[go: up one dir, main page]

CN113897375B - C6-like zinc finger protein encoding gene of Aspergillus extreme halophilus and its application - Google Patents

C6-like zinc finger protein encoding gene of Aspergillus extreme halophilus and its application Download PDF

Info

Publication number
CN113897375B
CN113897375B CN202111152965.9A CN202111152965A CN113897375B CN 113897375 B CN113897375 B CN 113897375B CN 202111152965 A CN202111152965 A CN 202111152965A CN 113897375 B CN113897375 B CN 113897375B
Authority
CN
China
Prior art keywords
zinc finger
finger protein
aspergillus
leu
ala
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111152965.9A
Other languages
Chinese (zh)
Other versions
CN113897375A (en
Inventor
刘开辉
刘婉婷
丁小维
陈妮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Miyuan Intellectual Property Service Co ltd
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN202111152965.9A priority Critical patent/CN113897375B/en
Publication of CN113897375A publication Critical patent/CN113897375A/en
Application granted granted Critical
Publication of CN113897375B publication Critical patent/CN113897375B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/38Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from Aspergillus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Mycology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention discloses an extreme halophilic aspergillus C6-like zinc finger protein coding gene and application thereof, the coding gene is transferred into plants, under NaCl simulated salt stress, plants over-expressing the extreme halophilic aspergillus C6-like zinc finger protein coding gene are obviously superior to wild plants in length, weight and seed dry weight, and salt tolerance is obviously enhanced, so that the extreme halophilic aspergillus C6-like zinc finger protein coding gene provided by the invention has an important role in improving the saline-alkali tolerance of plants.

Description

极端嗜盐曲霉C6-like锌指蛋白编码基因及其应用C6-like zinc finger protein encoding gene of Aspergillus extreme halophilus and its application

技术领域Technical field

本发明属于植物基因工程技术领域,更具体地说,涉及一种极端嗜盐曲霉C6-like锌指蛋白编码基因及其在提高植物耐盐胁迫能力中的应用。The invention belongs to the technical field of plant genetic engineering, and more specifically, relates to a C6-like zinc finger protein encoding gene of extreme halophilic Aspergillus and its application in improving the salt stress tolerance of plants.

背景技术Background technique

土壤盐碱化是一种渐变性地质环境问题,主要是由干旱气候、地形地貌以及人类对水土资源的不合理利用引起。据报道,全球有9.5亿公顷盐碱土地,我国盐碱地约1亿公顷,其中盐碱耕地达920万公顷,每年直接造成的经济损失超过千亿美元。土壤盐碱化引起植物生理干旱、影响营养物吸收,危害作物生长及产量。利用基因工程技术提高植物的耐盐性是生态修复盐碱化土壤的重要途径。Soil salinization is a gradual geological environmental problem, mainly caused by arid climate, topography and irrational use of water and soil resources by humans. It is reported that there are 950 million hectares of saline-alkali land in the world, about 100 million hectares of saline-alkali land in my country, of which 9.2 million hectares of saline-alkali arable land cause direct economic losses of more than 100 billion US dollars each year. Soil salinization causes physiological drought in plants, affects nutrient absorption, and harms crop growth and yield. Using genetic engineering technology to improve plant salt tolerance is an important way to ecologically restore saline-alkali soil.

目前,利用基因工程方法提高植物耐盐性的研究取得了一定的进展,通过抗性基因转化在一定程度上提高了植物耐盐性。如翟红红分别用AhCMO-AhBADH双基因、AhCMO和AhBADH单基因分别构建转基因烟草。对转基因植株进行NaCl处理,结果表明转基因植株长势优于野生型植株,转基因植株的根长、侧根数和鲜重均比野生型植株有所提高。At present, research on improving plant salt tolerance using genetic engineering methods has made certain progress, and plant salt tolerance has been improved to a certain extent through resistance gene transformation. For example, Zhai Honghong used AhCMO-AhBADH double genes and AhCMO and AhBADH single genes to construct transgenic tobacco. The transgenic plants were treated with NaCl. The results showed that the growth of transgenic plants was better than that of wild-type plants. The root length, number of lateral roots and fresh weight of transgenic plants were all increased compared with wild-type plants.

锌指蛋白是一类含有通过结合Zn2+稳定的短的可以自我折叠形成“手指”结构的蛋白质,该蛋白在基因的表达调控,细胞分化调节以及植物抗逆性胁迫响应等多个方面均发挥着重要的作用。目前,关于此类研究主要是从较低盐度下生长的植物中获取具有耐受能力的锌指蛋白表达基因,如Teng等从结缕草中分离出的C2H2型锌指蛋白ZjZFN1在拟南芥中过表达,虽然与野生型相比,转基因拟南芥的种子萌发率提高,绿色子叶的百分比增加,植株的耐盐胁迫能力增强,但是由于是从较低盐度下生长的植物中提取的基因,其对耐盐胁迫能力的提高是有限的。Zinc finger proteins are a class of proteins that contain short, self-folding structures that are stabilized by binding to Zn 2+ to form a "finger" structure. This protein plays an important role in gene expression regulation, cell differentiation regulation, and plant stress response. plays an important role. At present, such research mainly focuses on obtaining zinc finger protein expression genes with tolerance from plants growing under lower salinity. For example, the C2H2 zinc finger protein ZjZFN1 isolated from Zoysia by Teng et al. Overexpression in Arabidopsis. Although compared with the wild type, the seed germination rate of transgenic Arabidopsis is increased, the percentage of green cotyledons is increased, and the plant's salt stress tolerance is enhanced, but because it is extracted from plants grown under lower salinity gene, its ability to improve salt stress tolerance is limited.

油菜是我国重要的油料作物,是食用植物油的主要来源。目前我国食用油脂供给严重不足。如何获得新型耐盐转基因油菜植株,开发利用盐碱土地资源,对于提高油菜产量具有重要意义。Rapeseed is an important oil crop in my country and the main source of edible vegetable oil. At present, the supply of edible oils and fats in my country is seriously insufficient. How to obtain new salt-tolerant transgenic rape plants and develop and utilize saline-alkali land resources are of great significance for increasing rapeseed yields.

发明内容Contents of the invention

针对现有技术中存在的问题,本发明提供一种极端嗜盐曲霉C6-like锌指蛋白编码基因及其应用,通过将极端嗜盐曲霉C6-like锌指蛋白编码基因转入植物中,能提高植物耐盐胁迫能力。In view of the problems existing in the prior art, the present invention provides an extreme halophilic Aspergillus C6-like zinc finger protein encoding gene and its application. By transferring the extreme halophilic Aspergillus C6-like zinc finger protein encoding gene into plants, it can Improve plants' ability to tolerate salt stress.

本发明是通过以下技术方案来实现:The present invention is realized through the following technical solutions:

一种极端嗜盐曲霉C6-like锌指蛋白编码基因,其核苷酸序列如SEQ ID NO.1所示。An extremely halophilic Aspergillus C6-like zinc finger protein encoding gene, the nucleotide sequence of which is shown in SEQ ID NO.1.

