CN113892186B - 一种半导体结构及其制造方法 - Google Patents
一种半导体结构及其制造方法 Download PDFInfo
- Publication number
- CN113892186B CN113892186B CN201980094459.3A CN201980094459A CN113892186B CN 113892186 B CN113892186 B CN 113892186B CN 201980094459 A CN201980094459 A CN 201980094459A CN 113892186 B CN113892186 B CN 113892186B
- Authority
- CN
- China
- Prior art keywords
- layer
- semiconductor layer
- gan
- semiconductor
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 204
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- 239000000463 material Substances 0.000 claims abstract description 70
- 230000004888 barrier function Effects 0.000 claims abstract description 56
- 239000000758 substrate Substances 0.000 claims abstract description 31
- 239000010410 layer Substances 0.000 claims description 281
- 238000000034 method Methods 0.000 claims description 40
- 238000005530 etching Methods 0.000 claims description 25
- 239000011229 interlayer Substances 0.000 claims description 20
- 229910002704 AlGaN Inorganic materials 0.000 claims description 19
- 230000006911 nucleation Effects 0.000 claims description 13
- 238000010899 nucleation Methods 0.000 claims description 13
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 4
- 229910052733 gallium Inorganic materials 0.000 claims description 4
- 229910002601 GaN Inorganic materials 0.000 description 100
- 238000002360 preparation method Methods 0.000 description 7
- 230000005533 two-dimensional electron gas Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000001039 wet etching Methods 0.000 description 6
- 239000007772 electrode material Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 3
- 238000000231 atomic layer deposition Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000001451 molecular beam epitaxy Methods 0.000 description 3
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 3
- -1 AlInGaN Inorganic materials 0.000 description 2
- 229910017083 AlN Inorganic materials 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 229910004541 SiN Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
- H10D30/471—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
- H10D30/475—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/30604—Chemical etching
- H01L21/30612—Etching of AIIIBV compounds
