处理器(digital signal process,简称为DSP),存储器模块(DRAM)11a采用的是动态随机存取存储器(Dynamic Random Access Memory,简称为DRAM)技术。主控装置13a利用芯片选取信号CS#选取存储器模块(DRAM)11a,并传送控制信号CTL至存储器模块(DRAM)11a。根据控制信号CTL与系统频率信号SCLK,主控装置13a与存储器模块(DRAM)11a之间,以64位的系统输入输出信号线SIO[64:1]传送存储器地址与读取数据DATm。其中,存储器地址包含存储器模块(DRAM)11a的列地址ADRr与行地址ADRc。Please refer to FIG. 1, which is a schematic diagram of a memory module in an electronic device using a dynamic random access memory DRAM. The electronic device 10a includes a main control device 13a and a memory module 11a. The main control device 13a can be a controller or a digital signal processor (DSP) in an embedded system, and the memory module (DRAM) 11a uses dynamic random access memory (DRAM) technology. The main control device 13a uses a chip selection signal CS# to select the memory module (DRAM) 11a and transmits a control signal CTL to the memory module (DRAM) 11a. According to the control signal CTL and the system clock signal SCLK, the main control device 13a and the memory module (DRAM) 11a transmit the memory address and the read data DATm via the 64-bit system input and output signal line SIO[64:1]. The memory address includes the column address ADRr and the row address ADRc of the memory module (DRAM) 11a.

随着存储器技术的发展,采用DRAM技术的存储器模块(DRAM)11a的容量可能过大,且接线数量可能过多。因此,目前市面上发展出一种使用虚拟静态随机存取存储器(PseudoStatic Random Access Memory,简称为PSRAM)的存储器模块。With the development of memory technology, the capacity of the memory module (DRAM) 11a using DRAM technology may be too large and the number of connections may be too many. Therefore, a memory module using pseudo static random access memory (PSRAM) has been developed on the market.

请参见图2,其系电子装置内的存储器模块使用虚拟静态随机存取存储器PSRAM的示意图。电子装置10b包含主控装置13b与存储器模块(PSRAM)11b。其中存储器模块(PSRAM)11b采用的是虚拟静态随机存取存储器PSRAM技术。主控装置13b利用芯片选取信号CS#选取存储器模块(PSRAM)11b后,将控制信号CTL传送至存储器模块(PSRAM)11b。根据控制信号CTL、系统频率信号SCLK与数据闪控屏蔽信号(Read Data strobe/Write Data Mask,简称为DQSM),主控装置13与存储器模块(PSRAM)11b之间,以8位的系统输入输出信号线SIO[8:1]传送存储器地址与读取数据。为便于说明,本发明使用相同的符号代表信号线与利用该信号线传送的信号。例如,利用控制信号线CTL传送控制信号CTL。Please refer to FIG. 2, which is a schematic diagram of a memory module in an electronic device using a virtual static random access memory PSRAM. The electronic device 10b includes a main control device 13b and a memory module (PSRAM) 11b. The memory module (PSRAM) 11b uses a virtual static random access memory PSRAM technology. After the main control device 13b selects the memory module (PSRAM) 11b using the chip selection signal CS#, the control signal CTL is transmitted to the memory module (PSRAM) 11b. According to the control signal CTL, the system frequency signal SCLK and the data strobe mask signal (Read Data strobe/Write Data Mask, referred to as DQSM), the main control device 13 and the memory module (PSRAM) 11b use the 8-bit system input and output signal line SIO[8:1] to transmit the memory address and read data. For ease of explanation, the present invention uses the same symbol to represent the signal line and the signal transmitted using the signal line. For example, the control signal line CTL is used to transmit the control signal CTL.

比较图1、图2可以看出,两张附图中的系统输入输出信号线SIO的数量相差甚大。此外,图1的主控装置13a所需的控制信号CTL的数量,较图2的主控装置13b所需的控制信号CTL多。因此,使用存储器模块(PSRAM)11b时,主控装置13所需的接脚较少。连带的,使用PSRAM技术的存储器模块(PSRAM)11b亦成为嵌入式系统的趋势。Comparing FIG. 1 and FIG. 2, it can be seen that the number of system input and output signal lines SIO in the two drawings is very different. In addition, the number of control signals CTL required by the main control device 13a of FIG. 1 is more than the number of control signals CTL required by the main control device 13b of FIG. 2. Therefore, when the memory module (PSRAM) 11b is used, the main control device 13 requires fewer pins. In conjunction, the memory module (PSRAM) 11b using PSRAM technology has also become a trend in embedded systems.

采用PSRAM技术时,存储器模块需要持续地进行更新(refresh)方能维持所存储的数据。若存储器模块内部正在进行更新的期间,刚好接收到来自主控装置的读取指令,则存储器模块因为正在进行更新的缘故,无法即刻执行读取操作。此种因为存储器模块正在进行更新而无法立刻执行读取操作的现象称为更新冲突(refresh collision)。When using PSRAM technology, the memory module needs to be continuously refreshed to maintain the stored data. If the memory module is being refreshed and a read command is received from the master device, the memory module cannot immediately perform the read operation because it is being refreshed. This phenomenon of being unable to immediately perform the read operation because the memory module is being refreshed is called a refresh collision.

存储器模块(PSRAM)11b采用虚拟静态随机存取存储器PSRAM技术时,主控装置13b对存储器模块(PSRAM)11b进行读取操作(read operation)时,可能因为存储器模块(PSRAM)11b本身的状态不同而有以下两种情形:一般情况下的读取操作,或是更新冲突下的读取操作。以下,分别以图3A说明存储器模块(PSRAM)11b在一般情况(未发生更新冲突时)的读取操作的波形,以及以图3B说明存储器模块(PSRAM)11b在读取操作时发生更新冲突的波形。When the memory module (PSRAM) 11b adopts the virtual static random access memory PSRAM technology, when the main control device 13b performs a read operation on the memory module (PSRAM) 11b, there may be two situations due to the different states of the memory module (PSRAM) 11b: a normal read operation, or a read operation under an update conflict. Below, FIG. 3A illustrates the waveform of the read operation of the memory module (PSRAM) 11b under normal circumstances (when no update conflict occurs), and FIG. 3B illustrates the waveform of the memory module (PSRAM) 11b when an update conflict occurs during the read operation.

在图3A、图3B中,由上而下分别为芯片选取信号CS#、系统频率信号SCLK、数据闪控屏蔽信号DQSM、系统输入输出信号线SIO[8:1]。在本发明中,波形图的横轴均为时间。3A and 3B , from top to bottom are the chip select signal CS#, the system clock signal SCLK, the data strobe mask signal DQSM, and the system input/output signal line SIO[8:1]. In the present invention, the horizontal axis of the waveform diagram is time.

请参见图3A,其系主控装置使用PSRAM存储器模块进行一般读取操作的波形图。首先,主控装置13b将与存储器模块(PSRAM)11b对应的芯片选取信号CS#由高电平拉低至低电平。接着,待存储器模块11b将数据闪控屏蔽信号DQSM拉低至低电平后,主控装置13b利用系统输入输出信号线SIO[8:1]依序发出读取指令mCMDrd、列地址(row address)ADRr与行地址(column address)ADRc至存储器模块(PSRAM)11b。Please refer to FIG. 3A, which is a waveform diagram of a general read operation performed by the master control device using the PSRAM memory module. First, the master control device 13b pulls down the chip select signal CS# corresponding to the memory module (PSRAM) 11b from a high level to a low level. Then, after the memory module 11b pulls down the data flash mask signal DQSM to a low level, the master control device 13b uses the system input and output signal lines SIO[8:1] to sequentially send a read command mCMDrd, a row address ADRr, and a row address ADRc to the memory module (PSRAM) 11b.

在本发明中,将主控装置13b传送读取指令mCMDrd的期间定义为读取指令传送期间Tcmd;主控装置13b传送存储器地址的期间定义为地址传送期间Tadr;主控装置13b传送列地址ADRr的期间定义为列地址期间Tadr_r;主控装置13b传送行地址ADRc的期间定义为行地址期间Tadr_c。为便于说明,本发明以点状底纹代表读取指令mCMDrd;以横向底纹代表列地址ADRr;以及,以纵向底纹代表行地址ADRc。In the present invention, the period during which the master control device 13b transmits a read command mCMDrd is defined as a read command transmission period Tcmd; the period during which the master control device 13b transmits a memory address is defined as an address transmission period Tadr; the period during which the master control device 13b transmits a column address ADRr is defined as a column address period Tadr_r; the period during which the master control device 13b transmits a row address ADRc is defined as a row address period Tadr_c. For ease of explanation, the present invention uses dotted shading to represent the read command mCMDrd; uses horizontal shading to represent the column address ADRr; and uses vertical shading to represent the row address ADRc.

在存储器模块(PSRAM)11b中,可定义读取延迟计数(latency count,简称为LC)。读取延迟计数LC代表存储器模块(PSRAM)11b自主控装置13b取得列地址(row address)后,自存储器阵列内将读取数据DATm读取至内部缓冲器所需的时间。本发明假设读取延迟计数LC为系统频率周期Tclk的三倍(LC=3*Tclk)。In the memory module (PSRAM) 11b, a read latency count (LC) may be defined. The read latency count LC represents the time required for the memory module (PSRAM) 11b to read the read data DATm from the memory array to the internal buffer after the master control device 13b obtains the row address. The present invention assumes that the read latency count LC is three times the system frequency period Tclk (LC=3*Tclk).

存储器模块(PSRAM)11b接收读取指令mCMDrd、列地址ADRr与行地址(columnaddress)ADRc后,需再等待一段时间后,方能将读取数据DATm从存储器阵列复制至内部缓冲器准备妥当。如图3A所示,若存储器模块(PSRAM)11b未发生更新碰撞时,存储器模块(PSRAM)11b所需的,将读取数据DATm从存储器阵列复制至内部缓冲器的期间,取决于预设读取延迟(dftLC=LC*1)。其中,预设读取延迟(dftLC=LC*1)系自存储器模块(PSRAM)11b接收列地址mADRr(即,时点t5)后开始计算。After the memory module (PSRAM) 11b receives the read command mCMDrd, the column address ADRr and the row address (columnaddress) ADRc, it needs to wait for a period of time before it can copy the read data DATm from the memory array to the internal buffer. As shown in FIG3A , if the memory module (PSRAM) 11b does not have an update collision, the period required by the memory module (PSRAM) 11b to copy the read data DATm from the memory array to the internal buffer depends on the preset read delay (dftLC=LC*1). The preset read delay (dftLC=LC*1) is calculated from the time when the memory module (PSRAM) 11b receives the column address mADRr (i.e., time point t5).

一旦预设读取延迟(dftLC=LC*1)结束(时点t8)后,存储器模块(PSRAM)11b在系统频率信号SCLK的下一个上升缘(即,时点t9),利用数据闪控屏蔽信号DQSM陆续产生两个读取闪控(read strobe)脉冲信号mstrb1、mstrb2。在读取闪控脉冲信号mstrb1、mstrb2产生的同时,存储器模块11b亦利用系统输入输出信号线SIO[8:1],将位于内部缓冲器的读取数据DATm传送至主控装置13b。Once the preset read delay (dftLC=LC*1) ends (time point t8), the memory module (PSRAM) 11b generates two read strobe pulse signals mstrb1 and mstrb2 in succession using the data strobe mask signal DQSM at the next rising edge of the system clock signal SCLK (i.e., time point t9). While the read strobe pulse signals mstrb1 and mstrb2 are being generated, the memory module 11b also uses the system input/output signal line SIO[8:1] to transmit the read data DATm in the internal buffer to the main control device 13b.

请参见图3B,其系主控装置使用PSRAM存储器模块进行读取操作时,存储器模内部发生更新冲突的波形图。由于图3A、图3B的波形大致类似,此处不重复说明芯片选取信号CS#、系统频率信号SCLK、数据闪控屏蔽信号DQSM、系统输入输出信号SIO[8:1]的前后变动顺序。Please refer to FIG3B, which is a waveform diagram of an update conflict occurring inside the memory module when the master device uses the PSRAM memory module for a read operation. Since the waveforms of FIG3A and FIG3B are roughly similar, the sequence of changes of the chip selection signal CS#, the system clock signal SCLK, the data flash mask signal DQSM, and the system input and output signal SIO[8:1] will not be repeated here.

比较图3A、图3B可以看出,在图3A中,存储器模块(PSRAM)11b等待预设读取延迟(dftLC=LC*1)后,即可传送读取数据DATm至主控装置13b。在图3B中,存储器模块(PSRAM)11b须等待更新读取延迟rfcLC(例如,rfcLC=LC*2)后,方得传送读取数据DATm至主控装置13b。更新读取延迟rfcLC代表,存储器模块(PSRAM)11b发生更新冲突时,需等待更新冲突结束后可进行数据读取所需的读取延迟计数LC的个数。为便于说明,本发明假设更新读取延迟为两个读取延迟计数(rfcLC=LC*2)。实际应用时,更新读取延迟rfcLC所包含的读取延迟计数LC的个数并不以此为限。Comparing FIG. 3A and FIG. 3B , it can be seen that in FIG. 3A , the memory module (PSRAM) 11b can transmit the read data DATm to the main control device 13b after waiting for the preset read delay (dftLC=LC*1). In FIG. 3B , the memory module (PSRAM) 11b must wait for the updated read delay rfcLC (for example, rfcLC=LC*2) before transmitting the read data DATm to the main control device 13b. The updated read delay rfcLC represents the number of read delay counts LC required for data reading after the update conflict occurs in the memory module (PSRAM) 11b. For ease of explanation, the present invention assumes that the updated read delay is two read delay counts (rfcLC=LC*2). In actual application, the number of read delay counts LC included in the updated read delay rfcLC is not limited to this.

在图3A中,数据闪控屏蔽信号DQSM在时点t9由低电平上升至高电平,并用于在时点t9至时点t11的期间发出读取闪控脉冲信号m1strb1、m1strb2。存储器模块(PSRAM)11b可通过数据闪控屏蔽信号DQSM的变化,通知主控装置13b读取数据DATm已经在内部缓冲器准备妥当。接着,存储器模块(PSRAM)11b将先前存放在内部缓冲器的读取数据传送至系统输入输出信号线SIO[8:1],供主控装置13b存取。由于主控装置13b对存储器模块(PSRAM)11b进行的读取操作可能是连续性的,在存储器模块(PSRAM)11b将先前存放在内部缓冲器的读取数据传送至系统输入输出信号线SIO[8:1]的同时,存储器模块(PSRAM)11b亦将持续自存储器阵列中读取数据并传送至内部缓冲器内。In FIG. 3A , the data strobe mask signal DQSM rises from a low level to a high level at time t9, and is used to send read strobe pulse signals m1strb1 and m1strb2 during the period from time t9 to time t11. The memory module (PSRAM) 11b can notify the master control device 13b that the read data DATm is ready in the internal buffer through the change of the data strobe mask signal DQSM. Then, the memory module (PSRAM) 11b transmits the read data previously stored in the internal buffer to the system input/output signal line SIO[8:1] for access by the master control device 13b. Since the read operation performed by the master control device 13b on the memory module (PSRAM) 11b may be continuous, while the memory module (PSRAM) 11b transmits the read data previously stored in the internal buffer to the system input/output signal line SIO[8:1], the memory module (PSRAM) 11b will also continue to read data from the memory array and transmit it to the internal buffer.

在部分的应用中,电子装置可能须同时使用多个使用虚拟静态随机存取存储器PSRAM技术的存储器模块。针对此种同时包含多个虚拟静态随机存取存储器PSRAM存储器模块的电子装置,可能因为存储器模块本身是否发生更新冲突的状态不同,使主控装置无法正确地自多个存储器模块同步取得读取数据。In some applications, an electronic device may need to use multiple memory modules using PSRAM technology at the same time. For such an electronic device including multiple PSRAM memory modules at the same time, the host control device may not be able to correctly and synchronously obtain read data from multiple memory modules due to different update conflict states of the memory modules themselves.

发明内容Summary of the invention

本发明系有关于一种可对多个存储器模块进行同步读取的存储器装置、电子装置及与其相关的读取方法。当存储器装置包含多个存储器模块,且其中一个存储器模块发生更新冲突时,电子装置内的主控装置仍可同步地自存储器模块取得读取数据。The present invention relates to a memory device, an electronic device and a related reading method capable of synchronously reading multiple memory modules. When the memory device includes multiple memory modules and one of the memory modules has an update conflict, a main control device in the electronic device can still synchronously obtain read data from the memory module.

根据本发明的第一方面,提出一种电连接于主控装置的存储器装置。主控装置系于读取操作期间(Trd)对第一存储器装置执行读取操作,且存储器装置包含:第一存储器模块(PSRAM1)与第二存储器模块(PSRAM2)。第一存储器模块(PSRAM1)于读取操作期间产生更新冲突。第一存储器模块(PSRAM1)与第二存储器模块(PSRAM2)于读取指令传送期间(Tcmd)分别接收主控装置所传送的第一读取指令(m1CMDrd)与第二读取指令(m2CMDrd)。第一存储器模块(PSRAMl)与第二存储器模块(PSRAM2)于地址传送期间(Tadr)分别接收第一存储器地址(m1ADDr、m1ADDc)与第二存储器地址(m2ADDr、m2ADDc)。其中,读取指令传送期间(Tcmd)早于地址传送期间(Tadr)。经过同步数据准备期间(Tsdatpr)后,第一存储器模块(PSRAM1)与第二存储器模块(PSRAM2)系同时于同步数据读取期间(Tdat_sync),分别传送第一同步读取数据(DATm1)与第二同步读取数据(DATm2)至主控装置,其中该同步数据准备期间(Tsdatpr)系大于一预设读取延迟(dftLC=LC*1)。According to a first aspect of the present invention, a memory device electrically connected to a main control device is provided. The main control device performs a read operation on a first memory device during a read operation period (Trd), and the memory device includes: a first memory module (PSRAM1) and a second memory module (PSRAM2). The first memory module (PSRAM1) generates an update conflict during the read operation period. The first memory module (PSRAM1) and the second memory module (PSRAM2) respectively receive a first read instruction (m1CMDrd) and a second read instruction (m2CMDrd) transmitted by the main control device during a read instruction transmission period (Tcmd). The first memory module (PSRAM1) and the second memory module (PSRAM2) respectively receive a first memory address (m1ADDr, m1ADDc) and a second memory address (m2ADDr, m2ADDc) during an address transmission period (Tadr). The read instruction transmission period (Tcmd) is earlier than the address transmission period (Tadr). After the synchronous data preparation period (Tsdatpr), the first memory module (PSRAM1) and the second memory module (PSRAM2) simultaneously transmit the first synchronous read data (DATm1) and the second synchronous read data (DATm2) to the main control device during the synchronous data read period (Tdat_sync), respectively, wherein the synchronous data preparation period (Tsdatpr) is greater than a preset read delay (dftLC=LC*1).

根据本发明的第二方面,提出一种电子装置。电子装置包含:存储器装置以及一主控装置。存储器装置包含:第一存储器模块(PSRAM1)与第二存储器模块(PSRAM2)。第一存储器模块(PSRAM1)于读取操作期间产生更新冲突。第一存储器模块(PSRAM1)与第二存储器模块(PSRAM2)于读取指令传送期间(Tcmd)分别接收主控装置所传送的第一读取指令(m1CMDrd)与第二读取指令(m2CMDrd)。第一存储器模块(PSRAM1)与第二存储器模块(PSRAM2)于地址传送期间(Tadr)分别接收第一存储器地址(m1ADDr、m1ADDc)与第二存储器地址(m2ADDr、m1ADDc)。其中,读取指令传送期间(Tcmd)早于地址传送期间(Tadr)。经过同步数据准备期间(Tsdatpr)后,第一存储器模块(PSRAM1)与第二存储器模块(PSRAM2)系同时于同步数据读取期间(Tdat_sync),分别传送第一同步读取数据(DATm1)与第二同步读取数据(DATm2)至主控装置,其中该同步数据准备期间(Tsdatpr)系大于一预设读取延迟(dftLC=LC*1)。According to a second aspect of the present invention, an electronic device is provided. The electronic device comprises: a memory device and a main control device. The memory device comprises: a first memory module (PSRAM1) and a second memory module (PSRAM2). The first memory module (PSRAM1) generates an update conflict during a read operation. The first memory module (PSRAM1) and the second memory module (PSRAM2) respectively receive a first read instruction (m1CMDrd) and a second read instruction (m2CMDrd) transmitted by the main control device during a read instruction transmission period (Tcmd). The first memory module (PSRAM1) and the second memory module (PSRAM2) respectively receive a first memory address (m1ADDr, m1ADDc) and a second memory address (m2ADDr, m1ADDc) during an address transmission period (Tadr). The read instruction transmission period (Tcmd) is earlier than the address transmission period (Tadr). After the synchronous data preparation period (Tsdatpr), the first memory module (PSRAM1) and the second memory module (PSRAM2) simultaneously transmit the first synchronous read data (DATm1) and the second synchronous read data (DATm2) to the main control device during the synchronous data read period (Tdat_sync), respectively, wherein the synchronous data preparation period (Tsdatpr) is greater than a preset read delay (dftLC=LC*1).

根据本发明的第三方面,提出应用于电子装置的读取方法。电子装置包含主控装置、第一存储器模块(PSRAM1)与第二存储器模块(PSRAM2)。主控装置于读取操作期间(Trd)对第一存储器模块(PSRAM1)与第二存储器模块(PSRAM2)执行读取操作。第一存储器模块(PSRAM1)于读取操作期间产生更新冲突,且读取方法包含以下步骤。首先,第一存储器模块(PSRAM1)与第二存储器模块(PSRAM2)于读取指令传送期间分别接收主控装置所传送的第一读取指令(m1CMDrd)与第二读取指令(m2CMDrd)。其次,第一存储器模块(PSRAM1)与第二存储器模块(PSRAM2)于地址传送期间(Tadr)分别接收第一存储器地址(m1ADRr、ADRc)与第二存储器地址(m2ADRr、m2ADRc)。其中,读取指令传送期间(Tcmd)早于地址传送期间(Tadr)。经过同步数据准备期间(Tsdatpr)后,第一存储器模块(PSRAM1)与第二存储器模块(PSRAM2)系同时于同步数据读取期间(Tdat_sync),分别传送第一同步读取数据(DATm1)与第二同步读取数据(DATm2)至主控装置,其中该同步数据准备期间(Tsdatpr)系大于一预设读取延迟(dftLC=LC*1)。According to a third aspect of the present invention, a reading method applied to an electronic device is proposed. The electronic device includes a main control device, a first memory module (PSRAM1) and a second memory module (PSRAM2). The main control device performs a reading operation on the first memory module (PSRAM1) and the second memory module (PSRAM2) during a reading operation (Trd). The first memory module (PSRAM1) generates an update conflict during the reading operation, and the reading method includes the following steps. First, the first memory module (PSRAM1) and the second memory module (PSRAM2) respectively receive a first reading instruction (m1CMDrd) and a second reading instruction (m2CMDrd) transmitted by the main control device during a reading instruction transmission period. Secondly, the first memory module (PSRAM1) and the second memory module (PSRAM2) respectively receive a first memory address (m1ADRr, ADRc) and a second memory address (m2ADRr, m2ADRc) during an address transmission period (Tadr). Among them, the reading instruction transmission period (Tcmd) is earlier than the address transmission period (Tadr). After the synchronous data preparation period (Tsdatpr), the first memory module (PSRAM1) and the second memory module (PSRAM2) simultaneously transmit the first synchronous read data (DATm1) and the second synchronous read data (DATm2) to the main control device during the synchronous data read period (Tdat_sync), respectively, wherein the synchronous data preparation period (Tsdatpr) is greater than a preset read delay (dftLC=LC*1).

为了对本发明的上述及其他方面有更佳的了解,下文特举实施例,并配合所附附图详细说明如下:In order to better understand the above and other aspects of the present invention, embodiments are given below and described in detail with reference to the accompanying drawings:

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1系电子装置内的存储器模块使用动态随机存取存储器DRAM的示意图。FIG. 1 is a schematic diagram showing a memory module in an electronic device using a dynamic random access memory DRAM.

图2系电子装置内的存储器模块使用虚拟静态随机存取存储器PSRAM的示意图。FIG. 2 is a schematic diagram of a memory module in an electronic device using a virtual static random access memory PSRAM.

图3A系主控装置使用PSRAM存储器模块进行一般读取操作的波形图。FIG. 3A is a waveform diagram of a general read operation performed by a master control device using a PSRAM memory module.

图3B系主控装置使用PSRAM存储器模块进行读取操作时,存储器模内部发生更新冲突的波形图。FIG. 3B is a waveform diagram showing an update conflict occurring inside the memory module when the master control device uses the PSRAM memory module to perform a read operation.

图4系电子装置包含两个使用虚拟静态随机存取存储器PSRAM的存储器模块的示意图。FIG. 4 is a schematic diagram of an electronic device including two memory modules using a pseudo static random access memory PSRAM.

图5系主控装置对存储器模块PSRAM1、PSRAM2,以默认数据同步方式进行读取操作的示意图。FIG. 5 is a schematic diagram showing a master control device performing a read operation on the memory modules PSRAM1 and PSRAM2 in a default data synchronization manner.

图6系根据本发明实施例的电子装置中,主控装置对存储器模块PSRAM1、PSRAM2进行同步读取操作的流程图。FIG. 6 is a flow chart of a synchronous reading operation performed by a master control device on memory modules PSRAM1 and PSRAM2 in an electronic device according to an embodiment of the present invention.

图7A系根据本发明构想,存储器模块PSRAM1在发生更新冲突时,以即刻回报模式(mode A)通知主控装置并进行同步读取操作的流程图。FIG. 7A is a flow chart showing that when an update conflict occurs in the memory module PSRAM1, the memory module PSRAM1 notifies the host device in an immediate reporting mode (mode A) and performs a synchronous read operation according to the concept of the present invention.

图7B系根据本发明构想,存储器模块PSRAM1在发生更新冲突时,以延迟回报模式(mode B)通知主控装置并进行同步读取操作的流程图。7B is a flowchart of the memory module PSRAM1 notifying the host device in a delayed reporting mode (mode B) and performing a synchronous read operation when an update conflict occurs according to the concept of the present invention.

图8A系根据本发明构想,存储器模块PSRAM1与主控装置之间利用数据闪控屏蔽信号DQSM搭配即刻回报模式(mode A),进行同步读取操作的一种实施例的波形图。FIG. 8A is a waveform diagram of an embodiment of a synchronous read operation between the memory module PSRAM1 and the host device using the data strobe mask signal DQSM in combination with an immediate reporting mode (mode A) according to the concept of the present invention.

图8B系根据本发明构想,存储器模块PSRAM1与主控装置之间利用数据闪控屏蔽信号DQSM搭配延迟回报模式(mode B),进行同步读取操作的一种实施例的波形图。8B is a waveform diagram of an embodiment of a synchronous read operation between the memory module PSRAM1 and the host device using the data strobe mask signal DQSM in combination with a delayed reporting mode (mode B) according to the concept of the present invention.

图9A系于存储器模块PSRAM1、PSRAM2与主控装置之间设置存储库忙碌信号线BRBB,且由主控装置驱动的示意图。FIG. 9A is a schematic diagram showing that a memory bank busy signal line BRBB is set between the memory modules PSRAM1 and PSRAM2 and the main control device, and is driven by the main control device.

图9B系于存储器模块PSRAM1、PSRAM2与主控装置之间设置存储库忙碌信号线BRBB,且由存储器模块PSRAM1驱动的示意图。FIG. 9B is a schematic diagram showing that a bank busy signal line BRBB is set between the memory modules PSRAM1 and PSRAM2 and the main control device, and is driven by the memory module PSRAM1 .

图10系根据本发明构想,存储器模块PSRAM1、PSRAM2与主控装置之间利用存储库忙碌信号线BRBB搭配即刻回报模式(mode A),进行同步读取操作的一种实施例的波形图。FIG. 10 is a waveform diagram of an embodiment of a synchronous read operation between the memory modules PSRAM1 and PSRAM2 and the host device using the bank busy signal line BRBB in combination with the immediate reporting mode (mode A) according to the concept of the present invention.

图11系根据本发明构想,存储器模块PSRAM1、PSRAM2与主控装置之间以即刻回报模式(mode A)进行同步读取操作的另一种实施例的波形图。FIG. 11 is a waveform diagram of another embodiment of a synchronous read operation between the memory modules PSRAM1 and PSRAM2 and the host device in an immediate reporting mode (mode A) according to the concept of the present invention.

图12A系存储器模块PSRAM1、PSRAM2与主控装置之间利用芯片选取信号CS#作为更新冲突的沟通接口,且芯片选取信号CS#由主控装置驱动的示意图。FIG. 12A is a schematic diagram showing that the chip select signal CS# is used as a communication interface for updating conflicts between the memory modules PSRAM1 and PSRAM2 and the host control device, and the chip select signal CS# is driven by the host control device.

图12B系存储器模块PSRAM1、PSRAM2与主控装置之间利用芯片选取信号CS#作为更新冲突的沟通接口,且芯片选取信号CS#由存储器模块PSRAM1驱动的示意图。12B is a schematic diagram showing that the memory modules PSRAM1 and PSRAM2 use the chip select signal CS# as a communication interface for updating conflicts with the main control device, and the chip select signal CS# is driven by the memory module PSRAM1.

图13系存储器模块PSRAM1、PSRAM2与主控装置之间利用芯片选取信号CS#作为更新冲突的沟通接口,且存储器模块PSRAM1依据即刻回报模式(mode A)通知主控装置后,进行同步读取操作的实施例的波形图。13 is a waveform diagram of an embodiment in which the chip select signal CS# is used as the communication interface for updating conflicts between the memory modules PSRAM1 and PSRAM2 and the host device, and the memory module PSRAM1 notifies the host device according to the immediate reporting mode (mode A) and then performs a synchronous read operation.

图14系存储器模块PSRAM1、PSRAM2与主控装置之间利用芯片选取信号CS#搭配系统频率信号SCLK,依据即刻回报模式(mode A)进行同步读取操作的实施例的波形图。14 is a waveform diagram of an embodiment of a synchronous read operation between the memory modules PSRAM1 and PSRAM2 and the host device using the chip select signal CS# in combination with the system clock signal SCLK according to the immediate reporting mode (mode A).

图15系于主控装置和存储器模块PSRAM1、PSRAM2间设置频率忽略信号ICK1、ICK2信号,在存储器模块PSRAM1发生更新冲突的情况下进行同步读取操作的实施例的波形图。15 is a waveform diagram of an embodiment of setting frequency ignore signals ICK1 and ICK2 between the main control device and the memory modules PSRAM1 and PSRAM2 to perform a synchronous read operation when an update conflict occurs in the memory module PSRAM1.

图16系主控装置得知存储器模块PSRAM1发生更新冲突后,通过暂停产生系统频率信号SCLK而使存储器模块PSRAM1、PSRAM2进行同步读取操作的示意图。16 is a schematic diagram showing that after the master control device learns that an update conflict occurs in the memory module PSRAM1 , the master control device stops generating the system clock signal SCLK so as to allow the memory modules PSRAM1 and PSRAM2 to perform a synchronous read operation.

图17系主控装置发出重复读取指令,使存储器模块PSRAM1、PSRAM2同步进行读取操作的示意图。FIG. 17 is a schematic diagram showing that the main control device issues a repeated read instruction to cause the memory modules PSRAM1 and PSRAM2 to perform a read operation synchronously.

图18系存储器模块PSRAM1、PSRAM2与主控装置之间利用芯片选取信号CS#搭配系统频率信号SCLK,依据导引脉冲信号m1pre、m2pre的时间差,判断存储器模块PSRAM1发生更新冲突后,如何进行同步读取操作的实施例的波形图。18 is a waveform diagram of an embodiment of how to perform a synchronous read operation after an update conflict occurs in the memory module PSRAM1 using the chip selection signal CS# in combination with the system frequency signal SCLK between the memory modules PSRAM1 and PSRAM2 and the main control device according to the time difference of the pilot pulse signals m1pre and m2pre.

【符号说明】【Explanation of symbols】

11a,DRAM,11b,21,22,PSRAM1,PSRAM2,51,52,41,42:存储器模块11a, DRAM, 11b, 21, 22, PSRAM1, PSRAM2, 51, 52, 41, 42: memory modules

13a,13b,23,53,43:主控装置13a, 13b, 23, 53, 43: Main control device

CS#:芯片选取信号(线)CS#: Chip select signal (line)

SCLK:系统频率信号(线)SCLK: System frequency signal (line)

SIO[64:1]、SIO[8:1]、SIO[16:9]:系统输入输出信号线SIO[64:1], SIO[8:1], SIO[16:9]: system input and output signal lines

DQSM,DQSM[2:1],DQSM[1],DQSM[2]:数据闪控屏蔽信号(线)DQSM, DQSM[2:1], DQSM[1], DQSM[2]: Data strobe shield signal (line)

CTL:控制信号(线)CTL: control signal (line)

10a,10b,20,50,40:电子装置10a, 10b, 20, 50, 40: Electronic devices

t1~t21:时点t1~t21: time point

Trd:读取操作期间Trd: During read operation

Tcs:芯片选取期间Tcs: Chip selection period

Tset:设定期间Tset: set period

LC:读取延迟计数LC: Read Latency Count

Tclk,Tclk1~Tclk10:系统频率周期Tclk, Tclk1~Tclk10: system frequency cycle

Tend:结束期间Tend: End period

Tadr_r:列地址期间Tadr_r: Column address period

Tadr_c:行地址期间Tadr_c: row address period

mstrb1,mstrb2,m1strb1、m1strb2、m2strb1、m2strb2,m2strb1′,m2strb2′:读取闪控脉冲信号mstrb1, mstrb2, m1strb1, m1strb2, m2strb1, m2strb2, m2strb1′, m2strb2′: read the flash pulse signal

mCMDrd:读取指令mCMDrd: read command

ADRr,m1ADRr,m2ADRr:列地址ADRr, m1ADRr, m2ADRr: column address

ADRc,m1ADRc,m2ADRc:行地址ADRc, m1ADRc, m2ADRc: row address

DATm:同步读取数据DATm: Synchronous reading of data

Tcmd:读取指令传送期间Tcmd: Read command transmission period

Tadr:地址传送期间Tadr: Address transfer period

25:存储器装置25: Memory device

Tsdatpr:同步数据准备期间Tsdatpr: Synchronous data preparation period

Tdat_sync:同步数据读取期间Tdat_sync: Synchronous data reading period

DATm1,DATm2:同步读取数据DATm1, DATm2: Synchronous reading of data

m1CMDrd,m2CMDrd:读取指令m1CMDrd, m2CMDrd: read command

Trdnm:一般读取期间Trdnm: Normal read period

S51,S53,S55,S57,S59,S301a,S302a,S303a,S305a,S307a,S101a,S103a,S105a,S107a,S201a,S203a,S301b,S303b,S305b,S307b,S309b,S101b,S103b,S105b,S107b,S201b,S203b:步骤S51, S53, S55, S57, S59, S301a, S302a, S303a, S305a, S307a, S101a, S103a, S105a, S107a, S201a, S203a, S301b, S303b, S305b, S307b, S309b, S101b, S103b, S105b, S107b, S201b, S203b: Steps

Trdrf:更新冲突读取期间Trdrf: Update conflict during read

Trfrp:更新冲突通知期间Trfrp: Update conflict notification period

Taddwt:额外等待期间Taddwt: Additional waiting period

drpDATm2:舍弃数据drpDATm2: discard data

Tdrp2:数据舍弃期间Tdrp2: Data discard period

m1CMDrd_sp,m2CMDrd_sp:特殊读取指令m1CMDrd_sp, m2CMDrd_sp: special read instructions

m2CMDext:延长读取指令m2CMDext: Extended read command

Tcmdext:延长读取指令期间Tcmdext: Extend the read instruction period

501,511,521,401,421,411:双向接口电路501, 511, 521, 401, 421, 411: Bidirectional interface circuit

501a,521a,511a,401a,421a,411a:输出反向器501a, 521a, 511a, 401a, 421a, 411a: Output inverter

501b,521b,511b,401b,421b,411b:输入反向器501b, 521b, 511b, 401b, 421b, 411b: Input inverter

BRBBh,BRBBm1,BRBBm2:存储库忙碌信号(线)BRBBh, BRBBm1, BRBBm2: Bank busy signals (lines)

50a,40a:上拉电阻50A, 40A: Pull-up resistor

Vcc:供应电压Vcc: supply voltage

Tstp:暂停读取通知期间Tstp: Pause reading notification period

Tick:频率忽略期间Tick: Frequency Ignore Period

ICK1,ICK2:频率忽略信号ICK1, ICK2: Frequency ignore signal

m1CMDrtry,m2CMDrtry:重复读取指令m1CMDrtry, m2CMDrtry: Repeated read instruction

Tcmd_rtry:重复读取指令期间Tcmd_rtry: Repeated read instruction period

T2rd:重复读取期间T2rd: Repeated read period

Tint:芯片选取间距Tint: Chip selection spacing

m1pre,m2pre:导引脉冲信号m1pre, m2pre: pilot pulse signal

具体实施方式DETAILED DESCRIPTION

为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。In order to make the objectives, technical solutions and advantages of the present invention more clearly understood, the present invention is further described in detail below in conjunction with specific embodiments and with reference to the accompanying drawings.

请参见图4系电子装置包含两个虚拟静态随机存取存储器PSRAM存储器模块的示意图。电子装置20包含主控装置23与存储器装置25,且存储器装置25包含存储器模块(PSRAM1)21、(PSRAM2)22。4 is a schematic diagram of an electronic device including two virtual static random access memory (PSRAM) memory modules. The electronic device 20 includes a main control device 23 and a memory device 25 , and the memory device 25 includes memory modules (PSRAM1 ) 21 and (PSRAM2 ) 22 .

主控装置23的系统输入输出信号线SIO[16:1]包含16个位,这16个位中的8根系统输入输出信号线SIO[8:1]与存储器模块(PSRAM1)21相连;另外的8根系统输入输出信号线SIO[16:9]则与存储器模块(PSRAM2)22相连。主控装置23具有两根数据闪控屏蔽信号线DQSM[2:1],其中数据闪控屏蔽信号线DQSM[1]与存储器模块(PSRAM1)21相连,数据闪控屏蔽信号线DQSM[2]与存储器模块(PSRAM2)22相连。The system input/output signal line SIO[16:1] of the master control device 23 includes 16 bits, of which 8 system input/output signal lines SIO[8:1] are connected to the memory module (PSRAM1) 21; the other 8 system input/output signal lines SIO[16:9] are connected to the memory module (PSRAM2) 22. The master control device 23 has two data strobe shield signal lines DQSM[2:1], of which the data strobe shield signal line DQSM[1] is connected to the memory module (PSRAM1) 21, and the data strobe shield signal line DQSM[2] is connected to the memory module (PSRAM2) 22.

主控装置23利用芯片选取信号CS#选取存储器模块(PSRAM1)21、(PSRAM2)22。根据系统频率信号SCLK,主控装置23利用系统输入输出信号线SIO[8:1]、SIO[16:9]分别传送与存储器模块(PSRAM1)21、(PSRAM2)22对应的存储器地址至存储器模块(PSRAM1)21、(PSRAM2)22,且存储器模块(PSRAM1)21、(PSRAM2)22分别利用系统输入输出信号线SIO[8:1]、SIO[16:9]将读取数据DATm1、DATm2传送至主控装置23。其中,存储器模块(PSRAM1)21的存储器地址包含列地址m1ADRr与行地址m1ADRc,存储器模块(PSRAM2)22的存储器地址包含列地址m2ADRr与行地址m2ADRc。The main control device 23 uses the chip selection signal CS# to select the memory modules (PSRAM1) 21 and (PSRAM2) 22. According to the system clock signal SCLK, the main control device 23 uses the system input and output signal lines SIO[8:1] and SIO[16:9] to transmit the memory addresses corresponding to the memory modules (PSRAM1) 21 and (PSRAM2) 22 to the memory modules (PSRAM1) 21 and (PSRAM2) 22, respectively, and the memory modules (PSRAM1) 21 and (PSRAM2) 22 use the system input and output signal lines SIO[8:1] and SIO[16:9] to transmit the read data DATm1 and DATm2 to the main control device 23. Among them, the memory address of the memory module (PSRAM1) 21 includes the column address m1ADRr and the row address m1ADRc, and the memory address of the memory module (PSRAM2) 22 includes the column address m2ADRr and the row address m2ADRc.

请参见图5系主控装置对存储器模块PSRAM1、PSRAM2,以默认数据同步方式进行读取操作的示意图。图5的波形由上而下分别为同时传送至存储器模块(PSRAM1)21、(PSRAM2)22的芯片选取信号CS#与系统频率信号SCLK、传送至存储器模块(PSRAM1)21的数据闪控屏蔽信号DQSM[1]与系统输入输出信号SIO[8:1],以及传送至存储器模块(PSRAM2)22的数据闪控屏蔽信号DQSM[2]与系统输入输出信号SIO[16:9]。数据闪控屏蔽信号DQSM[1]、DQSM[2]未被驱动时,可能处于浮接状态。或者,可通过上拉电阻将未被驱动的数据闪控屏蔽信号DQSM[1]、DQSM[2]维持在高电平,或是通过下拉电阻将未被驱动的数据闪控屏蔽信号DQSM[1]、DQSM[2]维持在低电平。本发明假设未被驱动的数据闪控屏蔽信号DQSM[1]、DQSM[2]维持在低电平。Please refer to FIG5, which is a schematic diagram of the master control device performing a read operation on the memory modules PSRAM1 and PSRAM2 in a default data synchronization mode. The waveforms in FIG5 are, from top to bottom, the chip select signal CS# and the system clock signal SCLK transmitted to the memory modules (PSRAM1) 21 and (PSRAM2) 22 at the same time, the data strobe mask signal DQSM[1] and the system input/output signal SIO[8:1] transmitted to the memory module (PSRAM1) 21, and the data strobe mask signal DQSM[2] and the system input/output signal SIO[16:9] transmitted to the memory module (PSRAM2) 22. When the data strobe mask signals DQSM[1] and DQSM[2] are not driven, they may be in a floating state. Alternatively, the undriven data strobe mask signals DQSM[1] and DQSM[2] may be maintained at a high level through a pull-up resistor, or the undriven data strobe mask signals DQSM[1] and DQSM[2] may be maintained at a low level through a pull-down resistor. The present invention assumes that the undriven data strobe mask signals DQSM[1] and DQSM[2] are maintained at a low level.

为简化说明,在以下的波形图中,定义数个时间参数。这些时间参数包含:读取操作期间Trd、芯片选取期间Tcs、设定期间Tset、读取指令传送期间Tcmd、地址传送期间Tadr、同步数据准备期间Tsdatpr、同步数据读取期间Tdat_sync。接着,简要介绍这些时间参数的定义。To simplify the description, several time parameters are defined in the following waveform diagram. These time parameters include: read operation period Trd, chip selection period Tcs, setting period Tset, read command transmission period Tcmd, address transmission period Tadr, synchronous data preparation period Tsdatpr, synchronous data reading period Tdat_sync. Next, the definitions of these time parameters are briefly introduced.

读取操作期间Trd为,主控装置23对存储器模块(PSRAM1)21、(PSRAM2)22执行读取操作所需花费的时间。芯片选取期间Tcs为,主控装置23针对存储器模块(PSRAM1)21、(PSRAM2)22执行读取操作时,将芯片选取信号CS#拉低的期间。设定期间Tset为,主控装置23将芯片选取信号CS#拉低后,至主控装置23开始传送读取指令m1CMDrd、m2CMDre前的时间差。读取指令传送期间Tcmd为,主控装置23传送读取指令m1CMDrd、m2CMDre至存储器模块(PSRAM1)21、(PSRAM2)22所需的时间。The read operation period Trd is the time required for the master control device 23 to perform a read operation on the memory modules (PSRAM1) 21 and (PSRAM2) 22. The chip selection period Tcs is the period during which the chip selection signal CS# is pulled low when the master control device 23 performs a read operation on the memory modules (PSRAM1) 21 and (PSRAM2) 22. The setting period Tset is the time difference between the time when the master control device 23 pulls the chip selection signal CS# low and before the master control device 23 starts to transmit the read instructions m1CMDrd and m2CMDre. The read instruction transmission period Tcmd is the time required for the master control device 23 to transmit the read instructions m1CMDrd and m2CMDre to the memory modules (PSRAM1) 21 and (PSRAM2) 22.

地址传送期间Tadr为,主控装置23同步将与存储器模块(PSRAM1)21对应的存储器地址(包含列地址m1ADRr、行地址m1ADRc)传送至存储器模块(PSRAM1)21,以及将与存储器模块(PSRAM2)22对应的存储器地址(包含列地址m2ADRr、行地址m2ADRc)传送至存储器模块(PSRAM2)22所需的时间。其中,地址传送期间Tadr进一步包含列地址期间Tadr_r与行地址期间Tadr_c。在列地址期间Tadr_r,主控装置23传送与存储器模块(PSRAM1)21对应的列地址m1ADRr至存储器模块(PSRAM1)21,以及同步传送与存储器模块(PSRAM2)22对应的列地址m2ADRr至存储器模块(PSRAM2)22。在行地址期间Tadr_c,主控装置23传送与存储器模块(PSRAM1)21对应的行地址m1ADRc至存储器模块(PSRAM1)21,以及同步传送与存储器模块(PSRAM2)22对应的行地址m2ADRc至存储器模块(PSRAM2)22。The address transmission period Tadr is the time required for the master control device 23 to synchronously transmit the memory address (including the column address m1ADRr and the row address m1ADRc) corresponding to the memory module (PSRAM1) 21 to the memory module (PSRAM1) 21, and to transmit the memory address (including the column address m2ADRr and the row address m2ADRc) corresponding to the memory module (PSRAM2) 22 to the memory module (PSRAM2) 22. The address transmission period Tadr further includes the column address period Tadr_r and the row address period Tadr_c. During the column address period Tadr_r, the master control device 23 transmits the column address m1ADRr corresponding to the memory module (PSRAM1) 21 to the memory module (PSRAM1) 21, and synchronously transmits the column address m2ADRr corresponding to the memory module (PSRAM2) 22 to the memory module (PSRAM2) 22. During the row address period Tadr_c, the master device 23 transmits the row address m1ADRc corresponding to the memory module (PSRAM1) 21 to the memory module (PSRAM1) 21, and synchronously transmits the row address m2ADRc corresponding to the memory module (PSRAM2) 22 to the memory module (PSRAM2) 22.

此外,同步数据准备期间Tsdatpr为,主控装置23传送存储器地址至存储器模块(PSRAM1)21、(PSRAM2)22后,至同步数据读取期间Tdat_sync开始前的一段时间。其中,同步数据准备期间Tsdatpr的长度可能随着实施例的不同,而有显著的差异。同步数据读取期间Tdat_sync为,存储器模块(PSRAM1)21从内部缓冲器将同步读取数据DATm1经系统输入输出信号线SIO[8:1]传送至主控装置23,以及存储器模块(PSRAM2)22从内部缓冲器将同步读取数据DATm2经系统输入输出信号线SIO[16:9]传送至主控装置的期间。结束期间Tend为,芯片选取期间Tcs的结束时点,与读取操作期间Trd的结束时点之间的时间差。In addition, the synchronous data preparation period Tsdatpr is a period of time from the time when the master control device 23 transmits the memory address to the memory modules (PSRAM1) 21 and (PSRAM2) 22 to the time when the synchronous data reading period Tdat_sync starts. The length of the synchronous data preparation period Tsdatpr may vary significantly depending on the embodiment. The synchronous data reading period Tdat_sync is a period when the memory module (PSRAM1) 21 transmits the synchronous reading data DATm1 from the internal buffer to the master control device 23 via the system input-output signal line SIO[8:1], and the memory module (PSRAM2) 22 transmits the synchronous reading data DATm2 from the internal buffer to the master control device via the system input-output signal line SIO[16:9]. The end period Tend is the time difference between the end point of the chip selection period Tcs and the end point of the read operation period Trd.

在图5中,时点t1至时点t11为读取操作期间Trd;时点t1至时点t10为芯片选取期间Tcs;时点t1至时点t2为设定期间Tset;时点t2至时点t3为读取指令传送期间Tcmd;时点t4至时点t7为地址传送期间Tadr;时点t7至时点t9为同步数据准备期间Tsdatpr;时点t9至时点t11为同步数据读取期间Tdat_sync;时点t10至时点t11为结束期间Tend。其中,同步数据读取期间Tdat_sync小于1个读取延迟计数LC。在默认数据同步方式下,存储器模块(PSRAM1)21、(PSRAM2)22仅需花费时点t5至时点t9的期间,即可开始将内部存储器的数据传出至系统输入输出信号线SIO[16:1]。因此,可将时点t5至时点t9的期间定义为一般读取期间Trdnm。In FIG5 , time point t1 to time point t11 is the read operation period Trd; time point t1 to time point t10 is the chip selection period Tcs; time point t1 to time point t2 is the setting period Tset; time point t2 to time point t3 is the read instruction transmission period Tcmd; time point t4 to time point t7 is the address transmission period Tadr; time point t7 to time point t9 is the synchronous data preparation period Tsdatpr; time point t9 to time point t11 is the synchronous data reading period Tdat_sync; time point t10 to time point t11 is the end period Tend. Among them, the synchronous data reading period Tdat_sync is less than 1 read delay count LC. In the default data synchronization mode, the memory module (PSRAM1) 21, (PSRAM2) 22 only needs to spend the period from time point t5 to time point t9 to start transferring the data of the internal memory to the system input and output signal line SIO[16:1]. Therefore, the period from the time point t5 to the time point t9 can be defined as the normal reading period Trdnm.

由于存储器模块(PSRAM1)21、(PSRAM2)22并不会频繁的发生更新冲突,存储器模块(PSRAM1)21、(PSRAM2)22通常均如图5般,进行正常的读取操作。但是,在部分的情况下,存储器模块(PSRAM1)21、(PSRAM2)22的其中一者可能出现更新冲突的情况,导致主控装置23因为读取速度不一致的缘故无法正确读取存储在存储器模块(PSRAM1)21、(PSRAM2)22内的数据的情况发生。Since update conflicts do not frequently occur in the memory modules (PSRAM1) 21 and (PSRAM2) 22, the memory modules (PSRAM1) 21 and (PSRAM2) 22 usually perform normal read operations as shown in FIG5. However, in some cases, an update conflict may occur in one of the memory modules (PSRAM1) 21 and (PSRAM2) 22, causing the main control device 23 to be unable to correctly read the data stored in the memory modules (PSRAM1) 21 and (PSRAM2) 22 due to inconsistent read speeds.

为此,本发明提出一种可使存储器模块(PSRAM1)21、(PSRAM2)22弹性的因应更新冲突的发生与否,动态地调整以1个读取延迟计数LC或2个读取延迟计数LC的方式读取存储器模块(PSRAM1)21、(PSRAM2)22内的数据。为便于说明,以下假设存储器模块(PSRAM1)21内部发生更新冲突的情况,而存储器模块(PSRAM2)22可进行正常的读取操作的情况。Therefore, the present invention proposes a method that allows the memory modules (PSRAM1) 21 and (PSRAM2) 22 to flexibly respond to the occurrence of update conflicts and dynamically adjust the reading of data in the memory modules (PSRAM1) 21 and (PSRAM2) 22 in a manner of 1 read delay count LC or 2 read delay counts LC. For ease of explanation, it is assumed that an update conflict occurs in the memory module (PSRAM1) 21, while the memory module (PSRAM2) 22 can perform a normal read operation.

当所有存储器模块(PSRAM1)21、(PSRAM2)22均未发生更新冲突时,以1个读取延迟计数LC的方式读取数据。反之,若有任何一个存储器模块(例如,存储器模块(PSRAM1)21)发生更新冲突时,则可通过回报与通知的机制,让主控装置23仍可同步地自存储器模块(PSRAM1)21、(PSRAM2)22内读取数据。本发明提供多种实施例,该些实施例的基本流程如图6所示。When no update conflict occurs in all memory modules (PSRAM1) 21 and (PSRAM2) 22, data is read with 1 read delay count LC. On the contrary, if any memory module (e.g., memory module (PSRAM1) 21) has an update conflict, the main control device 23 can still synchronously read data from the memory modules (PSRAM1) 21 and (PSRAM2) 22 through the reporting and notification mechanism. The present invention provides multiple embodiments, and the basic processes of these embodiments are shown in FIG6 .

请参见图6系根据本发明实施例的电子装置中,主控装置对存储器模块PSRAM1、PSRAM2进行同步读取操作的流程图。首先,主控装置23拉低芯片选取信号CS#的电平并发出读取指令至存储器模块(PSRAM1)21、(PSRAM2)22(步骤S51)。接着,判断是否有任何一个存储器模块(PSRAM1)21、(PSRAM2)22产生更新冲突(步骤S53)。步骤S53的方式可能是由主控装置23侦测后判断,或者由发生更新冲突的存储器模块(PSRAM1)21回报。关于步骤S53的判断方式,后续将有不同的实施例说明。Please refer to FIG. 6 for a flowchart of a synchronous read operation of the memory modules PSRAM1 and PSRAM2 by the main control device in an electronic device according to an embodiment of the present invention. First, the main control device 23 pulls down the level of the chip selection signal CS# and issues a read instruction to the memory modules (PSRAM1) 21 and (PSRAM2) 22 (step S51). Next, it is determined whether any of the memory modules (PSRAM1) 21 and (PSRAM2) 22 has an update conflict (step S53). The method of step S53 may be determined by the main control device 23 after detection, or reported by the memory module (PSRAM1) 21 where the update conflict occurs. Regarding the determination method of step S53, different embodiments will be described later.

如果步骤S53的判断结果为否定,代表所有的存储器模块(PSRAM1)21、(PSRAM2)22都可如图5所示,以一般数据读取的方式完成读取操作。因此,存储器模块(PSRAM1)21、(PSRAM2)22在同步数据准备期间Tsdatpr以默认数据同步方式(Tsdatpr<LC)准备读取数据(步骤S55)后,再于同步数据读取期间Tdat_sync将同步读取数据DATm1、DATm2传送至主控装置23(步骤S59)。If the judgment result of step S53 is negative, it means that all memory modules (PSRAM1) 21 and (PSRAM2) 22 can complete the reading operation in the general data reading manner as shown in FIG5. Therefore, after the memory modules (PSRAM1) 21 and (PSRAM2) 22 prepare to read data in the default data synchronization manner (Tsdatpr<LC) during the synchronous data preparation period Tsdatpr (step S55), they transmit the synchronous read data DATm1 and DATm2 to the master control device 23 during the synchronous data reading period Tdat_sync (step S59).

另一方面,步骤S53的判断结果为肯定,代表有一个或多个存储器模块(PSRAM1)21产生更新冲突。此时,产生更新冲突的一个或多个存储器模块(PSRAM1)21无法在预设读取延迟(dftLC=LC*1)内完成数据撷取。由于产生更新冲突的存储器模块(PSRAM1)21需费时较长的读取期间,方能将读取数据从存储器阵列复制至内部缓冲器。因此,未发生更新冲突的存储器模块(PSRAM2)22必须推迟其进行读取操作的速度,才能与存储器模块(PSRAM1)21的读取速度一致。因此,主控装置23需通知未发生更新冲突的存储器模块(PSRAM2)22将以特殊数据同步方式准备读取数据。采用特殊数据同步方式读取数据时,存储器模块(PSRAM1)21、(PSRAM2)22均需等待较长的同步数据准备期间Tsdatpr(Tsdatpr>LC)(步骤S57)后,再于同步数据读取期间Tdat_sync将同步读取数据DATm1、DATm2传送至主控装置23。On the other hand, the judgment result of step S53 is positive, which means that one or more memory modules (PSRAM1) 21 have an update conflict. At this time, the one or more memory modules (PSRAM1) 21 that have an update conflict cannot complete data acquisition within the preset read delay (dftLC=LC*1). Since the memory module (PSRAM1) 21 that has an update conflict needs a longer read period to copy the read data from the memory array to the internal buffer. Therefore, the memory module (PSRAM2) 22 that has no update conflict must delay its read operation speed to be consistent with the read speed of the memory module (PSRAM1) 21. Therefore, the main control device 23 needs to notify the memory module (PSRAM2) 22 that has no update conflict that it will prepare to read data in a special data synchronization manner. When reading data using a special data synchronization method, the memory modules (PSRAM1) 21 and (PSRAM2) 22 need to wait for a longer synchronization data preparation period Tsdatpr (Tsdatpr>LC) (step S57), and then transmit the synchronization read data DATm1 and DATm2 to the main control device 23 during the synchronization data reading period Tdat_sync.

根据本发明的构想,主控装置23可自动感测存储器模块(PSRAM1)21发生更新冲突的现象。或者,存储器模块(PSRAM1)21发生更新冲突时,可主动将此情况回报予主控装置23。存储器模块(PSRAM1)21可通过两种回报模式将其内部发生的更新冲突的现象通知主控装置23,即刻回报模式(mode A)与延迟回报模式(mode B)。即刻回报模式(mode A)指的是,若存储器模块(PSRAM1)21发生内部更新冲突时,存储器模块(PSRAM1)21在芯片选取信号CS#被拉低后,立即通知主控装置23关于其内部发生更新冲突。延迟回报模式(mode B)指的是,若存储器模块(PSRAM1)21发生内部更新冲突时,待存储器模块(PSRAM1)21从主控装置23接收列地址m1ADRr后,存储器模块(PSRAM1)21才通知主控装置23关于其内部发生更新冲突的情形。According to the concept of the present invention, the main control device 23 can automatically sense the phenomenon of update conflict in the memory module (PSRAM1) 21. Alternatively, when the memory module (PSRAM1) 21 has an update conflict, it can actively report this situation to the main control device 23. The memory module (PSRAM1) 21 can notify the main control device 23 of the phenomenon of update conflict occurring inside it through two reporting modes, immediate reporting mode (mode A) and delayed reporting mode (mode B). The immediate reporting mode (mode A) means that if the memory module (PSRAM1) 21 has an internal update conflict, the memory module (PSRAM1) 21 immediately notifies the main control device 23 about the update conflict occurring inside it after the chip select signal CS# is pulled low. The delayed reporting mode (mode B) means that if the memory module (PSRAM1) 21 has an internal update conflict, the memory module (PSRAM1) 21 will not notify the main control device 23 about the situation of update conflict occurring inside it until the memory module (PSRAM1) 21 receives the column address m1ADRr from the main control device 23.

接着,以图7A说明当存储器模块(PSRAM1)21以即刻回报模式(mode A)通知主控装置23关于其内部发生更新冲突情形时的读取流程;以及,以图7B说明当存储器模块(PSRAM1)21以延迟回报模式(mode B)通知主控装置23关于其内部发生更新冲突情形时的读取流程。在图7A、图7B中,由上而下为流程的先后顺序,由左而右分别为主控装置23、存储器模块(PSRAM1)21,以及存储器模块(PSRAM2)22所进行的流程。在图7A、图7B中,以箭头方向代表信号的传送方向,另,虚线箭头方向代表可根据实施例不同而选择性执行。Next, FIG. 7A illustrates the read process when the memory module (PSRAM1) 21 notifies the master control device 23 of the update conflict situation that occurs inside it in the immediate reporting mode (mode A); and FIG. 7B illustrates the read process when the memory module (PSRAM1) 21 notifies the master control device 23 of the update conflict situation that occurs inside it in the delayed reporting mode (mode B). In FIG. 7A and FIG. 7B, the order of the processes is from top to bottom, and from left to right are the processes performed by the master control device 23, the memory module (PSRAM1) 21, and the memory module (PSRAM2) 22. In FIG. 7A and FIG. 7B, the arrow direction represents the transmission direction of the signal, and the dashed arrow direction represents that it can be selectively executed according to different embodiments.

请参见图7A系根据本发明构想,存储器模块PSRAM1在发生更新冲突时,以即刻回报模式(mode A)通知主控装置并进行同步读取操作的流程图。首先,主控装置23将对应于存储器模块(PSRAM1)21、(PSRAM2)22的芯片选取信号CS#拉低(S301a)。接着,存储器模块(PSRAM1)21确认产生更新冲突(步骤S101a)。接着存储器模块(PSRAM1)21通知主控装置23关于内部产生更新冲突的情形(步骤S103a)。关于存储器模块(PSRAM1)21通过何种方式通知主控装置23其内部产生更新冲突的细节,可根据实施例的不同而异,后续将进一步说明。Please refer to FIG. 7A for a flowchart of the memory module PSRAM1 notifying the main control device in an immediate reporting mode (mode A) and performing a synchronous read operation when an update conflict occurs according to the concept of the present invention. First, the main control device 23 pulls down the chip selection signal CS# corresponding to the memory modules (PSRAM1) 21 and (PSRAM2) 22 (S301a). Then, the memory module (PSRAM1) 21 confirms that an update conflict has occurred (step S101a). Then, the memory module (PSRAM1) 21 notifies the main control device 23 about the situation in which an update conflict has occurred internally (step S103a). The details of how the memory module (PSRAM1) 21 notifies the main control device 23 of the update conflict that has occurred internally may vary according to different embodiments, and will be further explained later.

之后,主控装置23传送读取指令m1CMDrd、m2CMDrd至存储器模块(PSRAM1)21、(PSRAM2)22(步骤S302a),以及通知存储器模块(PSRAM1)21、(PSRAM2)22须以特殊数据同步方式进行读取(步骤S303a)。随着实施例的不同,步骤S302a与步骤S303a可结合在一起执行,或者,步骤S302a与步骤S303a可分别执行。Afterwards, the main control device 23 transmits the read commands m1CMDrd and m2CMDrd to the memory modules (PSRAM1) 21 and (PSRAM2) 22 (step S302a), and notifies the memory modules (PSRAM1) 21 and (PSRAM2) 22 that they must be read in a special data synchronization manner (step S303a). Depending on the embodiment, step S302a and step S303a may be performed together, or step S302a and step S303a may be performed separately.

关于主控装置23通过何种方式通知存储器模块(PSRAM1)21、(PSRAM2)22须以特殊数据同步方式进行读取,可根据实施例的不同而异,后续将进一步说明。另请留意,尽管步骤S303a须待步骤S103a完成后方能进行。但,步骤S303a并不限定需在步骤S103a完成后立刻执行。例如,步骤S303a亦可在步骤S307a结束后才执行。The method by which the master control device 23 notifies the memory modules (PSRAM1) 21 and (PSRAM2) 22 to read data in a special data synchronization manner may vary according to different embodiments, and will be further described later. Please also note that although step S303a must wait until step S103a is completed before it can be performed, step S303a is not limited to being performed immediately after step S103a is completed. For example, step S303a can also be performed after step S307a is completed.

接着,主控装置23利用系统输入输出信号SIO[16:1]先后传送存储器模块(PSRAM1)21、(PSRAM2)22的列地址m1ADRr、m2ADRr与行地址m1ADRc、m2ADRc(步骤S305a、S307a)。其中,系统输入输出信号SIO[8:1]用于传送与存储器模块(PSRAM1)21对应的列地址m1ADRr与行地址m1ADRc;系统输入输出信号SIO[16:9]用于传送与存储器模块(PSRAM2)22对应的列地址m2ADRr与行地址m2ADRc。Next, the main control device 23 uses the system input-output signal SIO[16:1] to transmit the column addresses m1ADRr, m2ADRr and row addresses m1ADRc, m2ADRc of the memory modules (PSRAM1) 21 and (PSRAM2) 22 in sequence (steps S305a and S307a). The system input-output signal SIO[8:1] is used to transmit the column address m1ADRr and row address m1ADRc corresponding to the memory module (PSRAM1) 21; the system input-output signal SIO[16:9] is used to transmit the column address m2ADRr and row address m2ADRc corresponding to the memory module (PSRAM2) 22.

存储器模块(PSRAM1)21等待更新冲突结束(步骤S105a)后,利用系统输入输出信号SIO[8:1]传送同步读取数据DATm1至主控装置21(步骤S107a)。在存储器模块(PSRAM1)21传送读取数据DATm1的同时,存储器模块(PSRAM2)22等待同步数据准备期间Tsdatpr结束(步骤S201a)后,利用系统输入输出信号SIO[16:9]传送同步读取数据DATm2至主控装置23(步骤S203a)。After the memory module (PSRAM1) 21 waits for the update conflict to end (step S105a), it transmits the synchronous read data DATm1 to the master device 21 using the system input-output signal SIO[8:1] (step S107a). While the memory module (PSRAM1) 21 transmits the read data DATm1, the memory module (PSRAM2) 22 waits for the synchronous data preparation period Tsdatpr to end (step S201a), and then transmits the synchronous read data DATm2 to the master device 23 using the system input-output signal SIO[16:9] (step S203a).

请参见图7B系根据本发明构想,存储器模块PSRAM1在发生更新冲突时,以延迟回报模式(mode B)通知主控装置并进行同步读取操作的流程图。首先,主控装置23将存储器模块(PSRAM1)21、(PSRAM2)22的芯片选取信号CS#拉低(S301b)。接着,主控装置23发出读取指令m1CMDrd、m2CMDrd与列地址m1ADRr、m2ADRr至存储器模块(PSRAM1)21、(PSRAM2)22(步骤S303b、S305b)。Please refer to FIG. 7B for a flowchart of the memory module PSRAM1 notifying the master device in delayed reporting mode (mode B) and performing a synchronous read operation according to the present invention when an update conflict occurs. First, the master device 23 pulls down the chip select signal CS# of the memory modules (PSRAM1) 21 and (PSRAM2) 22 (S301b). Then, the master device 23 sends read commands m1CMDrd, m2CMDrd and column addresses m1ADRr, m2ADRr to the memory modules (PSRAM1) 21 and (PSRAM2) 22 (steps S303b, S305b).

存储器模块(PSRAM1)21确认产生更新冲突(步骤S101b)后,存储器模块(PSRAM1)21将通知主控装置23关于内部产生更新冲突的情形(步骤S103b)。在此同时,主控装置23利用系统输入输出信号线SIO[16:1]传送行地址m1ADRc、m2ADRc至存储器模块(PSRAM1)21、(PSRAM2)22(步骤S307b)。之后,主控装置23通知存储器模块(PSRAM1)21、(PSRAM2)22须以特殊数据同步方式进行读取(步骤S309a)。After the memory module (PSRAM1) 21 confirms that an update conflict has occurred (step S101b), the memory module (PSRAM1) 21 will notify the master control device 23 of the situation in which an update conflict has occurred internally (step S103b). At the same time, the master control device 23 uses the system input/output signal line SIO[16:1] to transmit the row addresses m1ADRc and m2ADRc to the memory modules (PSRAM1) 21 and (PSRAM2) 22 (step S307b). Afterwards, the master control device 23 notifies the memory modules (PSRAM1) 21 and (PSRAM2) 22 that they must be read in a special data synchronization manner (step S309a).

存储器模块(PSRAM1)21等待更新冲突结束(步骤S105b)后,利用系统输入输出信号SIO[8:1]将内部缓冲器的同步读取数据DATm1传送至主控装置21(步骤S107b)。另一方面,存储器模块(PSRAM2)22等待同步数据准备期间Tsdatpr结束(步骤S201b)后,利用系统输入输出信号SIO[16:9]将内部缓冲器的同步读取数据DATm2传送至主控装置21(步骤S203b)。After the memory module (PSRAM1) 21 waits for the update conflict to end (step S105b), it transmits the synchronous read data DATm1 of the internal buffer to the master device 21 using the system input-output signal SIO[8:1] (step S107b). On the other hand, after the memory module (PSRAM2) 22 waits for the synchronous data preparation period Tsdatpr to end (step S201b), it transmits the synchronous read data DATm2 of the internal buffer to the master device 21 using the system input-output signal SIO[16:9] (step S203b).

请同时参见图7A、图7B。其中可以看出,这两个流程图所需进行的步骤大致相似,两者的主要差别为,存储器模块(PSRAM1)21通知主控装置23产生更新冲突(图7A的步骤S103a、图7B的步骤S103b),以及主控装置23通知存储器模块(PSRAM1)21、(PSRAM2)22须以特殊数据同步方式进行读取(图7A的步骤S303a、图7B的步骤S309b)的时点不同。在即刻回报模式(mode A)(图7A)中,存储器模块(PSRAM1)21在主控装置23传送读取指令m1CMDrd、m2CMDrd与列地址m1ADRr、m2ADRr前,即已将更新冲突的情况通知主控装置23。在与延迟回报模式(mode B)(图7B)中,存储器模块(PSRAM1)21在主控装置23传送读取指令m1CMDrd、m2CMDrd与列地址m1ADRr、m2ADRr后,才将更新冲突的情况通知主控装置23。Please refer to FIG. 7A and FIG. 7B at the same time. It can be seen that the steps required to be performed in the two flow charts are roughly similar. The main difference between the two is that the memory module (PSRAM1) 21 notifies the main control device 23 that an update conflict occurs (step S103a of FIG. 7A and step S103b of FIG. 7B), and the main control device 23 notifies the memory modules (PSRAM1) 21 and (PSRAM2) 22 that they must be read in a special data synchronization manner (step S303a of FIG. 7A and step S309b of FIG. 7B). In the immediate reporting mode (mode A) (FIG. 7A), the memory module (PSRAM1) 21 notifies the main control device 23 of the update conflict before the main control device 23 transmits the read commands m1CMDrd, m2CMDrd and the column addresses m1ADRr, m2ADRr. In the delayed reporting mode (mode B) ( FIG. 7B ), the memory module ( PSRAM1 ) 21 notifies the host control device 23 of the update conflict only after the host control device 23 transmits the read commands m1CMDrd, m2CMDrd and the column addresses m1ADRr, m2ADRr.

存储器模块可区分为单存储器库(single bank)与多存储器库(multibank)。其中,单存储器库的存储器模块可在芯片选取信号CS#被拉低的瞬间得知其内部是否产生更新冲突。另一方面,多存储器库的存储器模块必须等待列地址m1ADRr、m2ADRr接收后,才能判断是否发生更新冲突。因此,即刻回报模式(Mode A)可适用于单存储器库的存储器模块,延迟回报模式(Mode B)则可适用于单存储器库与多存储器库的存储器模块。以下提供的实施例,将分别说明存储器模块(PSRAM1)21利用即刻回报模式(Mode A)与延迟回报模式(Mode B)回报更新冲突的做法。Memory modules can be divided into single bank and multi-bank. Among them, the memory module of single bank can know whether there is an update conflict inside it at the moment when the chip select signal CS# is pulled low. On the other hand, the memory module of multi-bank must wait for the column address m1ADRr and m2ADRr to be received before determining whether an update conflict occurs. Therefore, the immediate reporting mode (Mode A) can be applied to the memory module of single bank, and the delayed reporting mode (Mode B) can be applied to the memory modules of single bank and multi-bank. The embodiments provided below will respectively illustrate the method of using the immediate reporting mode (Mode A) and the delayed reporting mode (Mode B) of the memory module (PSRAM1) 21 to report the update conflict.

根据本发明的实施例,存储器模块(PSRAM1)21回报更新冲突情况至主控装置23时,除回报时点可根据实施例的不同而变化外,存储器模块(PSRAM1)21通知主控装置23的媒介与手段亦可不同。例如,存储器模块(PSRAM1)21可利用不同的信号线,以及各种对信号线的控制波形的组合通知主控装置23。According to the embodiment of the present invention, when the memory module (PSRAM1) 21 reports the update conflict situation to the main control device 23, in addition to the reporting time point that can be changed according to different embodiments, the medium and means by which the memory module (PSRAM1) 21 notifies the main control device 23 can also be different. For example, the memory module (PSRAM1) 21 can use different signal lines and various combinations of control waveforms of the signal lines to notify the main control device 23.

接着,本发明将说明基于本发明构想的读取方法可采用的实施例的所对应的波形图。首先,图8A、图8B以既有的数据闪控屏蔽信号DQSM作为传输媒介,分别说明采用即刻回报模式(mode A)与延迟回报模式(mode B)的做法。后续另将提供使用不同的信号线作为传输媒介的相关实施例。Next, the present invention will describe the corresponding waveform diagrams of the embodiments of the reading method based on the concept of the present invention. First, FIG8A and FIG8B use the existing data flash mask signal DQSM as the transmission medium to respectively describe the methods of using the immediate reporting mode (mode A) and the delayed reporting mode (mode B). The following will provide related embodiments using different signal lines as the transmission medium.

请参见图8A,其系根据本发明构想,存储器模块与主控装置之间利用数据闪控屏蔽信号DQSM搭配即刻回报模式(mode A),进行同步读取操作的一种实施例的波形图。在此附图中,时点t1至时点t15为读取操作期间Trd;时点t1至时点t14为芯片选取期间Tcs;时点t1至时点t3为设定期间Tset;时点t3至时点t4为读取指令传送期间Tcmd;时点t4至时点t8为地址传送期间Tadr;时点t8至时点t13为同步数据准备期间Tsdatpr;时点t13至时点t15为同步数据读取期间Tdat_sync;时点t14至时点t15为结束期间Tend。Please refer to FIG8A, which is a waveform diagram of an embodiment of a synchronous read operation between a memory module and a host device using a data flash mask signal DQSM in combination with an immediate reporting mode (mode A) according to the concept of the present invention. In this figure, time point t1 to time point t15 is a read operation period Trd; time point t1 to time point t14 is a chip selection period Tcs; time point t1 to time point t3 is a setting period Tset; time point t3 to time point t4 is a read command transmission period Tcmd; time point t4 to time point t8 is an address transmission period Tadr; time point t8 to time point t13 is a synchronous data preparation period Tsdatpr; time point t13 to time point t15 is a synchronous data reading period Tdat_sync; time point t14 to time point t15 is an end period Tend.

主控装置23在时点t1将芯片选取信号CS#拉低至低电平后,存储器模块(PSRAM1)21于时点t2开始,通过将数据闪控屏蔽信号DQSM[1]的电平拉高的方式,通知主控装置23其内部产生更新冲突。存储器模块(PSRAM1)21在时点t2至时点t7期间将数据闪控屏蔽信号DQSM[1]维持在高电平,并于时点t7开始将数据闪控屏蔽信号DQSM[1]拉低至低电平。其中,时点t2至时点t7期间可定义为,发生更新冲突的存储器模块(PSRAM1)21将己身发生更新冲突的情形,通知主控装置23的更新冲突通知期间Trfrp。After the master control device 23 pulls the chip select signal CS# to a low level at time t1, the memory module (PSRAM1) 21 starts to notify the master control device 23 that an update conflict has occurred by pulling the level of the data strobe mask signal DQSM[1] high at time t2. The memory module (PSRAM1) 21 maintains the data strobe mask signal DQSM[1] at a high level from time t2 to time t7, and starts to pull the data strobe mask signal DQSM[1] to a low level at time t7. The period from time t2 to time t7 can be defined as the update conflict notification period Trfrp, in which the memory module (PSRAM1) 21 that has an update conflict notifies the master control device 23 of the update conflict.

另一方面,存储器模块(PSRAM2)22在时点t10前,一直将数据闪控屏蔽信号DQSM[2]维持在低电平。在时点t2时,主控装置23已经分别通过高电平的数据闪控屏蔽信号DQSM[1]与低电平的数据闪控屏蔽信号DQSM[2],掌握存储器模块(PSRAM1)21、(PSRAM2)22的状态。其中,高电平的数据闪控屏蔽信号DQSM[1]代表存储器模块PSRAM1发生更新冲突,而低电平的数据闪控屏蔽信号DQSM[2]代表存储器模块(PSRAM2)22并未发生更新冲突。On the other hand, the memory module (PSRAM2) 22 has been maintaining the data strobe mask signal DQSM[2] at a low level before time t10. At time t2, the master control device 23 has grasped the status of the memory modules (PSRAM1) 21 and (PSRAM2) 22 through the high-level data strobe mask signal DQSM[1] and the low-level data strobe mask signal DQSM[2], respectively. Among them, the high-level data strobe mask signal DQSM[1] indicates that the memory module PSRAM1 has an update conflict, while the low-level data strobe mask signal DQSM[2] indicates that the memory module (PSRAM2) 22 has not an update conflict.

接着,在时点t3至时点t4期间(读取指令传送期间Tcmd),主控装置23利用系统输入输出信号SIO[8:1]发出特殊读取指令m1CMDrd_sp至存储器模块(PSRAM1)21,以及利用系统输入输出信号SIO[16:9]发出特殊读取指令m2CMDrd_sp至存储器模块(PSRAM2)22。一旦存储器模块(PSRAM2)22收到特殊读取指令m2CMDrd_sp后,即可知道此次的读取操作应放缓。此处以点状底纹搭配粗外框代表特殊读取指令m1CMDrd_sp、m2CMDrd_sp。据此,在时点t4时,存储器模块(PSRAM2)22已经通过主控装置23所发出的特殊读取指令m2CMDrd_sp,获知目前不应按照一般读取操作的速度进行,需额外等候存储器模块(PSRAM1)21完成其更新冲突。Next, during the period from time point t3 to time point t4 (the period Tcmd during which the read command is transmitted), the master control device 23 uses the system input-output signal SIO[8:1] to send a special read command m1CMDrd_sp to the memory module (PSRAM1) 21, and uses the system input-output signal SIO[16:9] to send a special read command m2CMDrd_sp to the memory module (PSRAM2) 22. Once the memory module (PSRAM2) 22 receives the special read command m2CMDrd_sp, it knows that the read operation should be slowed down. Here, the dotted background with a thick frame represents the special read commands m1CMDrd_sp and m2CMDrd_sp. Accordingly, at time point t4, the memory module (PSRAM2) 22 has learned through the special read command m2CMDrd_sp issued by the master control device 23 that it should not be performed at the speed of the general read operation, and needs to wait for the memory module (PSRAM1) 21 to complete its update conflict.

如前所述,存储器模块(PSRAM1)21、(PSRAM2)22在接收列地址m1ADRr、m2ADRr后起算读取延迟计数。因此,由图8A可以看出,存储器模块(PSRAM1)21、(PSRAM2)22均自时点t5开始起算读取延迟计数。其中,存储器模块(PSRAM1)21需费时两个读取延迟计数(LC*2),直到时点t12方能自内部的存储器阵列取得读取数据至内部缓冲器,而存储器模块(PSRAM2)22仅需一个读取延迟计数(LC*1),自时点t9开始,即可自内部的存储器阵列取得读取数据至内部缓冲器。接着分别说明存储器模块(PSRAM1)21、(PSRAM2)22如何与何时从内部缓冲器传送同步读取数据DATm1、DATm2。As mentioned above, the memory modules (PSRAM1) 21 and (PSRAM2) 22 start counting the read delay count after receiving the column addresses m1ADRr and m2ADRr. Therefore, it can be seen from FIG8A that the memory modules (PSRAM1) 21 and (PSRAM2) 22 both start counting the read delay count from time point t5. Among them, the memory module (PSRAM1) 21 needs to spend two read delay counts (LC*2) until time point t12 to obtain the read data from the internal memory array to the internal buffer, while the memory module (PSRAM2) 22 only needs one read delay count (LC*1) to obtain the read data from the internal memory array to the internal buffer from time point t9. Next, how and when the memory modules (PSRAM1) 21 and (PSRAM2) 22 transmit the synchronous read data DATm1 and DATm2 from the internal buffer are respectively described.

存储器模块(PSRAM1)21的更新冲突在时点t12结束,并在下一个系统频率信号SCLK的上升缘(即,时点t13)时,陆续以数据闪控屏蔽信号DQSM[1]产生读取闪控脉冲信号m1strb1、m1strb2。此处将时点t5至时点t13定义为更新冲突读取期间Trdrf。更新冲突读取期间Trdrf代表存储器模块等待更新完成所需的读取延迟计数(LC*2),加上等待下一个系统频率信号SCLK的上升缘所需的期间。即,Trdrf=LC*2+(时点t12至时点t13)。在图8A中,存储器模块(PSRAM1)21自时点t13开始传送同步读取数据DATm1。The update conflict of the memory module (PSRAM1) 21 ends at time t12, and at the next rising edge of the system clock signal SCLK (i.e., time t13), the read strobe pulse signals m1strb1 and m1strb2 are generated successively with the data strobe mask signal DQSM[1]. Here, the time point t5 to the time point t13 is defined as the update conflict read period Trdrf. The update conflict read period Trdrf represents the read delay count (LC*2) required for the memory module to wait for the update to complete, plus the period required to wait for the next rising edge of the system clock signal SCLK. That is, Trdrf=LC*2+(time point t12 to time point t13). In FIG. 8A, the memory module (PSRAM1) 21 starts to transmit the synchronous read data DATm1 from time point t13.

由于存储器模块(PSRAM2)22可在一个读取延迟计数结束(即,时点t9)时,在内部缓冲器准备好读取数据,并在下一个系统频率信号SCLK的上升缘(即,时点t10)时,利用数据闪控屏蔽信号DQSM[2]陆续传送读取闪控脉冲信号m2strb1′、m2strb2′至主控装置23。因此,存储器模块(PSRAM2)22自时点t10,开始从内部缓冲器传送读取数据至系统输入输出信号SIO[16:9]。由于存储器模块(PSRAM2)22在时点t10至时点t11所传送的读取数据并不会被主控装置23采用,因此,存储器模块(PSRAM2)22在时点t10至时点t11所传送的读取数据可被称为舍弃数据drpDATm2,且存储器模块(PSRAM2)22传送舍弃数据drpDATm2的期间可被定义为数据舍弃期间Tdrp2。Since the memory module (PSRAM2) 22 can prepare the read data in the internal buffer at the end of a read delay count (i.e., time point t9), and transmit the read strobe pulse signals m2strb1′, m2strb2′ to the master device 23 in succession using the data strobe mask signal DQSM[2] at the next rising edge of the system clock signal SCLK (i.e., time point t10), the memory module (PSRAM2) 22 starts to transmit the read data from the internal buffer to the system input/output signal SIO[16:9] from time point t10. Since the read data transmitted by the memory module (PSRAM2) 22 from time point t10 to time point t11 will not be adopted by the master device 23, the read data transmitted by the memory module (PSRAM2) 22 from time point t10 to time point t11 can be referred to as discarded data drpDATm2, and the period during which the memory module (PSRAM2) 22 transmits the discarded data drpDATm2 can be defined as the data discard period Tdrp2.

之后,存储器模块(PSRAM2)22将维持闲置一段期间(时点t11至时点t13)后,再次自时点t13开始以数据闪控屏蔽信号DQSM[2]产生并传送读取闪控脉冲信号m2strb1、m2strb2。此外,存储器模块(PSRAM2)22亦将自时点t13开始,再次从内部缓冲器传出读取数据至系统输入输出信号SIO[16:9]。根据本发明的构想,存储器模块(PSRAM2)22从时点t13开始传送的读取数据与存储器模块(PSRAM1)21从时点t13开始传送的读取数据的时点同步,因此,将存储器模块(PSRAM1)21、(PSRAM2)22从时点t13开始传送的读取数据称为同步读取数据DATm1、DATm2。After that, the memory module (PSRAM2) 22 will remain idle for a period of time (from time t11 to time t13), and then generate and transmit the read strobe pulse signals m2strb1 and m2strb2 again using the data strobe mask signal DQSM[2] from time t13. In addition, the memory module (PSRAM2) 22 will also transmit the read data from the internal buffer to the system input/output signal SIO[16:9] from time t13. According to the concept of the present invention, the read data transmitted by the memory module (PSRAM2) 22 from time t13 is synchronized with the read data transmitted by the memory module (PSRAM1) 21 from time t13. Therefore, the read data transmitted by the memory modules (PSRAM1) 21 and (PSRAM2) 22 from time t13 are referred to as synchronized read data DATm1 and DATm2.

根据本发明的构想,主控装置23并不使用存储器模块(PSRAM2)22在时点t10至时点t11期间所传送的舍弃数据drpDATm2,而是使用存储器模块(PSRAM2)22在时点t13至时点t15的期间所传送的同步读取数据DATm2。因此,将时点t10至t11的期间定义为数据舍弃期间Tdrp2。存储器模块(PSRAM2)22的内部缓冲器利用系统输入输出信号SIO[16:9]在读取闪控脉冲信号m2strb1′、m2strb2′后传送的舍弃数据drpDATm2的内容,以及在读取闪控脉冲信号m2strb1、m2strb2后所传送的同步读取数据DATm2的内容完全相同。According to the concept of the present invention, the main control device 23 does not use the discarded data drpDATm2 transmitted by the memory module (PSRAM2) 22 during the period from time t10 to time t11, but uses the synchronous read data DATm2 transmitted by the memory module (PSRAM2) 22 during the period from time t13 to time t15. Therefore, the period from time t10 to t11 is defined as the data discard period Tdrp2. The content of the discarded data drpDATm2 transmitted by the internal buffer of the memory module (PSRAM2) 22 after reading the strobe pulse signals m2strb1′, m2strb2′ using the system input and output signal SIO[16:9] and the content of the synchronous read data DATm2 transmitted after reading the strobe pulse signals m2strb1, m2strb2 are exactly the same.

即便存储器模块(PSRAM2)22在时点t10至时点t11期间传出读取数据,之后从时点t13开始还是需要重新传送读取数据。因此,时点t9至时点t13相当于,存储器模块(PSRAM2)22为等待存储器模块(PSRAM1)21的更新冲突结束所需花费的期间。由于时点t9至时点t13这段期间,并非(未发生更新冲突的)存储器模块(PSRAM2)22为执行本身的读取操作所需的期间,而是因应(实际发生更新冲突的)存储器模块(PSRAM1)21的更新冲突结束而暂缓读取操作所等待的期间。因此,此处将时点t9至时点t13定义为(未发生更新冲突的)存储器模块(PSRAM2)22的额外等待期间Taddwt(additional waiting duration)。Even if the memory module (PSRAM2) 22 transmits read data during the period from time point t10 to time point t11, it is still necessary to retransmit the read data starting from time point t13. Therefore, time point t9 to time point t13 is equivalent to the period that the memory module (PSRAM2) 22 needs to spend waiting for the update conflict of the memory module (PSRAM1) 21 to end. Since the period from time point t9 to time point t13 is not the period required for the memory module (PSRAM2) 22 (where no update conflict occurs) to perform its own read operation, it is the period of waiting for the read operation to be suspended in response to the end of the update conflict of the memory module (PSRAM1) 21 (where an update conflict actually occurs). Therefore, time point t9 to time point t13 is defined here as the additional waiting period Taddwt (additional waiting duration) of the memory module (PSRAM2) 22 (where no update conflict occurs).

由图8A可以看出,存储器模块(PSRAM1)21于时点t13至时点t15的期间传送读取数据,且存储器模块(PSRAM2)22于时点t13至时点t15的期间传送读取数据。因此,时点t13至时点t15的期间可称为同步数据读取期间Tdat_sync,且存储器模块(PSRAM1)21、(PSRAM2)22所传送的读取数据称为同步读取数据DATm1、DATm2。As can be seen from FIG8A, the memory module (PSRAM1) 21 transmits read data during the period from time point t13 to time point t15, and the memory module (PSRAM2) 22 transmits read data during the period from time point t13 to time point t15. Therefore, the period from time point t13 to time point t15 can be referred to as the synchronous data read period Tdat_sync, and the read data transmitted by the memory modules (PSRAM1) 21 and (PSRAM2) 22 are referred to as synchronous read data DATm1 and DATm2.

在部分应用中,可将存储器模块(PSRAM2)22设计为,一旦获知存储器模块(PSRAM1)21发生更新冲突时,就暂停从内部缓冲器将读取数据传出至系统输入输出信号SIO[16:9],一直等到时点t13后,存储器模块(PSRAM2)22才开始传送读取闪控脉冲信号m2strb1、m2strb2与同步读取数据DATm2。亦即,与存储器模块(PSRAM2)22对应的数据闪控屏蔽信号DQSM[2]在时点t2至时点t13的期间维持低电平,且与存储器模块(PSRAM2)22对应的系统输入输出信号SIO[16:9]在时点t8至时点t13期间暂停输出。In some applications, the memory module (PSRAM2) 22 can be designed to suspend the transmission of read data from the internal buffer to the system input-output signal SIO[16:9] once it is known that the memory module (PSRAM1) 21 has an update conflict, and wait until after time point t13, the memory module (PSRAM2) 22 starts to transmit the read strobe pulse signals m2strb1, m2strb2 and the synchronous read data DATm2. That is, the data strobe mask signal DQSM[2] corresponding to the memory module (PSRAM2) 22 maintains a low level during the period from time point t2 to time point t13, and the system input-output signal SIO[16:9] corresponding to the memory module (PSRAM2) 22 is suspended from being output during the period from time point t8 to time point t13.

请参见图8B系根据本发明构想,存储器模块PSRAM1、PSRAM2与主控装置之间,利用数据闪控屏蔽信号DQSM搭配延迟回报模式(mode B)进行同步读取操作的一种实施例的波形图。在此附图中,时点t1至时点t17为读取操作期间Trd;时点t1至时点t16为芯片选取期间Tcs;时点t1至时点t3为设定期间Tset;时点t3至时点t4为读取指令传送期间Tcmd;时点t4至时点t9为地址传送期间Tadr;时点t9至时点t15为同步数据准备期间Tsdatpr;时点t15至时点t17为同步数据读取期间Tdat_sync;时点t16至时点t17为结束期间Tend。Please refer to FIG8B for a waveform diagram of an embodiment of synchronous reading operation between memory modules PSRAM1, PSRAM2 and the main control device using data flash mask signal DQSM with delayed reporting mode (mode B) according to the concept of the present invention. In this figure, time point t1 to time point t17 is the reading operation period Trd; time point t1 to time point t16 is the chip selection period Tcs; time point t1 to time point t3 is the setting period Tset; time point t3 to time point t4 is the reading instruction transmission period Tcmd; time point t4 to time point t9 is the address transmission period Tadr; time point t9 to time point t15 is the synchronous data preparation period Tsdatpr; time point t15 to time point t17 is the synchronous data reading period Tdat_sync; time point t16 to time point t17 is the end period Tend.

主控装置23在时点t1将芯片选取信号CS#拉低至低电平后,存储器模块(PSRAM1)21、(PSRAM2)22于时点t2将数据闪控屏蔽信号DQSM[1]、DQSM[2]维持在低电平。接着,在时点t3至时点t4期间,主控装置23通过系统输入输出信号线SIO[16:1]发出读取指令m1CMDrd、m2CMDrd至存储器模块(PSRAM1)21、(PSRAM2)22。接着,在时点t4至时点t6期间,主控装置23利用系统输入输出信号SIO[8:1]传送与存储器模块(PSRAM1)21对应的列地址m1ADRr,以及利用系统输入输出信号SIO[16:9]传送与存储器模块(PSRAM2)22对应的列地址m2ADRr。在时点t6至时点t9期间,主控装置23利用系统输入输出信号SIO[8:1]传送与存储器模块(PSRAM1)21对应的行地址m1ADRc,以及利用系统输入输出信号SIO[16:9]传送与存储器模块(PSRAM2)22对应的行地址m2ADRc。After the master control device 23 pulls the chip select signal CS# to a low level at time t1, the memory modules (PSRAM1) 21 and (PSRAM2) 22 maintain the data strobe mask signals DQSM[1] and DQSM[2] at a low level at time t2. Then, during the period from time t3 to time t4, the master control device 23 issues read commands m1CMDrd and m2CMDrd to the memory modules (PSRAM1) 21 and (PSRAM2) 22 through the system input/output signal line SIO[16:1]. Then, during the period from time t4 to time t6, the master control device 23 transmits the column address m1ADRr corresponding to the memory module (PSRAM1) 21 using the system input/output signal SIO[8:1], and transmits the column address m2ADRr corresponding to the memory module (PSRAM2) 22 using the system input/output signal SIO[16:9]. During the period from time t6 to time t9, the main control device 23 uses the system input and output signal SIO[8:1] to transmit the row address m1ADRc corresponding to the memory module (PSRAM1) 21, and uses the system input and output signal SIO[16:9] to transmit the row address m2ADRc corresponding to the memory module (PSRAM2) 22.

如前所述,存储器模块(PSRAM1)21采用延迟回报模式(mode B)时,须先等待存储器模块(PSRAM1)21接收列地址m1ADRr后,才通知主控装置23。因此,存储器模块(PSRAM1)21在时点t7与时点t8的期间,通过将数据闪控屏蔽信号DQSM[1]的电平拉高的方式,通知主控装置23其内部产生更新冲突的情形。其中,时点t7至时点t8期间可定义为,发生更新冲突的存储器模块(PSRAM1)21将其发生更新冲突的情形于,通知主控装置23所需的新冲突通知期间Trfrp。As mentioned above, when the memory module (PSRAM1) 21 adopts the delayed reporting mode (mode B), it must wait until the memory module (PSRAM1) 21 receives the column address m1ADRr before notifying the main control device 23. Therefore, during the period between time point t7 and time point t8, the memory module (PSRAM1) 21 notifies the main control device 23 of the update conflict generated inside by pulling up the level of the data flash mask signal DQSM[1]. Among them, the period from time point t7 to time point t8 can be defined as the new conflict notification period Trfrp required for the memory module (PSRAM1) 21 that has an update conflict to notify the main control device 23 of the update conflict.

接着,在时点t9至时点t10期间(延长读取指令期间Tcmdext),主控装置23分别利用数据闪控屏蔽信号DQSM[1]传送延长读取指令m1CMDext至存储器模块(PSRAM1)21,以及利用数据闪控屏蔽信号DQSM[2]传送延长读取指令m2CMDext至存储器模块(PSRAM2)22。据此,在时点t10时,存储器模块(PSRAM2)22已经通过主控装置23获知,目前进行的读取操作不应按照一般读取操作的速度进行,需额外等候存储器模块(PSRAM1)21内部完成更新冲突。Next, during the period from time t9 to time t10 (extended read instruction period Tcmdext), the master control device 23 uses the data strobe mask signal DQSM[1] to transmit the extended read instruction m1CMDext to the memory module (PSRAM1) 21, and uses the data strobe mask signal DQSM[2] to transmit the extended read instruction m2CMDext to the memory module (PSRAM2) 22. Accordingly, at time t10, the memory module (PSRAM2) 22 has learned through the master control device 23 that the current read operation should not be performed at the speed of the general read operation, and needs to wait for the memory module (PSRAM1) 21 to complete the update conflict.

如前所述,存储器模块(PSRAM1)21、(PSRAM2)22在接收列地址m1ADRr、m2ADRr后,起算读取延迟计数LC。因此,由图8B可以看出,存储器模块(PSRAM1)21、(PSRAM2)22均自时点t5开始起算读取延迟计数。其中,存储器模块(PSRAM1)21需费时两个读取延迟计数(LC*2)可自内部的存储器阵列取得读取数据至内部缓冲器,而存储器模块(PSRAM2)22仅需经过一个读取延迟计数(LC),即可自内部的存储器阵列取得读取数据至内部缓冲器。接着分别说明存储器模块(PSRAM1)21、(PSRAM2)22如何与何时传送同步读取数据DATm1、DATm2。As mentioned above, the memory modules (PSRAM1) 21 and (PSRAM2) 22 start to calculate the read delay count LC after receiving the column addresses m1ADRr and m2ADRr. Therefore, it can be seen from FIG8B that the memory modules (PSRAM1) 21 and (PSRAM2) 22 both start to calculate the read delay count from time point t5. Among them, the memory module (PSRAM1) 21 needs two read delay counts (LC*2) to obtain the read data from the internal memory array to the internal buffer, while the memory module (PSRAM2) 22 only needs one read delay count (LC) to obtain the read data from the internal memory array to the internal buffer. Next, how and when the memory modules (PSRAM1) 21 and (PSRAM2) 22 transmit the synchronous read data DATm1 and DATm2 will be described respectively.

存储器模块(PSRAM1)21在时点t14结束其更新冲突,并在下一个系统频率信号SCLK的上升缘(即,时点t15)时,陆续以数据闪控屏蔽信号DQSM[1]产生读取闪控脉冲信号m1strb1、m1strb2。因此,存储器模块(PSRAM1)21的内部缓冲器自时点t15开始利用系统输入输出信号SIO[16:9]传送同步读取数据DATm1。此处将时点t5至时点t15定义为更新冲突读取期间Trdrf。The memory module (PSRAM1) 21 ends its update conflict at time t14, and generates read strobe pulse signals m1strb1 and m1strb2 with the data strobe mask signal DQSM[1] at the next rising edge of the system clock signal SCLK (i.e., time t15). Therefore, the internal buffer of the memory module (PSRAM1) 21 starts to transmit the synchronous read data DATm1 using the system input and output signal SIO[16:9] from time t15. Here, time t5 to time t15 is defined as the update conflict read period Trdrf.

由于存储器模块(PSRAM2)22可在一个读取延迟计数结束(即,时点t11)完成读取,并在下一个系统频率信号SCLK的上升缘(即,时点t12)时,陆续以数据闪控屏蔽信号DQSM[2]产生读取闪控脉冲信号m2strb1′、m2strb2′。因此,存储器模块(PSRAM2)22自时点t12至时点t13将从内部缓冲器传出读取数据。Since the memory module (PSRAM2) 22 can complete the reading at the end of a read delay count (i.e., time point t11), and successively generate the read strobe pulse signals m2strb1′ and m2strb2′ with the data strobe mask signal DQSM[2] at the next rising edge of the system clock signal SCLK (i.e., time point t12), the memory module (PSRAM2) 22 will transmit the read data from the internal buffer from time point t12 to time point t13.

之后,存储器模块(PSRAM2)22将维持闲置一段期间(时点t13至时点t15)后,再次自时点t15开始以数据闪控屏蔽信号DQSM[2]产生读取闪控脉冲信号m2strb1、m2strb2。此外,存储器模块(PSRAM2)22亦将自时点t15开始,再次以系统输入输出信号SIO[16:9]传送同步读取数据DATm2。After that, the memory module (PSRAM2) 22 will remain idle for a period of time (from time t13 to time t15), and then generate the read strobe pulse signals m2strb1 and m2strb2 again using the data strobe mask signal DQSM[2] from time t15. In addition, the memory module (PSRAM2) 22 will also transmit the synchronous read data DATm2 again using the system input/output signal SIO[16:9] from time t15.

与图8A相似,主控装置23并不使用存储器模块(PSRAM2)22在时点t12至时点t13期间所传送的读取数据,而是使用存储器模块(PSRAM2)22在时点t15至时点t17期间所传送的同步读取数据DATm2。也因此,存储器模块(PSRAM2)22在时点t12至时点t13期间所传送的读取数据可称为舍弃数据drpDATm2,且存储器模块(PSRAM2)22传送舍弃数据drpDATm2的期间可被定义为数据舍弃期间Tdrp2。系统输入输出信号SIO[16:9]在时点t12至时点t13传送的舍弃数据drpDATm2,以及在时点t15至时点t17传送的同步读取数据DATm2,均由存储器模块(PSRAM2)22的内部缓冲器提供,两者的内容完全相同。Similar to FIG8A , the master control device 23 does not use the read data transmitted by the memory module (PSRAM2) 22 during the period from time t12 to time t13, but uses the synchronous read data DATm2 transmitted by the memory module (PSRAM2) 22 during the period from time t15 to time t17. Therefore, the read data transmitted by the memory module (PSRAM2) 22 during the period from time t12 to time t13 can be referred to as discarded data drpDATm2, and the period during which the memory module (PSRAM2) 22 transmits the discarded data drpDATm2 can be defined as the data discard period Tdrp2. The discarded data drpDATm2 transmitted by the system input/output signal SIO[16:9] during the period from time t12 to time t13, and the synchronous read data DATm2 transmitted during the period from time t15 to time t17, are both provided by the internal buffer of the memory module (PSRAM2) 22, and the contents of the two are exactly the same.

时点t11至时点t15相当于,存储器模块(PSRAM2)22为等待存储器模块(PSRAM1)21的更新冲突结束,所需额外花费的等待期间。由于时点t11至时点t15这段期间,并非(未发生更新冲突的)存储器模块(PSRAM2)22为执行本身的读取操作所需的期间,而是因应(实际发生更新冲突的)存储器模块(PSRAM1)21的更新冲突结束而暂缓读取操作所等待的期间。因此,此处将时点t11至时点t15定义为(未发生更新冲突的)存储器模块(PSRAM2)22的额外等待期间Taddwt。The time point t11 to the time point t15 is equivalent to the additional waiting period required for the memory module (PSRAM2) 22 to wait for the update conflict of the memory module (PSRAM1) 21 to end. Since the period from the time point t11 to the time point t15 is not the period required for the memory module (PSRAM2) 22 (where no update conflict occurs) to perform its own read operation, but the period of waiting for the read operation to be suspended in response to the end of the update conflict of the memory module (PSRAM1) 21 (where an update conflict actually occurs). Therefore, the time point t11 to the time point t15 is defined here as the additional waiting period Taddwt of the memory module (PSRAM2) 22 (where no update conflict occurs).

由图8B可以看出,存储器模块(PSRAM1)21于时点t15至时点t17的期间传送同步读取数据DATm1,且存储器模块(PSRAM2)22于时点t15至时点t17的期间传送同步读取数据DATm2。因此,时点t15至时点t17的期间为同步数据读取期间Tdat_sync。在同步数据读取期间Tdat_sync,存储器模块(PSRAM1)21、(PSRAM2)22的内部缓冲器可以同步地将读取数据通过系统输入输出信号SIO[8:1]、SIO[16:9]传送至主控装置23。As can be seen from FIG. 8B , the memory module (PSRAM1) 21 transmits the synchronous read data DATm1 during the period from time point t15 to time point t17, and the memory module (PSRAM2) 22 transmits the synchronous read data DATm2 during the period from time point t15 to time point t17. Therefore, the period from time point t15 to time point t17 is the synchronous data read period Tdat_sync. During the synchronous data read period Tdat_sync, the internal buffers of the memory modules (PSRAM1) 21 and (PSRAM2) 22 can synchronously transmit the read data to the main control device 23 through the system input and output signals SIO[8:1] and SIO[16:9].

另请留意,实际应用时,图8B作法亦可搭配其他变化。例如,由于存储器模块(PSRAM1)21本身发生更新冲突的缘故,主控装置23仅需通知未发生更新冲突的存储器模块(PSRAM2)22。因此,在某些应用中,主控装置23可能尽发出延长读取指令m2CMDext至存储器模块(PSRAM2)22,但不发出延长读取指令m1CMDext至存储器模块(PSRAM1)21。Please also note that in actual applications, the method of FIG. 8B may also be combined with other changes. For example, because the memory module (PSRAM1) 21 itself has an update conflict, the master control device 23 only needs to notify the memory module (PSRAM2) 22 that has no update conflict. Therefore, in some applications, the master control device 23 may send an extended read instruction m2CMDext to the memory module (PSRAM2) 22, but not send an extended read instruction m1CMDext to the memory module (PSRAM1) 21.

此外,在某些应用中,存储器模块(PSRAM2)22可能仅利用系统输入输出信号SIO[16:9]传送同步读取数据DATm2而不传送舍弃数据drpDATm2。因此,存储器模块PSRAM2在时点t10至时点t15期间停止传送任何数据,且数据闪控屏蔽信号DQSM[2]在时点t2至时点t15期间维持在低电平。关于这些应用上的变化,此处不予详述。In addition, in some applications, the memory module (PSRAM2) 22 may only use the system input and output signal SIO[16:9] to transmit the synchronous read data DATm2 without transmitting the discarded data drpDATm2. Therefore, the memory module PSRAM2 stops transmitting any data during the period from time t10 to time t15, and the data flash mask signal DQSM[2] is maintained at a low level during the period from time t2 to time t15. The changes in these applications are not described in detail here.

请同时参见图8A、图8B。由于图8A所描述的即刻回报模式(mode A)较图8B所描述的延迟回报模式(mode B)早将发生更新冲突的情形回报至主控装置23,图8A的更新冲突通知期间Trfrp短于图8B的更新冲突通知期间Trfrp。另,额外等待期间Taddwt与更新冲突读取期间Trdrf的长度,则不因所采用的回报模式的不同而有所差异。再者,实际应用时,不同的存储器模块也可能搭配不同的回报模式。Please refer to FIG. 8A and FIG. 8B at the same time. Since the immediate reporting mode (mode A) described in FIG. 8A reports the update conflict to the master control device 23 earlier than the delayed reporting mode (mode B) described in FIG. 8B, the update conflict notification period Trfrp of FIG. 8A is shorter than the update conflict notification period Trfrp of FIG. 8B. In addition, the length of the additional waiting period Taddwt and the update conflict reading period Trdrf does not vary due to the different reporting modes adopted. Furthermore, in actual applications, different memory modules may also be equipped with different reporting modes.

在图8A、图8B所示的实施例中,系以既有的数据闪控屏蔽信号线DQSM[1]、DQSM[2]作为存储器模块PSRAM1、PSRAM2回报更新冲突的发生与否的媒介。在部分的应用时,则可通过额外设置的信号线,作为存储器模块PSRAM1、PSRAM2回报更新冲突的发生与否的媒介。图9A、图9B、图10为,在存储器模块(PSRAM1)51、(PSRAM2)52与主控装置53设置存储库忙碌信号线(bank read busy,简称为BRBB),并以存储库忙碌信号线BRBB作为存储器模块(PSRAM1)51、(PSRAM2)52回报更新冲突至主控装置53的举例。其中,图9A、图9B为,在主控装置53与存储器模块(PSRAM1)51、(PSRAM2)52间设存储库忙碌信号线置BRBB的接线因应读取操作的状态不同而改变驱动端的情形。In the embodiment shown in FIG8A and FIG8B, the existing data flash shield signal lines DQSM[1] and DQSM[2] are used as the medium for the memory modules PSRAM1 and PSRAM2 to report whether the update conflict occurs or not. In some applications, an additional signal line can be used as the medium for the memory modules PSRAM1 and PSRAM2 to report whether the update conflict occurs or not. FIG9A, FIG9B and FIG10 are examples of setting a bank read busy signal line (BRBB for short) between the memory modules (PSRAM1) 51 and (PSRAM2) 52 and the main control device 53, and using the bank read busy signal line BRBB as an example of the memory modules (PSRAM1) 51 and (PSRAM2) 52 reporting the update conflict to the main control device 53. Among them, FIG9A and FIG9B are examples of setting a bank read busy signal line BRBB between the main control device 53 and the memory modules (PSRAM1) 51 and (PSRAM2) 52, and changing the driving end of the wiring according to the different states of the read operation.

在图9A、图9B中,电子装置50包含主控装置53与存储器模块51、52。其中,主控装置53通过CS#与系统频率信号SCLK同时电连接于存储器模块(PSRAM1)51、(PSRAM2)52。此外,主控装置53通过系统输入输出信号SIO[8:1]、数据闪控屏蔽信号DQSM[1]而电连接于存储器模块51,以及通过系统输入输出信号SIO[16:9]、数据闪控屏蔽信号DQSM[2]而电连接于存储器模块(PSRAM2)52。再者,主控装置53的存储库忙碌信号线BRBBh,存储器模块(PSRAM1)51的存储库忙碌信号线BRBBm1,以及存储器模块(PSRAM2)52的存储库忙碌信号线BRBBm2共同电连接在一起。根据本发明的实施例,存储库忙碌信号线BRBBh、BRBBm1、BRBBm2可采用一般的接线而彼此相连。或者,存储库忙碌信号线BRBBh、BRBBm1、BRBBm2可采用如图9A、图9B所示,搭配双向接口电路501、511、521与上拉电阻50a使用。其中,上拉电阻50a电连接在供应电压Vcc与存储库忙碌信号线BRBBh间。在图9A、图9B中,以虚线标示在存储库忙碌信号线BRBBh、BRBBm1、BRBBm2上的信号驱动方向。In FIG. 9A and FIG. 9B , the electronic device 50 includes a main control device 53 and memory modules 51 and 52. The main control device 53 is electrically connected to the memory modules (PSRAM1) 51 and (PSRAM2) 52 through CS# and the system clock signal SCLK. In addition, the main control device 53 is electrically connected to the memory module 51 through the system input/output signal SIO[8:1] and the data strobe mask signal DQSM[1], and is electrically connected to the memory module (PSRAM2) 52 through the system input/output signal SIO[16:9] and the data strobe mask signal DQSM[2]. Furthermore, the bank busy signal line BRBBh of the main control device 53, the bank busy signal line BRBBm1 of the memory module (PSRAM1) 51, and the bank busy signal line BRBBm2 of the memory module (PSRAM2) 52 are electrically connected together. According to an embodiment of the present invention, the bank busy signal lines BRBBh, BRBBm1, and BRBBm2 can be connected to each other using common wiring. Alternatively, the bank busy signal lines BRBBh, BRBBm1, BRBBm2 can be used in conjunction with bidirectional interface circuits 501, 511, 521 and pull-up resistors 50a as shown in FIG9A and FIG9B. The pull-up resistor 50a is electrically connected between the supply voltage Vcc and the bank busy signal line BRBBh. In FIG9A and FIG9B, the signal driving directions on the bank busy signal lines BRBBh, BRBBm1, BRBBm2 are indicated by dotted lines.

当存储库忙碌信号线BRBBh、BRBBm1、BRBBm2搭配双向接口电路501、511、521与上拉电阻50a使用时,发生更新冲突的存储器模块(例如,存储器模块(PSRAM1)51),可基于线或(wired OR)的接线方式而达到同时通知主控装置53与其他未发生更新冲突的存储器模块(例如,存储器模块(PSRAM2)52)的效果。在图9A、图9B中,主控装置53的双向接口电路501包含连接方式相反的输出反向器501a、输入反向器501b;存储器模块(PSRAM1)51的双向接口电路511包含连接方式相反的输出反向器511a、输入反向器511b;存储器模块(PSRAM2)52的双向接口电路521包含连接方式相反的输出反向器521a、输入反向器521b。When the bank busy signal lines BRBBh, BRBBm1, BRBBm2 are used in conjunction with the bidirectional interface circuits 501, 511, 521 and the pull-up resistor 50a, the memory module (e.g., memory module (PSRAM1) 51) that has an update conflict can achieve the effect of simultaneously notifying the master control device 53 and other memory modules (e.g., memory module (PSRAM2) 52) that have not had an update conflict based on the wired OR connection method. In FIG9A and FIG9B, the bidirectional interface circuit 501 of the master control device 53 includes an output inverter 501a and an input inverter 501b that are connected in opposite ways; the bidirectional interface circuit 511 of the memory module (PSRAM1) 51 includes an output inverter 511a and an input inverter 511b that are connected in opposite ways; and the bidirectional interface circuit 521 of the memory module (PSRAM2) 52 includes an output inverter 521a and an input inverter 521b that are connected in opposite ways.

请参见图9A系于存储器模块与主控装置之间设置存储库忙碌信号线BRBB,且由主控装置驱动的示意图。存储库忙碌信号线以主控装置53作为驱动端时,主控装置53发出的驱动信号,先由双向接口电路501中的输出反向器501a传送至存储库忙碌信号线BRBBh,再分别经由存储库忙碌信号线BRBBm1与双向接口电路511的输入反向器511b传送至存储器模块(PSRAM1)51,以及经由存储库忙碌信号线BRBBm2与双向接口电路521的输入反向器521b传送至存储器模块(PSRAM2)52。Please refer to FIG9A for a schematic diagram of setting a bank busy signal line BRBB between the memory module and the master control device and driven by the master control device. When the bank busy signal line uses the master control device 53 as the driving end, the driving signal sent by the master control device 53 is first transmitted to the bank busy signal line BRBBh by the output inverter 501a in the bidirectional interface circuit 501, and then transmitted to the memory module (PSRAM1) 51 via the bank busy signal line BRBBm1 and the input inverter 511b of the bidirectional interface circuit 511, and transmitted to the memory module (PSRAM2) 52 via the bank busy signal line BRBBm2 and the input inverter 521b of the bidirectional interface circuit 521.

请参见图9B系于存储器模块与主控装置之间设置存储库忙碌信号线BRBB,且由存储器模块驱动的示意图。存储库忙碌信号线以存储器模块(PSRAM1)51作为驱动端时,存储器模块(PSRAM1)51先由双向接口电路511中的输出反向器511a将驱动信号传送至存储库忙碌信号线BRBBm1,再分别经由存储库忙碌信号线BRBBh与双向接口电路501的输入反向器501b传送至主控装置53,以及经由存储库忙碌信号线BRBBm2与双向接口电路521的输入反向器521b传送至存储器模块(PSRAM2)52。Please refer to FIG. 9B for a schematic diagram of a memory bank busy signal line BRBB set between the memory module and the main control device and driven by the memory module. When the memory bank busy signal line uses the memory module (PSRAM1) 51 as the driving end, the memory module (PSRAM1) 51 first transmits the driving signal to the memory bank busy signal line BRBBm1 through the output inverter 511a in the bidirectional interface circuit 511, and then transmits it to the main control device 53 through the memory bank busy signal line BRBBh and the input inverter 501b of the bidirectional interface circuit 501, and transmits it to the memory module (PSRAM2) 52 through the memory bank busy signal line BRBBm2 and the input inverter 521b of the bidirectional interface circuit 521.

在默认状况下,若主控装置53与存储器模块(PSRAM1)51、(PSRAM2)52均未产生驱动信号时,上拉电阻50a用于将存储库忙碌信号BRBBh、BRBBm1、BRBBm2维持在高电平。在本发明中,假设存储器模块(PSRAM1)51、(PSRAM2)52对存储库忙碌信号BRBBm1、BRBBm2的驱动能力,大于主控装置53对存储库忙碌信号BRBBh的驱动能力。且,由主控装置53所发出的存储库忙碌信号BRBBh的驱动能力,大于上拉电阻50a的驱动能力。In the default state, if the master control device 53 and the memory modules (PSRAM1) 51 and (PSRAM2) 52 do not generate a driving signal, the pull-up resistor 50a is used to maintain the memory bank busy signals BRBBh, BRBBm1 and BRBBm2 at a high level. In the present invention, it is assumed that the driving capability of the memory modules (PSRAM1) 51 and (PSRAM2) 52 for the memory bank busy signals BRBBm1 and BRBBm2 is greater than the driving capability of the master control device 53 for the memory bank busy signal BRBBh. Moreover, the driving capability of the memory bank busy signal BRBBh issued by the master control device 53 is greater than the driving capability of the pull-up resistor 50a.

接着,以图9A、图9B所示的接线图,搭配图10,说明存储器模块利用存储库忙碌信号BRBB(PSRAM1)51、(PSRAM2)52,向主控装置53回报更新冲突发生与否的举例。Next, the connection diagrams shown in FIG. 9A and FIG. 9B are used together with FIG. 10 to illustrate an example in which the memory module uses the bank busy signals BRBB (PSRAM1) 51 and (PSRAM2) 52 to report to the master control device 53 whether an update conflict occurs.

请参见图10系根据本发明构想,存储器模块与主控装置之间利用存储库忙碌信号线BRBB搭配即刻回报模式(mode A),进行同步读取操作的一种实施例的波形图。在此附图中,时点t1至时点t15为读取操作期间Trd;时点t1至时点t14为芯片选取期间Tcs;时点t1至时点t3为设定期间Tset;时点t3至时点t4为读取指令传送期间Tcmd;时点t4至时点t8为地址传送期间Tadr;时点t8至时点t13为同步数据准备期间Tsdatpr;时点t13至时点t15为同步数据读取期间Tdat_sync;时点t14至时点t15为结束期间Tend。Please refer to FIG. 10 for a waveform diagram of an embodiment of a synchronous read operation between a memory module and a main control device using a bank busy signal line BRBB in combination with an immediate reporting mode (mode A) according to the concept of the present invention. In this figure, time point t1 to time point t15 is a read operation period Trd; time point t1 to time point t14 is a chip selection period Tcs; time point t1 to time point t3 is a setting period Tset; time point t3 to time point t4 is a read instruction transmission period Tcmd; time point t4 to time point t8 is an address transmission period Tadr; time point t8 to time point t13 is a synchronous data preparation period Tsdatpr; time point t13 to time point t15 is a synchronous data reading period Tdat_sync; time point t14 to time point t15 is an end period Tend.

主控装置53在时点t1将芯片选取信号CS#拉低至低电平后,存储器模块(PSRAM1)51于时点t2,通过将存储库忙碌信号BRBBm1的电平拉低的方式,通知主控装置53其内部产生更新冲突。存储器模块(PSRAM1)51在时点t2至时点t7期间将存储库忙碌信号BRBBm1维持在低电平,并于时点t7开始将存储库忙碌信号BRBBm1拉高至高电平。其中,时点t2至时点t7期间可定义为更新冲突通知期间Trfrp。After the master control device 53 pulls the chip selection signal CS# to a low level at time t1, the memory module (PSRAM1) 51 notifies the master control device 53 that an update conflict has occurred in the memory module 51 by pulling down the level of the memory bank busy signal BRBBm1 at time t2. The memory module (PSRAM1) 51 maintains the memory bank busy signal BRBBm1 at a low level from time t2 to time t7, and starts to pull up the memory bank busy signal BRBBm1 to a high level at time t7. The period from time t2 to time t7 can be defined as the update conflict notification period Trfrp.

另一方面,在时点t1至时点t7期间,存储器模块PSRAM2将存储库忙碌信号BRBBm2维持在高电平。此时,存储库忙碌信号线BRBBh、BRBBm1、BRBBm2之间的信号驱动情形,将如图9B所示。即,存储器模块(PSRAM1)51所发出的存储库忙碌信号BRBBm1,将驱动主控装置的存储库忙碌信号BRBBh,以及与存储器模块(PSRAM2)22对应的存储库忙碌信号BRBBm2。On the other hand, during the period from time t1 to time t7, the memory module PSRAM2 maintains the bank busy signal BRBBm2 at a high level. At this time, the signal driving conditions between the bank busy signal lines BRBBh, BRBBm1, and BRBBm2 will be as shown in FIG. 9B. That is, the bank busy signal BRBBm1 issued by the memory module (PSRAM1) 51 will drive the bank busy signal BRBBh of the master device and the bank busy signal BRBBm2 corresponding to the memory module (PSRAM2) 22.

尽管在图10中,由存储器模块(PSRAM2)52所发出的存储库忙碌信号BRBBm2为高电平,但因为从时点t2开始,存储器模块(PSSRAM1)51进行主动驱动的缘故,存储器模块PSRAM2的存储库忙碌信号线BRBBm2亦在时点t2开始,发生电平降低的情形。连带的,存储器模块(PSRAM2)52可通过存储库忙碌信号BRBBm2的电平降低现象,立刻得知其他的存储器模块(即,存储器模块(PSRAM1)51)发生更新冲突的情况。Although in FIG10 , the bank busy signal BRBBm2 issued by the memory module (PSRAM2) 52 is at a high level, the bank busy signal line BRBBm2 of the memory module PSRAM2 also starts to decrease in level at time t2 because the memory module (PSSRAM1) 51 is actively driven from time t2. In addition, the memory module (PSRAM2) 52 can immediately know that the other memory module (i.e., the memory module (PSRAM1) 51) has an update conflict through the phenomenon of the decrease in the level of the bank busy signal BRBBm2.

在图10中,系通过图9A、图9B所示的硬件接线的方式达到通知存储器模块PSRAM2的效果。因此,在图10中,主控装置53无须再采用如图8A、图8B的方式,以指令的方式通知存储器模块PSRAM2。In Fig. 10, the effect of notifying the memory module PSRAM2 is achieved by the hardware wiring shown in Fig. 9A and Fig. 9B. Therefore, in Fig. 10, the main control device 53 does not need to use the method shown in Fig. 8A and Fig. 8B to notify the memory module PSRAM2 by means of instructions.

在某些应用时,亦可不搭配双向接口电路与上拉电路使用存储库忙碌信号线BRBBh、BRBBm1、BRBBm2。针对该些应用,则可搭配如图8A、图8B所示的作法,由主控装置53通知存储器模块(PSRAM2)52。In some applications, the bank busy signal lines BRBBh, BRBBm1, BRBBm2 may be used without the bidirectional interface circuit and the pull-up circuit. For these applications, the master control device 53 may notify the memory module (PSRAM2) 52 as shown in FIG. 8A and FIG. 8B.

如前所述,存储器模块(PSRAM1)51、(PSRAM2)52在接收列地址m1ADRr、m2ADRr后起算读取延迟计数。因此,由图10可以看出,存储器模块(PSRAM1)51、(PSRAM2)52均自时点t5开始起算读取延迟计数。其中,存储器模块(PSRAM1)51需费时两个读取延迟计数(LC*2),方可将读取数据备妥于内部缓冲器,而存储器模块PSRAM2仅需一个读取延迟计数(LC)即可在内部缓冲器备妥读取数据。接着分别说明存储器模块PSRAM1、PSRAM2如何与何时传送同步读取数据DATm1、DATm2。As mentioned above, the memory modules (PSRAM1) 51 and (PSRAM2) 52 start counting the read delay count after receiving the column addresses m1ADRr and m2ADRr. Therefore, it can be seen from FIG. 10 that the memory modules (PSRAM1) 51 and (PSRAM2) 52 both start counting the read delay count from time point t5. Among them, the memory module (PSRAM1) 51 needs two read delay counts (LC*2) to prepare the read data in the internal buffer, while the memory module PSRAM2 only needs one read delay count (LC) to prepare the read data in the internal buffer. Next, how and when the memory modules PSRAM1 and PSRAM2 transmit the synchronous read data DATm1 and DATm2 are described respectively.

存储器模块(PSRAM1)51的更新冲突在时点t12结束,并在下一个系统频率信号SCLK的上升缘(即,时点t13)时,陆续以数据闪控屏蔽信号DQSM[1]产生读取闪控脉冲信号m1strb1、m1strb2。因此,存储器模块(PSRAM1)51自时点t13开始利用系统输入输出信号SIO[8:1]传送同步读取数据DATm1。The update conflict of the memory module (PSRAM1) 51 ends at time t12, and at the next rising edge of the system clock signal SCLK (i.e., time t13), the read strobe pulse signals m1strb1 and m1strb2 are generated successively by the data strobe mask signal DQSM[1]. Therefore, the memory module (PSRAM1) 51 starts to transmit the synchronous read data DATm1 by using the system input/output signal SIO[8:1] from time t13.

由于存储器模块(PSRAM2)52可在一个读取延迟计数结束(即,时点t9)完成读取,并在下一个系统频率信号SCLK的上升缘(即,时点t10)时,以数据闪控屏蔽信号DQSM[2]陆续产生读取闪控脉冲信号m2strb1′、m2strb2′。因此,存储器模块(PSRAM2)52自时点t10开始传送利用系统输入输出信号SIO[16:9]传送舍弃数据drpDATm2。存储器模块(PSRAM2)52传送舍弃数据drpDATm2的期间定义为数据舍弃期间Tdrp2。Since the memory module (PSRAM2) 52 can complete the reading at the end of a read delay count (i.e., time point t9), and generate the read strobe pulse signals m2strb1′ and m2strb2′ successively with the data strobe mask signal DQSM[2] at the next rising edge of the system clock signal SCLK (i.e., time point t10), the memory module (PSRAM2) 52 starts to transmit the discard data drpDATm2 using the system input/output signal SIO[16:9] from time point t10. The period during which the memory module (PSRAM2) 52 transmits the discard data drpDATm2 is defined as the data discard period Tdrp2.

之后,存储器模块(PSRAM2)52将维持闲置一段期间(时点t11至时点t13)后,再次自时点t13开始以数据闪控屏蔽信号DQSM[2]产生读取闪控脉冲信号m2strb1、m2strb2。时点t9至时点t13可定义为,存储器模块(PSRAM2)22为等待存储器模块(PSRAM1)51的更新冲突结束所需花费的额外等待期间Taddwt。存储器模块(PSRAM2)52亦将自时点t13开始,再次传送同步读取数据DATm2。After that, the memory module (PSRAM2) 52 will remain idle for a period of time (from time t11 to time t13), and then generate the read strobe pulse signals m2strb1 and m2strb2 again with the data strobe mask signal DQSM[2] from time t13. The time from t9 to time t13 can be defined as the additional waiting period Taddwt that the memory module (PSRAM2) 22 needs to spend to wait for the update conflict of the memory module (PSRAM1) 51 to end. The memory module (PSRAM2) 52 will also transmit the synchronous read data DATm2 again from time t13.

根据本发明的构想,主控装置53并不使用存储器模块(PSRAM2)52在时点t9至时点t10期间所传送的舍弃数据drpDATm2,而是使用存储器模块(PSRAM2)52在时点t13至时点t15期间传送的同步读取数据DATm2。经由系统输入输出信号SIO[16:9]所传送的舍弃数据drpDATm2与同步读取数据DATm2均由存储器模块(PSRAM2)22所提供,两者的内容完全相同。According to the concept of the present invention, the master control device 53 does not use the discarded data drpDATm2 transmitted by the memory module (PSRAM2) 52 during the period from time t9 to time t10, but uses the synchronous read data DATm2 transmitted by the memory module (PSRAM2) 52 during the period from time t13 to time t15. The discarded data drpDATm2 transmitted via the system input/output signal SIO[16:9] and the synchronous read data DATm2 are both provided by the memory module (PSRAM2) 22, and the contents of the two are exactly the same.

此处将时点t5至时点t13定义为,因应存储器模块(PSRAM1)51发生的更新冲突,等待存储器模块(PSRAM1)51将读取数据复制至内部缓冲器所需的更新冲突读取期间Trdrf。由图10可以看出,存储器模块(PSRAM1)51在时点t13至时点t15的期间传送同步读取数据DATm1,且存储器模块(PSRAM2)52于时点t13至时点t15的期间(同步数据读取期间Tdat_sync)传送同步读取数据DATm2。因此,存储器模块(PSRAM1)51、(PSRAM2)52可以同步地将读取数据传送至主控装置53。Here, the time point t5 to the time point t13 is defined as the update conflict reading period Trdrf required for waiting for the memory module (PSRAM1) 51 to copy the read data to the internal buffer in response to the update conflict occurring in the memory module (PSRAM1) 51. As can be seen from FIG. 10, the memory module (PSRAM1) 51 transmits the synchronous read data DATm1 during the period from the time point t13 to the time point t15, and the memory module (PSRAM2) 52 transmits the synchronous read data DATm2 during the period from the time point t13 to the time point t15 (synchronous data reading period Tdat_sync). Therefore, the memory modules (PSRAM1) 51 and (PSRAM2) 52 can synchronously transmit the read data to the master device 53.

图10所示为存储器模块(PSRAM1)51、(PSRAM2)52与主控装置53间,利用存储库忙碌信号线BRBBh、BRBBm1、BRBBm2搭配即刻回报模式(mode A)的波形图,实际应用时,亦可搭配延迟回报模式(mode B)的方式。关于搭配延迟回报模式(mode B)的作法,可类推图8B与图10的说明故不予详述。FIG10 shows a waveform diagram of the memory module (PSRAM1) 51, (PSRAM2) 52 and the main control device 53, using the memory bank busy signal lines BRBBh, BRBBm1, BRBBm2 with the immediate reporting mode (mode A). In actual application, the delayed reporting mode (mode B) can also be used. The method of using the delayed reporting mode (mode B) can be inferred from the description of FIG8B and FIG10, so it will not be described in detail.

再者,本发明还可以主控装置与存储器模块PSRAM1、PSRAM2之间既有的信号线(例如,芯片选取信号CS#、系统频率信号SCLK、数据闪控屏蔽信号DQSM等),以及额外设置的信号线彼此搭配,进而产生特定的波形变化,作为回报存储器模块(PSRAM1)51、(PSRAM2)52的状态使用。例如,在图11中,假设以数据闪控屏蔽信号DQSM[1]搭配存储库忙碌信号BRBBm1、BRBBh的变化。Furthermore, the present invention can also use existing signal lines (e.g., chip select signal CS#, system clock signal SCLK, data strobe mask signal DQSM, etc.) between the main control device and the memory modules PSRAM1 and PSRAM2, as well as additional signal lines, to generate specific waveform changes to report the status of the memory modules (PSRAM1) 51 and (PSRAM2) 52. For example, in FIG11 , it is assumed that the data strobe mask signal DQSM[1] is used in combination with the changes of the memory bank busy signals BRBBm1 and BRBBh.

请参见图11系根据本发明构想,存储器模块PSRAM1与主控装置之间以即刻回报模式(mode A)进行同步读取操作的另一种实施例的波形图。在此附图中,时点t1至时点t13为读取操作期间Trd;时点t1至时点t12为芯片选取期间Tcs;时点t1至时点t3为设定期间Tset;时点t3至时点t4为读取指令传送期间Tcmd;时点t4至时点t8为地址传送期间Tadr;时点t8至时点t11为同步数据准备期间Tsdatpr;时点t11至时点t13为同步数据读取期间Tdat_sync;时点t12至时点t13为结束期间Tend。Please refer to FIG. 11 for another embodiment of the synchronous reading operation between the memory module PSRAM1 and the main control device in the immediate reporting mode (mode A) according to the concept of the present invention. In this figure, the time point t1 to the time point t13 is the reading operation period Trd; the time point t1 to the time point t12 is the chip selection period Tcs; the time point t1 to the time point t3 is the setting period Tset; the time point t3 to the time point t4 is the reading instruction transmission period Tcmd; the time point t4 to the time point t8 is the address transmission period Tadr; the time point t8 to the time point t11 is the synchronous data preparation period Tsdatpr; the time point t11 to the time point t13 is the synchronous data reading period Tdat_sync; the time point t12 to the time point t13 is the end period Tend.

主控装置53在时点t1将芯片选取信号CS#拉低后,存储器模块(PSRAM1)51于时点t2,通过同时将存储库忙碌信号BRBBm1的电平拉低,以及将数据闪控屏蔽信号DQSM[1]的电平拉高的方式,通知主控装置53其内部产生更新冲突。存储器模块(PSRAM1)51在时点t2至时点t7期间(更新冲突通知期间Trfrp)将存储库忙碌信号BRBBm1维持在低电平并将数据闪控屏蔽信号DQSM[1]维持在高电平。After the master control device 53 pulls the chip select signal CS# low at time t1, the memory module (PSRAM1) 51 simultaneously pulls the level of the memory bank busy signal BRBBm1 low and pulls the level of the data strobe mask signal DQSM[1] high at time t2 to notify the master control device 53 that an update conflict has occurred. The memory module (PSRAM1) 51 maintains the memory bank busy signal BRBBm1 at a low level and maintains the data strobe mask signal DQSM[1] at a high level during the period from time t2 to time t7 (update conflict notification period Trfrp).

由于存储器模块(PSRAM1)51在更新冲突通知期间Trfrp将存储库忙碌信号BRBBm1维持在低电平的缘故,存储库忙碌信号BRBBh将如图9B所示,受到来自存储器模块(PSRAM1)51的存储库忙碌信号BRBBm1的影响而在更新冲突通知期间Trfrp维持在低电平。存储器模块(PSRAM1)51于时点t7停止将存储库忙碌信号BRBBm1拉高,并开始将数据闪控屏蔽信号DQSM[1]拉低至低电平。Since the memory module (PSRAM1) 51 maintains the bank busy signal BRBBm1 at a low level during the update conflict notification period Trfrp, the bank busy signal BRBBh will be affected by the bank busy signal BRBBm1 from the memory module (PSRAM1) 51 as shown in FIG. 9B and Trfrp will be maintained at a low level during the update conflict notification period. The memory module (PSRAM1) 51 stops pulling the bank busy signal BRBBm1 high at time t7 and starts pulling the data flash mask signal DQSM[1] down to a low level.

另一方面,在时点t1至时点t7期间,存储器模块(PSRAM2)52将存储库忙碌信号BRBBm2维持在高电平,并将数据闪控屏蔽信号DQSM[2]维持在低电平。尽管存储器模块(PSRAM2)52在时点t2至时点t7期间将存储库忙碌信号BRBBm2维持在高电平,但因存储库忙碌信号BRBBh、BRBBm1、BRBBm2之间以线或(wired OR)的方式相连的缘故,存储器模块(PSRAM1)51在时点t2~时点t7期间将存储库忙碌信号BRBBm1拉低至低电平的变化,仍会反映至存储库忙碌信号BRBBm2,使存储库忙碌信号BRBBm2的电平受到波动。因此,存储器模块(PSRAM2)52可通过存储库忙碌信号BRBBm2的信号波动,获知存储器模块(PSRAM1)51发生更新冲突的情形。On the other hand, during the period from time t1 to time t7, the memory module (PSRAM2) 52 maintains the bank busy signal BRBBm2 at a high level and maintains the data flash mask signal DQSM[2] at a low level. Although the memory module (PSRAM2) 52 maintains the bank busy signal BRBBm2 at a high level during the period from time t2 to time t7, because the bank busy signals BRBBh, BRBBm1, and BRBBm2 are connected in a wired OR manner, the change of the bank busy signal BRBBm1 being pulled down to a low level by the memory module (PSRAM1) 51 during the period from time t2 to time t7 will still be reflected in the bank busy signal BRBBm2, causing the level of the bank busy signal BRBBm2 to fluctuate. Therefore, the memory module (PSRAM2) 52 can learn that the memory module (PSRAM1) 51 has an update conflict through the signal fluctuation of the bank busy signal BRBBm2.

据此,主控装置53可以根据存储库忙碌信号BRBBh得知存储器模块(PSRAM1)51产生更新冲突。此外,且存储器模块(PSRAM2)52亦可如图9B所说明,通过线或(wired OR)的联机方式,直接掌握存储器模块(PSRAM1)51发生更新冲突的情形。换言之,采用线或(wiredOR)的联机方式时,存储器模块(PSRAM2)52可经由存储库忙碌信号BRBBm2直接得知存储器模块(PSRAM1)51发生更新冲突,无须通过主控装置53间接得知。Accordingly, the master control device 53 can know that the memory module (PSRAM1) 51 has an update conflict according to the bank busy signal BRBBh. In addition, the memory module (PSRAM2) 52 can also directly grasp the situation that the memory module (PSRAM1) 51 has an update conflict through the wired OR connection method as shown in Figure 9B. In other words, when the wired OR connection method is adopted, the memory module (PSRAM2) 52 can directly know that the memory module (PSRAM1) 51 has an update conflict through the bank busy signal BRBBm2, without indirectly knowing it through the master control device 53.

如前所述,存储器模块(PSRAM1)51、(PSRAM2)52在接收列地址m1ADRr、m2ADRr后起算读取延迟计数。因此,由图11可以看出,存储器模块(PSRAM1)51、(PSRAM2)52均自时点t5开始起算读取延迟计数。其中,存储器模块(PSRAM1)51需费时两个读取延迟计数(LC*2),方可自内部的存储器阵列取得读取数据至内部缓冲器,而存储器模块(PSRAM2)52仅需一个读取延迟计数(LC)即可自内部的存储器阵列取得读取数据至内部缓冲器。接着分别说明存储器模块(PSRAM1)51、(PSRAM2)52如何与何时传送同步读取数据DATm1、DATm2。As mentioned above, the memory modules (PSRAM1) 51 and (PSRAM2) 52 start to count the read delay count after receiving the column addresses m1ADRr and m2ADRr. Therefore, it can be seen from FIG. 11 that the memory modules (PSRAM1) 51 and (PSRAM2) 52 both start to count the read delay count from time point t5. Among them, the memory module (PSRAM1) 51 needs to spend two read delay counts (LC*2) to obtain the read data from the internal memory array to the internal buffer, while the memory module (PSRAM2) 52 only needs one read delay count (LC) to obtain the read data from the internal memory array to the internal buffer. Next, how and when the memory modules (PSRAM1) 51 and (PSRAM2) 52 transmit the synchronous read data DATm1 and DATm2 will be described respectively.

存储器模块(PSRAM1)51从时点t5开始,经过更新读取延迟rfcLC(例如,rfcLC=LC*2)后,其更新冲突在时点t10结束,存储器模块(PSRAM1)51并在时点t10后的下一个系统频率信号SCLK的上升缘(即,时点t11)时,陆续以数据闪控屏蔽信号DQSM[1]产生读取闪控脉冲信号m1strb1、m1strb2。因此,存储器模块(PSRAM1)51自时点t11开始传送同步读取数据DATm1。The memory module (PSRAM1) 51 starts at time t5, and after the update read delay rfcLC (for example, rfcLC=LC*2), its update conflict ends at time t10. The memory module (PSRAM1) 51 generates read strobe pulse signals m1strb1 and m1strb2 with the data strobe mask signal DQSM[1] at the next rising edge of the system clock signal SCLK after time t10 (i.e., time t11). Therefore, the memory module (PSRAM1) 51 starts to transmit the synchronous read data DATm1 from time t11.

另一方面,存储器模块(PSRAM2)52从时点t5开始,经过预设读取延迟(dftLC=LC*1)后,于时点t9即可将读取数据备妥于内部缓冲器。因为存储器模块(PSRAM1)51发生更新冲突的缘故,存储器模块(PSRAM2)52知道在预设读取延迟(dftLC=LC*1)结束后,尚不能在预设读取延迟(dftLC=LC*1)结束(时点t9)后的下一个系统频率信号SCLK的上升缘即刻传出读取数据。时点t9至时点t11可定义为,存储器模块(PSRAM2)22为等待存储器模块(PSRAM1)51的更新冲突结束所需花费的额外等待期间Taddwt。On the other hand, the memory module (PSRAM2) 52 can prepare the read data in the internal buffer at time t9 after the preset read delay (dftLC=LC*1) from time t5. Because the memory module (PSRAM1) 51 has an update conflict, the memory module (PSRAM2) 52 knows that after the preset read delay (dftLC=LC*1) ends, it cannot immediately transmit the read data at the next rising edge of the system clock signal SCLK after the preset read delay (dftLC=LC*1) ends (time t9). The time from t9 to t11 can be defined as the additional waiting period Taddwt that the memory module (PSRAM2) 22 needs to spend to wait for the update conflict of the memory module (PSRAM1) 51 to end.

此处将时点t5至时点t11定义为,因应存储器模块(PSRAM1)51发生的更新冲突,等待存储器模块(PSRAM1)51将读取数据复制至内部缓冲器所需的更新冲突读取期间Trdrf。由图11可以看出,存储器模块(PSRAM1)51于时点t11至时点t13的期间传送同步读取数据DATm1,且存储器模块(PSRAM2)52于时点t11至时点t13的期间传送同步读取数据DATm2。时点t11至时点t13的期间可定义为同步数据读取期间Tdat_sync。因此,存储器模块(PSRAM1)51、(PSRAM2)52可以同步地利用系统输入输出信号SIO[16:1]将内部缓冲器中的读取数据传送至主控装置53。Here, the time point t5 to the time point t11 is defined as the update conflict read period Trdrf required for waiting for the memory module (PSRAM1) 51 to copy the read data to the internal buffer in response to the update conflict occurring in the memory module (PSRAM1) 51. As can be seen from FIG. 11, the memory module (PSRAM1) 51 transmits the synchronous read data DATm1 during the period from the time point t11 to the time point t13, and the memory module (PSRAM2) 52 transmits the synchronous read data DATm2 during the period from the time point t11 to the time point t13. The period from the time point t11 to the time point t13 can be defined as the synchronous data read period Tdat_sync. Therefore, the memory modules (PSRAM1) 51 and (PSRAM2) 52 can synchronously transmit the read data in the internal buffer to the master device 53 using the system input and output signal SIO[16:1].

除图9A、图9B所举例之,将额外设置的存储库忙碌信号BRBB搭配双向接口电路与上拉电阻50a使用外,本发明亦可将芯片选取信号CS#搭配双向接口电路与上拉电阻40a使用,如图12A、图12B所示。In addition to the example shown in FIG. 9A and FIG. 9B , the additionally provided memory bank busy signal BRBB is used in conjunction with the bidirectional interface circuit and the pull-up resistor 50a. The present invention can also use the chip select signal CS# in conjunction with the bidirectional interface circuit and the pull-up resistor 40a, as shown in FIG. 12A and FIG. 12B .

在图12A、图12B中,电子装置40包含主控装置43与存储器模块(PSRAM1)41、(PSRAM2)42。其中,主控装置43通过芯片选取信号CS#与系统频率信号SCLK同时电连接于存储器模块(PSRAM1)41、(PSRAM2)42。此外,主控装置43通过系统输入输出信号SIO[8:1]、数据闪控屏蔽信号DQSM[1]而电连接于存储器模块(PSRAM1)41,以及通过系统输入输出信号SIO[16:9]、数据闪控屏蔽信号DQSM[2]而电连接于存储器模块(PSRAM2)42。此处并假设芯片选取信号CS#搭配双向接口电路401、411、421与上拉电阻40a使用。In FIG. 12A and FIG. 12B , the electronic device 40 includes a main control device 43 and memory modules (PSRAM1) 41 and (PSRAM2) 42. The main control device 43 is electrically connected to the memory modules (PSRAM1) 41 and (PSRAM2) 42 via the chip select signal CS# and the system clock signal SCLK. In addition, the main control device 43 is electrically connected to the memory module (PSRAM1) 41 via the system input/output signal SIO[8:1] and the data strobe mask signal DQSM[1], and is electrically connected to the memory module (PSRAM2) 42 via the system input/output signal SIO[16:9] and the data strobe mask signal DQSM[2]. It is assumed here that the chip select signal CS# is used in conjunction with the bidirectional interface circuits 401, 411, 421 and the pull-up resistor 40a.

当芯片选取信号CS#搭配双向接口电路401、411、421与上拉电阻40a使用时,则发生更新冲突的存储器模块(例如,存储器模块(PSRAM1)41),可基于线或(wired OR)的接线方式而达到同时通知主控装置43与其他未发生更新冲突的存储器模块(例如,存储器模块(PSRAM2)42)的效果。在图12A、图12B中,主控装置43的双向接口电路401包含连接方式相反的输出反向器401a、输入反向器401b;存储器模块(PSRAM1)41的双向接口电路411包含连接方式相反的输出反向器411a与输入反向器411b;存储器模块(PSRAM2)42的双向接口电路421包含连接方式相反的输出反向器421a与输入反向器421b。When the chip select signal CS# is used in conjunction with the bidirectional interface circuits 401, 411, 421 and the pull-up resistor 40a, the memory module (e.g., memory module (PSRAM1) 41) that has an update conflict can achieve the effect of simultaneously notifying the master device 43 and other memory modules (e.g., memory module (PSRAM2) 42) that have not had an update conflict based on the wired OR connection method. In FIG. 12A and FIG. 12B, the bidirectional interface circuit 401 of the master device 43 includes an output inverter 401a and an input inverter 401b that are connected in opposite ways; the bidirectional interface circuit 411 of the memory module (PSRAM1) 41 includes an output inverter 411a and an input inverter 411b that are connected in opposite ways; and the bidirectional interface circuit 421 of the memory module (PSRAM2) 42 includes an output inverter 421a and an input inverter 421b that are connected in opposite ways.

请参见图12A、图12B系存储器模块与主控装置之间利用芯片选取信号CS#作为更新冲突的沟通接口,且芯片选取信号CS#分别由主控装置43与存储器模块(PSRAM1)41驱动的示意图。图12A、图12B的芯片选取信号CS#驱动方式可类图9A、图9B的存储库忙碌信号BRBB的信号驱动方式,故不予详述。Please refer to Figures 12A and 12B, which are schematic diagrams showing that the chip select signal CS# is used as the communication interface for updating conflicts between the memory module and the main control device, and the chip select signal CS# is driven by the main control device 43 and the memory module (PSRAM1) 41, respectively. The driving method of the chip select signal CS# in Figures 12A and 12B can be similar to the signal driving method of the bank busy signal BRBB in Figures 9A and 9B, so it will not be described in detail.

当芯片选取信号CS#如图12A、图12B所示,采用线或(wired OR)的方式连接时,存储器模块(PSRAM1)41、(PSRAM2)42亦可能对芯片选取信号CS#的电平产生影响。因此,在某些应用中,可以芯片选取信号CS#作为进行同步读取操作的沟通用途。例如,图13所示为,存储器模块(PSRAM1)41通过芯片选取信号CS#依据即刻回报模式(mode A)进行同步读取操作的实施例。When the chip select signal CS# is connected in a wired OR manner as shown in FIG. 12A and FIG. 12B, the memory modules (PSRAM1) 41 and (PSRAM2) 42 may also affect the level of the chip select signal CS#. Therefore, in some applications, the chip select signal CS# can be used as a communication for performing a synchronous read operation. For example, FIG. 13 shows an embodiment in which the memory module (PSRAM1) 41 performs a synchronous read operation according to an immediate reporting mode (mode A) through the chip select signal CS#.

请参见图13系存储器模块与主控装置之间利用芯片选取信号CS#作为更新冲突的沟通接口,且存储器模块依据即刻回报模式(mode A)通知主控装置后,进行同步读取操作的实施例的波形图。在此附图中,时点t1至时点t13为读取操作期间Trd;时点t1至时点t4为芯片选取期间Tcs;时点t1至时点t3为设定期间Tset;时点t3至时点t4为读取指令传送期间Tcmd;时点t4至时点t7为地址传送期间Tadr;时点t7至时点t12为同步数据准备期间Tsdatpr;时点t12至时点t13为同步数据读取期间Tdat_sync。此处的时点t5至时点t12为更新冲突读取期间Trdrf。时点t8至时点t12可定义为,存储器模块(PSRAM2)42为等待存储器模块(PSRAM1)41的更新冲突结束所需花费的额外等待期间Taddwt。此处的时点t5至时点t12为更新冲突读取期间Trdrf。Please refer to FIG. 13, which is a waveform diagram of an embodiment in which the memory module and the main control device use the chip selection signal CS# as the communication interface for update conflict, and the memory module notifies the main control device according to the immediate reporting mode (mode A) and then performs a synchronous read operation. In this figure, time point t1 to time point t13 is the read operation period Trd; time point t1 to time point t4 is the chip selection period Tcs; time point t1 to time point t3 is the setting period Tset; time point t3 to time point t4 is the read instruction transmission period Tcmd; time point t4 to time point t7 is the address transmission period Tadr; time point t7 to time point t12 is the synchronous data preparation period Tsdatpr; time point t12 to time point t13 is the synchronous data reading period Tdat_sync. Here, time point t5 to time point t12 is the update conflict reading period Trdrf. The time point t8 to the time point t12 can be defined as the additional waiting period Taddwt that the memory module (PSRAM2) 42 needs to spend to wait for the update conflict of the memory module (PSRAM1) 41 to end. The time point t5 to the time point t12 here is the update conflict read period Trdrf.

另请留意,在此实施例中,若有任何一个存储器模块(例如,存储器模块PSRAM1)发生更新冲突时,发生更新冲突的存储器模块便会将芯片选取信号CS#拉高,强制结束读取操作。因此,图13所示的读取操作期间Trd并不包含结束期间Tend,且芯片选取期间Tcs的长度较其他实施例的芯片选取期间Tcs短许多。在图13中,因为使用芯片选取信号CS#通知的缘故,更新冲突通知期间Trfrp几乎与芯片选取期间Tcs等长。Please also note that in this embodiment, if any memory module (e.g., memory module PSRAM1) has an update conflict, the memory module having the update conflict will pull the chip select signal CS# high to force the read operation to end. Therefore, the read operation period Trd shown in FIG13 does not include the end period Tend, and the length of the chip select period Tcs is much shorter than the chip select period Tcs of other embodiments. In FIG13, because the chip select signal CS# is used for notification, the update conflict notification period Trfrp is almost the same length as the chip select period Tcs.

在此实施例中,存储器模块(PSRAM1)41在时点t1感测到主控装置43将芯片选取信号CS#拉低的瞬间,即得知其内部存在更新冲突。因此,在时点t4,存储器模块(PSRAM1)41将芯片选取信号CS#拉高,并以此方式通知主控装置43其内部存在更新冲突。亦即,在时点t4前,主控装置43如图12A所示,作为芯片选取信号CS#的驱动端。在时点t4至时点t13的期间,存储器模块(PSRAM2)42如图12B所示,作为芯片选取信号CS#的驱动端。In this embodiment, the memory module (PSRAM1) 41 senses the moment when the main control device 43 pulls the chip selection signal CS# low at time point t1, and thus knows that there is an update conflict inside it. Therefore, at time point t4, the memory module (PSRAM1) 41 pulls the chip selection signal CS# high, and in this way notifies the main control device 43 that there is an update conflict inside it. That is, before time point t4, the main control device 43, as shown in FIG. 12A, acts as the driver of the chip selection signal CS#. During the period from time point t4 to time point t13, the memory module (PSRAM2) 42, as shown in FIG. 12B, acts as the driver of the chip selection signal CS#.

由于主控装置43、存储器模块(PSRAM1)41、(PSRAM2)42均连接于芯片选取信号CS#的缘故,存储器模块(PSRAM2)42亦可在时点t4获知存储器模块(PSRAM1)41内部发生更新冲突的现象。也因此,存储器模块(PSRAM2)42可以得知,无法在预设读取延迟(dftLC=LC*1)结束(时点t8)后的下一个系统频率信号SCLK的上升缘(时点t9)立即将内部缓冲器内的读取数据传送至主控装置43。Since the main control device 43, the memory module (PSRAM1) 41, and (PSRAM2) 42 are all connected to the chip select signal CS#, the memory module (PSRAM2) 42 can also know at time point t4 that an update conflict occurs inside the memory module (PSRAM1) 41. Therefore, the memory module (PSRAM2) 42 can know that it is impossible to immediately transmit the read data in the internal buffer to the main control device 43 at the next rising edge (time point t9) of the system clock signal SCLK after the preset read delay (dftLC=LC*1) ends (time point t8).

如图13所示,存储器模块(PSRAM2)42在预设读取延迟(dftLC=LC*1)结束后的下一个系统频率信号SCLK的上升缘(时点t9),立即在数据舍弃期间Tdrp2传送读取数据至主控装置43,但在数据舍弃期间Tdrp2所传送的读取数据将被主控装置43弃置,因而称为舍弃数据drpDATm2。因此,存储器模块(PSRAM2)42仍需在时点t12开始,再次利用数据闪控屏蔽信号DQSM[2]发出读取闪控脉冲信号m2strb1、m2strb2,以及利用系统输入输出信号SIO[16:9]再次传送同步读取数据DATm2。经由数据闪控屏蔽信号DQSM[2]所传送的舍弃数据drpDATm2与同步读取数据DATm2均由存储器模块(PSRAM2)42所提供,两者的内容完全相同。As shown in FIG. 13 , the memory module (PSRAM2) 42 immediately transmits the read data to the master device 43 during the data discard period Tdrp2 at the next rising edge of the system clock signal SCLK (time point t9) after the preset read delay (dftLC=LC*1). However, the read data transmitted during the data discard period Tdrp2 will be discarded by the master device 43, and is therefore called discarded data drpDATm2. Therefore, the memory module (PSRAM2) 42 still needs to start at time point t12, and use the data strobe mask signal DQSM[2] to issue the read strobe pulse signals m2strb1 and m2strb2 again, and use the system input and output signal SIO[16:9] to transmit the synchronous read data DATm2 again. The discarded data drpDATm2 and the synchronous read data DATm2 transmitted via the data strobe mask signal DQSM[2] are both provided by the memory module (PSRAM2) 42, and the contents of the two are exactly the same.

图13所示为存储器模块(PSRAM1)41与主控装置间,利用芯片选取信号CS#搭配即刻回报模式(mode A)的波形图,实际应用时,存储器模块(PSRAM1)41与主控装置43间,亦可搭配延迟回报模式(mode B)。关于搭配延迟回报模式(mode B)的作法,可类推图8B与图13的说明故不予详述。FIG13 shows a waveform diagram of the chip selection signal CS# used between the memory module (PSRAM1) 41 and the host device in an immediate reporting mode (mode A). In actual application, the memory module (PSRAM1) 41 and the host device 43 may also be used in a delayed reporting mode (mode B). The method of using the delayed reporting mode (mode B) can be analogized to the description of FIG8B and FIG13 and will not be described in detail.

请参见图14系存储器模块与主控装置之间利用芯片选取信号CS#搭配系统频率信号SCLK,依据即刻回报模式(mode A)进行同步读取操作的实施例的波形图。在此附图中,时点t1至时点t12为读取操作期间Trd;时点t1至时点t12为芯片选取期间Tcs;时点t1至时点t3为设定期间Tset;时点t3至时点t4为读取指令传送期间Tcmd;时点t4至时点t8为地址传送期间Tadr;时点t8至时点t13为同步数据准备期间Tsdatpr;时点t13至时点t15为同步数据读取期间Tdat_sync;时点t14至时点t15为结束期间Tend。此处的时点t5至时点t13为更新冲突读取期间Trdrf。时点t5至时点t11为,存储器模块(PSRAM2)42进行读取操作所需的预设读取延迟(dftLC=LC*1)。时点t11至时点t13可定义为,存储器模块(PSRAM2)42为等待存储器模块(PSRAM1)41的更新冲突结束所需花费的额外等待期间Taddwt。Please refer to FIG. 14, which is a waveform diagram of an embodiment of synchronous read operation between the memory module and the main control device using the chip select signal CS# and the system clock signal SCLK according to the immediate reporting mode (mode A). In this figure, the time point t1 to the time point t12 is the read operation period Trd; the time point t1 to the time point t12 is the chip select period Tcs; the time point t1 to the time point t3 is the setting period Tset; the time point t3 to the time point t4 is the read command transmission period Tcmd; the time point t4 to the time point t8 is the address transmission period Tadr; the time point t8 to the time point t13 is the synchronous data preparation period Tsdatpr; the time point t13 to the time point t15 is the synchronous data reading period Tdat_sync; the time point t14 to the time point t15 is the end period Tend. Here, the time point t5 to the time point t13 is the update conflict reading period Trdrf. The time point t5 to the time point t11 is the preset read delay (dftLC=LC*1) required for the memory module (PSRAM2) 42 to perform the read operation. The time point t11 to the time point t13 can be defined as the additional waiting period Taddwt that the memory module (PSRAM2) 42 needs to spend to wait for the update conflict of the memory module (PSRAM1) 41 to end.

在此实施例中,假设存储器装置(PSRAM1)41在系统频率信号SCLK的一个完整周期的期间,通过将芯片选取信号CS#的电平拉高的方式,达到通知主控装置43和存储器模块(PSRAM2)42关于更新冲突产生情形的效果。在图14中,假设主控装置43在时点t9至时点t10期间(相当于系统频率周期Tclk4的整个周期的期间),将芯片选取信号CS#的电平拉高。因此,时点t9至时点t10期间可定义为,主控装置43用于通知存储器模块(PSRAM2)42需暂缓进行读取操作的暂停读取通知期间Tstp。在此附图中,假设更新冲突通知期间Trfrp相当于系统频率信号SCLK的系统频率周期Tclk4。In this embodiment, it is assumed that the memory device (PSRAM1) 41, during a complete cycle of the system frequency signal SCLK, reaches the effect of notifying the master control device 43 and the memory module (PSRAM2) 42 about the update conflict by pulling up the level of the chip selection signal CS#. In FIG14 , it is assumed that the master control device 43 pulls up the level of the chip selection signal CS# during the period from time point t9 to time point t10 (equivalent to the period of the entire cycle of the system frequency cycle Tclk4). Therefore, the period from time point t9 to time point t10 can be defined as the pause reading notification period Tstp used by the master control device 43 to notify the memory module (PSRAM2) 42 that the read operation needs to be suspended. In this figure, it is assumed that the update conflict notification period Trfrp is equivalent to the system frequency cycle Tclk4 of the system frequency signal SCLK.

实际应用时,主控装置43以芯片选取信号CS#搭系统频率信号配SCLK知存储器模块(PSRAM2)42的做法并不需要被限定。例如,主控装置43可选择在系统频率周期Tclk1~Tclk8的任一者将芯片选取信号CS#拉高。由于存储器模块PSRAM2进行读取操作所需的预设读取延迟(dftLC=LC*1)在时点t11结束,若主控装置43将芯片选取信号CS#拉高的位置早于时点t11,则存储器模块(PSRAM2)42可实时得知应在预设读取延迟结束后,暂时停止从内部缓冲器传出读取数据。若主控装置43在时点t11前将芯片选取信号CS#搭拉高,则存储器模块PSRAM2自时点t11结束后将暂停传送内部缓冲器的数据。直到同步数据准备期间Tsdatpr结束后,存储器模块(PSRAM2)42再开始从内部缓冲器传出同步读取数据DATm2。In actual application, the method of the master control device 43 using the chip select signal CS# and the system frequency signal SCLK to know the memory module (PSRAM2) 42 does not need to be limited. For example, the master control device 43 can choose to pull the chip select signal CS# high at any one of the system frequency cycles Tclk1 to Tclk8. Since the preset read delay (dftLC=LC*1) required for the memory module PSRAM2 to perform a read operation ends at time point t11, if the position where the master control device 43 pulls the chip select signal CS# high is earlier than time point t11, the memory module (PSRAM2) 42 can know in real time that it should temporarily stop transmitting the read data from the internal buffer after the preset read delay ends. If the master control device 43 pulls the chip select signal CS# high before time point t11, the memory module PSRAM2 will suspend transmitting the data in the internal buffer after the end of time point t11. After the synchronous data preparation period Tsdatpr ends, the memory module (PSRAM2) 42 starts to transmit the synchronous read data DATm2 from the internal buffer.

另一方面,若主控装置43将芯片选取信号CS#拉高的位置晚于时点t11。例如,主控装置43在系统频率周期Tclk6、Tclk7、Tclk8的拉高芯片选取信号CS#。则,存储器模块(PSRAM2)42需从内部缓冲器传送两次读取数据至系统输入输出信号SIO[16:9]。On the other hand, if the master control device 43 pulls the chip select signal CS# high later than the time point t11, for example, the master control device 43 pulls the chip select signal CS# high in the system frequency cycles Tclk6, Tclk7, and Tclk8, then the memory module (PSRAM2) 42 needs to transmit the read data from the internal buffer to the system input/output signal SIO[16:9] twice.

图14所示,为存储器模块(PSRAM1)41利用即刻回报模式(mode A)通知与主控装置43,且主控装置43利用芯片选取信号CS#与系统频率信号SCLK的组合通知存储器模块(PSRAM2)42的波形图,实际应用时,亦可改用延迟回报模式(mode B)的方式,搭配芯片选取信号CS#与系统频率信号SCLK的组合。关于搭配延迟回报模式(mode B)的作法,可类推图8B的说明故不予详述。FIG14 shows a waveform diagram of the memory module (PSRAM1) 41 notifying the host device 43 using the immediate reporting mode (mode A), and the host device 43 notifying the memory module (PSRAM2) 42 using the combination of the chip selection signal CS# and the system clock signal SCLK. In actual application, the delayed reporting mode (mode B) can also be used in combination with the chip selection signal CS# and the system clock signal SCLK. The method of using the delayed reporting mode (mode B) can be inferred from the description of FIG8B and will not be described in detail.

根据本发明的构想,存储器模块PSRAM2获知需等待同步数据准备期间Tsdatpr的方式相当弹性。例如,实际应用时,主控装置与存储器模块PSRAM1、PSRAM2间,还可额外设置频率忽略信号线ICK1、ICK2。频率忽略信号线ICK1、ICK2在大部分的时候处于低电平,但是当主控装置将频率忽略信号ICK1、ICK2拉高时,则存储器模块PSRAM1、PSRAM2在频率忽略信号ICK1、ICK2拉高的期间,将暂时性的略过系统频率信号SCLK的变动。According to the concept of the present invention, the method by which the memory module PSRAM2 learns that it needs to wait for the synchronization data preparation period Tsdatpr is quite flexible. For example, in actual application, frequency ignore signal lines ICK1 and ICK2 can be additionally set between the master control device and the memory modules PSRAM1 and PSRAM2. The frequency ignore signal lines ICK1 and ICK2 are at a low level most of the time, but when the master control device pulls the frequency ignore signal ICK1 and ICK2 high, the memory modules PSRAM1 and PSRAM2 will temporarily skip the change of the system frequency signal SCLK during the period when the frequency ignore signal ICK1 and ICK2 are pulled high.

请参见图15系于主控装置和存储器模块PSRAM1、PSRAM2间设置频率忽略信号线ICK1、ICK2,在存储器模块PSRAM1发生更新冲突的情况下进行同步读取操作的实施例的波形图。在此附图中,时点t1至时点t14为读取操作期间Trd;时点t1至时点t13为芯片选取期间Tcs;时点t1至时点t3为设定期间Tset;时点t3至时点t4为读取指令传送期间Tcmd;时点t4至时点t8为地址传送期间Tadr;时点t8至时点t12为同步数据准备期间Tsdatpr;时点t12至时点t14为同步数据读取期间Tdat_sync;时点t12至时点t13为结束期间Tend。此处的时点t2至时点t7期间可定义为,发生更新冲突的存储器模块PSRAM1通知主控装置的更新冲突通知期间Trfrp。时点t5至时点t11可定义为更新冲突读取期间Trdrf。时点t5至时点t9可定义为,存储器模块PSRAM2进行读取操作所需的预设读取延迟(dftLC=LC*1)。时点t9至时点t11可定义为,存储器模块PSRAM2为等待存储器模块PSRAM1的更新冲突结束所需花费的额外等待期间Taddwt。Please refer to FIG. 15 for a waveform diagram of an embodiment of setting frequency ignore signal lines ICK1 and ICK2 between the main control device and the memory modules PSRAM1 and PSRAM2, and performing synchronous read operation when an update conflict occurs in the memory module PSRAM1. In this figure, time point t1 to time point t14 is the read operation period Trd; time point t1 to time point t13 is the chip selection period Tcs; time point t1 to time point t3 is the setting period Tset; time point t3 to time point t4 is the read instruction transmission period Tcmd; time point t4 to time point t8 is the address transmission period Tadr; time point t8 to time point t12 is the synchronous data preparation period Tsdatpr; time point t12 to time point t14 is the synchronous data reading period Tdat_sync; time point t12 to time point t13 is the end period Tend. Here, the period from time point t2 to time point t7 can be defined as the update conflict notification period Trfrp during which the memory module PSRAM1 that has an update conflict notifies the main control device. The time point t5 to the time point t11 can be defined as the update conflict read period Trdrf. The time point t5 to the time point t9 can be defined as the preset read delay (dftLC=LC*1) required for the memory module PSRAM2 to perform the read operation. The time point t9 to the time point t11 can be defined as the additional waiting period Taddwt required for the memory module PSRAM2 to wait for the update conflict of the memory module PSRAM1 to end.

在图15中,主控装置在时点t10至时点t11期间,将频率忽略信号ICK2的电平暂时性的拉高。此处,时点t10至时点t11的期间可定义为频率忽略期间Tick。在频率忽略期间Tick,存储器模块PSRAM2内部将暂停接收系统频率信号SCLK。也因此,存储器模块PSRAM2在频率忽略期间Tick暂停运作。于频率忽略期间Tick结束(时点t11)后,主控装置重新将频率忽略信号ICK2拉低至低电平,存储器模块PSRAM2将再度接收系统频率信号SCLK的频率并继续进行读取操作。因此,在时点t12,存储器模块PSRAM、PSRAM2开始同步传送读取数据。In FIG. 15 , the master control device temporarily raises the level of the frequency ignore signal ICK2 during the period from time point t10 to time point t11. Here, the period from time point t10 to time point t11 can be defined as the frequency ignore period Tick. During the frequency ignore period Tick, the memory module PSRAM2 will suspend receiving the system frequency signal SCLK. Therefore, the memory module PSRAM2 suspends operation during the frequency ignore period Tick. After the frequency ignore period Tick ends (time point t11), the master control device pulls the frequency ignore signal ICK2 down to a low level again, and the memory module PSRAM2 will receive the frequency of the system frequency signal SCLK again and continue the read operation. Therefore, at time point t12, the memory modules PSRAM and PSRAM2 begin to synchronously transmit the read data.

在图15的举例中,主控装置产生频率忽略信号ICK2信号至存储器模块PSRAM2,藉以通知存储器模块PSRAM2暂停接收系统频率信号SCLK。在图16的实施例中,则假设主控装置实际停止传送系统频率信号SCLK至存储器模块PSRAM2的作法。与图15相较,图16的做法无须额外设置接线,其成本相对较低。In the example of FIG15 , the master control device generates a frequency ignore signal ICK2 to the memory module PSRAM2, thereby notifying the memory module PSRAM2 to suspend receiving the system frequency signal SCLK. In the embodiment of FIG16 , it is assumed that the master control device actually stops transmitting the system frequency signal SCLK to the memory module PSRAM2. Compared with FIG15 , the method of FIG16 does not require additional wiring, and its cost is relatively low.

请参见图16系主控装置得知存储器模块PSRAM1发生更新冲突后,通过暂停提供系统频率信号SCLK至存储器模块PSRAM1、PSRAM2而推迟其读取操作,进而使存储器模块PSRAM1、PSRAM2进行同步读取操作的示意图。在此附图中,时点t1至时点t13为读取操作期间Trd;时点t1至时点t12为芯片选取期间Tcs;时点t1至时点t3为设定期间Tset;时点t3至时点t4为读取指令传送期间Tcmd;时点t4至时点t8为地址传送期间Tadr;时点t8至时点t11为同步数据准备期间Tsdatpr;时点t11至时点t13为同步数据读取期间Tdat_sync;时点t12至时点t13为结束期间Tend。此处的时点t2至时点t7期间可定义为,发生更新冲突的存储器模块PSRAM1通知主控装置的更新冲突通知期间Trfrp。时点t5至时点t11可定义为更新冲突读取期间Trdrf。时点t5至时点t9可定义为,存储器模块PSRAM2进行读取操作所需的预设读取延迟(dftLC=LC*1)。时点t9至时点t11可定义为,存储器模块PSRAM2为等待存储器模块PSRAM1的更新冲突结束所需花费的额外等待期间Taddwt。Please refer to FIG. 16 for a schematic diagram showing that after the main control device learns that the memory module PSRAM1 has an update conflict, it postpones its read operation by suspending the provision of the system frequency signal SCLK to the memory modules PSRAM1 and PSRAM2, thereby allowing the memory modules PSRAM1 and PSRAM2 to perform a synchronous read operation. In this figure, time point t1 to time point t13 is the read operation period Trd; time point t1 to time point t12 is the chip selection period Tcs; time point t1 to time point t3 is the setting period Tset; time point t3 to time point t4 is the read instruction transmission period Tcmd; time point t4 to time point t8 is the address transmission period Tadr; time point t8 to time point t11 is the synchronous data preparation period Tsdatpr; time point t11 to time point t13 is the synchronous data reading period Tdat_sync; time point t12 to time point t13 is the end period Tend. Here, the period from time point t2 to time point t7 can be defined as the update conflict notification period Trfrp during which the memory module PSRAM1 that has an update conflict notifies the master device. The period from time point t5 to time point t11 can be defined as the update conflict read period Trdrf. The period from time point t5 to time point t9 can be defined as the preset read delay (dftLC=LC*1) required for the memory module PSRAM2 to perform a read operation. The period from time point t9 to time point t11 can be defined as the additional waiting period Taddwt required for the memory module PSRAM2 to wait for the update conflict of the memory module PSRAM1 to end.

在图16中,主控装置在时点t9至时点t11期间,停止传送系统频率信号SCLK至存储器模块PSRAM1、PSRAM2。在这段期间,因为存储器模块PSRAM1内部进行更新冲突的缘故,即使存储器模块PSRAM1未接收到系统频率信号SCLK仍不影响其操作。另一方面,在时点t9至时点t11的期间,存储器模块PSRAM2因为未接收到系统频率信号SCLK的频率的缘故而停止运作。于时点t11开始,主控装置重新开始传送系统频率信号SCLK至存储器模块PSRAM1、PSRAM2,存储器模块PSRAM2将再次重新运作。因此,在时点t11,存储器模块PSRAM、PSRAM2开始同步传送同步读取数据DATm1、DATm2。In FIG. 16 , the master control device stops transmitting the system frequency signal SCLK to the memory modules PSRAM1 and PSRAM2 during the period from time point t9 to time point t11. During this period, because of the internal update conflict of the memory module PSRAM1, even if the memory module PSRAM1 does not receive the system frequency signal SCLK, it will not affect its operation. On the other hand, during the period from time point t9 to time point t11, the memory module PSRAM2 stops operating because it does not receive the frequency of the system frequency signal SCLK. Starting from time point t11, the master control device restarts transmitting the system frequency signal SCLK to the memory modules PSRAM1 and PSRAM2, and the memory module PSRAM2 will restart operation. Therefore, at time point t11, the memory modules PSRAM and PSRAM2 start synchronously transmitting the synchronous read data DATm1 and DATm2.

前述的实施例中,假设主控装置通过存储器模块PSRAM1的回报,得知存储器模块PSRAM1的内部发生更新冲突。实际应用时,主控装置亦可通过其他方式,主动掌握存储器模块PSRAM1的内部发生更新冲突。In the above embodiment, it is assumed that the main control device learns that an update conflict occurs inside the memory module PSRAM1 through the report of the memory module PSRAM1. In actual application, the main control device can also actively grasp the update conflict occurs inside the memory module PSRAM1 through other methods.

前述所举的实施例均以一个芯片选取期间Tcs完成同步读取操作。在该些实施例中,同步数据准备期间Tsdatpr大于默认读取延迟(dftLC=LC*1),且同步数据准备期间(Tsdatpr)小于更新读取延迟(rfcLC=2*LC)。实际应用时,存储器模块PSRAM1、PSRAM2以同步方式执行读取操作亦可利用两个(或以上)的芯片选取期间Tcs完成。The aforementioned embodiments all use one chip selection period Tcs to complete the synchronous read operation. In these embodiments, the synchronous data preparation period Tsdatpr is greater than the default read delay (dftLC=LC*1), and the synchronous data preparation period (Tsdatpr) is less than the update read delay (rfcLC=2*LC). In actual applications, the memory modules PSRAM1 and PSRAM2 can also use two (or more) chip selection periods Tcs to complete the synchronous read operation.

请参见图17系主控装置发出重复读取指令m1CMDrtry、m2CMDrtry,使存储器模块PSRAM1、PSRAM2同步进行读取操作的示意图。在此附图中,时点t1至时点t21为读取操作期间Trd;时点t1至时点t12为芯片选取期间Tcs1;时点t12至时点t14为芯片选取间距Tint;时点t14至时点t19为芯片选取期间Tcs2;时点t1至时点t3为设定期间Tset;时点t3至时点t4为读取指令传送期间Tcmd;时点t4至时点t6为地址传送期间Tadr;时点t6至时点t18为同步数据准备期间Tsdatpr;时点t19至时点t21为同步数据读取期间Tdat_sync;时点t20至时点t21为结束期间Tend。Please refer to FIG. 17, which is a schematic diagram of the master control device sending repeated read commands m1CMDrtry and m2CMDrtry to synchronize the read operation of the memory modules PSRAM1 and PSRAM2. In this figure, time point t1 to time point t21 is the read operation period Trd; time point t1 to time point t12 is the chip selection period Tcs1; time point t12 to time point t14 is the chip selection interval Tint; time point t14 to time point t19 is the chip selection period Tcs2; time point t1 to time point t3 is the setting period Tset; time point t3 to time point t4 is the read command transmission period Tcmd; time point t4 to time point t6 is the address transmission period Tadr; time point t6 to time point t18 is the synchronous data preparation period Tsdatpr; time point t19 to time point t21 is the synchronous data reading period Tdat_sync; time point t20 to time point t21 is the end period Tend.

在此实施例中,读取操作期间Trd依序包含芯片选取期间Tcs1、芯片选取间距Tint、芯片选取期间Tcs2,以及结束期间Tend。其中,芯片选取信号CS#在芯片选取期间Tcs1、Tcs2为低电平,且芯片选取信号CS#在芯片选取间距Tint与结束期间Tend为高电平。In this embodiment, the read operation period Trd includes a chip selection period Tcs1, a chip selection interval Tint, a chip selection period Tcs2, and an end period Tend in sequence. The chip selection signal CS# is at a low level during the chip selection periods Tcs1 and Tcs2, and the chip selection signal CS# is at a high level during the chip selection interval Tint and the end period Tend.

在芯片选取期间Tcs1,主控装置先后收到存储器模块PSRAM2在数据舍弃期间Tdrp2传出的读取数据,以及存储器模块PSRAM1在数据舍弃期间Tdrp1传出的读取数据。若主控装置在芯片选取期间Tcs1内,发现从存储器模块PSRAM1、PSRAM2的内部缓冲器传出数据至系统输入输出信号SIO[8:1]、SIO[16:9]的时间不一致时,代表主控装置无法正确使用该些数据。因此,该些读取数据可被视为舍弃数据drpDATm1、drpDATm2。此处的时点t5至时点t11为更新冲突读取期间Trdrf。During the chip selection period Tcs1, the master control device successively receives the read data transmitted by the memory module PSRAM2 during the data discard period Tdrp2, and the read data transmitted by the memory module PSRAM1 during the data discard period Tdrp1. If the master control device finds that the time when the data is transmitted from the internal buffer of the memory modules PSRAM1 and PSRAM2 to the system input and output signals SIO[8:1] and SIO[16:9] is inconsistent during the chip selection period Tcs1, it means that the master control device cannot use the data correctly. Therefore, the read data can be regarded as discarded data drpDATm1 and drpDATm2. The time point t5 to the time point t11 here is the update conflict read period Trdrf.

承上所述,在芯片选取期间Tcs1中,存储器模块PSRAM1、PSRAM2传送至主控装置的读取数据,包含存储器模块PSRAM1在时点t11至时点t13期间所传送的读取数据,以及存储器模块PSRAM2在时点t8至时点t9期间所传送的读取数据,都将被忽视。在芯片选取期间Tcs1中,存储器模块PSRAM1、PSRAM2传送至主控装置的读取数据被视为舍弃数据drpDATm1、drpDATm2。As described above, during the chip selection period Tcs1, the read data transmitted from the memory modules PSRAM1 and PSRAM2 to the master device, including the read data transmitted from the memory module PSRAM1 during the period from time t11 to time t13, and the read data transmitted from the memory module PSRAM2 during the period from time t8 to time t9, will be ignored. During the chip selection period Tcs1, the read data transmitted from the memory modules PSRAM1 and PSRAM2 to the master device are regarded as discarded data drpDATm1 and drpDATm2.

芯片选取期间Tcs1、Tcs2的中间为芯片选取间距Tint。在芯片选取间距Tint,主控装置将芯片选取信号CS#拉高至高电平,并将系统频率信号SCLK维持在低电平。在芯片选取期间Tcs2中,于时点t14至时点t15期间(重复读取指令期间Tcmd_rtry),主控装置发出重复读取指令m1CMDrtry、m2CMDrtry至存储器模块PSRAM1、PSRAM2。重复读取指令m1CMDrtry、m2CMDrtry代表要存储器模块PSRAM1、PSRAM2再次等待更新读取延迟rfcLC(例如,rfcLC=LC*2)后进行读取操作。此处的时点t14至时点t19为存储器模块PSRAM1、PSRAM2第二度进行读取操作的期间,因此将其定义为,重复读取期间T2rd。The middle of the chip selection periods Tcs1 and Tcs2 is the chip selection interval Tint. At the chip selection interval Tint, the master control device pulls the chip selection signal CS# to a high level and maintains the system clock signal SCLK at a low level. In the chip selection period Tcs2, during the period from time point t14 to time point t15 (the repeated read instruction period Tcmd_rtry), the master control device issues repeated read instructions m1CMDrtry and m2CMDrtry to the memory modules PSRAM1 and PSRAM2. The repeated read instructions m1CMDrtry and m2CMDrtry represent that the memory modules PSRAM1 and PSRAM2 wait again for the update read delay rfcLC (for example, rfcLC=LC*2) before performing a read operation. The time point t14 to the time point t19 here is the period during which the memory modules PSRAM1 and PSRAM2 perform a read operation for the second time, so it is defined as the repeated read period T2rd.

由于在芯片选取期间Tcs1的地址传送期间Tadr(时点t4至时点t6的期间)时,存储器模块PSRAM1、PSRAM2已经接收过列地址m1ADRr、m2ADRr与行地址m1ADRc、m2ADRc。因此,在芯片选取期间Tcs2期间,主控装置无须再次传送列地址m1ADRr、m2ADRr与行地址m1ADRc、m2ADRc至存储器模块PSRAM1、PSRAM2。Since the memory modules PSRAM1 and PSRAM2 have already received the column addresses m1ADRr and m2ADRr and the row addresses m1ADRc and m2ADRc during the address transmission period Tadr (the period from time point t4 to time point t6) of the chip selection period Tcs1, the master control device does not need to transmit the column addresses m1ADRr and m2ADRr and the row addresses m1ADRc and m2ADRc to the memory modules PSRAM1 and PSRAM2 again during the chip selection period Tcs2.

当存储器模块PSRAM1、PSRAM2接收到重复读取指令m1CMDrtry、m2CMDrtry后,便共同等待更新读取延迟rfcLC(例如,rfcLC=LC*2)。在时点t18后,才开始同步产生读取闪控脉冲信号m1strb1、m2strb1。在时点t18至时点t20期间,存储器模块PSRAM1利用数据闪控屏蔽信号DQSM[1]传送读取闪控脉冲信号m1strb1、m1strb2至主控装置,以及利用系统输入输出信号SIO[8:1]从内部缓冲器传送同步读取数据DATm1至主控装置。在此同时,存储器模块PSRAM2利用数据闪控屏蔽信号DQSM[2]传送读取闪控脉冲信号m2strb1、m2strb2至主控装置,以及利用系统输入输出信号SIO[16:9]从内部缓冲器传送同步读取数据DATm2至主控装置。When the memory modules PSRAM1 and PSRAM2 receive the repeated read commands m1CMDrtry and m2CMDrtry, they wait together for the update of the read delay rfcLC (for example, rfcLC=LC*2). After the time point t18, the synchronous generation of the read strobe pulse signals m1strb1 and m2strb1 begins. During the period from the time point t18 to the time point t20, the memory module PSRAM1 transmits the read strobe pulse signals m1strb1 and m1strb2 to the master device using the data strobe mask signal DQSM[1], and transmits the synchronous read data DATm1 from the internal buffer to the master device using the system input-output signal SIO[8:1]. At the same time, the memory module PSRAM2 transmits the read strobe pulse signals m2strb1 and m2strb2 to the master device using the data strobe mask signal DQSM[2], and transmits the synchronous read data DATm2 from the internal buffer to the master device using the system input-output signal SIO[16:9].

在图17中,经由系统输入输出信号SIO[8:1]所传送的舍弃数据drpDATm1与同步读取数据DATm1均由存储器模块PSRAM1的内部缓冲器传出,因此两者的内容完全相同。同理,经由系统输入输出信号SIO[16:9]所传送的舍弃数据drpDATm2与同步读取数据DATm2均由存储器模块PSRAM2的内部缓冲器传出,因此两者的内容完全相同。In FIG17 , the discarded data drpDATm1 and the synchronous read data DATm1 transmitted via the system input/output signal SIO[8:1] are both transmitted from the internal buffer of the memory module PSRAM1, so the contents of the two are exactly the same. Similarly, the discarded data drpDATm2 and the synchronous read data DATm2 transmitted via the system input/output signal SIO[16:9] are both transmitted from the internal buffer of the memory module PSRAM2, so the contents of the two are exactly the same.

在图17的实施例中,同步数据准备期间Tsdatpr同时涵盖芯片选取期间Tcs1、Tcs2的一部分。因此,同步数据准备期间Tsdatpr较更新读取延迟rfcLC长(Tsdatpr>rfcLC=2*LC)。另,在图18的实施例中,同步数据准备期间Tsdatpr略短于更新读取延迟rfcLC(Tsdatpr<rfcLC=2*LC)。In the embodiment of FIG. 17 , the synchronous data preparation period Tsdatpr also covers a part of the chip selection periods Tcs1 and Tcs2. Therefore, the synchronous data preparation period Tsdatpr is longer than the update read delay rfcLC (Tsdatpr>rfcLC=2*LC). In addition, in the embodiment of FIG. 18 , the synchronous data preparation period Tsdatpr is slightly shorter than the update read delay rfcLC (Tsdatpr<rfcLC=2*LC).

采用PSRAM技术的存储器模块PSRAM时,主控装置可通过对缓存器的设定,而致能数据闪控屏蔽信号DQSM的导引脉冲信号mstrb的预先脉冲(precycle pulse)的通知功能。导引脉冲信号mstrb指的是,在数据闪控屏蔽信号DQSM发出读取闪控脉冲信号mstrb1、mstrb2前的系统频率信号SCLK的高电平期间,存储器模块PSRAM将数据闪控屏蔽信号DQSM的电平拉高一小段期间。即,在实际导引脉冲信号mstrb1、mstrb2产生前,预先对主控装置预告后续即将开始传出读取数据。When the memory module PSRAM adopts PSRAM technology, the master control device can enable the notification function of the pre-cycle pulse of the pilot pulse signal mstrb of the data strobe mask signal DQSM by setting the register. The pilot pulse signal mstrb refers to the period during which the memory module PSRAM pulls the level of the data strobe mask signal DQSM high for a short period of time before the data strobe mask signal DQSM sends the read strobe pulse signals mstrb1 and mstrb2. That is, before the actual pilot pulse signals mstrb1 and mstrb2 are generated, the master control device is notified in advance that the subsequent read data will be transmitted.

在图17的实施例中,主控装置可通过主动感测的方式,判断存储器模块PSRAM1发生更新冲突。因此,在这个实施例中,并未绘式更新冲突通知期间Trfrp。实际应用时,图17的实施例亦可搭配即刻回报模式(mode A)与延迟回报模式(mode B)的方式进行。即,仍由发生更新冲突的存储器模块PSRAM1通知主控装置。In the embodiment of FIG. 17 , the main control device can determine whether the memory module PSRAM1 has an update conflict by active sensing. Therefore, in this embodiment, the update conflict notification period Trfrp is not drawn. In actual application, the embodiment of FIG. 17 can also be implemented in combination with the immediate reporting mode (mode A) and the delayed reporting mode (mode B). That is, the memory module PSRAM1 that has an update conflict still notifies the main control device.

图18为另一种由主控装置主动感测存储器模块PSRAM1发生更新冲突的实施例。请参见图18系存储器模块与主控装置之间利用芯片选取信号CS#搭配系统频率信号SCLK,依据导引脉冲信号m1pre、m2pre产生时点的时间差,判断存储器模块PSRAM1发生更新冲突后,如何进行同步读取操作的实施例的波形图。在此附图中,时点t1至时点t15为读取操作期间Trd;时点t1至时点t14为芯片选取期间Tcs;时点t1至时点t3为设定期间Tset;时点t3至时点t4为读取指令传送期间Tcmd;时点t4至时点t7为地址传送期间Tadr;时点t7至时点t13为同步数据准备期间Tsdatpr;时点t13至时点t15为同步数据读取期间Tdat_sync;时点t14至时点t15为结束期间Tend。此处的时点t5至时点t13为更新冲突读取期间Trdrf。时点t5至时点t9可定义为,存储器模块PSRAM2进行读取操作所需的预设读取延迟(dftLC=LC*1)。时点t9至时点t13可定义为,存储器模块PSRAM2为等待存储器模块PSRAM1的更新冲突结束所需花费的额外等待期间Taddwt。FIG18 is another embodiment of actively sensing the update conflict of the memory module PSRAM1 by the master device. Please refer to FIG18, which is a waveform diagram of an embodiment of how to perform a synchronous read operation after the memory module PSRAM1 has an update conflict by using the chip selection signal CS# in combination with the system frequency signal SCLK between the memory module and the master device, according to the time difference of the generation time of the pilot pulse signals m1pre and m2pre. In this figure, the time point t1 to the time point t15 is the read operation period Trd; the time point t1 to the time point t14 is the chip selection period Tcs; the time point t1 to the time point t3 is the setting period Tset; the time point t3 to the time point t4 is the read instruction transmission period Tcmd; the time point t4 to the time point t7 is the address transmission period Tadr; the time point t7 to the time point t13 is the synchronous data preparation period Tsdatpr; the time point t13 to the time point t15 is the synchronous data reading period Tdat_sync; the time point t14 to the time point t15 is the end period Tend. Here, the time point t5 to the time point t13 is the update conflict read period Trdrf. The time point t5 to the time point t9 can be defined as the preset read delay (dftLC=LC*1) required for the memory module PSRAM2 to perform the read operation. The time point t9 to the time point t13 can be defined as the additional waiting period Taddwt required for the memory module PSRAM2 to wait for the update conflict of the memory module PSRAM1 to end.

在图18的举例中,假设存储器模块PSRAM1、PSRAM2产生导引脉冲信号m1pre、m2pre的功能均被致能。因为存储器模块PSRAM1发生更新冲突的缘故,存储器模块PSRAM1产生导引脉冲信号m1pre的期间,将晚于存储器模块PSRAM2产生导引脉冲信号m2pre的期间。存储器模块PSRAM1在时点t11至时点t12期间,利用数据闪控屏蔽信号DQSM[1]产生导引脉冲信号m1pre;以及,存储器模块PSRAM2在时点t8至时点t9期间,利用数据闪控屏蔽信号DQSM[2]产生导引脉冲信号m2pre。In the example of FIG. 18 , it is assumed that the functions of the memory modules PSRAM1 and PSRAM2 to generate the pilot pulse signals m1pre and m2pre are both enabled. Because the memory module PSRAM1 has an update conflict, the period during which the memory module PSRAM1 generates the pilot pulse signal m1pre will be later than the period during which the memory module PSRAM2 generates the pilot pulse signal m2pre. The memory module PSRAM1 generates the pilot pulse signal m1pre using the data strobe mask signal DQSM[1] during the period from time t11 to time t12; and the memory module PSRAM2 generates the pilot pulse signal m2pre using the data strobe mask signal DQSM[2] during the period from time t8 to time t9.

由图18可以看出,主控装置在时点t8至时点t9的期间,仅接收到由存储器模块PSRAM2利用数据闪控屏蔽信号线DQSM[2]产生的导引脉冲信号m2pre。主控装置需等到时点t11至时点t12的期间,才能接收到存储器模块PSRAM1利用数据闪控屏蔽信号线DQSM[1]产生的导引脉冲信号m1pre。据此,主控装置可基于此种先后(不同步)产生的导引脉冲信号m1pre、m2pre,得知存储器模块PSRAM1、PSRAM2可提供与其对应的读取数据的过程存在时间差。亦即,由于主控装置先收到来自存储器模块PSRAM2的导引脉冲信号m2pre,主控装置可据此判断存储器模块PSRAM2并未产生更新冲突;主控装置较晚收到来自存储器模块PSRAM1的导引脉冲信号m1pre,可据此判断存储器模块PSRAM1发生更新冲突。在此实施例中,由于主控装置主动得知存储器模块PSRAM1发生更新冲突,并非由存储器模块PSRAM1通知。因此,此实施例不包含更新冲突通知期间Trfrp。As can be seen from FIG. 18 , the master control device only receives the pilot pulse signal m2pre generated by the memory module PSRAM2 using the data strobe shielding signal line DQSM[2] during the period from time t8 to time t9. The master control device needs to wait until the period from time t11 to time t12 to receive the pilot pulse signal m1pre generated by the memory module PSRAM1 using the data strobe shielding signal line DQSM[1]. Based on this, the master control device can know that there is a time difference in the process of providing the corresponding read data of the memory modules PSRAM1 and PSRAM2 based on the pilot pulse signals m1pre and m2pre generated successively (asynchronously). That is, since the master control device receives the pilot pulse signal m2pre from the memory module PSRAM2 first, the master control device can judge that the memory module PSRAM2 has not generated an update conflict; the master control device receives the pilot pulse signal m1pre from the memory module PSRAM1 later, and can judge that the memory module PSRAM1 has generated an update conflict. In this embodiment, since the main control device actively learns that the memory module PSRAM1 has an update conflict, and the memory module PSRAM1 does not notify it, this embodiment does not include the update conflict notification period Trfrp.

在图18中,主控装置在时点t8至时点t9的期间,可根据仅有与存储器模块PSRAM2对应的导引脉冲信号m2pre产生,无与存储器模块PSRAM1对应的导引脉冲信号m1pre产生的现象,得知存储器模块PSRAM1需花费较长的时间进行读取操作,进而判断存储器模块PSRAM1产生更新冲突。此处,在时点t5至时点t11期间,存储器模块PSRAM2须等待更新读取延迟rfcLC(例如,rfcLC=LC*2)。其后,存储器模块PSRAM1才在时点t11至时点t12的期间发出导引脉冲信号m1pre。In FIG18 , the master control device can know that the memory module PSRAM1 needs to spend a longer time to perform the read operation according to the phenomenon that only the pilot pulse signal m2pre corresponding to the memory module PSRAM2 is generated during the period from time point t8 to time point t9, and the pilot pulse signal m1pre corresponding to the memory module PSRAM1 is not generated, and thus determines that the memory module PSRAM1 has an update conflict. Here, during the period from time point t5 to time point t11, the memory module PSRAM2 needs to wait for the update read delay rfcLC (for example, rfcLC=LC*2). Thereafter, the memory module PSRAM1 sends the pilot pulse signal m1pre during the period from time point t11 to time point t12.

因此,在图18中,假设主控装置在系统频率周期Tclk6的期间,将芯片选取信号CS#拉高,作为通知存储器模块PSRAM2需额外等待存储器模块PSRAM1完成更新冲突使用。实际应用时,主控装置亦可选择在系统频率周期Tclk7、Tclk8的期间,通过将芯片选取信号CS#拉高的方式,作为通知存储器模块PSRAM2需推迟读取操作速度使用。Therefore, in FIG18 , it is assumed that the master device pulls up the chip select signal CS# during the system frequency cycle Tclk6 to notify the memory module PSRAM2 that it needs to wait for the memory module PSRAM1 to complete the update conflict. In actual application, the master device can also choose to pull up the chip select signal CS# during the system frequency cycles Tclk7 and Tclk8 to notify the memory module PSRAM2 that the read operation speed needs to be postponed.

请留意,图18所提到的,主控装置通过导引脉冲信号m1pre、m2pre而判断存储器模块PSRAM1发生更新碰撞的作法,虽依据系统频率周期将芯片选取信号CS#拉高的方式,通知存储器模块PSRAM2需延迟其读取操作,但实际应用时并不以此为限。因此,如前述其他实施例所提到的,设置存储库忙碌信号BRBB、频率忽略信号ICK等作法,亦可经修改后而应用于主控装置通过导引脉冲信号m1pre、m2pree而判断存储器模块PSRAM1发生更新碰撞的情况。Please note that, as mentioned in FIG. 18 , the master control device determines whether the memory module PSRAM1 has an update collision by guiding the pulse signals m1pre and m2pre, and notifies the memory module PSRAM2 that its read operation needs to be delayed by pulling the chip selection signal CS# high according to the system frequency cycle, but the actual application is not limited to this. Therefore, as mentioned in the other embodiments above, the methods of setting the memory bank busy signal BRBB and the frequency ignore signal ICK can also be modified and applied to the situation where the master control device determines whether the memory module PSRAM1 has an update collision by guiding the pulse signals m1pre and m2pree.

附带一提的是,主控装置仅选择利用系统频率周期Tclk6、Tclk7、Tclk8其中一者的期间将芯片选取信号CS#拉高的考虑是,若主控装置将芯片选取信号CS#拉高的期间较一个系统频率周期Tclk长,可能导致存储器模块PSRAM2误以为主控装置准备强制结束此次的读取操作。因此,为避免存储器模块PSRAM2产生误动作,此实施例假设主控装置利用将芯片选取信号CS#拉高一个系统频率周期Tclk的方式,通知存储器模块PSRAM2需延长读取操作的期间。Incidentally, the main control device only chooses to use one of the system frequency cycles Tclk6, Tclk7, and Tclk8 to pull the chip selection signal CS# high. If the main control device pulls the chip selection signal CS# high for a period longer than one system frequency cycle Tclk, the memory module PSRAM2 may mistakenly believe that the main control device is preparing to force the end of the read operation. Therefore, in order to avoid malfunction of the memory module PSRAM2, this embodiment assumes that the main control device uses the method of pulling the chip selection signal CS# high for one system frequency cycle Tclk to notify the memory module PSRAM2 that the read operation period needs to be extended.

前述所举的多个实施例可以看出,本发明的应用相当弹性。首先,主控装置可以通过存储器模块PSRAM1的回报,被动得知存储器模块PSRAM1内部产生更新冲突(图8A、图8B、图10、图11、图13、图14、图15、图16);主控装置可通过比较读取闪控脉冲信号m1strb1、m2strb1的产生时点的方式,主动判断存储器模块PSRAM1内部产生更新冲突(图17);或者,主控装置可通过侦测导引脉冲信号m1pre、m2pre的方式,主动判断存储器模块PSRAM1内部产生更新冲突(图18)。此外,就存储器模块PSRAM1的回报模式而言,还可进一步依据回报的时点而区分为,即刻回报模式(mode A)与延迟回报模式(mode B)。As can be seen from the above-mentioned multiple embodiments, the application of the present invention is quite flexible. First, the main control device can passively learn that an update conflict occurs inside the memory module PSRAM1 through the report of the memory module PSRAM1 (Figures 8A, 8B, 10, 11, 13, 14, 15, and 16); the main control device can actively determine that an update conflict occurs inside the memory module PSRAM1 by comparing the generation time points of the read flash pulse signals m1strb1 and m2strb1 (Figure 17); or the main control device can actively determine that an update conflict occurs inside the memory module PSRAM1 by detecting the guide pulse signals m1pre and m2pre (Figure 18). In addition, as for the report mode of the memory module PSRAM1, it can be further divided into an immediate report mode (mode A) and a delayed report mode (mode B) according to the report time point.

再者,前述不同的实施例亦说明,若存储器模块PSRAM1发生更新冲突时,存储器模块PSRAM1可通过不同类型的信号线通知主控装置。例如:数据闪控屏蔽信号DQSM[1]、DQSM[2]、存储库忙碌信号BRBBh、BRBBm1、BRBBm2、芯片选取信号CS#,或者,以芯片选取信号CS#搭配系统频率信号SCLK的波形组合等。实际应用时,存储器模块PSRAM1通知主控装置的信号线的种类与其波形的控制等,并不以前述实施例为限。Furthermore, the aforementioned different embodiments also illustrate that if an update conflict occurs in the memory module PSRAM1, the memory module PSRAM1 can notify the main control device through different types of signal lines. For example: data flash mask signal DQSM[1], DQSM[2], memory bank busy signal BRBBh, BRBBm1, BRBBm2, chip select signal CS#, or a combination of chip select signal CS# and system clock signal SCLK waveform. In actual application, the type of signal line that the memory module PSRAM1 notifies the main control device and the control of its waveform are not limited to the aforementioned embodiments.

此外,根据实施例的不同,存储器模块PSRAM2可从主控装置间接得知存储器模块PSRAM1产生更新冲突的情形;或者,存储器模块PSRAM2可直接自存储器模块PSRAM1获知存储器模块PSRAM1发生更新冲突的情形。In addition, according to different embodiments, the memory module PSRAM2 may indirectly learn from the main control device that the memory module PSRAM1 has an update conflict; or the memory module PSRAM2 may directly learn from the memory module PSRAM1 that the memory module PSRAM1 has an update conflict.

前述实施例中,关于存储器模块PSRAM2间接从主控装置得知存储器模块PSRAM1产生更新冲突的做法包含:由主控装置发出特殊读取指令m1CMDrd_sp、m2CMDrd_sp(图8A)、由主控装置发出延长读取指令m1CMDext、m2CMDext(图8B)、由主控装置改变芯片选取信号CS#的电平(图13)、由主控装置改变芯片选取信号CS#与系统频率信号SCLK的组合(图14)、主控装置对额外设置的频率忽略信号线ICK1、ICK2加以设定(图15)、主控装置暂停传送系统频率信号SCLK(图16)、重复读取指令m1CMDrtry、m2CMDrtry(图17)。前述实施例中,关于存储器模块PSRAM2可直接从存储器模块PSRAM1接收关于存储器模块PSRAM1产生更新冲突情形的方式包含:如图9A、图9B所示,以线或(wired OR)的方式设置存储库忙碌信号线BRBB;以及,如图12A、图12B所示,以线或(wired OR)的方式设置芯片选取信号CS#。In the aforementioned embodiment, the method for the memory module PSRAM2 to indirectly learn from the main control device that the memory module PSRAM1 has an update conflict includes: the main control device issues special read instructions m1CMDrd_sp, m2CMDrd_sp (Figure 8A), the main control device issues extended read instructions m1CMDext, m2CMDext (Figure 8B), the main control device changes the level of the chip select signal CS# (Figure 13), the main control device changes the combination of the chip select signal CS# and the system frequency signal SCLK (Figure 14), the main control device sets the additional frequency ignore signal lines ICK1, ICK2 (Figure 15), the main control device suspends the transmission of the system frequency signal SCLK (Figure 16), and repeats the read instructions m1CMDrtry, m2CMDrtry (Figure 17). In the aforementioned embodiment, the memory module PSRAM2 can directly receive the update conflict situation generated by the memory module PSRAM1 from the memory module PSRAM1, including: as shown in Figures 9A and 9B, the memory bank busy signal line BRBB is set in a wired OR manner; and, as shown in Figures 12A and 12B, the chip selection signal CS# is set in a wired OR manner.

根据前述说明可以看出,本发明的读取方法可通过相当弹性的方式应用于电子装置。实际应用时,存储器模块PSRAM2从主控装置间接得知存储器模块PSRAM1产生更新冲突的方式,以及存储器模块PSRAM2从存储器模块PSRAM1直接得知存储器模块PSRAM1产生更新冲突的方式,并不以前述实施例为限。According to the above description, it can be seen that the reading method of the present invention can be applied to electronic devices in a very flexible manner. In actual application, the memory module PSRAM2 indirectly learns from the main control device that the memory module PSRAM1 generates an update conflict, and the memory module PSRAM2 directly learns from the memory module PSRAM1 that the memory module PSRAM1 generates an update conflict, which is not limited to the above embodiment.

采用本发明构想时,主控装置可以获知是否有存储器模块发生更新冲突,进而通知系统内的其他存储器模块需延迟其传送读取数据时点,并确保主控装置可同步自多个存储器模块接收读取数据。本发明所述的使用PSRAM技术的存储器模块,其PSRAM技术包括但不限于OctaRAM、HyperRAM、Xccela PSRAM等,且PSRAM技术采用的传输协议可为序列周边接口(Serial Peripheral Interface Bus,简称为SPI)、双倍序列周边界面(Dual-SPI)、四倍序列周边界面(QSPI)等。此外,本发明的波形图虽假设一个读取延迟计数LC相当于系统频率周期的三倍(LC=3*Tclk),但实际应用亦不以此为限。When the concept of the present invention is adopted, the main control device can know whether there is an update conflict in the memory module, and then notify other memory modules in the system to delay the time point of transmitting the read data, and ensure that the main control device can synchronously receive the read data from multiple memory modules. The memory module using PSRAM technology described in the present invention includes but is not limited to OctaRAM, HyperRAM, Xccela PSRAM, etc., and the transmission protocol adopted by the PSRAM technology can be a serial peripheral interface (Serial Peripheral Interface Bus, referred to as SPI), a double serial peripheral interface (Dual-SPI), a quadruple serial peripheral interface (QSPI), etc. In addition, although the waveform diagram of the present invention assumes that a read delay count LC is equivalent to three times the system frequency period (LC=3*Tclk), the actual application is not limited to this.

另请留意,尽管在前述说明中,假设电子装置仅包含两个存储器模块PSRAM1、PSRAM2,但本发明的实际应用并不以此为限。例如,电子装置可能包含四个或八个存储器模块。或者,电子装置所包含的多个存储器模块轮流出现需要进行更新冲突的情况。则,前述的读取方法仍可基于类似的控制方式,待所有发生更新冲突的存储器模块均完成更新冲突后,再一并控制所有的存储器模块同步传送读取数据。前述的实施例可在修改后,应用至这些不同类型的电子装置。Please also note that although in the above description, it is assumed that the electronic device only includes two memory modules PSRAM1 and PSRAM2, the practical application of the present invention is not limited to this. For example, the electronic device may include four or eight memory modules. Or, multiple memory modules included in the electronic device may have update conflicts in turn. Then, the aforementioned reading method can still be based on a similar control method, and after all memory modules with update conflicts have completed the update conflicts, all memory modules are controlled to synchronously transmit read data. The aforementioned embodiments can be applied to these different types of electronic devices after modification.

以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above further illustrate the objectives, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above description is only a specific embodiment of the present invention and is not intended to limit the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and principles of the present invention should be included in the protection scope of the present invention.

Claims (12)

1.一种存储器装置,其中,用以电连接于一主控装置,其中该主控装置系于一读取操作期间内对该存储器装置执行一读取操作,且该存储器装置系包含:1. A memory device, wherein the memory device is electrically connected to a host device, wherein the host device performs a read operation on the memory device during a read operation period, and the memory device comprises: 一第一存储器模块,其系于该读取操作期间产生一更新冲突;以及,a first memory module that generates an update conflict during the read operation; and 一第二存储器模块,其中,a second memory module, wherein: 该第一存储器模块与该第二存储器模块系同时于一读取指令传送期间分别接收该主控装置所传送的一第一读取指令与一第二读取指令;The first memory module and the second memory module respectively receive a first read instruction and a second read instruction sent by the main control device during a read instruction transmission period; 该第一存储器模块与该第二存储器模块系同时于一地址传送期间分别接收一第一存储器地址与一第二存储器地址,其中该读取指令传送期间早于该地址传送期间;以及,The first memory module and the second memory module respectively receive a first memory address and a second memory address during an address transmission period at the same time, wherein the read instruction transmission period is earlier than the address transmission period; and 经过一同步数据准备期间后,该第一存储器模块与该第二存储器模块系同时于一同步数据读取期间,分别传送一第一同步读取数据与一第二同步读取数据至该主控装置,其中该同步数据准备期间系大于一预设读取延迟;After a synchronous data preparation period, the first memory module and the second memory module simultaneously transmit a first synchronous read data and a second synchronous read data to the main control device during a synchronous data reading period, wherein the synchronous data preparation period is greater than a preset read delay; 其中,该主控装置系于该同步数据准备期间判断该第一存储器模块产生该更新冲突,且该主控装置系于该同步数据准备期间内通知该第二存储器模块须以一特殊数据同步方式执行该读取操作;其中,该特殊数据同步方式是在读取数据时该第一存储器模块和该第二存储器模块的同步数据准备期间大于该预设读取延迟;The main control device determines that the update conflict occurs in the first memory module during the synchronous data preparation period, and the main control device notifies the second memory module during the synchronous data preparation period that the read operation must be performed in a special data synchronization manner; wherein the special data synchronization manner is that the synchronous data preparation period of the first memory module and the second memory module is greater than the preset read delay when reading data; 该第一存储器模块系因应该读取操作而发出一第一导引脉冲信号,且该第二存储器模块系因应该读取操作而发出一第二导引脉冲信号,其中,The first memory module sends a first pilot pulse signal in response to the read operation, and the second memory module sends a second pilot pulse signal in response to the read operation, wherein: 该主控装置系根据该第一导引脉冲信号与该第二导引脉冲信号的比较而判断该第一存储器模块产生该更新冲突。The main control device determines whether the first memory module generates the update conflict according to the comparison between the first pilot pulse signal and the second pilot pulse signal. 2.根据权利要求1所述的存储器装置,其中,2. The memory device according to claim 1, wherein: 该主控装置通知该第二存储器模块须以该特殊数据同步方式执行该读取操作;或The master control device notifies the second memory module that the read operation should be performed in the special data synchronization mode; or 该第一存储器模块通知该第二存储器模块须以该特殊数据同步方式执行该读取操作。The first memory module notifies the second memory module that the read operation should be performed in the special data synchronization manner. 3.根据权利要求1所述的存储器装置,其中,3. The memory device according to claim 1, wherein: 该第一存储器模块系于该读取指令传送期间开始前,将该更新冲突的情形回报予该主控装置;或The first memory module reports the update conflict situation to the main control device before the read command transmission period starts; or 该第一存储器模块系于该地址传送期间内,将该更新冲突的情形回报予该主控装置。The first memory module reports the update conflict situation to the main control device during the address transmission period. 4.根据权利要求1所述的存储器装置,其中,该第一存储器模块系通过一芯片选取信号线、一数据闪控屏蔽信号线、一专用信号线、一系统频率信号线、与一频率忽略信号线其中的一者或其组合,将该更新冲突的情形回报予该主控装置。4. The memory device according to claim 1, wherein the first memory module reports the update conflict situation to the main control device through one or a combination of a chip selection signal line, a data flash shield signal line, a dedicated signal line, a system frequency signal line, and a frequency ignore signal line. 5.根据权利要求1所述的存储器装置,其中,该第二存储器模块系于该同步数据准备期间传送一舍弃数据,其中,该舍弃数据的内容与该第二同步读取数据的内容相同。5 . The memory device according to claim 1 , wherein the second memory module transmits a discard data during the synchronous data preparation period, wherein the content of the discard data is the same as the content of the second synchronous read data. 6.根据权利要求1所述的存储器装置,其中,6. The memory device according to claim 1, wherein: 该同步数据准备期间系小于一更新读取延迟,其中该读取操作期间系包含:The synchronous data preparation period is less than an update read delay, wherein the read operation period includes: 同时用于选取该第一存储器模块与该第二存储器模块的一芯片选取期间,其中该芯片选取期间系包含一设定期间、该读取指令传送期间、该地址传送期间、该同步数据准备期间与一部分的该同步数据读取期间。A chip selection period is used to select the first memory module and the second memory module at the same time, wherein the chip selection period includes a setting period, the read instruction transmission period, the address transmission period, the synchronous data preparation period and a part of the synchronous data reading period. 7.根据权利要求1所述的存储器装置,其中,该同步数据准备期间系大于一更新读取延迟,其中该读取操作期间系包含:7. The memory device of claim 1 , wherein the synchronous data preparation period is greater than an update read delay, wherein the read operation period comprises: 同时用于选取该第一存储器模块与该第二存储器模块的一第一芯片选取期间,其中该第一芯片选取期间系包含一设定期间、该读取指令传送期间、该地址传送期间与一部分的该同步数据准备期间;A first chip selection period for selecting the first memory module and the second memory module at the same time, wherein the first chip selection period includes a setting period, the read command transmission period, the address transmission period and a portion of the synchronous data preparation period; 一芯片选取间距;One chip selects the spacing; 同时用于选取该第一存储器模块与该第二存储器模块的一第二芯片选取期间,其中该第二芯片选取期间系包含一指令重复传送期间、另一部分的该同步数据准备期间与一部分的该同步数据读取期间;以及A second chip selection period for selecting the first memory module and the second memory module at the same time, wherein the second chip selection period includes a command repetition transmission period, another part of the synchronous data preparation period and a part of the synchronous data reading period; and 一结束期间,其中该结束期间系包含另一部分的该同步数据读取期间。An end period, wherein the end period includes another portion of the synchronous data reading period. 8.根据权利要求7所述的存储器装置,其中,8. The memory device according to claim 7, wherein: 该第一存储器模块系于该同步数据准备期间传送一第一舍弃数据,且该第二存储器模块系于该同步数据准备期间传送一第二舍弃数据,The first memory module transmits a first discarded data during the synchronous data preparation period, and the second memory module transmits a second discarded data during the synchronous data preparation period, 其中,该第一舍弃数据的内容与该第一同步读取数据的内容相同,且该第二舍弃数据的内容与该第二同步读取数据的内容相同。The content of the first discarded data is the same as the content of the first synchronously read data, and the content of the second discarded data is the same as the content of the second synchronously read data. 9.根据权利要求8所述的存储器装置,其中,9. The memory device according to claim 8, wherein: 该第一芯片选取期间系包含该读取指令传送期间与该地址传送期间,且The first chip selection period includes the read instruction transmission period and the address transmission period, and 该第二芯片选取期间系包含一指令重复传送期间、该同步数据准备期间与该同步数据读取期间。The second chip selection period includes a command repetition transmission period, the synchronous data preparation period and the synchronous data reading period. 10.根据权利要求1所述的存储器装置,其中,其中该读取操作期间系包含该读取指令传送期间、该地址传送期间、该同步数据准备期间与该同步数据读取期间。10 . The memory device according to claim 1 , wherein the read operation period comprises the read command transmission period, the address transmission period, the synchronous data preparation period and the synchronous data reading period. 11.一种电子装置,其中,包含:11. An electronic device, comprising: 一存储器装置,包含:A memory device comprising: 一第一存储器模块,其系于一读取操作期间产生一更新冲突;以及a first memory module that generates an update conflict during a read operation; and 一第二存储器模块;以及a second memory module; and 一主控装置,电连接于该第一存储器模块与该第二存储器模块,其中该主控装置系于该读取操作期间内对该第一存储器模块与该第二存储器模块同时执行一读取操作,其中,A main control device is electrically connected to the first memory module and the second memory module, wherein the main control device performs a read operation on the first memory module and the second memory module simultaneously during the read operation period, wherein: 该第一存储器模块与该第二存储器模块系同时于一读取指令传送期间同时接收该主控装置所传送的一读取指令;The first memory module and the second memory module simultaneously receive a read command sent by the main control device during a read command transmission period; 该第一存储器模块与该第二存储器模块系同时于一地址传送期间分别接收一第一存储器地址与一第二存储器地址,其中该读取指令传送期间早于该地址传送期间;以及The first memory module and the second memory module respectively receive a first memory address and a second memory address during an address transmission period at the same time, wherein the read instruction transmission period is earlier than the address transmission period; and 经过一同步数据准备期间后,该第一存储器模块与该第二存储器模块系同时于一同步数据读取期间,分别传送一第一同步读取数据与一第二同步读取数据至该主控装置,其中该同步数据准备期间系大于一预设读取延迟;After a synchronous data preparation period, the first memory module and the second memory module respectively transmit a first synchronous read data and a second synchronous read data to the main control device during a synchronous data reading period, wherein the synchronous data preparation period is greater than a preset read delay; 该主控装置系于该同步数据准备期间判断该第一存储器模块产生该更新冲突,且该主控装置系于该同步数据准备期间内通知该第二存储器模块须以一特殊数据同步方式执行该读取操作;其中,该特殊数据同步方式是在读取数据时该第一存储器模块和该第二存储器模块的同步数据准备期间大于该预设读取延迟;The master control device determines that the first memory module generates the update conflict during the synchronous data preparation period, and the master control device notifies the second memory module during the synchronous data preparation period that the read operation must be performed in a special data synchronization mode; wherein the special data synchronization mode is that the synchronous data preparation period of the first memory module and the second memory module is greater than the preset read delay when reading data; 该第一存储器模块系因应该读取操作而发出一第一导引脉冲信号,且该第二存储器模块系因应该读取操作而发出一第二导引脉冲信号,其中,The first memory module sends a first pilot pulse signal in response to the read operation, and the second memory module sends a second pilot pulse signal in response to the read operation, wherein: 该主控装置系根据该第一导引脉冲信号与该第二导引脉冲信号的比较而判断该第一存储器模块产生该更新冲突。The main control device determines whether the first memory module generates the update conflict according to the comparison between the first pilot pulse signal and the second pilot pulse signal. 12.一种应用于一电子装置的读取方法,其中,该电子装置系包含一主控装置、一第一存储器模块与一第二存储器模块,其中该主控装置系同时于一读取操作期间内对该第一存储器模块与该第二存储器模块同时执行一读取操作,该第一存储器模块系于该读取操作期间产生一更新冲突,且该读取方法系包含以下步骤:12. A reading method applied to an electronic device, wherein the electronic device comprises a main control device, a first memory module and a second memory module, wherein the main control device simultaneously performs a reading operation on the first memory module and the second memory module during a reading operation period, the first memory module generates an update conflict during the reading operation period, and the reading method comprises the following steps: 该第一存储器模块与该第二存储器模块系同时于一读取指令传送期间分别接收该主控装置所传送的一第一读取指令与一第二读取指令;The first memory module and the second memory module respectively receive a first read instruction and a second read instruction sent by the main control device during a read instruction transmission period; 该第一存储器模块与该第二存储器模块系同时于一地址传送期间分别接收一第一存储器地址与一第二存储器地址,其中该读取指令传送期间早于该地址传送期间;以及The first memory module and the second memory module respectively receive a first memory address and a second memory address during an address transmission period at the same time, wherein the read instruction transmission period is earlier than the address transmission period; and 经过一同步数据准备期间后,该第一存储器模块与该第二存储器模块系同时于一同步数据读取期间,分别传送一第一同步读取数据与一第二同步读取数据至该主控装置,其中该同步数据准备期间系大于一预设读取延迟;After a synchronous data preparation period, the first memory module and the second memory module respectively transmit a first synchronous read data and a second synchronous read data to the main control device during a synchronous data reading period, wherein the synchronous data preparation period is greater than a preset read delay; 其中,该主控装置系于该同步数据准备期间判断该第一存储器模块产生该更新冲突,且该主控装置系于该同步数据准备期间内通知该第二存储器模块须以一特殊数据同步方式执行该读取操作;其中,该特殊数据同步方式是在读取数据时该第一存储器模块和该第二存储器模块的同步数据准备期间大于该预设读取延迟;The main control device determines that the update conflict occurs in the first memory module during the synchronous data preparation period, and the main control device notifies the second memory module during the synchronous data preparation period that the read operation must be performed in a special data synchronization manner; wherein the special data synchronization manner is that the synchronous data preparation period of the first memory module and the second memory module is greater than the preset read delay when reading data; 该第一存储器模块系因应该读取操作而发出一第一导引脉冲信号,且该第二存储器模块系因应该读取操作而发出一第二导引脉冲信号,其中,The first memory module sends a first pilot pulse signal in response to the read operation, and the second memory module sends a second pilot pulse signal in response to the read operation, wherein: 该主控装置系根据该第一导引脉冲信号与该第二导引脉冲信号的比较而判断该第一存储器模块产生该更新冲突。The main control device determines whether the first memory module generates the update conflict according to the comparison between the first pilot pulse signal and the second pilot pulse signal.
CN202010638862.2A 2020-07-06 2020-07-06 Memory device, electronic device and related reading method Active CN113900580B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010638862.2A CN113900580B (en) 2020-07-06 2020-07-06 Memory device, electronic device and related reading method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010638862.2A CN113900580B (en) 2020-07-06 2020-07-06 Memory device, electronic device and related reading method

Publications (2)

Publication Number Publication Date
CN113900580A CN113900580A (en) 2022-01-07
CN113900580B true CN113900580B (en) 2024-09-27

Family

ID=79186507

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010638862.2A Active CN113900580B (en) 2020-07-06 2020-07-06 Memory device, electronic device and related reading method

Country Status (1)

Country Link
CN (1) CN113900580B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070111062A (en) * 2006-05-16 2007-11-21 삼성전자주식회사 Memory module and memory system having same
JP2009087534A (en) * 2009-01-26 2009-04-23 Nec Electronics Corp Semiconductor storage device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6044429A (en) * 1997-07-10 2000-03-28 Micron Technology, Inc. Method and apparatus for collision-free data transfers in a memory device with selectable data or address paths
JP4768163B2 (en) * 2001-08-03 2011-09-07 富士通セミコンダクター株式会社 Semiconductor memory
JP4249412B2 (en) * 2001-12-27 2009-04-02 Necエレクトロニクス株式会社 Semiconductor memory device
CN100456387C (en) * 2002-04-15 2009-01-28 富士通微电子株式会社 semiconductor memory
CN100388252C (en) * 2004-12-14 2008-05-14 威瀚科技股份有限公司 Method for realizing double-port synchronous memory device and related device
US7401179B2 (en) * 2005-01-21 2008-07-15 Infineon Technologies Ag Integrated circuit including a memory having low initial latency
CN1845252A (en) * 2006-05-12 2006-10-11 北京芯技佳易微电子科技有限公司 Dynamic random access memory inner core stabilization refreshing method under clockless condition
CN100405343C (en) * 2006-06-21 2008-07-23 北京中星微电子有限公司 Asynchronous data buffer storage
JP5228472B2 (en) * 2007-12-19 2013-07-03 富士通セミコンダクター株式会社 Semiconductor memory and system
JP5429335B2 (en) * 2012-08-15 2014-02-26 富士通セミコンダクター株式会社 Semiconductor memory and system
US10475492B1 (en) * 2018-07-27 2019-11-12 Macronix International Co., Ltd. Circuit and method for read latency control

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070111062A (en) * 2006-05-16 2007-11-21 삼성전자주식회사 Memory module and memory system having same
JP2009087534A (en) * 2009-01-26 2009-04-23 Nec Electronics Corp Semiconductor storage device

Also Published As

Publication number Publication date
CN113900580A (en) 2022-01-07

Similar Documents

Publication Publication Date Title
US6813251B1 (en) Split Transaction protocol for a bus system
US6792495B1 (en) Transaction scheduling for a bus system
US20210183434A1 (en) Protocol For Refresh Between A Memory Controller And A Memory Device
JP2007507056A (en) Memory device, interface buffer, memory system, computer system, method, machine accessible medium
JP2012515989A (en) Memory device power management device and method
US5584033A (en) Apparatus and method for burst data transfer employing a pause at fixed data intervals
US11928066B2 (en) I2C bridge device
TW200921671A (en) Memory control device and semiconductor processing apparatus
WO2019141050A1 (en) Refreshing method, apparatus and system, and memory controller
EP2223224B1 (en) Scheduling based on turnaround event
CN111739569B (en) SDRAM (synchronous dynamic random access memory) control system and control method for reading and writing simultaneously
CN113900580B (en) Memory device, electronic device and related reading method
TW201415237A (en) Data transmission system and data transmission method
TWI743859B (en) Memory device, electronic device, and associated read method
CN115586974A (en) Memory controller, system, device and electronic equipment
TWI766373B (en) One-wire and bi-direction communication circuit and method
TW202427470A (en) Control method of memory and controller, and chip system
KR100454780B1 (en) Parallel terminated bus system
US7346714B2 (en) Notification of completion of communication with a plurality of data storage areas
WO2023125410A1 (en) Method and circuit for accessing write data path of on-chip memory control unit
KR20040031155A (en) Memory control apparatus of performing data writing on address line
WO2024167202A1 (en) Memory module power control apparatus and memory power control apparatus
JPH1185406A (en) Time slot generation device
JP2002268827A (en) Multiplexed storage controller
JPH11282749A (en) High speed memory controller

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant