Detailed Description
The technical scheme of the invention is further specifically described below through specific embodiments and with reference to the accompanying drawings. It should be understood that the practice of the invention is not limited to the following examples, but is intended to be within the scope of the invention in any form and/or modification thereof.
In the present invention, unless otherwise specified, all parts and percentages are by weight, and the equipment, materials, etc. used are commercially available or are conventional in the art. The methods in the following examples are conventional in the art unless otherwise specified. The components and devices in the following examples are, unless otherwise indicated, all those components and devices known to those skilled in the art, and their structures and principles are known to those skilled in the art from technical manuals or by routine experimentation.
Example 1
A method for predicting calf diarrhea resistance based on intestinal microbial information, which specifically comprises the following steps:
s1, collecting a calf feces sample capable of extracting microbiota DNA;
S2, detecting the existence and the abundance of each microorganism of a microorganism group in a calf feces sample, wherein the microorganism group comprises 34 microorganisms with nucleotide sequences of SEQ ID No.1 to SEQ ID No.34 and respectively belonging to a non-resistant group and a resistant group, and calculating the interaction intensity index of the microorganism group and the total abundance of different groups;
s3, constructing a random forest machine learning model according to the detection information and the calculation information;
S4, setting an interaction intensity index threshold and total abundance thresholds of different groups, and predicting diarrhea resistance of the tested calf according to the interaction intensity index of the microbiota in the tested calf feces sample, the total abundance of different groups and a random forest machine learning model.
TABLE 1 microorganism numbering and nucleotide sequence thereof
Example 2
A method for predicting calf diarrhea resistance based on intestinal microbial information, which specifically comprises the following steps:
s1, collecting a calf feces sample capable of extracting microbiota DNA;
S2, detecting the existence and abundance of each microorganism of a microorganism group in a calf feces sample, wherein the microorganism group comprises 34 numbered ASV1 to ASV34 with nucleotide sequences shown in table 1 as SEQ ID No.1 to SEQ ID No.34 and respectively belongs to a non-resistant group and a resistant group, and calculating the interaction intensity index of the microorganism group and the total abundance of different groups;
s3, constructing a random forest machine learning model according to the detection information and the calculation information, wherein the method comprises the following steps:
S3.1, evaluating calf diarrhea according to the appearance of a calf feces sample, wherein the calf feces sample appearance comprises normal feces sample, softer and unshaped feces sample, water sample of the feces sample and blood silk attached to mucus, the calf diarrhea is not diarrhea when the feces sample is normal and the feces sample is softer and unshaped, and the calf diarrhea is diarrhea when the feces sample is water sample and the blood silk attached to mucus;
s3.2, constructing a random forest machine learning model by taking detection information and calculation information as training sets and calf diarrhea condition as an indication;
s3.3, evaluating the accuracy of the random forest machine learning model through the working characteristic curve of the test subject, and obtaining an effective random forest machine learning model after the accuracy reaches the standard;
S4, setting an interaction intensity index threshold and a total abundance threshold of different groups, wherein the interaction intensity index threshold is set to be that calves have diarrhea resistance when the interaction intensity index is higher than 1.26, calves do not have diarrhea resistance when the interaction intensity index is lower than 0.03, the total abundance threshold of different groups is set to be that calves have diarrhea resistance when the total abundance of the resistant group is higher than 18.71% and the total abundance of the non-resistant group is lower than 17.5%, calves do not have diarrhea resistance when the total abundance of the resistant group is lower than 2.4% and the total abundance of the non-resistant group is higher than 51.32%, and the diarrhea resistance of the test calves is predicted according to the interaction intensity index of microbiota in a test calf feces sample, the total abundance of different groups and a random forest machine learning model.
In step S1, the method for extracting the microbiota DNA is phenol chloroform extraction.
In step S2, the method for detecting the existence and abundance of a specific ASV comprises a 16S rDNA high-throughput sequencing method and/or a fluorescent quantitative PCR method, wherein the fragment area of the 16S rDNA high-throughput sequencing method is a V3-V4 region, and the amplification primers are 341F (5 '-CCTAYGGGRBGCASCAG-3') and 806R (5 '-GGACTACNNGGGTATCTAAT-3'). In the 16S rDNA high throughput sequencing method, data analysis was performed in the R environment and the sequencing raw data was processed through DADA2 and Phyloseq R packets.
The interaction strength index in step S2 is calculated using the following formula:
Y=βaXASVa+βbXASVb+βcXASVc+...+βxXASVx
where Y is the interaction intensity index, X ASVx is the relative abundance of resistance group ASVx, and β x is the interaction intensity coefficient of the corresponding ASVx.