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/015—Manufacture or treatment of FETs having heterojunction interface channels or heterojunction gate electrodes, e.g. HEMT
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/17—Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
- H10D62/343—Gate regions of field-effect devices having PN junction gates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/40—Crystalline structures
- H10D62/405—Orientations of crystalline planes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/81—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials of structures exhibiting quantum-confinement effects, e.g. single quantum wells; of structures having periodic or quasi-periodic potential variation
- H10D62/815—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials of structures exhibiting quantum-confinement effects, e.g. single quantum wells; of structures having periodic or quasi-periodic potential variation of structures having periodic or quasi-periodic potential variation, e.g. superlattices or multiple quantum wells [MQW]
- H10D62/8171—Doping structures, e.g. doping superlattices or nipi superlattices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/82—Heterojunctions
- H10D62/824—Heterojunctions comprising only Group III-V materials heterojunctions, e.g. GaN/AlGaN heterojunctions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/85—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
- H10D62/8503—Nitride Group III-V materials, e.g. AlN or GaN
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/85—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
- H10D62/854—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs further characterised by the dopants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/30604—Chemical etching
- H01L21/30612—Etching of AIIIBV compounds
- H01L21/30617—Anisotropic liquid etching
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
一种半导体结构及其制造方法,解决了现有半导体结构的制造工艺复杂以及稳定性和可靠性差的问题。该半导体结构,包括衬底(1);所述衬底(1)上依次叠加的沟道层(23)、势垒层(24)及半导体层(3),其中所述半导体层(3)为GaN基材料,且所述半导体层(3)的上表面为Ga面;以及形成于所述半导体层(3)的栅极区域的上表面为N面的p型GaN基半导体层(5)。
Description
技术领域
本发明涉及微电子技术,具体涉及一种半导体结构,以及制造该半导体结构的方法。
背景技术