一种所述的极端嗜盐曲霉C6-like锌指蛋白编码基因编码的蛋白,其氨基酸序列如SEQ ID NO.2所示。A protein encoded by the C6-like zinc finger protein encoding gene of Aspergillus extrema, the amino acid sequence of which is shown in SEQ ID NO.2.

一种含所述的极端嗜盐曲霉C6-like锌指蛋白编码基因的表达载体。An expression vector containing the gene encoding the C6-like zinc finger protein of Aspergillus extreme halophilia.

优选的,所述表达载体由C6-like锌指蛋白编码基因与载体pBWA(V)HS连接得到。Preferably, the expression vector is obtained by connecting the C6-like zinc finger protein encoding gene and the vector pBWA(V)HS.

一种含所述表达载体的细胞。A cell containing the expression vector.

一种含所述的极端嗜盐曲霉C6-like锌指蛋白编码基因的宿主菌。A host bacterium containing the C6-like zinc finger protein encoding gene of extreme halophilic Aspergillus.

优选的,所述宿主菌为农杆菌。Preferably, the host bacterium is Agrobacterium.

所述的极端嗜盐曲霉C6-like锌指蛋白编码基因在提高植物耐盐性中的应用。The application of the extremely halophilic Aspergillus C6-like zinc finger protein encoding gene in improving plant salt tolerance.

优选的,所述应用包括以下步骤:Preferably, the application includes the following steps:

1)构建含极端嗜盐曲霉C6-like锌指蛋白编码基因的表达载体;1) Construct an expression vector containing the gene encoding the C6-like zinc finger protein of Aspergillus extrema;

2)将所构建的表达载体转化到植物或植物细胞中;2) Transform the constructed expression vector into plants or plant cells;

3)培育步骤2)所得植物或植物细胞,筛选得到耐盐性提高的转基因植物。3) Cultivate the plants or plant cells obtained in step 2), and screen to obtain transgenic plants with improved salt tolerance.

优选的,所述的植物为油菜。Preferably, the plant is rapeseed.

与现有技术相比,本发明具有以下有益的技术效果:Compared with the existing technology, the present invention has the following beneficial technical effects:

本发明以极端嗜盐曲霉(Aspergillus montevidensis ZYD4)为材料,提取、扩增得到一种极端嗜盐曲霉C6-like锌指蛋白编码基因,将该编码基因转入植物中。因为本发明是从高盐状态下生长的极端微生物中获取的耐盐基因,其转基因植物更加能适应高盐状态的环境。本发明研究表明,在NaCl模拟盐胁迫下,过表达极端嗜盐曲霉C6-like锌指蛋白编码基因的植物在长度、重量及种子干重上明显优于野生型植物,耐盐能力明显增强,表明本发明提供的极端嗜盐曲霉C6-like锌指蛋白编码基因在提高植物耐盐碱方面的具有重要作用,为植物抗逆改良提供了重要基因资源,在利用基因工程植株生态修复盐碱土地方面具有重要意义。The present invention uses Aspergillus montevidensis ZYD4 as material, extracts and amplifies an Aspergillus montevidensis C6-like zinc finger protein encoding gene, and transfers the encoding gene into plants. Because the salt-tolerant gene of the present invention is obtained from extremophile microorganisms that grow in high-salt conditions, its transgenic plants are more able to adapt to the environment of high-salt conditions. The research of the present invention shows that under NaCl simulated salt stress, plants that overexpress the gene encoding the C6-like zinc finger protein of Aspergillus extreme halophilus are significantly better than wild-type plants in length, weight and seed dry weight, and their salt tolerance is significantly enhanced. It shows that the extremely halophilic Aspergillus C6-like zinc finger protein encoding gene provided by the present invention plays an important role in improving plant salt-alkali tolerance, provides important genetic resources for plant stress resistance improvement, and is useful in ecological restoration of saline-alkali soil using genetically engineered plants. aspect is of great significance.

附图说明Description of drawings

图1为基于cDNA序列构建的系统发育树;Figure 1 shows the phylogenetic tree constructed based on cDNA sequences;

图2为基于氨基酸序列构建的系统发育树;Figure 2 is a phylogenetic tree constructed based on amino acid sequences;

图3为C6-like锌指蛋白编码基因PCR反应扩电泳照片;其中M为DL6000DNAmarker,C6-like为C6-like锌指蛋白编码基因PCR产物;Figure 3 is a photo of the PCR reaction amplification of the gene encoding the C6-like zinc finger protein; M is the DL6000DNAmarker, and C6-like is the PCR product of the gene encoding the C6-like zinc finger protein;

图4为转基因油菜成熟植株图;Figure 4 is a picture of mature plants of transgenic rapeseed;

图5为不同盐浓度下转基因油菜植株株高分析图;Figure 5 is an analysis chart of the plant height of transgenic rapeseed plants under different salt concentrations;

图6为不同盐浓度下转基因油菜植株生物量分析图;Figure 6 shows the biomass analysis chart of transgenic rapeseed plants under different salt concentrations;

图7为转基因油菜种子干物质重量分析图。Figure 7 is a graph showing the dry matter weight analysis of transgenic rapeseed seeds.

具体实施方式Detailed ways

下面结合具体的实施例对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。The present invention will be further described in detail below with reference to specific examples, which are explanations rather than limitations of the present invention.

本发明以极端嗜盐曲霉(Aspergillus montevidensis ZYD4)为材料,提取RNA,利用RT-PCR扩增基因片段,目的cDNA片段长度为1896bp,如SEQ ID NO.1所示,编码631个氨基酸,如SEQ ID NO.2所示。The present invention uses Aspergillus montevidensis ZYD4 as the material, extracts RNA, and uses RT-PCR to amplify the gene fragment. The length of the target cDNA fragment is 1896 bp, as shown in SEQ ID NO. 1, and encodes 631 amino acids, as shown in SEQ Shown as ID NO.2.

由在线生物学软件分析得知,极端嗜盐曲霉C6-like锌指蛋白编码基因对应目标蛋白质的长度应为631,分子量为73KDa,预测等电点为6.45。According to the analysis of online biology software, the length of the target protein corresponding to the C6-like zinc finger protein encoding gene of Aspergillus extrema is 631, the molecular weight is 73KDa, and the predicted isoelectric point is 6.45.

将其cDNA序列与GenBank数据库数据进行比较分析显示,该基因序列依次同A.glaucus CBS 516.65、A.sclerotioniger CBS 115572、A.ibericus CBS 121593、A.steynii IBT 23096菌株C6锌指蛋白基因的同源性在87.6%~71.72%之间。下载同源性较高的序列数据构建发育树的图,结果参照图1。其中目标菌株A.montevidensis ZYD4的C6-like锌指蛋白编码基因与A.glaucus CBS 516.65形成一个独立分支,具有较高的同源性,步长值达96%。Comparative analysis of its cDNA sequence with GenBank database data showed that the gene sequence is homologous to the C6 zinc finger protein genes of A.glaucus CBS 516.65, A.sclerotioniger CBS 115572, A.ibericus CBS 121593, and A.steynii IBT 23096 strains. The sex is between 87.6% and 71.72%. Download the sequence data with high homology to construct a diagram of the developmental tree. Refer to Figure 1 for the results. Among them, the C6-like zinc finger protein coding gene of the target strain A. montevidensis ZYD4 formed an independent branch with A. glaucus CBS 516.65, with high homology, with a step value of 96%.

极端嗜盐曲霉C6锌指蛋白基因对应氨基酸序列与GenBank数据库数据比对结果显示,该基因的氨基酸序列同A.ruber CBS135680、A.glaucus CBS 516.65、A.wentii DTO134E9、A.phoenicis ATCC 13157等菌株C6锌指蛋白氨基酸序列同源性较高。下载同源性较高的序列数据构建发育树的图,结果参照图2。目标菌株A.montevidensis ZYD4的C6-like锌指蛋白编码基因与A.ruber CBS 135680和A.glaucus CBS 516.65亲缘关系最接近,形成的步长值88%的独立分支,而三者共同构成一个较大分支,步长值达到100%。Comparison of the amino acid sequence corresponding to the C6 zinc finger protein gene of Aspergillus extrema and GenBank database data shows that the amino acid sequence of the gene is the same as that of A. ruber CBS135680, A. glaucus CBS 516.65, A.wentii DTO134E9, A. phoenicis ATCC 13157 and other strains The amino acid sequence homology of C6 zinc finger protein is high. Download the sequence data with high homology to construct a diagram of the developmental tree. Refer to Figure 2 for the results. The C6-like zinc finger protein encoding gene of the target strain A. montevidensis ZYD4 is most closely related to A. ruber CBS 135680 and A. glaucus CBS 516.65, forming an independent branch with a step length of 88%, and the three together constitute a relatively For large branches, the step value reaches 100%.

本发明将获得的极端嗜盐曲霉C6-like锌指蛋白编码基因与表达载体pBWA(V)HS连接构建得到原核表达载体pBWA(V)HS-C6-LIKE,转入大肠杆菌中,经过筛选验证,再转化过表达载体到农杆菌GV3101中,后侵染油菜外植体获得转基因油菜植株。In the present invention, the obtained extreme halophilic Aspergillus C6-like zinc finger protein encoding gene is connected to the expression vector pBWA(V)HS to construct the prokaryotic expression vector pBWA(V)HS-C6-LIKE, which is transferred into E. coli and verified through screening. , then transform the overexpression vector into Agrobacterium GV3101, and then infect the rapeseed explants to obtain transgenic rapeseed plants.

本发明对过表达C6-like锌指蛋白编码基因的油菜在不同盐浓度(0mM、60mM、120mM、240mM)进行栽培试验,通过对油菜植株长度(根+茎)、重量及种子干重进行测定,结果表明,极端嗜盐曲霉C6-like锌指蛋白编码基因过表达可显著提高油菜在盐碱土壤的耐盐性,分别如图5-7所示。The present invention conducts cultivation tests on rapeseed overexpressing the C6-like zinc finger protein encoding gene at different salt concentrations (0mM, 60mM, 120mM, 240mM), and measures the rapeseed plant length (root + stem), weight and seed dry weight. , the results show that overexpression of the gene encoding the C6-like zinc finger protein of extreme halophilic Aspergillus can significantly improve the salt tolerance of rapeseed in saline-alkali soil, as shown in Figures 5-7 respectively.

实施例1极端嗜盐曲霉C6-like锌指蛋白编码基因过表达载体pBWA(V)HS-C6-LIKE的构建Example 1 Construction of the overexpression vector pBWA(V)HS-C6-LIKE of the gene encoding the C6-like zinc finger protein of Aspergillus extreme halophilus

1.扩增目的片段1. Amplify the target fragment

(1)扩增极端嗜盐曲霉C6-like锌指蛋白编码基因引物序列:(1) Amplify the primer sequence of the C6-like zinc finger protein encoding gene of Aspergillus extreme halophilus:

C6-F1:C6-F1:

5’-ATATACACACATTTACAATGCTTATTAAGAACAGACGTCTACA-3’5’-ATATACACACATTTACAATGCTTATTAAGAACAGACGTCTACA-3’

C6-R1:C6-R1:

5’-GGCGAAGAAGTCCAAAGCTTTATCCAGGCATGCATGAGTTAT-3’5’-GGCGAAGAAGTCCAAAGCTTTATCCAGGCATGCATGAGTTAT-3’

将合成的引物稀释成终浓度为10μmol/L的储藏液。The synthesized primers were diluted into a stock solution with a final concentration of 10 μmol/L.

(2)模板cDNA交由公司进行合成,扩增体系如下:(2) The template cDNA is delivered to the company for synthesis. The amplification system is as follows:

cDNAcDNA 1ul1ul Premix TaqTM Premix TaqTM 12.5ul12.5ul C6-F1C6-F1 1ul1ul C6-R1C6-R1 1ul1ul H2OH 2 O 9.5ul9.5ul

将上述材料加入薄壁管内混匀并点离后放入PCR仪内,选择好合适的退火温度和延伸温度,即可开始PCR扩增。Add the above materials into the thin-walled tube, mix well, tap it out, and put it into the PCR machine. Select the appropriate annealing temperature and extension temperature to start PCR amplification.

(3)PCR结束后进行琼脂糖凝胶电泳,待凝胶成像后,结果参照图3,扩增产物大约在1900bp处出现条带,其中M为DNA标准分子量(M为DNA标准分子量:6000,4000,3000,2000,1500,1000,750,500,250,100bp)。将含有目的cDNA片段的凝胶切割收集,并借助DNA凝胶回收试剂盒回收纯化待用。(3) After PCR, agarose gel electrophoresis is performed. After gel imaging, the results are shown in Figure 3. The amplification product appears as a band at about 1900 bp, where M is the standard molecular weight of DNA (M is the standard molecular weight of DNA: 6000, 4000, 3000, 2000, 1500, 1000, 750, 500, 250, 100bp). Cut the gel containing the cDNA fragment of interest, collect it, and use a DNA gel recovery kit to recover and purify it for use.

2.C6-like目的片段和载体pBWA(V)HS的双酶切2. Double enzyme digestion of C6-like target fragment and vector pBWA(V)HS

(1)用限制性内切酶BsaI和Eco31I进行双酶切。(1) Double digestion with restriction endonucleases BsaI and Eco31I.

载体pBWA(V)HS酶切体系如下:The vector pBWA(V)HS enzyme digestion system is as follows:

载体carrier 6ul6ul BufferBuffer 2ul2ul BsaIBsaI 1ul1ul Eco31IEco31I 1ul1ul H2OH 2 O 10ul10ul

C6-like目的片段酶切体系如下:The C6-like target fragment enzyme digestion system is as follows:

于37℃酶切约1h。Digest at 37°C for about 1 hour.

(2)将载体酶切物和目的片段酶切产物分别用PCR纯化试剂盒纯化。(2) Purify the vector digestion product and the target fragment digestion product using PCR purification kits respectively.

3.过表达载体pBWA(V)HS-C6-LIKE的重组构建3. Recombinant construction of overexpression vector pBWA(V)HS-C6-LIKE

体系如下:The system is as follows:

于PCR仪中37℃孵育30min,置于冰浴中冷却。Incubate in a PCR machine at 37°C for 30 minutes and cool in an ice bath.

4.转化4.Conversion

(1)将感受态细胞DH5α置于冰上待其自然解冻后,取10μL过表达载体pBWA(V)HS-C6-LIKE加入感受态细胞中于冰上放置15min。(1) Place the competent cells DH5α on ice and wait for them to thaw naturally. Add 10 μL of the overexpression vector pBWA(V)HS-C6-LIKE to the competent cells and place on ice for 15 minutes.

(2)之后于42℃水浴中热激45s,热激转化,然后迅速置于冰上(4℃)放置5min。(2) Then heat shock in a 42°C water bath for 45 seconds, heat shock transformation, and then quickly place on ice (4°C) for 5 minutes.

(3)加入300μL不含抗生素的LB液体培养基,于37℃、180rpm振荡培养1h。(3) Add 300 μL of LB liquid culture medium without antibiotics, and incubate for 1 hour at 37°C and 180 rpm with shaking.

(4)将活化培养处理后的感受态细胞,接种于含卡那霉素(30μg/ml)的LB固体培养基平板上,将培养皿倒置于37℃环境中培养12h,得到过表达载体pBWA(V)HS-C6-LIKE-osgfp。(4) Inoculate the competent cells after activation culture treatment on an LB solid medium plate containing kanamycin (30 μg/ml), place the culture dish upside down in a 37°C environment and culture it for 12 hours to obtain the overexpression vector pBWA (V)HS-C6-LIKE-osgfp.

实施例2过表达载体pBWA(V)HS-C6-LIKE-osgfp转化至农杆菌(1)使用的农杆菌菌株为GV3101。采用的是液氮冻融法将构建好的过表达载体pBWA(V)HS-C6-LIKE-osgfp转入农杆菌。Example 2 Transformation of overexpression vector pBWA(V)HS-C6-LIKE-osgfp into Agrobacterium (1). The Agrobacterium strain used was GV3101. The liquid nitrogen freeze-thawing method was used to transform the constructed overexpression vector pBWA(V)HS-C6-LIKE-osgfp into Agrobacterium tumefaciens.

具体操作如下:The specific operations are as follows:

1)取-80℃保存的农杆菌感受态于冰上融化。1) Take the Agrobacterium competent cells stored at -80°C and thaw them on ice.

2)每100μL感受态加入0.01-1μg质粒DNA(过表达载体pBWA(V)HS-C6-LIKE-osgfp),用手拨打管底混匀,依次于冰上静置5min、液氮5min、37℃水浴5min、冰浴5min。2) Add 0.01-1μg plasmid DNA (overexpression vector pBWA(V)HS-C6-LIKE-osgfp) to each 100μL competent state, stir the bottom of the tube by hand to mix, then let stand on ice for 5min, liquid nitrogen for 5min, 37 ℃ water bath for 5 minutes, ice bath for 5 minutes.

3)加入700μL无抗生素的LB液体培养基,于28℃振荡培养2~3h。3) Add 700 μL of antibiotic-free LB liquid culture medium and incubate with shaking at 28°C for 2 to 3 hours.

4)6000rpm离心一分钟收菌,留取100μL左右上清轻轻吹打重悬菌块涂布于含相应抗生素的LB平板上,倒置放于28℃培养箱培养48h。4) Centrifuge at 6000 rpm for one minute to collect the bacteria. Leave about 100 μL of the supernatant and gently pipette to resuspend the bacterial mass and spread it on an LB plate containing the corresponding antibiotics. Place it upside down in a 28°C incubator for 48 hours.

5)PCR检测阳性克隆,4℃保存备用。5) Positive clones detected by PCR should be stored at 4°C for later use.

实施例3农杆菌侵染油菜Example 3 Agrobacterium infects rapeseed

1.制备油菜外植体1. Preparation of rapeseed explants

挑选油菜种子进行消毒,将消毒后的油菜种子接种于MS培养基上,生长7d获得油菜无菌苗,待幼苗下胚轴长到瓶口时,用镊子取出无菌苗,切除子叶柄及子叶尖,下胚轴切成1到2cm的小段段作为外植体,放置于预培培养基上。Select rapeseed seeds for disinfection, inoculate the sterilized rapeseed seeds on MS medium, and grow for 7 days to obtain sterile rapeseed seedlings. When the hypocotyl of the seedlings reaches the mouth of the bottle, use tweezers to take out the sterile seedlings and remove the cotyledons and cotyledons. The hypocotyl was cut into 1 to 2cm segments as explants and placed on the pre-culture medium.

2.浸染2. Dyeing

将PCR检测的阳性克隆农杆菌,摇菌至OD6000.8时,将预培养2-3d的油菜外植体置于农杆菌悬浮液中侵染10min,将侵染后的油菜外植体放于滤纸板上晾干,置于共培培养基上,共培2d,再将外植体转入延筛培养基上,培养7d。The positive cloned Agrobacterium detected by PCR was shaken to OD 600 0.8. The rapeseed explants pre-cultured for 2-3 days were placed in the Agrobacterium suspension and infected for 10min. The infected rapeseed explants were placed in Dry on the filter paper, place on the co-culture medium, and culture for 2 days. Then transfer the explants to the sieve medium and culture for 7 days.

3.愈伤的诱导及筛选3. Induction and screening of callus

挑选有效愈伤组织转移至含有潮霉素的筛选培养基,筛选15d左右,共筛选2到3次。Select the effective callus and transfer it to the selection medium containing hygromycin, and screen for about 15 days, for a total of 2 to 3 times.

4.分化及生根4. Differentiation and rooting

将生长旺盛的阳性愈伤组织转移到分化培养基上,待其分化出幼苗,将分化出来的幼苗转移到生根培养上生根7-10d,获得阳性植株。Transfer the vigorously growing positive callus to the differentiation medium, wait until it differentiates into seedlings, transfer the differentiated seedlings to the rooting culture to take root for 7-10 days, and obtain positive plants.

5.检测5.Detection

将已经长根的幼苗进行标号,各取0.5cm2的油菜叶片,磨样,吸取磨样液作为DNA模板进行PCR扩增,跑琼脂糖凝胶电泳,判断阳性幼苗以及阳性率。对阳性幼苗持续培养,得到含C6-like锌指蛋白编码基因的转基因植株,参照图4所示,植株生长状态良好,根部分支多,茎干粗壮,叶片肥大。Label the seedlings that have grown roots, take 0.5cm 2 of each rape leaf, grind the sample, use the grinding liquid as a DNA template for PCR amplification, and run agarose gel electrophoresis to determine the positive seedlings and positive rate. The positive seedlings were continuously cultured to obtain transgenic plants containing the C6-like zinc finger protein encoding gene. As shown in Figure 4, the plants were in good growth status, with many root branches, thick stems, and enlarged leaves.

实施例3转基因油菜耐盐胁迫功能的研究Example 3 Research on the Salt Stress Tolerance Function of Transgenic Rapeseed

将转基因油菜与野生型油菜分别栽培在盐浓度为0mM、60mM、120mM、240mMNaCl的土壤中并于20℃光照(18000Lx)培养60d,再对每个植株分别进行株高及重量测定,最终收集油菜种子并测定种子的干物质含量。Transgenic rapeseed and wild-type rapeseed were cultivated in soil with salt concentrations of 0mM, 60mM, 120mM, and 240mM NaCl respectively and cultured under 20°C light (18000Lx) for 60 days. The plant height and weight of each plant were measured respectively, and the rapeseed was finally collected. seeds and determine the dry matter content of the seeds.

以土壤不同盐胁迫下对油菜株高绘制柱形图,结果如图5所示,转基因油菜在不同盐浓度下植株高度均高于野生型油菜,且在含240mM的高盐浓度下转基因植株生长优势明显。A column chart was drawn based on the plant height of rapeseed under different soil salt stresses. The results are shown in Figure 5. The plant height of transgenic rapeseed is higher than that of wild-type rapeseed under different salt concentrations, and the transgenic plants grow under high salt concentrations of 240mM. The advantages are obvious.

以土壤不同盐胁迫下对油菜植株鲜重绘制柱形图,结果如图6所示,在不同盐浓度下,转基因油菜生长状况保持稳定,而野生型油菜在高盐浓度下植株重量明显下降。A column chart was drawn based on the fresh weight of rapeseed plants under different soil salt stresses. The results are shown in Figure 6. The growth status of transgenic rapeseed remained stable under different salt concentrations, while the plant weight of wild-type rapeseed decreased significantly under high salt concentrations.

以土壤不同盐胁迫下对油菜种子干物质含量绘制柱形图,结果如图7所示,可以看出,转基因油菜的种子质量明显优于野生型油菜。A column chart was drawn based on the dry matter content of rapeseed seeds under different soil salt stresses. The results are shown in Figure 7. It can be seen that the seed quality of transgenic rapeseed is significantly better than that of wild-type rapeseed.

序列表sequence list

<110>陕西科技大学<110>Shaanxi University of Science and Technology

<120>极端嗜盐曲霉C6-like锌指蛋白编码基因及其应用<120>Extreme halophilic Aspergillus C6-like zinc finger protein encoding gene and its application

<160>6<160>6

<170>SIPOSequenceListing 1.0<170>SIPOSequenceListing 1.0

<210>1<210>1

<211>1896<211>1896

<212>DNA<212>DNA

<213>极端嗜盐曲霉(A.montevidensis ZYD4)<213> Extreme halophilic Aspergillus (A.montevidensis ZYD4)

<400>1<400>1

atgcttatta agaacagacg tctacatgaa ttggaacgcg tgaaggcgga tatggagcgg 60atgcttatta agaacagacg tctacatgaa ttggaacgcg tgaaggcgga tatggagcgg 60

gcatgggcca tctatctccc atccgtcgat ctccaggaag cgctgcaaac aatccgcctg 120gcatgggcca tctatctccc atccgtcgat ctccaggaag cgctgcaaac aatccgcctg 120

cagaatgaca gcaacgaccc tggcccagcc gattcaaaac gacacaagca ccacaacgat 180cagaatgaca gcaacgaccc tggcccagcc gattcaaaac gacacaagca ccacaacgat 180

gtcactcact caacggagca acctccgacc agcttcgcgg agcacagtaa cgccgaggac 240gtcactcact caacggagca acctccgacc agcttcgcgg agcacagtaa cgccgaggac 240

tacgagttcg acgagtcgca ggactttgat aattctactg acggcatggg gttcctgact 300tacgagttcg acgagtcgca ggactttgat aattctactg acggcatggg gttcctgact 300

gtcgacccgc acaaggccgg ctatacgggc ccacagtcgg gggtagcggc gctcaagttt 360gtcgacccgc acaaggccgg ctatacgggc ccacagtcgg gggtagcggc gctcaagttt 360

ctgcagtcac ttccgttgta tttgccgctg agtagcttta ctccggggtc ttcgctggat 420ctgcagtcac ttccgttgta tttgccgctg agtagcttta ctccggggtc ttcgctggat 420

gatgaggaag atgattcgtc tgctgctgcg gtgcagcgga ggcgggctga aattaatcgg 480gatgaggaag atgattcgtc tgctgctgcg gtgcagcgga ggcgggctga aattaatcgg 480

tacttggatg actattttga gtattatcat cctgcatacc ctattttgca cgaagggaca 540tacttggatg actattttga gtattatcat cctgcatacc ctattttgca cgaagggaca 540

ttccgtgcac gtgtttcagg tgcactggcc aaaccccgcg atggatcatg gccactactt 600ttccgtgcac gtgtttcagg tgcactggcc aaaccccgcg atggatcatg gccactactt 600

tacaacatcg tcctcgctat cggggccttt gtcggagact ccaacgcaac taaagccgat 660tacaacatcg tcctcgctat cggggccttt gtcggagact ccaacgcaac taaagccgat 660

gttccgtact tcaaagaagc ccgaaagcac ctatcaatgg acgtgctgga gaaagggtcc 720gttccgtact tcaaagaagc ccgaaagcac ctatcaatgg acgtgctgga gaaagggtcc 720

ctgagctatg tgcaagggat tgtcctaatg gccaactact tgcaaaaacg caacaagccg 780ctgagctatg tgcaagggat tgtcctaatg gccaactact tgcaaaaacg caacaagccg 780

aacgcgggct tcattttaat cggaatcgga ttcagcatgg cgcttgccat tggactgcat 840aacgcgggct tcattttaat cggaatcgga ttcagcatgg cgcttgccat tggactgcat 840

cgcgagttcg gcatgccaag cacctcgcct ttcaccatgg aaatcaggcg gcgagtatgg 900cgcgagttcg gcatgccaag cacctcgcct ttcaccatgg aaatcaggcg gcgagtatgg 900

tggacgctat tcgtcttcgt atctggcgtc caacttatcc taggtcgacc agccgtgtcg 960tggacgctat tcgtcttcgt atctggcgtc caacttatcc taggtcgacc agccgtgtcg 960

ctcgttggcg tcaccgtcca tcttcccgct aacgttgacg accacgacct tgcagtcgac 1020ctcgttggcg tcaccgtcca tcttcccgct aacgttgacg accacgacct tgcagtcgac 1020

atggacgcgc ttcctgattg tggcacagga ccgactatta catcctgtct gattgcccag 1080atggacgcgc ttcctgattg tggcacagga ccgactatta catcctgtct gattgcccag 1080

gtcaacctcg ccaagatcgc caacgctgtc caagtcgagc tgctcacgca ccacctaccc 1140gtcaacctcg ccaagatcgc caacgctgtc caagtcgagc tgctcacgca ccacctaccc 1140

acctaccaga aagctgcagc tctggaacaa cgcatctcag catggtacaa cgagctccca 1200acctaccaga aagctgcagc tctggaacaa cgcatctcag catggtacaa cgagctccca 1200

gcacacttta gcctcgatat cccccttgaa ccacgcttcg acatcccgcg tcgcgtactc 1260gcacacttta gcctcgatat cccccttgaa ccacgcttcg acatcccgcg tcgcgtactc 1260

ctatggcgct ctttccacct ccgcatcgtc attaaccgcc cattcctctt ccaacgcatc 1320ctatggcgct ctttccacct ccgcatcgtc attaaccgcc cattcctctt ccaacgcatc 1320

gccgccaagt ctggcctcgc gacatccaca ggccccatcg cttcctgcct tgctgctgca 1380gccgccaagt ctggcctcgc gacatccaca ggccccatcg cttcctgcct tgctgctgca 1380

gacgagtgcg tcacttctat ttgcacattc cttgaatcga ctgataaccg ccgtcgcgga 1440gacgagtgcg tcacttctat ttgcacattc cttgaatcga ctgataaccg ccgtcgcgga 1440

ctgacctggt acgcgacctg ctggctgctc actgctactt tcgtacaagc aacctgctac 1500ctgacctggt acgcgacctg ctggctgctc actgctactt tcgtacaagc aacctgctac 1500

atctatgaac cgggaaatgc gctcgcgccg ggttggaaga gccatattca gcgcgcggtt 1560atctatgaac cgggaaatgc gctcgcgccg ggttggaaga gccatattca gcgcgcggtt 1560

gattgtcttg gtagtttggg atcttcacat gacatggctc tgcgggcgag agatgtgctt 1620gattgtcttg gtagtttggg atcttcacat gacatggctc tgcgggcgag agatgtgctt 1620

caaacggttc tcgaacacgg gcatggttta gccgcaccgg ataatttcac tccatacacc 1680caaacggttc tcgaacacgg gcatggttta gccgcaccgg ataatttcac tccatacacc 1680

tcgacacaga tcccggcatc gttccgatcc ctctgggcgc caacggatga gcaggcgaac 1740tcgacacaga tcccggcatc gttccgatcc ctctgggcgc caacggatga gcaggcgaac 1740

ttcaatccgt tctctatggg tctcgatcag aatataccgg gttatccaca ggggtccttc 1800ttcaatccgt tctctatggg tctcgatcag aatataccgg gttatccaca ggggtccttc 1800

aacgcggaat tcctagatgc gacggctggt ctgatgatac aaaacttctt cgatagcact 1860aacgcggaat tcctagatgc gacggctggt ctgatgatac aaaacttctt cgatagcact 1860

gatgaacgac agaataactc atgcatgcct ggataa 1896gatgaacgac agaataactc atgcatgcct ggataa 1896

<210>2<210>2

<211>631<211>631

<212>PRT<212>PRT

<213>极端嗜盐曲霉(A.montevidensis ZYD4)<213> Extreme halophilic Aspergillus (A.montevidensis ZYD4)

<400>2<400>2

Met Leu Ile Lys Asn Arg Arg Leu His Glu Leu Glu Arg Val Lys AlaMet Leu Ile Lys Asn Arg Arg Leu His Glu Leu Glu Arg Val Lys Ala

1 5 10 151 5 10 15

Asp Met Glu Arg Ala Trp Ala Ile Tyr Leu Pro Ser Val Asp Leu GlnAsp Met Glu Arg Ala Trp Ala Ile Tyr Leu Pro Ser Val Asp Leu Gln

20 25 30 20 25 30

Glu Ala Leu Gln Thr Ile Arg Leu Gln Asn Asp Ser Asn Asp Pro GlyGlu Ala Leu Gln Thr Ile Arg Leu Gln Asn Asp Ser Asn Asp Pro Gly

35 40 45 35 40 45

Pro Ala Asp Ser Lys Arg His Lys His His Asn Asp Val Thr His SerPro Ala Asp Ser Lys Arg His Lys His His Asn Asp Val Thr His Ser

50 55 60 50 55 60

Thr Glu Gln Pro Pro Thr Ser Phe Ala Glu His Ser Asn Ala Glu AspThr Glu Gln Pro Pro Thr Ser Phe Ala Glu His Ser Asn Ala Glu Asp

65 70 75 8065 70 75 80

Tyr Glu Phe Asp Glu Ser Gln Asp Phe Asp Asn Ser Thr Asp Gly MetTyr Glu Phe Asp Glu Ser Gln Asp Phe Asp Asn Ser Thr Asp Gly Met

85 90 95 85 90 95

Gly Phe Leu Thr Val Asp Pro His Lys Ala Gly Tyr Thr Gly Pro GlnGly Phe Leu Thr Val Asp Pro His Lys Ala Gly Tyr Thr Gly Pro Gln

100 105 110 100 105 110

Ser Gly Val Ala Ala Leu Lys Phe Leu Gln Ser Leu Pro Leu Tyr LeuSer Gly Val Ala Ala Leu Lys Phe Leu Gln Ser Leu Pro Leu Tyr Leu

115 120 125 115 120 125

Pro Leu Ser Ser Phe Thr Pro Gly Ser Ser Leu Asp Asp Glu Glu AspPro Leu Ser Ser Phe Thr Pro Gly Ser Ser Leu Asp Asp Glu Glu Asp

130 135 140 130 135 140

Asp Ser Ser Ala Ala Ala Val Gln Arg Arg Arg Ala Glu Ile Asn ArgAsp Ser Ser Ala Ala Ala Val Gln Arg Arg Arg Ala Glu Ile Asn Arg

145 150 155 160145 150 155 160

Tyr Leu Asp Asp Tyr Phe Glu Tyr Tyr His Pro Ala Tyr Pro Ile LeuTyr Leu Asp Asp Tyr Phe Glu Tyr Tyr His Pro Ala Tyr Pro Ile Leu

165 170 175 165 170 175

His Glu Gly Thr Phe Arg Ala Arg Val Ser Gly Ala Leu Ala Lys ProHis Glu Gly Thr Phe Arg Ala Arg Val Ser Gly Ala Leu Ala Lys Pro

180 185 190 180 185 190

Arg Asp Gly Ser Trp Pro Leu Leu Tyr Asn Ile Val Leu Ala Ile GlyArg Asp Gly Ser Trp Pro Leu Leu Tyr Asn Ile Val Leu Ala Ile Gly

195 200 205 195 200 205

Ala Phe Val Gly Asp Ser Asn Ala Thr Lys Ala Asp Val Pro Tyr PheAla Phe Val Gly Asp Ser Asn Ala Thr Lys Ala Asp Val Pro Tyr Phe

210 215 220 210 215 220

Lys Glu Ala Arg Lys His Leu Ser Met Asp Val Leu Glu Lys Gly SerLys Glu Ala Arg Lys His Leu Ser Met Asp Val Leu Glu Lys Gly Ser

225 230 235 240225 230 235 240

Leu Ser Tyr Val Gln Gly Ile Val Leu Met Ala Asn Tyr Leu Gln LysLeu Ser Tyr Val Gln Gly Ile Val Leu Met Ala Asn Tyr Leu Gln Lys

245 250 255 245 250 255

Arg Asn Lys Pro Asn Ala Gly Phe Ile Leu Ile Gly Ile Gly Phe SerArg Asn Lys Pro Asn Ala Gly Phe Ile Leu Ile Gly Ile Gly Phe Ser

260 265 270 260 265 270

Met Ala Leu Ala Ile Gly Leu His Arg Glu Phe Gly Met Pro Ser ThrMet Ala Leu Ala Ile Gly Leu His Arg Glu Phe Gly Met Pro Ser Thr

275 280 285 275 280 285

Ser Pro Phe Thr Met Glu Ile Arg Arg Arg Val Trp Trp Thr Leu PheSer Pro Phe Thr Met Glu Ile Arg Arg Arg Val Trp Trp Thr Leu Phe

290 295 300 290 295 300

Val Phe Val Ser Gly Val Gln Leu Ile Leu Gly Arg Pro Ala Val SerVal Phe Val Ser Gly Val Gln Leu Ile Leu Gly Arg Pro Ala Val Ser

305 310 315 320305 310 315 320

Leu Val Gly Val Thr Val His Leu Pro Ala Asn Val Asp Asp His AspLeu Val Gly Val Thr Val His Leu Pro Ala Asn Val Asp Asp His Asp

325 330 335 325 330 335

Leu Ala Val Asp Met Asp Ala Leu Pro Asp Cys Gly Thr Gly Pro ThrLeu Ala Val Asp Met Asp Ala Leu Pro Asp Cys Gly Thr Gly Pro Thr

340 345 350 340 345 350

Ile Thr Ser Cys Leu Ile Ala Gln Val Asn Leu Ala Lys Ile Ala AsnIle Thr Ser Cys Leu Ile Ala Gln Val Asn Leu Ala Lys Ile Ala Asn

355 360 365 355 360 365

Ala Val Gln Val Glu Leu Leu Thr His His Leu Pro Thr Tyr Gln LysAla Val Gln Val Glu Leu Leu Thr His His Leu Pro Thr Tyr Gln Lys

370 375 380 370 375 380

Ala Ala Ala Leu Glu Gln Arg Ile Ser Ala Trp Tyr Asn Glu Leu ProAla Ala Ala Leu Glu Gln Arg Ile Ser Ala Trp Tyr Asn Glu Leu Pro

385 390 395 400385 390 395 400

Ala His Phe Ser Leu Asp Ile Pro Leu Glu Pro Arg Phe Asp Ile ProAla His Phe Ser Leu Asp Ile Pro Leu Glu Pro Arg Phe Asp Ile Pro

405 410 415 405 410 415

Arg Arg Val Leu Leu Trp Arg Ser Phe His Leu Arg Ile Val Ile AsnArg Arg Val Leu Leu Trp Arg Ser Phe His Leu Arg Ile Val Ile Asn

420 425 430 420 425 430

Arg Pro Phe Leu Phe Gln Arg Ile Ala Ala Lys Ser Gly Leu Ala ThrArg Pro Phe Leu Phe Gln Arg Ile Ala Ala Lys Ser Gly Leu Ala Thr

435 440 445 435 440 445

Ser Thr Gly Pro Ile Ala Ser Cys Leu Ala Ala Ala Asp Glu Cys ValSer Thr Gly Pro Ile Ala Ser Cys Leu Ala Ala Ala Asp Glu Cys Val

450 455 460 450 455 460

Thr Ser Ile Cys Thr Phe Leu Glu Ser Thr Asp Asn Arg Arg Arg GlyThr Ser Ile Cys Thr Phe Leu Glu Ser Thr Asp Asn Arg Arg Arg Gly

465 470 475 480465 470 475 480

Leu Thr Trp Tyr Ala Thr Cys Trp Leu Leu Thr Ala Thr Phe Val GlnLeu Thr Trp Tyr Ala Thr Cys Trp Leu Leu Thr Ala Thr Phe Val Gln

485 490 495 485 490 495

Ala Thr Cys Tyr Ile Tyr Glu Pro Gly Asn Ala Leu Ala Pro Gly TrpAla Thr Cys Tyr Ile Tyr Glu Pro Gly Asn Ala Leu Ala Pro Gly Trp

500 505 510 500 505 510

Lys Ser His Ile Gln Arg Ala Val Asp Cys Leu Gly Ser Leu Gly SerLys Ser His Ile Gln Arg Ala Val Asp Cys Leu Gly Ser Leu Gly Ser

515 520 525 515 520 525

Ser His Asp Met Ala Leu Arg Ala Arg Asp Val Leu Gln Thr Val LeuSer His Asp Met Ala Leu Arg Ala Arg Asp Val Leu Gln Thr Val Leu

530 535 540 530 535 540

Glu His Gly His Gly Leu Ala Ala Pro Asp Asn Phe Thr Pro Tyr ThrGlu His Gly His Gly Leu Ala Ala Pro Asp Asn Phe Thr Pro Tyr Thr

545 550 555 560545 550 555 560

Ser Thr Gln Ile Pro Ala Ser Phe Arg Ser Leu Trp Ala Pro Thr AspSer Thr Gln Ile Pro Ala Ser Phe Arg Ser Leu Trp Ala Pro Thr Asp

565 570 575 565 570 575

Glu Gln Ala Asn Phe Asn Pro Phe Ser Met Gly Leu Asp Gln Asn IleGlu Gln Ala Asn Phe Asn Pro Phe Ser Met Gly Leu Asp Gln Asn Ile

580 585 590 580 585 590

Pro Gly Tyr Pro Gln Gly Ser Phe Asn Ala Glu Phe Leu Asp Ala ThrPro Gly Tyr Pro Gln Gly Ser Phe Asn Ala Glu Phe Leu Asp Ala Thr

595 600 605 595 600 605

Ala Gly Leu Met Ile Gln Asn Phe Phe Asp Ser Thr Asp Glu Arg GlnAla Gly Leu Met Ile Gln Asn Phe Phe Asp Ser Thr Asp Glu Arg Gln

610 615 620 610 615 620

Asn Asn Ser Cys Met Pro GlyAsn Asn Ser Cys Met Pro Gly

625 630625 630

<210> 3<210> 3

<211> 44<211> 44

<212> DNA<212> DNA

<213> 人工合成<213> Artificial synthesis

<400> 3<400> 3

tatatacaca catttacaat gcttattaag aacagacgtc taca 44tatatacaca catttacaat gcttattaag aacagacgtc taca 44

<210> 4<210> 4

<211> 43<211> 43

<212> DNA<212> DNA

<213> 人工合成<213> Artificial synthesis

<400> 4<400> 4

tggcgaagaa gtccaaagct ttatccaggc atgcatgagt tat 43tggcgaagaa gtccaaagct ttatccaggc atgcatgagt tat 43

Claims (8)

1. The encoding gene of the extreme halophilic aspergillus C6-like zinc finger protein is characterized in that the nucleotide sequence of the encoding gene is shown as SEQ ID NO. 1.
2. The protein encoded by the gene encoding the C6-like zinc finger protein of extreme halophilic aspergillus of claim 1, which is characterized in that the amino acid sequence is shown in SEQ ID NO. 2.
3. An expression vector comprising the gene encoding the C6-like zinc finger protein of aspergillus extremely halophilus according to claim 1.
4. An expression vector containing the C6-like zinc finger protein coding gene of Aspergillus extreme halophilus according to claim 3, wherein said expression vector is obtained by ligating the C6-like zinc finger protein coding gene with vector pBWA (V) HS.
5. A host bacterium comprising the gene encoding the C6-like zinc finger protein of aspergillus extremely halophilus of claim 1.
6. The host bacterium containing a gene encoding a C6-like zinc finger protein of aspergillus terreus according to claim 5, wherein the host bacterium is agrobacterium.
7. The use of the C6-like zinc finger protein coding gene of aspergillus extremely halophilus according to claim 1 for improving salt tolerance of plants, characterized in that said plants are canola.
8. The use according to claim 7, characterized by the steps of:
1) Constructing an expression vector containing an extreme halophilic aspergillus C6-like zinc finger protein coding gene;
2) Transforming the constructed expression vector into a plant or plant cell;
3) Cultivating the plant or plant cell obtained in the step 2), and screening to obtain the transgenic plant with improved salt tolerance.
CN202111152965.9A 2021-09-29 2021-09-29 C6-like zinc finger protein encoding gene of Aspergillus extreme halophilus and its application Active CN113897375B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111152965.9A CN113897375B (en) 2021-09-29 2021-09-29 C6-like zinc finger protein encoding gene of Aspergillus extreme halophilus and its application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111152965.9A CN113897375B (en) 2021-09-29 2021-09-29 C6-like zinc finger protein encoding gene of Aspergillus extreme halophilus and its application

Publications (2)

Publication Number Publication Date
CN113897375A CN113897375A (en) 2022-01-07
CN113897375B true CN113897375B (en) 2024-03-22

Family

ID=79189374

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111152965.9A Active CN113897375B (en) 2021-09-29 2021-09-29 C6-like zinc finger protein encoding gene of Aspergillus extreme halophilus and its application

Country Status (1)

Country Link
CN (1) CN113897375B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001038375A1 (en) * 1999-11-26 2001-05-31 Bioroad Gene Development Ltd. Shanghai A new polypeptide-zinc finger protein 58 and the polynucleotide encoding it
CN1724667A (en) * 2004-12-31 2006-01-25 南京农业大学 A rice zinc finger protein gene and its encoded protein
CN109912704A (en) * 2019-03-22 2019-06-21 济南大学 Maize Zinc Finger Binding Protein Interacting Factor Gene Actin and Its Recombinant Expression Vector and Application
CN111499706A (en) * 2020-04-03 2020-08-07 湖南科技学院 Cotton zinc finger protein GhZFPH4 and its encoding gene and application

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001038375A1 (en) * 1999-11-26 2001-05-31 Bioroad Gene Development Ltd. Shanghai A new polypeptide-zinc finger protein 58 and the polynucleotide encoding it
CN1724667A (en) * 2004-12-31 2006-01-25 南京农业大学 A rice zinc finger protein gene and its encoded protein
CN109912704A (en) * 2019-03-22 2019-06-21 济南大学 Maize Zinc Finger Binding Protein Interacting Factor Gene Actin and Its Recombinant Expression Vector and Application
CN111499706A (en) * 2020-04-03 2020-08-07 湖南科技学院 Cotton zinc finger protein GhZFPH4 and its encoding gene and application

Also Published As

Publication number Publication date
CN113897375A (en) 2022-01-07

Similar Documents

Publication Publication Date Title
CN107299103B (en) Thick boisiana IpASR gene and its coding albumen and application
CN109837296B (en) New salt-tolerant drought-tolerant function of corn gene ZmNAC77 and application thereof
CN111675755A (en) Transcription factor CdWRKY50 of bermudagrass regulating plant salt tolerance and its application
CN104046636A (en) Codon vegetalization-transformed PMI gene and applications thereof
CN111763251A (en) A kind of white clover transcription factor TrNAC and its coding sequence and application
CN118147175B (en) Application of MtCOMT13 gene in regulating salt and drought tolerance in plants
CN112048011B (en) Method for improving salt tolerance of rice
CN105111295A (en) Cultivation method of genetically modified WMYB-R wheat resistant to root rot and sheath blight and related biological material thereof
CN113025623A (en) Rose fragrance regulatory gene RrTPS1 and application thereof
CN113897375B (en) C6-like zinc finger protein encoding gene of Aspergillus extreme halophilus and its application
CN107266542B (en) Thick boisiana IpLEA gene and its coding albumen and application
CN107326030B (en) A WRKY transcription factor regulating low potassium tolerance and its application
CN102108357B (en) Gene descended from antifreeze peptide insect and preparation method and application thereof
CN114561410B (en) Extreme halophilic aspergillus Hog1 gene and application thereof in improving salt tolerance of plants
CN115960949A (en) Application of switchgrass lateral organ boundary domain transcription factor PvLBD12 in regulation and control of plant growth
CN109628471B (en) A kind of method to improve the formation of root nodule of leguminous plant and promote its growth
CN113046375A (en) SpCPK33 gene and application of encoding protein thereof in regulation and control of tomato drought tolerance
CN105925593A (en) A kind of tonoplast membrane hydrogen ion pyrophosphatase gene AlVP1, its encoded protein and its application
CN112481296B (en) A method for improving cold resistance of pepper by utilizing ramie BnXTH2 gene
CN113373159B (en) SlTGLa10 gene related to low-temperature resistance of tomatoes, silencing vector and application thereof
CN109971765A (en) A maize gene ZmNAC77 regulating fatty acid and starch content in Arabidopsis and its application
CN110257404B (en) Functional gene for reducing cadmium accumulation and increasing plant cadmium tolerance and application
CN106399272B (en) Protein StTrxF, Encoding Gene and Its Application in Improving Plant Starch Content
CN110734483B (en) Low-potassium-resistant related protein TaPR1 and coding gene and application thereof
CN110684091B (en) Y related to alfalfa bean stress resistance2K4Type dehydrin protein MrY2K4Coding gene and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20241029

Address after: 201306 2nd floor, no.979 Yunhan Road, Lingang New Area, China (Shanghai) pilot Free Trade Zone, Pudong New Area, Shanghai

Patentee after: Shanghai Miyuan Intellectual Property Service Co.,Ltd.

Country or region after: China

Address before: 710021 Shaanxi province Xi'an Weiyang University Park

Patentee before: SHAANXI University OF SCIENCE & TECHNOLOGY

Country or region before: China

TR01 Transfer of patent right