Verification of accuracy of application case prediction model
1. The test method verifies that 43 calves of the healthy Holstein mother calf in the early lactation period are selected, and the feeding of the calves is carried out according to the pasture feeding procedure without intervention. Calves are fed by an automatic feeding system, and the total milk feeding quantity gradually increases from 7L/day at 8 days to 7.6L/day at 18 days. From 8 days old, the calf collects the fecal sample to 18 days old, after the sample collection, the calf is placed in a 2mL sterile centrifuge tube and immediately frozen in liquid nitrogen, and then the calf is transferred to a laboratory-80 ℃ ultralow temperature refrigerator for long-term storage for subsequent analysis. During stool sample collection, daily stool scores were recorded. And evaluating calf diarrhea condition according to the fecal scores, and taking the calf diarrhea condition as a conventional evaluation standard of calf diarrhea resistance.
After the fecal sample is collected, sample DNA is extracted, and V3-V4 regions are amplified through 341F and 806R primers, and 16S rDNA high-throughput sequencing and sequencing data processing are performed. The specific steps include (1) quality control of the sequences, removal of Barcode and primer fragments, and low quality (containing N, expected errors greater than 2 and mass fractions less than 2) and over-short sequences. (2) A noise-reduced difference sequence (sequence variants) is obtained via a sample-and-extrapolate algorithm (SAMPLE INFERENCE algorithm). And splicing the forward sequence with the reverse sequence (minimum of 20 bases overlap) to obtain the 'contig' sequence. (3) The chimeric (chimeras) sequence was removed to obtain ASVs (amplicon sequence variants) abundance table. (4) By comparing the SILVA database (version 132), a ASVs species annotation table is obtained. (5) ASV abundance and species annotation tables were imported into the Phyloseq package for subsequent statistical analysis. (6) The archaea was removed by Phyloseq bags and the sequence was only once present (singleton) and the sequence was leveled to obtain the same sequencing depth.
Verification of the predictive model is performed in the R environment. Target ASVs (34) in the obtained ASV abundance table were screened out according to the ASV sequences given in table 1 above. The sum of the abundance of the non-resistant and resistant groups of 34 target ASVs in each sample was calculated, and the interaction strength index for each sample was calculated according to the interaction strength coefficient and interaction strength calculation formula given in table 1. And comparing with the corresponding abundance threshold and interaction intensity threshold to obtain a first condition and a second condition for predicting calf diarrhea resistance. And substituting the 34 target ASV abundance tables as a test data set into the random forest classification model through predict functions in a stats R package to obtain a condition III of predicting calf diarrhea resistance by the random forest model. And combining three conditions of the prediction model, and comparing the prediction result with a conventional evaluation standard to verify the accuracy of the model as a final result of predicting calf diarrhea.
2. The test result is predicted by a model, and out of 261 samples of 43 calves, 123 stool samples in total meet three conditions of an abundance threshold, an interaction intensity index threshold and random forest prediction, and the calves are judged to have diarrhea resistance (see figure 2), namely the calves are predicted not to have diarrhea at the time corresponding to the stool sample collection. Compared with the conventional diarrhea results (see Table 2), 92 samples predicted to have diarrhea resistance, calves not have diarrhea at the corresponding age of day, the accuracy is 74.80%, 106 samples predicted to have no diarrhea at the corresponding age of day, the accuracy is 76.81%, and the overall accuracy of the prediction model is 75.81%. The results show that the diarrhea resistance of calves can be effectively predicted through 34 ASVs selected from the first table, and the calves have higher accuracy, sensitivity and specificity.
Table 2 comparison of model predictions with conventional standards
In this specification, each embodiment is described in a progressive manner, and each embodiment is mainly described in a different point from other embodiments, so that the same or similar parts between the embodiments are referred to each other. For the device disclosed in the embodiment, since it corresponds to the method disclosed in the embodiment, the description is relatively simple, and the relevant points refer to the description of the method section.
The method for predicting calf diarrhea resistance based on intestinal microbial information provided by the invention is described in detail. The principles and embodiments of the present invention have been described herein with reference to specific examples, the description of which is intended only to facilitate an understanding of the method of the present invention and its core ideas. It should be noted that it will be apparent to those skilled in the art that various modifications and adaptations of the invention can be made without departing from the principles of the invention and these modifications and adaptations are intended to be within the scope of the invention as defined in the following claims.
Sequence listing
<110> University of Zhejiang
<120> Method for predicting calf diarrhea resistance based on intestinal microbial information
<130> ZJDX202110
<160> 34
<170> SIPOSequenceListing 1.0
<210> 1
<211> 407
<212> DNA
<213> ASV1
<400> 1
tggggaatat tggacaatgg accaaaagtc tgatccagca attctgtgtg cacgatgaag 60
tttttcggaa tgtaaagtgc tttcagttgg gacgaagtaa gtgacggtac caacagaaga 120
agcgacggct aaatacgtgc cagcagccgc ggtaatacgt atgtcgcaag cgttatccgg 180
atttattggg cgtaaagcgc gtctaggcgg tttggtaagt ctgatgtgaa aatgcggggc 240
tcaactccgt attgcgttgg aaactgctaa actagagtac tggagaggtg ggcggaacta 300
caagtgtaga ggtgaaattc gtagatattt gtaggaatgc cgatggggaa gccagcccac 360
tggacagata ctgacgctaa agcgcgaaag cgtgggtagc aaacagg 407
<210> 2
<211> 407
<212> DNA
<213> ASV2
<400> 2
tggggaatat tggacaatgg accaaaagtc tgatccagca attctgtgtg cacgatgaag 60
tttttcggaa tgtaaagtgc tttcagttgg gacgaagtaa gtgacggtac caacagaaga 120
agcgacggct aaatacgtgc cagcagccgc ggtaatacgt atgtcgcaag cgttatccgg 180
atttattggg cgtaaagcgc gtctaggcgg tttggtaagt ctgatgtgaa aatgcggggc 240
tcaactccgt attgcgttgg aaactgtcaa actagagtac tggagaggtg ggcggaacta 300
caagtgtaga ggtgaaattc gtagatattt gtaggaatgc cgatggggaa gccagcccac 360
tggacagata ctgacgctaa agcgcgaaag cgtgggtagc aaacagg 407
<210> 3
<211> 424
<212> DNA
<213> ASV4
<400> 3
tgaggaatat tggtcaatgg acgggagtct gaaccagcca agtagcgtgc aggatgacgg 60
ccctatgggt tgtaaactgc ttttataggg ggataaagtg tgccacgtgt ggcatattgc 120
aggtacccta tgaataagga ccggctaatt ccgtgccagc agccgcggta atacggaagg 180
tccgggcgtt atccggattt attgggttta aagggagcgt aggccgtctt ataagcgtgt 240
tgtgaaatgt cggggctcaa cctgggcatt gcagcgcgaa ctgtgagact tgagtgcgca 300
ggaagtaggc ggaattcgtc gtgtagcggt gaaatgctta gatatgacga agaactccga 360
ttgcgaaggc agcctgctgt agcgcaactg acgctgaagc tcgaaagcgt gggtatcgaa 420
cagg 424
<210> 4
<211> 407
<212> DNA
<213> ASV5
<400> 4
tggggaatat tggacaatgg accaaaagtc tgatccagca attctgtgtg cacgatgaag 60
tttttcggaa tgtaaagtgc tttcagttgg gacgaagtaa gtgacggtac caacagaaga 120
agcgacggct aaatacgtgc cagcagccgc ggtaatacgt atgtcgcaag cgttatccgg 180
atttattggg cgtaaagcgc gtctaggcgg tttggtaagt ctgatgtgaa aatgcggggc 240
tcaactccgt attgcgttgg aaactgccaa actagagtac tggagaggtg ggcggaacta 300
caagtgtaga ggtgaaattc gtagatattt gtaggaatgc caatggggaa gccagcccac 360
tggacagata ctgacgctaa agcgcgaaag cgtgggtagc aaacagg 407
<210> 5
<211> 404
<212> DNA
<213> ASV11
<400> 5
tggggaatat tgcacaatgg gggaaaccct gatgcagcaa cgccgcgtga gtgatgaagg 60
ttttcggatc gtaaagctct gtctttgggg aagataatga cggtacccaa ggaggaagcc 120
acggctaact acgtgccagc agccgcggta atacgtaggt ggcgagcgtt atccggattt 180
actgggcgta aagggagcgt aggcggatga ttaagtggga tgtgaaatac ccgggctcaa 240
cttgggtgct gcattccaaa ctggttatct agagtgcagg agaggagagt ggaattccta 300
gtgtagcggt gaaatgcgta gagattagga agaacaccag tggcgaaggc gactctctgg 360
actgtaactg acgctgaggc tcgaaagcgt ggggagcaaa cagg 404
<210> 6
<211> 424
<212> DNA
<213> ASV14
<400> 6
tgaggaatat tggtcaatgg acgcaagtct gaaccagcca agtagcgtgc aggacgacgg 60
ccctccgggt tgtaaactgc ttttagttgg gaataaagtg cagctcgtga gctgttttgt 120
atgtaccatc agaaaaagga ccggctaatt ccgtgccagc agccgcggta atacggaagg 180
tccgggcgtt atccggattt attgggttta aagggagcgc aggcggactc ttaagtcagt 240
tgtgaaatac ggcggctcaa ccgtcggact gcagttgata ctgggagtct tgagtgcaca 300
cagggatgct ggaattcatg gtgtagcggt gaaatgctca gatatcatga agaactccga 360
tcgcgaaggc aggtatccgg ggtgcaactg acgctgaggc tcgaaagtgc gggtatcaaa 420
cagg 424
<210> 7
<211> 407
<212> DNA
<213> ASV15
<400> 7
tggggaatat tggacaatgg accaaaagtc tgatccagca attctgtgtg cacgatgaag 60
tttttcggaa tgtaaagtgc tttcagttgg gacgaagtaa gtgacggtac caacagaaga 120
agcgacggct aaatacgtgc cagcagccgc ggtaatacgt atgtcgcaag cgttatccgg 180
atttattggg cgtaaagcgc gtctaggcgg tttggtaagt ctgatgtgaa aatacggggc 240
tcaactccgt attgcgttgg aaactgctaa actagagtac tggagaggtg ggcggaacta 300
caagtgtaga ggtgaaattc gtagatattt gtaggaatgc cgatggggaa gccagcccac 360
tggacagata ctgacgctaa agcgcgaaag cgtgggtagc aaacagg 407
<210> 8
<211> 407
<212> DNA
<213> ASV17
<400> 8
tggggaatat tggacaatgg accaaaagtc tgatccagca attctgtgtg cacgatgaag 60
tttttcggaa tgtaaagtgc tttcagttgg gacgaagtaa gtgacggtac cagcagaaga 120
agcgacggct aaatacgtgc cagcagccgc ggtaatacgt atgtcgcaag cgttatccgg 180
atttattggg cgtaaagcgc gtctaggcgg tttggtaagt ctgatgtgaa aatgcggggc 240
tcaactccgt attgcgttgg aaactgccaa actagagtac tggagaggtg ggcggaacta 300
caagtgtaga ggtgaaattc gtagatattt gtaggaatgc caatggggaa gccagcccac 360
tggacagata ctgacgctaa agcgcgaaag cgtgggtagc aaacagg 407
<210> 9
<211> 424
<212> DNA
<213> ASV24
<400> 9
tgaggaatat tggtcaatgg acgcaagtct gaaccagcca agtagcgtgc aggacgacgg 60
ccctccgggt tgtaaactgc ttttagttgg gaataaagtg cagctcgtga gctgttttgt 120
atgtaccatc agaaaaagga ccggctaatt ccgtgccagc agccgcggta atacggaagg 180
tccgggcgtt atccggattt attgggttta aagggagcgc aggcggactc ttaagtcagt 240
tgtgaaatac ggcggctcaa ccgtcggact gcagttgata ctgggggtct tgagtgcaca 300
cagggatgct ggaattcatg gtgtagcggt gaaatgctca gatatcatga agaactccga 360
tcgcgaaggc aggtatccgg ggtgcaactg acgctgaggc tcgaaagtgc gggtatcaaa 420
cagg 424
<210> 10
<211> 424
<212> DNA
<213> ASV25
<400> 10
tgaggaatat tggtcaatgg gcgagagcct gaaccagcca agtagcgtga aggatgaagg 60
ttctatggat tgtaaacttc ttttatacgg gaataaaacc tcccacgtgt gggagcttgt 120
atgtaccgta tgaataagca tcggctaact ccgtgccagc agccgcggta atacggagga 180
tgcgagcgtt atccggattt attgggttta aagggagcgc agacgggaga ttaagtcagc 240
tgtgaaagtt tgcggctcaa ccgtaaaatt gcagttgata ctggtttcct tgagtgcggt 300
tgaggtgtgc ggaattcgtg gtgtagcggt gaaatgctta gatatcacga agaaccccga 360
ttgcgaaggc agcacactaa gccgtaactg acgttcatgc tcgaaagtgt gggtatcaaa 420
cagg 424
<210> 11
<211> 424
<212> DNA
<213> ASV26
<400> 11
tgaggaatat tggtcaatgg acgagagtct gaaccagcca agtagcgtgc aggacgacgg 60
ccctatgggt tgtaaactgc ttttataggg ggataaagtg tgccacgtgt ggcatattgc 120
aggtacccta tgaataagga ccggctaatt ccgtgccagc agccgcggta atacggaagg 180
tccgggcgtt atccggattt attgggttta aagggagcgt aggccgtctt ataagcgtgt 240
tgtgaaatgt cggggctcaa cctgggcatt gcagcgcgaa ctgtgagact tgagtgcgca 300
ggaagtaggc ggaattcgtc gtgtagcggt gaaatgctta gatatgacga agaactccga 360
ttgcgaaggc agcctgctgt agcgcaactg acgctgaagc tcgaaagcgt gggtatcgaa 420
cagg 424
<210> 12
<211> 424
<212> DNA
<213> ASV28
<400> 12
tgaggaatat tggtcaatgg acgcaagtct gaaccagcca agtagcgtgc aggatgacgg 60
ccctccgggt tgtaaactgc ttttagttgg gaataaagtg cagctcgtga gctgttttgt 120
atgtaccatc agaaaaagga ccggctaatt ccgtgccagc agccgcggta atacggaagg 180
tccgggcgtt atccggattt attgggttta aagggagcgc aggcggactc ttaagtcagt 240
tgtgaaatac ggcggctcaa ccgtcggact gcagttgata ctgggagtct tgagtgcaca 300
cagggatgct ggaattcatg gtgtagcggt gaaatgctca gatatcatga agaactccga 360
tcgcgaaggc aggtatccgg ggtgcaactg acgctgaggc tcgaaagtgc gggtatcaaa 420
cagg 424
<210> 13
<211> 424
<212> DNA
<213> ASV29
<400> 13
tgaggaatat tggtcaatgg acgcaagtct gaaccagcca agtagcgtgc aggatgacgg 60
ccctccgggt tgtaaactgc ttttagttgg gaataaagtg cagctcgtga gctgttttgt 120
atgtaccatc agaaaaagga ccggctaatt ccgtgccagc agccgcggta atacggaagg 180
tccgggcgtt atccggattt attgggttta aagggagcgc aggcggactc ttaagtcagt 240
tgtgaaatac ggcggctcaa ccgtcggact gcagttgata ctgggggtct tgagtgcaca 300
cagggatgct ggaattcatg gtgtagcggt gaaatgctca gatatcatga agaactccga 360
tcgcgaaggc aggtatccgg ggtgcaactg acgctgaggc tcgaaagtgc gggtatcaaa 420
cagg 424
<210> 14
<211> 424
<212> DNA
<213> ASV30
<400> 14
tgaggaatat tggtcaatgg acgcaagtct gaaccagcca agtagcgtgc aggatgacgg 60
ccctccgggt tgtaaactgc ttttagttgg gaataaagtg cagctcgtga gctgttttgt 120
atgtaccatc agaaaaagga ccggctaatt ccgtgccagc agccgcggta atacggaagg 180
tccgggcgtt atccggattt attgggttta aagggagcgc aggcggactc ttaagtcagt 240
tgtgaaatac ggcggctcaa ccgtcgaact gcagttgata ctgggagtct tgagtgcaca 300
cagggatgct ggaattcatg gtgtagcggt gaaatgctca gatatcatga agaactccga 360
tcgcgaaggc aggtatccgg ggtgcaactg acgctgaggc tcgaaagtgc gggtatcaaa 420
cagg 424
<210> 15
<211> 424
<212> DNA
<213> ASV34
<400> 15
tgaggaatat tggtcaatgg gcgagagcct gaaccagcca agtagcgtga aggatgaagg 60
ttctatggat tgtaaacttc ttttatacgg gaataaaacc ttccacgtgt gggagcttgt 120
atgtaccgta tgaataagca tcggctaact ccgtgccagc agccgcggta atacggagga 180
tgcgagcgtt atccggattt attgggttta aagggagcgc agacgggaga ttaagtcagc 240
tgtgaaagtt tgcggctcaa ccgtaaaatt gcagttgata ctggtttcct tgagtgcggt 300
tgaggtgtgc ggaattcgtg gtgtagcggt gaaatgctta gatatcacga agaaccccga 360
ttgcgaaggc agcacactaa gccgtaactg acgttcatgc tcgaaagtgt gggtatcaaa 420
cagg 424
<210> 16
<211> 424
<212> DNA
<213> ASV38
<400> 16
tgaggaatat tggtcaatgg acgagagtct gaaccagcca agtagcgtga aggatgaagg 60
tcctacggat tgtaaacttc ttttataagg gaataaaccc tcccacgtgt gggagcttgt 120
atgtacctta tgaataagca tcggctaact ccgtgccagc agccgcggta atacggagga 180
tgcgagcgtt atccggattt attgggttta aagggagcgc agacgggtcg ttaagtcagc 240
tgtgaaagtt tggggctcaa ccttaaaatt gcagttgata ctggcgtcct tgagtgcggt 300
tgaggtgtgc ggaattcgtg gtgtagcggt gaaatgctta gatatcacga agaactccga 360
ttgcgaaggc agcacactaa gccgtaactg acgttcatgc tcgaaagtgt gggtatcaaa 420
cagg 424
<210> 17
<211> 424
<212> DNA
<213> ASV40
<400> 17
tgaggaatat tggtcaatgg gcgagagcct gaaccagcca agtagcgtga aggatgaagg 60
ttctatggat tgtaaacttc ttttatacgg gaataaaacc tcccacgtgt gggagtttgt 120
atgtaccgta tgaataagca tcggctaact ccgtgccagc agccgcggta atacggagga 180
tgcgagcgtt atccggattt attgggttta aagggagcgc agacgggaga ttaagtcagc 240
tgtgaaagtt tgcggctcaa ccgtaaaatt gcagttgata ctggtttcct tgagtgcggt 300
tgaggtgtgc ggaattcgtg gtgtagcggt gaaatgctta gatatcacga agaaccccga 360
ttgcgaaggc agcacactaa gccgtaactg acgttcatgc tcgaaagtgt gggtatcaaa 420
cagg 424
<210> 18
<211> 424
<212> DNA
<213> ASV43
<400> 18
tgaggaatat tggtcaatgg acgagagtct gaaccagcca agtagcgtgc aggaagacgg 60
ccctatgggt tgtaaactgc ttttataagg gaataaagtg agtctcgtga gactttttgc 120
atgtacctta tgaataagga ccggctaatt ccgtgccagc agccgcggta atacggaagg 180
tccgggcgtt atccggattt attgggttta aagggagcgt aggccggaga ttaagcgtgt 240
tgtgaaatgt agacgctcaa cgtctgcact gcagcgcgaa ctggtttcct tgagtacgca 300
caaagtgggc ggaattcgtg gtgtagcggt gaaatgctta gatatcacga agaactccga 360
ttgcgaaggc agctcactgg agcgcaactg acgctgaagc tcgaaagtgc gggtatcgaa 420
cagg 424
<210> 19
<211> 404
<212> DNA
<213> ASV48
<400> 19
tggggaatat tgcacaatgg gggaaaccct gatgcagcaa cgccgcgtga gtgatgacgg 60
ccttcgggtt gtaaagctct gtctttgggg acgataatga cggtacccaa ggaggaagcc 120
acggctaact acgtgccagc agccgcggta atacgtaggt ggcaagcgtt gtccggattt 180
actgggcgta aagggagcgt aggcggattt ttaagtggga tgtgaaatac ccgggctcaa 240
cctgggtgct gcattccaaa ctggaaatct agagtgcagg aggggaaagt ggaattccta 300
gtgtagcggt gaaatgcgta gagattagga agaacaccag tggcgaaggc gactttctgg 360
actgtaactg acgctgaggc tcgaaagcgt ggggagcaaa cagg 404
<210> 20
<211> 428
<212> DNA
<213> ASV50
<400> 20
tggggaatct tccgcaatgg gcgcaagcct gacggagcaa cgccgcgtga gtgaagaagg 60
ttttcggatc gtaaagctct gttgagaggg acgagaggca aggctaggaa atgagctttg 120
taggacggta cctttcgagg aagccacggc taactacgtg ccagcagccg cggtaatacg 180
taggtggcga gcgttgtccg gaattattgg gcgtaaaggg agcgcaggtg ggaaagtaag 240
tcagtcttaa aagtgcgggg ctcaaccccg tgaggggatt gaaactactt ttcttgagtg 300
caggagagga aagcggaatt cctagtgtag cggtgaaatg cgtagatatt aggaggaaca 360
ccagtggcga aggcggcttt ctggactgta actgacactg aggctcgaaa gccaggggag 420
cgaacggg 428
<210> 21
<211> 424
<212> DNA
<213> ASV52
<400> 21
tgaggaatat tggtcaatgg gcgagagcct gaaccagcca agtagcgtgc aggaagacgg 60
ccctatgggt tgtaaactgc ttttataagg gaataaagtg agtctcgtga gactttttgc 120
atgtacctta tgaataagga ccggctaatt ccgtgccagc agccgcggta atacggaagg 180
tccgggcgtt atccggattt attgggttta aagggagcgt aggccggaga ttaagcgtgt 240
tgtgaaatgt agacgctcaa cgtctgcact gcagcgcgaa ctggtttcct tgagtacgca 300
caaagtgggc ggaattcgtg gtgtagcggt gaaatgctta gatatcacga agaactccga 360
ttgcgaaggc agctcactgg agcgcaactg acgctgaagc tcgaaagtgc gggtatcgaa 420
cagg 424
<210> 22
<211> 404
<212> DNA
<213> ASV57
<400> 22
tggggaatat tgcacaatgg gggaaaccct gatgcagcaa cgccgcgtga gtgatgacgg 60
ccttcgggtt gtaaagctct gtcttcaggg acgataatga cggtacctga ggaggaagcc 120
acggctaact acgtgccagc agccgcggta atacgtaggt ggcgagcgtt gtccggattt 180
actgggcgta aagggagcgt aggcggactt ttaagtgaga tgtgaaatac ccgggctcaa 240
cttgggtgct gcatttcaaa ctggaagtct agagtgcagg agaggagaat ggaattccta 300
gtgtagcggt gaaatgcgta gagattagga agaacaccag tggcgaaggc gattctctgg 360
actgtaactg acgctgaggc tcgaaagcgt ggggagcaaa cagg 404
<210> 23
<211> 404
<212> DNA
<213> ASV60
<400> 23
tggggaatat tgcacaatgg gggaaaccct gatgcagcaa cgccgcgtga gtgatgacgg 60
tcttcggatt gtaaagctct gtctttaggg acgataatga cggtacctaa ggaggaagcc 120
acggctaact acgtgccagc agccgcggta atacgtaggt ggcaagcgtt gtccggattt 180
actgggcgta aagggagcgt aggtggatat ttaagtggga tgtgaaatac ccgggcttaa 240
cctgggtgct gcattccaaa ctggatatct agagtgcagg agaggaaagg agaattccta 300
gtgtagcggt gaaatgcgta gagattagga agaataccag tggcgaaggc gcctttctgg 360
actgtaactg acactgaggc tcgaaagcgt ggggagcaaa cagg 404
<210> 24
<211> 404
<212> DNA
<213> ASV63
<400> 24
tggggaatat tgcacaatgg gggaaaccct gatgcagcaa cgccgcgtga gtgatgaagg 60
ttttcggatc gtaaagctct gtcttcaggg acgataatga cggtacctga ggaggaagcc 120
acggctaact acgtgccagc agccgcggta atacgtaggt ggcgagcgtt gtccggattt 180
actgggcgta aagggagcgt aggcggattt ttaagtgaga tgtgaaatac ccgggctcaa 240
cttgggtgct gcatttcaaa ctggaagtct agagtgcagg agaggagagt ggaattccta 300
gtgtagcggt gaaatgcgta gagattagga agaacaccag tggcgaaggc gactctctgg 360
actgtaactg acgctgaggc tcgaaagcgt ggggagcaaa cagg 404
<210> 25
<211> 424
<212> DNA
<213> ASV69
<400> 25
tgaggaatat tggtcaatgg acgcaagtct gaaccagcca agtagcgtgc aggatgacgg 60
ccctccgggt tgtaaactgc ttttagttgg gaataaagtg cagctcgtga gctgttttgt 120
atgtaccatc agaaaaagga ccggctaatt ccgtgccagc agccgcggta atacggaagg 180
tccgggcgtt atccggattt attgggttta aagggagcgc aggcggactc ttaagtcagt 240
tgtgaaatac ggcggctcaa ccgtcggact gcagttgata ctgggagtct tgagtgcaca 300
cagggatgct ggaattcatg gtgtagcggt gaaatgctca gatatcatga agaactccaa 360
tcgcgaaggc aggtatccgg ggtgcaactg acgctgaggc tcgaaagtgc gggtatcaaa 420
cagg 424
<210> 26
<211> 404
<212> DNA
<213> ASV87
<400> 26
tggggaatat tgcacaatgg gggaaaccct gatgcagcaa cgccgcgtga gtgatgaagg 60
ttttcggatc gtaaagctct gtctttgggg aagataatga cggtacccaa ggaggaagcc 120
acggctaact acgtgccagc agccgcggta atacgtaggt ggcgagcgtt atccggattt 180
actgggcgta aagggagcgt aggcggataa ttaagtggga tgtgaaatac ccgggctcaa 240
cttgggtgct gcattccaaa ctggttatct agagtgcagg agaggagagt ggaattccta 300
gtgtagcggt gaaatgcgta gagattagga agaacaccag tggcgaaggc gactctctgg 360
actgtaactg acgctgaggc tcgaaagcgt ggggagcaaa cagg 404
<210> 27
<211> 424
<212> DNA
<213> ASV89
<400> 27
tgaggaatat tggtcaatgg gcgagagcct gaaccagcca agtagcgtgc aggatgacgg 60
ccctatgggt tgtaaactgc ttttataagg gaataaagtg agagtcgtga ctctttttgc 120
atgtacctta tgaataagga ccggctaatt ccgtgccagc agccgcggta atacggaagg 180
tccgggcgtt atccggattt attgggttta aagggagcgt aggccggaga ttaagcgtgt 240
tgtgaaatgt agatgctcaa catctgaact gcagcgcgaa ctggtttcct tgagtacgca 300
caaagtgggc ggaattcgtg gtgtagcggt gaaatgctta gatatcacga agaactccga 360
ttgcgaaggc agctcactgg agcgcaactg acgctgaagc tcgaaagtgc gggtatcgaa 420
cagg 424
<210> 28
<211> 424
<212> DNA
<213> ASV91
<400> 28
tgaggaatat tggtcaatgg acgagagtct gaaccagcca agtagcgtgc aggatgacgg 60
ccctatgggt tgtaaactgc ttttataagg gaataaagtg agtctcgtga gactttttgc 120
atgtacctta tgaataagga ccggctaatt ccgtgccagc agccgcggta atacggaagg 180
tccgggcgtt atccggattt attgggttta aagggagcgt aggccggaga ttaagcgtgt 240
tgtgaaatgt agacgctcaa cgtctgcact gcagcgcgaa ctggtttcct tgagtacgca 300
caaagtgggc ggaattcgtg gtgtagcggt gaaatgctta gatatcacga agaactccga 360
ttgcgaaggc agctcactgg agcgcaactg acgctgaagc tcgaaagtgc gggtatcgaa 420
cagg 424
<210> 29
<211> 424
<212> DNA
<213> ASV92
<400> 29
tgaggaatat tggtcaatgg acgagagtct gaaccagcca agtagcgtga aggatgaagg 60
tcctacggat tgtaaacttc ttttataagg gaataaaccc tcccacgtgt gggagcttgt 120
atgtaccttg tgaataagca tcggctaact ccgtgccagc agccgcggta atacggagga 180
tgcgagcgtt atccggattt attgggttta aagggagcgc agacgggtcg ttaagtcagc 240
tgtgaaagtt tggggctcaa ccttaaaatt gcagttgata ctggcgtcct tgagtgcggt 300
tgaggtgtgc ggaattcgtg gtgtagcggt gaaatgctta gatatcacga agaactccga 360
ttgcgaaggc agcacactaa tccgtaactg acgttcatgc tcgaaagtgt gggtatcaaa 420
cagg 424
<210> 30
<211> 404
<212> DNA
<213> ASV114
<400> 30
tggggaatat tgcacaatgg gggaaaccct gatgcagcaa cgccgcgtga gtgatgaagg 60
ttttcggatt gtaaagctct gtctttgggg aagataatga cggtacccaa ggaggaagcc 120
acggctaact acgtgccagc agccgcggta atacgtaggt ggcgagcgtt atccggattt 180
actgggcgta aagggagcgt aggcggatga ttaagtggga tgtgaaatac ccgggctcaa 240
cttgggtgct gcattccaaa ctggttatct agagtgcagg agaggagagt ggaattccta 300
gtgtagcggt gaaatgcgta gagattagga agaacaccag tggcgaaggc gactctctgg 360
actgtaactg acgctgaggc tcgaaagcgt ggggagcaaa cagg 404
<210> 31
<211> 408
<212> DNA
<213> ASV151
<400> 31
tggggaatat tggacaatgg accaaaagtc tgatccagca attctgtgtg cacgatgaag 60
tttttcggaa tgtaaagtgc tttcagttgg gacgaagtaa gtgacggtac caacagaaga 120
agcgacggct aaatacgtgc cagcagccgc ggtaatacgg agggtgcaag cgttaatcgg 180
aattactggg cgtaaagcgc acgcaggcgg tttgttaagt cagatgtgaa atccccgggc 240
tcaacctggg aactgcatct gatactggca agcttgagtc tcgtagaggg gggtagaatt 300
ccaggtgtag cggtgaaatg cgtagagatc tggaggaata ccggtggcga aggcggcccc 360
ctggacgaag actgacgctc aggtgcgaaa gcgtggggag caaacagg 408
<210> 32
<211> 404
<212> DNA
<213> ASV183
<400> 32
tggggaatat tgcacaatgg gggaaaccct gatgcagcaa cgccgcgtga gtgatgaagg 60
ttttcggatc gtaaagctct gtctttgggg aagataatga cggtacccaa ggaggaagcc 120
acggctaact acgtgccagc agccgcggta atacgtaggt ggcgagcgtt atccggattt 180
actgggcgta aagggagcgt aggcggatga ttaagtggga tgtgaaatac ccgggctcaa 240
cttgggtgct gcattccaaa ctggttatct agagtgcagg agaggagagt ggaattccta 300
gtgtagcggt gaaatgcgta gagatctgga ggaataccgg tggcgaaggc ggccccctgg 360
acgaagactg acgctcaggt gcgaaagcgt ggggagcaaa cagg 404
<210> 33
<211> 404
<212> DNA
<213> ASV196
<400> 33
tggggaatat tgcacaatgg gggaaaccct gatgcagcaa cgccgcgtga gtgatgaagg 60
ttttcggatc gtaaagctct gtctttgggg aagataatga cggtacccaa ggaggaagcc 120
acggctaact acgtgccagc agccgcggta atacggaggg tgcaagcgtt aatcggaatt 180
actgggcgta aagcgcacgc aggcggtttg ttaagtcaga tgtgaaatcc ccgggctcaa 240
cctgggaact gcatctgata ctggcaagct tgagtctcgt agaggggggt agaattccag 300
gtgtagcggt gaaatgcgta gagatctgga ggaataccgg tggcgaaggc ggccccctgg 360
acgaagactg acgctcaggt gcgaaagcgt ggggagcaaa cagg 404
<210> 34
<211> 428
<212> DNA
<213> ASV203
<400> 34
tggggaatat tgcacaatgg gcgcaagcct gatgcagcca tgccgcgtgt atgaagaagg 60
ccttcgggtt gtaaagtact ttcagcgggg aggaagggag taaagttaat acctttgctc 120
attgacgtta cccgcagaag aagcaccggc taactccgtg ccagcagccg cggtaatacg 180
gagggtgcaa gcgttaatcg gaattactgg gcgtaaagcg cgtctaggcg gtttggtaag 240
tctgatgtga aaatgcgggg ctcaactccg tattgcgttg gaaactgtca aactagagta 300
ctggagaggt gggcggaact acaagtgtag aggtgaaatt cgtagatatt tgtaggaatg 360
ccgatgggga agccagccca ctggacagat actgacgcta aagcgcgaaa gcgtgggtag 420
caaacagg 428