高电子迁移率晶体管(HEMT,High Electron Mobility Transistor)是一种异质结场效应晶体管,以AlGaN/GaN异质结构为例,由于AlGaN/GaN异质结构中存在较强的二维电子气,通常AlGaN/GaN HEMT是耗尽型器件,使得增强型器件不易实现。而在许多地方耗尽型器件的应用又具有一定的局限性,比如在功率开关器件的应用中,就需要增强型(常关型)开关器件。增强型氮化镓开关器件主要用于高频器件、功率开关器件和数字电路等,它的研究具有十分重要的意义。
实现增强型氮化镓开关器件,需要找到合适的方法来降低零栅压时栅极下方的沟道载流子浓度,例如通过在栅极区域设置p型半导体材料。但是发明人发现该方法至少有如下缺陷:
栅极区域设置p型半导体材料,需要选择性刻蚀栅极以外的其他区域的p型半导体,而在外延方向上刻蚀厚度的精确工艺控制是非常难的,非常容易对p型半导体过刻而刻蚀到其下方的半导体材料,而且刻蚀中带来的缺陷,会引起严重的电流崩塌效应,同样会影响到器件的稳定性和可靠性。
发明内容
有鉴于此,本发明提供一种半导体结构及其制造方法,解决了现有半导体结构的制造工艺复杂以及稳定性和可靠性差的问题。
本发明提供了一种半导体结构的制造方法,包括以下步骤:在衬底上制备依次叠加的沟道层、势垒层及半导体层,其中所述半导体层为GaN基材料,且所述半导体层的上表面为Ga面;以及在所述半导体层上方制备上表面为N面的P型GaN基半导体层。
本发明实施例中所描述的GaN基材料是指以Ga元素和N元素为基础构成的半导体材料,例如可为AlGaN、AlInGaN、GaN等。
在本发明的一实施例中,在所述半导体层上方制备上表面为N面的所述p型GaN基半导体层包括:在所述半导体层的上方制备p型Ga面GaN基材料,在所述p型Ga面GaN基材料中掺杂极性反转元素,以使得p型Ga面GaN基材料极性反转为上表面为N面的P型GaN基半导体层。
在本发明的一实施例中,所述极性反转元素包括Mg。
在本发明的一实施例中,在所述半导体层上方制备上表面为N面的所述p型GaN基半导体层包括:在所述半导体层上方制备p型Ga面GaN基材料;通过极性反转层使p型Ga面GaN基材料极性反转为上表面为N面的P型GaN基半导体层。
在本发明的一实施例中,在所述半导体层上方制备上表面为N面的P型GaN基半导体层包括:将上表面为N面的P型GaN基半导体层直接键合在所述半导体层上。
在本发明的一实施例中,该半导体结构的制造方法,还包括:选择性刻蚀所述p型GaN基半导体层,仅保留所述p型GaN基半导体层与栅极区域对应的部分。
在本发明的一实施例中,该半导体结构的制造方法,还包括:在所述p型GaN基半导体上制备栅电极,在所述势垒层的源极区域制备源电极,在所述势垒层的漏极区域制备漏电极。
在本发明的一实施例中,该半导体结构的制造方法,其特征在于,进一步包括:在形成所述沟道层之前,依次形成于所述衬底上的成核层和缓冲层。
在本发明的一实施例中,在所述半导体层上方制备上表面为N面的所述p型GaN基半导体层之前,所述半导体结构的制造方法进一步包括:在所述半导体层的栅极区域制备凹槽,所述凹槽贯穿所述半导体层停留在所述势垒层上或部分贯穿所述势垒层停留在所述势垒层中。
本发明提供了一种半导体结构,其特征在于,包括:
衬底;所述衬底上依次叠加的沟道层、势垒层以及半导体层,其中所述半导体层为GaN基材料,且所述半导体层的上表面为Ga面;以及形成于所述半导体层的栅极区域的p型半导体层,其中所述p型半导体层为GaN基材料,且所述p型半导体层的上表面为N面。
在本发明的一实施例中,该半导体结构,进一步包括:设置于所述p型GaN基半导体层上方的栅电极;设置于所述势垒层的源极区域的源电极;设置于所述势垒层的漏极区域的漏电极。
在本发明的一实施例中,该半导体结构进一步包括:所述沟道层与所述衬底之间的成核层;以及所述成核层与所述沟道层之间的缓冲层。
在本发明的一实施例中,所述p型GaN基半导体层包括p型AlGaN、p型GaN、p型InGaN中的一种或多种组成的多层结构或超晶格结构。
在本发明的一实施例中,该半导体结构进一步包括设置于所述半导体层的所述栅极区域的凹槽,所述凹槽贯穿所述半导体层停留在所述势垒层上或部分贯穿所述势垒层停留在所述势垒层中。
本发明实施例所提供的半导体结构及其制造方法,在栅极区域形成上表面为N面的P型GaN基半导体层,即可达到夹断栅极下方n型导电层的目的,以实现半导体结构。更重要的是,由于N面GaN基材料具有易于腐蚀的特点,刻蚀过程易于控制,降低了对于栅极区域p型半导体材料进行选择性刻蚀的工艺难度,同时提高了器件的稳定性和可靠性。在栅极区域,可以通过采用不同的金属、调整功函数,实现高质量的肖特基栅极;另外,也可以在栅极N面p型GaN的表面实现高掺杂浓度的Mg掺杂,实现欧姆接触。
附图说明
图1a、2、3a、3b、4a、4b、4c、5a、5b、6a、6b、7a、7b、8a、8b、9a、9b和10分别为本发明一实施例提供的半导体结构在制备过程中的分解示意图。
图1b所示为Ga面GaN的原子结构示意图,图1c所示为N面GaN的原子结构示意图。
图11所示为本申请一实施例提供的半导体结构的制备方法的流程示意图。
具体实施方式
以下将结合附图所示的具体实施方式对本发明进行详细描述。但这些实施方式并不限制本发明,本领域的普通技术人员根据这些实施方式所做出的结构、方法、或功能上的变换均包含在本发明的保护范围内。
此外,在不同的实施例中可能使用重复的标号或标示。这些重复仅为了简单清楚地叙述本发明,不代表所讨论的不同实施例和/或结构之间具有任何关联性。
如图11所示,本发明一实施例提供的一种半导体结构的制备方法包括如下步骤:
步骤601:如图1a所示,在衬底1上制备依次叠加的沟道层23、势垒层24以及半导体层3,其中半导体层3为GaN基材料,且半导体层3的上表面(远离衬底的表面)为Ga面。
本发明实施例中所描述的GaN基材料是指以Ga元素和N元素为基础构成的半导体材料,例如可为AlGaN、AlInGaN、GaN等。
图1b所示为Ga面GaN的原子结构示意图,图1c所示为N面GaN的原子结构示意图。关于Ga面GaN,以平行于C轴的Ga-N键为参照,每一个Ga-N键中的Ga原子更靠近衬底1,即为Ga面GaN。反之,如果每一个Ga-N键中的N原子更靠近衬底1,即为N面GaN。对于同一GaN基半导体层,将图1b中的Ga面GaN倒转即得到N面GaN,把图1b中所示的远离衬底的一面定义为Ga面,而图1c所示的远离衬底一面定义为N面,Ga面与N面相对应。由于Ga面GaN和N面GaN各自远离衬底的一面原子排列不同,因此其特性也存在差异。
在本发明一实施例中,势垒层24和沟道层23也可为GaN基材料,进一步地,势垒层24及沟道层23也可为Ga面的GaN材料。
衬底1可选自半导体材料、陶瓷材料或高分子材料等。例如,衬底1优选自蓝宝石、金刚石、碳化硅、硅、铌酸锂、绝缘衬底硅(SOI)、氮化镓或氮化铝。
沟道层23和势垒层24为可形成二维电子气的半导体材料即可。例如,以GaN基材料为例,沟道层23可采用GaN,势垒层24可采用AlGaN,沟道层23和势垒层24构成异质结构以形成二维电子气。
在本发明一实施例中,如图2所示,在生长沟道层23之前,还可在衬底1上依次生长成核层21和缓冲层22。以GaN基半导体结构为例,成核层21可降低位错密度和缺陷密度,提升晶体质量。该成核层21可为AlN、AlGaN和GaN中的一种或多种。缓冲层22可缓冲衬底上方外延结构中的应力,避免外延结构开裂。该缓冲层22可包括GaN、AlGaN、AlInGaN中的一种或多种。
半导体层3可对下层半导体结构起到保护作用,使得在后续对P型N面GaN基材料层5进行选择性刻蚀时不必严格控制刻蚀深度,即使有部分势垒层24上方的外延层被刻蚀掉也没关系。半导体层3可以通过原位生长,也可以是通过原子层沉积(ALD,Atomic layerdeposition)、或化学气相沉积(CVD,Chemical Vapor Deposition)、或分子束外延生长(MBE,Molecular Beam Epitaxy)、或等离子体增强化学气相沉积法(PECVD,PlasmaEnhanced Chemical Vapor Deposition)、或低压化学蒸发沉积(LPCVD,Low PressureChemical Vapor Deposition),或金属有机化合物化学气相沉积(MOCVD,Metal-OrganicChemical Vapor Deposition)、或其组合方式制得。应该理解,这里描述形成半导体层3的方法只是进行举例,本发明可以通过本领域的技术人员公知的任何方法形成势垒层24上方的半导体层3。
步骤602:如图3a所示,在半导体层3上方制备p型GaN基半导体层5,且所述p型GaN基半导体层5的上表面为N面。其中,上述步骤中,在半导体层3上方制备上表面为N面的P型GaN基半导体层5可包括多种方法。
在一实施例中,在半导体层3上方制备上表面为N面的P型GaN基半导体层5,可首先外延生长p型Ga面的GaN基材料,在外延生长的同时添加极性反转元素,极性反转元素可例如为Mg等,从而使Ga面的GaN基材料变成N面的GaN基材料。更进一步地,在制备半导体层3及p型半导体层5时,可连续外延生长,在Ga面的半导体层3制备完成后,通过添加极性反转元素,就可使GaN基材料从Ga面反转为N面。在该实施例中,通过添加极性反转元素使有Ga面变为N面的过程可以有过渡过程,因此p型半导体层5靠近半导体层3的下表面可为Ga面,但p型半导体层5中包含的Ga面GaN的厚度不超过120nm,较优的可控制在40nm以下,再优选的可小于15nm。
在一实施例中,在半导体层3上方制备上表面为N面的P型GaN基半导体层5,如图3b所示,在外延生长的过程中,在Ga面的GaN基材料上方制备极性反转层31从而实现极性反转,实现N面的GaN基材料的制备。具体地,在制备半导体层3及p型半导体层5时,可连续外延生长,在半导体层3制备完成后,制备极性反转层31,就可以使GaN基材料从Ga面反转为N面。在该实施例中,p型半导体层5靠近势垒层的下表面也可为N面。该极性反转层31可例如为Al2O3。此外,当该极性反转层31为Al2O3时,其还可以有阻止刻蚀的作用,当刻蚀p型半导体层5时,使刻蚀停止在该极性反转层31上。
在一实施例中,在半导体层3上方制备上表面为N面的P型GaN基半导体层5,可直接在半导体层3上方键合N面的P型半导体层5。
本发明一实施例中,p型半导体层5的材质可例如选自以下几种材料中的一种或多种的组合:p型AlGaN、p型GaN和p型InGaN。当p型GaN基半导体层5靠近半导体层3的下表面可为Ga面时,未刻蚀掉而残留的Ga面GaN由于厚度较薄,对器件整体性能不会造成明显影响。
步骤603:如图4a所示,对p型半导体层5进行选择性刻蚀,仅保留栅极区域的部分。
本发明中的栅极区域,即用于制备栅极的区域,本领域人员应当理解,栅极区域可根据相关器件的设计和工艺而进行定义和确定。
在本发明一实施例中,该对p型半导体层5进行的选择性刻蚀过程可为湿法刻蚀过程,例如采用KOH进行的湿法刻蚀过程。
在湿法刻蚀中,N面GaN基材料极易被刻蚀,而Ga面GaN基材料不易被刻蚀。因此,刻蚀N面GaN基材料的过程中,可轻易控制刻蚀进程,避免对N面GaN基材料下方的Ga面GaN基材料造成损伤。
由于p型半导体层5为上表面为N面的GaN基材料,而半导体层3为上表面为Ga面的GaN基材料,因此可轻易控制刻蚀过程,避免在刻蚀p型半导体层5的过程中,对半导体层造成损伤。
其中对p型GaN基半导体层5进行选择性刻蚀可具体如图4b-4c所示,先在p型GaN基半导体层5上沉积掩膜层41,掩膜层41可以是介质层如SiN、SiO2,也可以是金属层如Ti、Ni等;然后进行选择性刻蚀,仅保留栅极区域的p型GaN基半导体层5及掩膜层41。掩膜层41在刻蚀过程中可以对p型GaN基半导体层5起到很好的保护作用。在该实施例中,刻蚀,既可以是湿法刻蚀,也可以是湿法刻蚀与干法刻蚀相互结合,避免栅极区域在湿法刻蚀中过多的横向刻蚀反应。
步骤604:如图5a所示,制备栅电极51,源电极6,漏电极7。
在p型半导体5上方制备栅电极51,在势垒层24的源极区域制备源电极6,以及在势垒层24的漏极区域制备漏电极7。
本发明中源极区域和漏极区域,类似于本发明中的栅极区域,即用于制备源极和漏极的区域,本领域人员应当理解,其可根据相关器件的设计和工艺而进行定义和确定。
还应当理解,源电极6、漏电极7以及p型半导体层5上面的电极材料51可采用例如镍合金的金属材料制成,也可采用金属氧化物或半导体材料制成,本发明对源电极6、漏电极7以及p型半导体层5上面的电极材料51的具体制备材料不做限定。
在本发明一实施例中,如图5b所示,当要在P型半导体材料5上面制作电极材料51用作栅电极时,可先在暴露的半导体层3表面制备钝化层8。然后再在P型半导体材料5上方制备电极材料51,如图5b所示。钝化层8可例如为Al2O3、SiO2、SiN等。
在本发明一实施例中,为了进一步提高该半导体结构的性能,进一步降低栅极区域下方沟道层23中的二维电子气密度,如图6a所示,还可在制备p型半导体层5之前,在半导体层3的栅极区域设置凹槽4,该凹槽4完全贯穿半导体层3并停止于势垒层24之上。在本发明另一实施例中,如图6b所示,该凹槽4也可延伸至势垒层24,部分贯穿势垒层24。在形成凹槽4后,如图7a及7b所示,再在半导体层3上方制备p型半导体层5;然后如图8a及8b所示,再对p型半导体层5进行选择性刻蚀,仅保栅极区域的p型半导体层5;再如图9a及9b所示,继续制备栅电极51、源电极6、漏电极7。
在本发明一实施例中,势垒层24可采用三明治结构,例如图10所示,势垒层24包括第一外夹层241:AlGaN,中间层242:GaN,第二外夹层243:AlGaN,凹槽4可贯穿该势垒层24的三明治结构的第二外夹层243,此时该中间层242可在形成凹槽4的局部刻蚀工艺中起到停止层的作用,以保护位于沟道层23表面的该第一外夹层241不被该局部刻蚀工艺损坏。然而本发明对凹槽4的制备深度不做严格限定,只要凹槽4内部的p型半导体层5能够夹断栅极下方n型导电层以实现半导体结构即可。
本发明的一实施例还提供了一种半导体结构,如图5a所示。该半导体结构包括:衬底1;衬底1上依次叠加的沟道层23、势垒层24及半导体层3;形成于半导体层3的上方的栅极区域的p型半导体层5。其中,半导体层3为GaN基材料,且半导体层3的上表面为Ga面。P型半导体层5为上表面为N面的GaN基材料。
衬底1可优选自蓝宝石、金刚石、碳化硅、硅、铌酸锂、绝缘衬底硅(SOI)、氮化镓或氮化铝。
沟道层23和势垒层24为可形成二维电子气的半导体材料即可。例如,以GaN基材料为例,沟道层23可采用GaN,势垒层24可采用AlGaN或GaN,沟道层23和势垒层24构成异质结构以形成二维电子气。
在本发明一实施例中,p型半导体层5的材质可例如选自以下几种材料中的一种或多种的组合:p型AlGaN、p型GaN、p型InGaN和p型GaN/AlGaN。
在本发明一进一步实施例中,如图5a所示,为了提高器件性能,满足相关技术需求,该半导体结构可进一步包括设置沟道层23下方的成核层21和缓冲层22。以GaN基半导体结构为例,为降低位错密度和缺陷密度,防止回熔,提升晶体质量等技术需求,可进一步包括制备于衬底1上方的成核层21,该成核层21可为AlN、AlGaN和GaN中的一种或多种。此外,为了缓冲衬底上方外延结构中的应力,避免外延结构开裂,该GaN基半导体结构还可进一步包括制备于成核层21上方的缓冲层22,该缓冲层22可包括GaN、AlGaN、AlInGaN中的一种或多种。
在本发明一实施例中,如图5a所示,该半导体结构还包括设置于势垒层24的源极区域的源电极6、设置于势垒层24的漏极区域的漏电极7和设置于p型半导体层上方的栅电极51。源电极6、漏电极7以及栅电极51可采用例如镍合金的导电金属材料制成,也可采用金属氧化物或半导体材料制成,本发明对源电极6、漏电极7以及p型半导体层5上面的电极材料51的具体制备材料不做限定。
在本发明一实施例中,为了进一步提高该半导体结构的性能,进一步降低栅极区域下方沟道层23中的二维电子气密度,如图9a所示,该半导体结构还可进一步包括设置于半导体层3栅极区域的凹槽4,该凹槽4可完全贯穿半导体层3,停止于势垒层24之上,又如图9b所示,该凹槽4还可延伸至势垒层24中,部分贯穿势垒层24。然而应当理解,考虑到只要栅极区域制备有p型半导体层5就可达到夹断栅极下方n型导电层的目的,该半导体结构也可并不包括该凹槽4,p型半导体层5直接制备于栅极区域即可,该凹槽4也可部分贯穿半导体层3。
在本发明一实施例中,当该半导体结构包括凹槽4时,如图10所示,势垒层24还可采用三明治结构,该三明治结构包括制备于沟道层23表面的第一外夹层241、夹在该第一外夹层241和第二外夹层243之间的中间层242以及第二外夹层243。应当理解,该第一外夹层241、中间层242以及第二外夹层243的材料可根据沟道层23的材料而调整。例如,以GaN基材料为例,当沟道层23采用GaN时,该第一外夹层241和第二外夹层243可采用AlGaN制成,该中间层242可采用GaN制成。然而,本发明对该第一外夹层241、中间层242以及第二外夹层243的材料不做具体限定。
应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。
Claims (8)
1.一种半导体结构,其特征在于,包括:
衬底;
所述衬底上依次叠加的沟道层、势垒层及半导体层,其中所述半导体层为GaN基材料,且所述半导体层的上表面为Ga面,所述半导体层为GaN基材料,所述GaN基材料是指以Ga元素、N元素和Al元素为基础构成的半导体材料;
形成于所述半导体层的栅极区域的上表面为N面的P型GaN基半导体层,其中,所述上表面为N面的P型GaN基半导体层为通过极性反转层使P型Ga面GaN基材料极性反转而得到的,所述极性反转层为Al2O3,所述极性反转层位于所述半导体层和所述P型Ga面GaN基材料之间,所述极性反转层还具有阻止刻蚀的作用;
设置于所述势垒层的源极区域的源电极;
设置于所述半导体层的所述栅极区域的凹槽,所述势垒层采用三明治结构,所述势垒层包括依次叠置的第二外夹层、中间层和第一外夹层,所述势垒层中的所述第一外夹层距离所述衬底最近,所述凹槽贯穿所述半导体层并部分贯穿所述势垒层停留在所述势垒层中,所述中间层在形成所述凹槽的局部刻蚀工艺中起到停止层的作用。
2.根据权利要求1所述的半导体结构,其特征在于,所述半导体结构进一步包括:
设置于所述p型GaN基半导体层上方的栅电极;以及
设置于所述势垒层的漏极区域的漏电极。
3.根据权利要求1所述的半导体结构,其特征在于,所述半导体结构进一步包括:
所述沟道层与所述衬底之间的成核层;以及
所述成核层与所述沟道层之间的缓冲层。
4.根据权利要求1所述的半导体结构,其特征在于:
所述N面的p型GaN基半导体层包括p型AlGaN、p型GaN、p型InGaN中的一种或多种组成的多层结构或超晶格结构。
5.一种半导体结构的制造方法,其特征在于,包括以下步骤:
在衬底上制备依次叠加的沟道层、势垒层及半导体层,其中所述半导体层为GaN基材料,且所述半导体层的上表面为Ga面,所述半导体层为GaN基材料,所述GaN基材料是指以Ga元素、N元素和Al元素为基础构成的半导体材料;
在所述半导体层上方制备上表面为N面的P型GaN基半导体层;以及
在所述势垒层的源极区域制备源电极;
其中,在所述半导体层上方制备上表面为N面的所述p型GaN基半导体层包括:
在所述半导体层上方制备p型Ga面GaN基材料;
通过极性反转层使所述p型Ga面GaN基材料极性反转为上表面为N面的所述p型GaN基半导体层,其中,所述极性反转层为Al2O3,所述极性反转层位于所述半导体层和所述P型Ga面GaN基材料之间,所述极性反转层还具有阻止刻蚀的作用;
其中,在所述半导体层上方制备上表面为N面的所述p型GaN基半导体层之前,进一步包括:在所述半导体层的栅极区域制备凹槽,所述势垒层采用三明治结构,所述势垒层包括依次叠置的第二外夹层、中间层和第一外夹层,所述势垒层中的所述第一外夹层距离所述衬底最近,所述凹槽贯穿所述半导体层并部分贯穿所述势垒层停留在所述势垒层中,所述中间层在形成所述凹槽的局部刻蚀工艺中起到停止层的作用。
6.根据权利要求5所述的半导体结构的制造方法,其特征在于,还包括:
选择性刻蚀所述p型GaN基半导体层,仅保留所述p型GaN基半导体层与栅极区域对应的部分。
7.根据权利要求5所述的半导体结构的制造方法,其特征在于,还包括:
在所述p型GaN基半导体层上制备栅电极,在所述势垒层的漏极区域制备漏电极。
8.根据权利要求5所述的半导体结构的制造方法,其特征在于,进一步包括:
在形成所述沟道层之前,依次形成于所述衬底上的成核层和缓冲层。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/079740 WO2020191628A1 (zh) | 2019-03-26 | 2019-03-26 | 一种半导体结构及其制造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113892186A CN113892186A (zh) | 2022-01-04 |
CN113892186B true CN113892186B (zh) | 2024-05-03 |
Family
ID=72608792
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201980094459.3A Active CN113892186B (zh) | 2019-03-26 | 2019-03-26 | 一种半导体结构及其制造方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US12080786B2 (zh) |
CN (1) | CN113892186B (zh) |
WO (1) | WO2020191628A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3719850A1 (en) * | 2019-04-03 | 2020-10-07 | Infineon Technologies Austria AG | Group iii nitride-based transistor device and method of fabricating a gate structure for a group iii nitride-based transistor device |
WO2021109075A1 (zh) * | 2019-12-05 | 2021-06-10 | 苏州晶湛半导体有限公司 | 半导体结构及其制作方法 |
CN112687733B (zh) * | 2020-12-21 | 2022-09-16 | 广东省科学院半导体研究所 | 一种增强型功率器件及其制作方法 |
KR102568798B1 (ko) * | 2021-07-13 | 2023-08-21 | 삼성전자주식회사 | 고전자 이동도 트랜지스터 |
US12243916B2 (en) * | 2022-04-28 | 2025-03-04 | The Government Of The United States Of America, As Represented By The Secretary Of The Navy | Polarization-engineered heterogeneous semiconductor heterostructures |
CN118016698A (zh) * | 2024-04-09 | 2024-05-10 | 英诺赛科(珠海)科技有限公司 | 半导体结构和半导体结构制造方法以及半导体器件 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103035696A (zh) * | 2011-09-29 | 2013-04-10 | 富士通株式会社 | 化合物半导体器件和用于制造化合物半导体器件的方法 |
CN103715084A (zh) * | 2012-09-28 | 2014-04-09 | 富士通株式会社 | 制造半导体器件的方法和半导体器件 |
CN106847668A (zh) * | 2017-01-19 | 2017-06-13 | 北京科技大学 | 一种在Ga‑极性GaN模板上生长极性交替的GaN结构的方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9396941B2 (en) * | 2010-09-17 | 2016-07-19 | The United States Of America, As Represented By The Secretary Of The Navy | Method for vertical and lateral control of III-N polarity |
KR20120032258A (ko) * | 2010-09-28 | 2012-04-05 | 삼성엘이디 주식회사 | 질화갈륨계 반도체소자 및 그 제조방법 |
CN102709321A (zh) * | 2012-04-20 | 2012-10-03 | 程凯 | 增强型开关器件及其制造方法 |
US9018056B2 (en) * | 2013-03-15 | 2015-04-28 | The United States Of America, As Represented By The Secretary Of The Navy | Complementary field effect transistors using gallium polar and nitrogen polar III-nitride material |
CN103337516B (zh) * | 2013-06-07 | 2016-08-17 | 苏州晶湛半导体有限公司 | 增强型开关器件及其制造方法 |
CN105655395B (zh) * | 2015-01-27 | 2018-05-15 | 苏州捷芯威半导体有限公司 | 一种增强型高电子迁移率晶体管及其制作方法 |
CN113906573A (zh) * | 2019-03-26 | 2022-01-07 | 苏州晶湛半导体有限公司 | 一种半导体结构及其制造方法 |
-
2019
- 2019-03-26 CN CN201980094459.3A patent/CN113892186B/zh active Active
- 2019-03-26 WO PCT/CN2019/079740 patent/WO2020191628A1/zh active Application Filing
-
2020
- 2020-11-02 US US17/086,709 patent/US12080786B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103035696A (zh) * | 2011-09-29 | 2013-04-10 | 富士通株式会社 | 化合物半导体器件和用于制造化合物半导体器件的方法 |
CN103715084A (zh) * | 2012-09-28 | 2014-04-09 | 富士通株式会社 | 制造半导体器件的方法和半导体器件 |
CN106847668A (zh) * | 2017-01-19 | 2017-06-13 | 北京科技大学 | 一种在Ga‑极性GaN模板上生长极性交替的GaN结构的方法 |
Non-Patent Citations (1)
Title |
---|
郭睿倩.《光源原理与设计(第三版)》.《复旦大学出版社》,2017,第132页. * |
Also Published As
Publication number | Publication date |
---|---|
US20210057560A1 (en) | 2021-02-25 |
US12080786B2 (en) | 2024-09-03 |
WO2020191628A1 (zh) | 2020-10-01 |
CN113892186A (zh) | 2022-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113892186B (zh) | 一种半导体结构及其制造方法 | |
JP5355888B2 (ja) | キャップ層および埋込みゲートを有する窒化物ベースのトランジスタを作製する方法 | |
CN109037323A (zh) | 具有选择性生成的2deg沟道的常关型hemt晶体管及其制造方法 | |
KR20070032701A (ko) | 재성장된 오믹 콘택 영역을 갖는 질화물계 트랜지스터의제조방법 및 재성장된 오믹 콘택 영역을 갖는 질화물계트랜지스터 | |
US10707322B2 (en) | Semiconductor devices and methods for fabricating the same | |
US10998435B2 (en) | Enhancement-mode device and method for manufacturing the same | |
CN102947938A (zh) | 具有改进的粘合的半导体器件及制造该半导体器件的方法 | |
CN116490979A (zh) | 半导体结构及其制作方法 | |
US11876129B2 (en) | Semiconductor structure and manufacturing method for the semiconductor structure | |
CN116053306A (zh) | 基于氮化镓的高电子迁移率晶体管器件及其制备方法 | |
US12068409B2 (en) | Semiconductor structure and manufacturing method therefor | |
US11424353B2 (en) | Semiconductor structure and method for manufacturing the same | |
CN111755330A (zh) | 一种半导体结构及其制造方法 | |
CN115101413A (zh) | 一种增强型场效应晶体管的制备方法及器件 | |
CN115050829A (zh) | 一种半导体器件的外延结构及其制备方法、半导体器件 | |
CN112753096B (zh) | 一种半导体结构及其制造方法 | |
KR102783218B1 (ko) | 전력반도체 소자의 제조방법 및 그 전력반도체 소자 | |
CN109671776A (zh) | 半导体器件及其制造方法 | |
CN103887325A (zh) | 一种提高器件耐压能力的半导体装置及其制备方法 | |
US20250194129A1 (en) | Semiconductor structure and manufacturing method thereof | |
CN117855268B (zh) | 一种半导体器件及其制备方法 | |
US12349377B2 (en) | Preparation method for semiconductor structure involving the replacement of dielectric layer with gate | |
US20230106052A1 (en) | Semiconductor device and manufacturing method thereof | |
CN118039684A (zh) | 一种增强型氮化镓高电子迁移率晶体管及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |