CN113885588A - Photovoltaic photothermal integrated device and control method thereof - Google Patents
Photovoltaic photothermal integrated device and control method thereof Download PDFInfo
- Publication number
- CN113885588A CN113885588A CN202111104535.XA CN202111104535A CN113885588A CN 113885588 A CN113885588 A CN 113885588A CN 202111104535 A CN202111104535 A CN 202111104535A CN 113885588 A CN113885588 A CN 113885588A
- Authority
- CN
- China
- Prior art keywords
- photovoltaic
- azimuth
- control motor
- solar
- double
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 19
- 230000005855 radiation Effects 0.000 claims abstract description 63
- 230000009467 reduction Effects 0.000 claims abstract description 25
- 238000013528 artificial neural network Methods 0.000 claims description 9
- 239000000498 cooling water Substances 0.000 claims description 9
- 238000011217 control strategy Methods 0.000 claims description 8
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims description 5
- 239000010409 thin film Substances 0.000 claims description 5
- 210000004027 cell Anatomy 0.000 description 9
- 230000006870 function Effects 0.000 description 7
- 238000010248 power generation Methods 0.000 description 7
- 230000010354 integration Effects 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 210000002569 neuron Anatomy 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000011478 gradient descent method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D3/00—Control of position or direction
- G05D3/12—Control of position or direction using feedback
- G05D3/20—Control of position or direction using feedback using a digital comparing device
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S20/00—Supporting structures for PV modules
- H02S20/30—Supporting structures being movable or adjustable, e.g. for angle adjustment
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S40/00—Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
- H02S40/30—Electrical components
- H02S40/36—Electrical components characterised by special electrical interconnection means between two or more PV modules, e.g. electrical module-to-module connection
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Photovoltaic Devices (AREA)
Abstract
本发明提供了一种光伏光热一体化装置及其控制方法,其中,该装置包括:双面光伏组件、高度角转轴、支撑柱、高度角行程控制电机、方位角减速齿轮、方位角控制电机、支撑底座、控制器、散射辐射仪、直射辐射仪和光伏支撑支架,双面光伏组件安装在光伏支撑支架上,光伏支撑支架通过高度角转轴与支撑柱相连,支撑柱的底部安装在支撑底座上,方位角减速齿轮与方位角控制电机连接固定后,固定安装在支撑底座上,其中,方位角减速齿轮的转动轴与支撑柱硬性连接,支撑柱与方位角减速齿轮的转动轴一起转动。由此,能够大大提高太阳能的综合利用效率。
The invention provides a photovoltaic photothermal integrated device and a control method thereof, wherein the device comprises: a double-sided photovoltaic module, an elevation angle rotation shaft, a support column, an elevation angle stroke control motor, an azimuth angle reduction gear, and an azimuth angle control motor , support base, controller, scattered radiometer, direct radiation meter and photovoltaic support bracket, double-sided photovoltaic modules are installed on the photovoltaic support bracket, the photovoltaic support bracket is connected with the support column through the height angle rotation axis, and the bottom of the support column is installed on the support base After the azimuth reduction gear is connected and fixed with the azimuth control motor, it is fixedly installed on the support base, wherein the rotation shaft of the azimuth reduction gear is rigidly connected with the support column, and the support column rotates together with the rotation shaft of the azimuth reduction gear. Thereby, the comprehensive utilization efficiency of solar energy can be greatly improved.
Description
技术领域technical field
本发明涉及光伏光热一体化技术领域,具体涉及一种光伏光热一体化装置和一种光伏光热一体化装置的控制方法。The invention relates to the technical field of photovoltaic photothermal integration, in particular to a photovoltaic photothermal integration device and a control method of the photovoltaic photothermal integration device.
背景技术Background technique
近年来,随着人们生活水平的不断提高,人们对电能的需求越来越高。我国目前主要的电力来源是火力发电,占70%以上。火力发电主要原料煤,其在燃烧过程中产生大量的有害气体,严重污染了环境。自2017年,国家的最新政策逐渐停建传统的火力发电机组,逐渐淘汰小型火电机组,大力发展新能源发电技术。其中,太阳能光伏发电是新能源发电技术最优成熟,已经进入商业化的发电方式。目前研究表明,晶体硅、非晶硅光伏电池在市场上广泛应用。但是其效率一直较低,提高光伏发电组件的效率成为近年来的热点。In recent years, with the continuous improvement of people's living standards, people's demand for electric energy is getting higher and higher. my country's current main source of electricity is thermal power, accounting for more than 70%. Coal, the main raw material for thermal power generation, produces a large amount of harmful gases during the combustion process, which seriously pollutes the environment. Since 2017, the country's latest policy has gradually stopped the construction of traditional thermal power units, gradually eliminated small thermal power units, and vigorously developed new energy power generation technology. Among them, solar photovoltaic power generation is the most mature new energy power generation technology, and has entered a commercialized power generation method. Current research shows that crystalline silicon and amorphous silicon photovoltaic cells are widely used in the market. However, its efficiency has been low, and improving the efficiency of photovoltaic power generation modules has become a hot spot in recent years.
发明内容SUMMARY OF THE INVENTION
本发明为解决上述技术问题,提供了一种光伏光热一体化装置,采用双面光伏组件不仅能够高效转换太阳能的直接辐射,而且能够高效转换太阳能散射辐射,从而大大提高太阳能的综合利用效率。In order to solve the above technical problems, the present invention provides a photovoltaic photothermal integrated device. The double-sided photovoltaic components can not only efficiently convert the direct radiation of solar energy, but also convert the scattered radiation of solar energy efficiently, thereby greatly improving the comprehensive utilization efficiency of solar energy.
本发明采用的技术方案如下:The technical scheme adopted in the present invention is as follows:
一种光伏光热一体化装置,包括:双面光伏组件、高度角转轴、支撑柱、高度角行程控制电机、方位角减速齿轮、方位角控制电机、支撑底座、控制器、散射辐射仪、直射辐射仪和光伏支撑支架,其中,所述双面光伏组件安装在所述光伏支撑支架上,所述光伏支撑支架通过所述高度角转轴与所述支撑柱相连,所述支撑柱的底部安装在所述支撑底座上,所述方位角减速齿轮与所述方位角控制电机连接固定后,固定安装在所述支撑底座上,其中,所述方位角减速齿轮的转动轴与所述支撑柱硬性连接,所述支撑柱与所述方位角减速齿轮的转动轴一起转动;所述直射辐射仪平行安装在所述双面光伏组件的一面,所述散射辐射仪安装在所述双面光伏组件的另一面;所述高度角行程控制电机的一端设置在所述支撑柱上,所述高度角行程控制电机的另一端设置在所述双面光伏组件上;所述控制器的输入端口分别与所述直射辐射仪、所述散射辐射仪和所述双面光伏组件的信号输出端口相连,所述控制器的输出端口分别与所述方位角控制电机和所述高度角行程控制电机的控制端口相连。A photovoltaic photothermal integrated device, comprising: double-sided photovoltaic components, an altitude angle rotation shaft, a support column, an altitude angle stroke control motor, an azimuth angle reduction gear, an azimuth angle control motor, a support base, a controller, a scattering radiometer, a direct beam A radiometer and a photovoltaic support bracket, wherein the double-sided photovoltaic module is installed on the photovoltaic support bracket, the photovoltaic support bracket is connected with the support column through the height angle rotation axis, and the bottom of the support column is installed on the support column. On the support base, after the azimuth angle reduction gear is connected and fixed with the azimuth angle control motor, it is fixedly installed on the support base, wherein the rotation shaft of the azimuth angle reduction gear is rigidly connected with the support column , the support column rotates together with the rotating shaft of the azimuth reduction gear; the direct radiation meter is installed in parallel on one side of the double-sided photovoltaic module, and the scattered radiation meter is installed on the other side of the double-sided photovoltaic module One end of the height angular stroke control motor is set on the support column, and the other end of the height angular stroke control motor is set on the double-sided photovoltaic module; the input ports of the controller are respectively connected with the The direct radiation meter and the scattered radiation meter are connected to the signal output ports of the double-sided photovoltaic assembly, and the output ports of the controller are respectively connected to the control ports of the azimuth angle control motor and the altitude angle stroke control motor.
所述双面光伏组件包括:正面光伏、背面光伏、冷却水流道和连接体,其中,所述正面光伏和所述背面光伏通过所述连接体相连,所述冷却水流道用于通入循环冷却水对所述光伏组件进行冷却。The double-sided photovoltaic assembly includes: front photovoltaics, back photovoltaics, cooling water channels and connectors, wherein the front photovoltaics and the back photovoltaics are connected through the connector, and the cooling water channels are used for circulating cooling The water cools the photovoltaic modules.
所述正面光伏由单晶硅光伏电池构成,所述背面光伏由薄膜光伏电池构成。The front photovoltaic is composed of monocrystalline silicon photovoltaic cells, and the back photovoltaic is composed of thin film photovoltaic cells.
光伏光热一体化装置还包括:电源模块,其中,所述电源模块用于给所述控制器、所述方位角控制电机和所述高度角行程控制电机供电。The photovoltaic-photothermal integrated device further includes: a power supply module, wherein the power supply module is used for supplying power to the controller, the azimuth angle control motor and the altitude angle stroke control motor.
一种光伏光热一体化装置的控制方法,包括以下步骤:通过所述直射辐射仪采集所述正面光伏处的太阳直接辐射量,并通过所述背面光伏采集所述背面光伏处的太阳散射辐射值;通过控制器根据所述太阳直接辐射量和所述太阳散射辐射值输出太阳能高度角和太阳能方位角;将所述太阳直接辐射量和所述太阳散射辐射值作为输入变量,并将所述太阳能高度角和所述太阳能方位角作为输出变量,利用BP神经网络学习算法获取所述输入变量和所述输出变量之间的非线性关系,并根据所述非线性关系获取所述光伏光热一体化装置的控制策略,以及根据所述控制策略对所述光伏光热一体化装置进行控制。A control method for a photovoltaic photothermal integrated device, comprising the following steps: collecting the direct solar radiation at the front photovoltaic by the direct radiation meter, and collecting the solar scattered radiation at the back photovoltaic through the back photovoltaic value; output solar altitude angle and solar energy azimuth according to the direct solar radiation and the solar scattered radiation value through the controller; take the direct solar radiation and the solar scattered radiation value as input variables, and use the The solar altitude angle and the solar azimuth angle are used as output variables, and the BP neural network learning algorithm is used to obtain the nonlinear relationship between the input variable and the output variable, and the photovoltaic photothermal integration is obtained according to the nonlinear relationship. The control strategy of the photovoltaic device, and the photovoltaic-photothermal integrated device is controlled according to the control strategy.
本发明的有益效果:Beneficial effects of the present invention:
本发明采用双面光伏组件不仅能够高效转换太阳能的直接辐射,而且能够高效转换太阳能散射辐射,从而大大提高太阳能的综合利用效率。The invention adopts the double-sided photovoltaic module, which can not only efficiently convert the direct radiation of solar energy, but also convert the scattered radiation of solar energy efficiently, thereby greatly improving the comprehensive utilization efficiency of solar energy.
附图说明Description of drawings
图1为本发明实施例的光伏光热一体化装置的结构示意图;1 is a schematic structural diagram of a photovoltaic-photothermal integrated device according to an embodiment of the present invention;
图2为本发明实施例的双面光伏组件的结构示意图;2 is a schematic structural diagram of a double-sided photovoltaic module according to an embodiment of the present invention;
图3为本发明实施例的光伏光热一体化装置的控制方法的流程图。FIG. 3 is a flowchart of a control method of a photovoltaic-photothermal integrated device according to an embodiment of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
图1是根据本发明实施例的光伏光热一体化装置的结构示意图。FIG. 1 is a schematic structural diagram of a photovoltaic-photothermal integrated device according to an embodiment of the present invention.
如图1所示,本发明实施例的光伏光热一体化装置可包括:双面光伏组件100、高度角转轴200、支撑柱300、高度角行程控制电机400、方位角减速齿轮500、方位角控制电机600、支撑底座700、控制器800、散射辐射仪900、直射辐射仪1000和光伏支撑支架1100。As shown in FIG. 1 , the photovoltaic-photothermal integrated device according to the embodiment of the present invention may include: a double-sided
其中,双面光伏组件100安装在光伏支撑支架1100上,光伏支撑支架1100通过高度角转轴200与支撑柱300相连,支撑柱300的底部安装在支撑底座700上(支撑柱300可利用滚动轴承与底座相连,能够在支撑底座700上旋转),方位角减速齿轮500与方位角控制电机600连接固定后,固定安装在支撑底座700上,其中,方位角减速齿轮500的转动轴与支撑柱300硬性连接,支撑柱300与方位角减速齿轮500的转动轴一起转动;直射辐射仪1100平行安装在双面光伏组件100的一面,散射辐射仪900安装在双面光伏组件100的另一面;高度角行程控制电机400的一端设置在支撑柱300上,高度角行程控制电机400的另一端设置在双面光伏组件100上;控制器800的输入端口分别与直射辐射仪1100、散射辐射仪900和双面光伏组件100的信号输出端口相连,控制器800的输出端口分别与方位角控制电机600和高度角行程控制电机400的控制端口相连。The double-sided
其中,高度角转轴200、支撑柱300用于支撑系统,由钢架构成,底部与支撑底座支撑底座700用滚动轴承连接,形成滚动连接,即支撑柱300可以在支撑底座700上旋转,旋转的中心为方位角减速齿轮500的中心轴,方位角减速齿轮500的中心轴与支撑柱300的中心轴咬合,形成硬性连接,即方位角减速齿轮500可以带动支撑柱300的旋转,可以完成太阳能方位角的控制。高度角行程控制电机400用于控制双面光伏组件100的高度角,并且起到支撑作用。方位角减速齿轮500与方位角控制电机600连接,用于完成方位角的控制。支撑底座700由钢架构成,用于支撑整个系统。光伏支撑支架1100由钢架构成,用于支撑双面光伏组件100。Among them, the
根据本发明的一个实施例,如图2所示,双面光伏组件100包括:正面光伏110、背面光伏120、冷却水流道130和连接体140,其中,正面光伏110和背面光伏120通过连接体140相连,冷却水流道130用于通入循环冷却水对光伏组件进行冷却。其中,正面光伏110由单晶硅光伏电池构成,背面光伏120由薄膜光伏电池构成。According to an embodiment of the present invention, as shown in FIG. 2 , the double-sided
具体而言,直射辐射仪1100平行安装在正面光伏110上,用于采集正面光伏110处的太阳直接辐射量,散射辐射仪900平行安装在背面光伏120上,用于采集背面光伏120处的太阳散射辐射值。Specifically, the
根据本发明的一个实施例,如图1所示,光伏光热一体化装置还包括:电源模块1200,其中,电源模块1200用于给控制器800、方位角控制电机600和高度角行程控制电机400供电。According to an embodiment of the present invention, as shown in FIG. 1 , the photovoltaic-photothermal integrated device further includes: a
由此,本发明在采用正面采用单晶硅光伏电池,背面采用薄膜电池,成本低廉,并且正面单晶硅光伏电池可高效转换太阳能的直接辐射,背面薄膜光伏电池可高效转换太阳能散射辐射,可显著提高太阳能的综合利用效率。Therefore, the present invention adopts monocrystalline silicon photovoltaic cells on the front side and thin film cells on the back side, so the cost is low, and the front monocrystalline silicon photovoltaic cells can efficiently convert the direct radiation of solar energy, and the thin film photovoltaic cells on the back side can efficiently convert solar energy scattered radiation, and can Significantly improve the comprehensive utilization efficiency of solar energy.
综上所述,根据本发明实施例的光伏光热一体化装置,包括:双面光伏组件、高度角转轴、支撑柱、高度角行程控制电机、方位角减速齿轮、方位角控制电机、支撑底座、控制器、散射辐射仪、直射辐射仪和光伏支撑支架,其中,双面光伏组件安装在光伏支撑支架上,光伏支撑支架通过高度角转轴与支撑柱相连,支撑柱的底部安装在支撑底座上,方位角减速齿轮与方位角控制电机连接固定后,固定安装在支撑底座上,其中,方位角减速齿轮的转动轴与支撑柱硬性连接,支撑柱与方位角减速齿轮的转动轴一起转动;直射辐射仪平行安装在双面光伏组件的一面,散射辐射仪安装在双面光伏组件的另一面;高度角行程控制电机的一端设置在支撑柱上,高度角行程控制电机的另一端设置在双面光伏组件上;控制器的输入端口分别与直射辐射仪、散射辐射仪和双面光伏组件的信号输出端口相连,控制器的输出端口分别与方位角控制电机和高度角行程控制电机的控制端口相连。由此,采用双面光伏组件不仅能够高效转换太阳能的直接辐射,而且能够高效转换太阳能散射辐射,从而大大提高太阳能的综合利用效率。To sum up, the photovoltaic-photothermal integrated device according to the embodiment of the present invention includes: a double-sided photovoltaic module, an altitude angle rotation shaft, a support column, an altitude angle stroke control motor, an azimuth angle reduction gear, an azimuth angle control motor, and a support base , controller, scattered radiometer, direct radiation meter and photovoltaic support bracket, wherein, the double-sided photovoltaic modules are installed on the photovoltaic support bracket, the photovoltaic support bracket is connected with the support column through the height angle rotation axis, and the bottom of the support column is installed on the support base , After the azimuth reduction gear is connected and fixed with the azimuth control motor, it is fixedly installed on the support base, wherein the rotation shaft of the azimuth reduction gear is rigidly connected with the support column, and the support column rotates together with the rotation shaft of the azimuth reduction gear; The radiometer is installed in parallel on one side of the double-sided photovoltaic module, and the scattering radiometer is installed on the other side of the double-sided photovoltaic module; one end of the height angle stroke control motor is set on the support column, and the other end of the height angle stroke control motor is set on the double side. On the photovoltaic module; the input ports of the controller are respectively connected with the signal output ports of the direct radiation meter, the scattered radiation meter and the double-sided photovoltaic modules, and the output ports of the controller are respectively connected with the control ports of the azimuth angle control motor and the altitude angle stroke control motor. . Therefore, the use of double-sided photovoltaic modules can not only efficiently convert the direct radiation of solar energy, but also convert the scattered radiation of solar energy efficiently, thereby greatly improving the comprehensive utilization efficiency of solar energy.
基于上述实施例的光伏光热一体化装置的结构,本发明还提出了一种光伏光热一体化装置的控制方法。Based on the structure of the photovoltaic-photothermal integrated device of the above-mentioned embodiment, the present invention also provides a control method of the photovoltaic-photothermal integrated device.
如图3所示,本发明实施例的光伏光热一体化装置的控制方法可包括以下步骤:As shown in FIG. 3 , the control method of the photovoltaic-photothermal integrated device according to the embodiment of the present invention may include the following steps:
S1,通过直射辐射仪采集正面光伏处的太阳直接辐射量,并通过背面光伏采集背面光伏处的太阳散射辐射值。S1 , the direct solar radiation at the front photovoltaic is collected by a direct radiation meter, and the solar scattered radiation value at the back photovoltaic is collected through the back photovoltaic.
S2,通过控制器根据太阳直接辐射量和太阳散射辐射值输出太阳能高度角和太阳能方位角。S2, the solar energy altitude angle and the solar energy azimuth angle are output by the controller according to the direct solar radiation amount and the solar scattered radiation value.
S3,将太阳直接辐射量和太阳散射辐射值作为输入变量,并将太阳能高度角和太阳能方位角作为输出变量,利用BP神经网络学习算法获取输入变量和输出变量之间的非线性关系,并根据非线性关系获取光伏光热一体化装置的控制策略,以及根据控制策略对光伏光热一体化装置进行控制。S3, take the direct solar radiation and the solar scattered radiation as input variables, and take the solar altitude and solar azimuth as output variables, and use the BP neural network learning algorithm to obtain the nonlinear relationship between the input variables and the output variables, and according to The nonlinear relationship is used to obtain the control strategy of the photovoltaic-photothermal integrated device, and the photovoltaic-photothermal integrated device is controlled according to the control strategy.
具体而言,输入变量由2个构成:太阳直接辐射量x1和太阳散射辐射值x2,输出变量为2个,分别为:太阳能高度角θ和太阳能方位角φ。利用BP神经网络学习算法,寻找输入变量与输出变量之间的非线性关系,获得光伏光热一体化系统的最佳控制角度,实现最优控制。Specifically, the input variables consist of two variables: the direct solar radiation amount x1 and the solar scattered radiation value x2, and the output variables are two: solar altitude angle θ and solar azimuth angle φ. Using the BP neural network learning algorithm to find the nonlinear relationship between the input variable and the output variable, obtain the optimal control angle of the photovoltaic-photothermal integrated system, and realize the optimal control.
其中,神经网络结构为2-5-2结构,网络结构简单,但是需要提供可靠的学习样本,采集学习样本时,以输出总能最大为目标,即U=max{u1+u2+αu3},其中,u1为正面光伏的发电功率,u2为背面光伏的发电功率,u3是冷却水的热能,α为热能转换为电能的转换系数,其中,α=0.39。Among them, the neural network structure is a 2-5-2 structure. The network structure is simple, but it needs to provide reliable learning samples. When collecting learning samples, the goal is to always maximize the output, that is, U=max{u1+u2+αu3}, Among them, u1 is the power generated by the front photovoltaic, u2 is the power generated by the back photovoltaic, u3 is the thermal energy of the cooling water, and α is the conversion coefficient of thermal energy into electrical energy, where α=0.39.
具体地,BP神经网络控制算法,具体控制算法为:输入层节点数为2,隐含层节点数为5,输出节点数为2;网络学习算法包括前向传播和反向传播。Specifically, the BP neural network control algorithm, the specific control algorithm is: the number of nodes in the input layer is 2, the number of nodes in the hidden layer is 5, and the number of output nodes is 2; the network learning algorithm includes forward propagation and back propagation.
其中,前向传播包括:Among them, forward propagation includes:
隐含层神经元的输入为所有输入的加权之和,即The input of the hidden layer neuron is the weighted sum of all inputs, that is
隐含层神经元的输出xj′采用S函数激发xj,即The output x j ′ of the neurons in the hidden layer uses the S-function to excite x j , that is,
则 but
输出层神经元的输出为:The output of the output layer neuron is:
网络输出与理想输出误差为:The error between the network output and the ideal output is:
e(k)=y(k)=yn(k)e(k)=y(k)=y n (k)
误差性能指标函数为The error performance indicator function is
反向传播包括:采用δ学习算法,调整各层之间的权值,根据梯度下降法,权值的学习算法如下:Backpropagation includes: using the delta learning algorithm to adjust the weights between layers. According to the gradient descent method, the learning algorithm of the weights is as follows:
输出层与隐含层的连接权ωp的学习算法为:The learning algorithm of the connection weight ω p between the output layer and the hidden layer is:
式中的学习速率η=0.8;The learning rate η=0.8 in the formula;
k+1时刻网络的权值为:The weight of the network at time k+1 is:
ωp(k+1)=ωp(k)+Δωp ω p (k+1)=ω p (k)+Δω p
隐含层与输入层之间的连接权值ωij学习算法为:The learning algorithm for the connection weight ω ij between the hidden layer and the input layer is:
其中,in,
k+1时刻网络的权值为:The weight of the network at time k+1 is:
ωij(k+1)=ωij(k)+Δωij。ω ij (k+1)=ω ij (k)+Δω ij .
由此,本发明采集太阳能直接辐射强度和太阳能直接散射强度,设计BP神经网络控制算法,对双轴跟踪式双面光伏进行非线性控制,以系统综合输出能力为控制目标,获得跟踪装置的最佳控制角度,从而使得新型光伏光热一体化系统输出最大功率,即获得输出变量太阳能高度角位移控制量和太阳能方位角位移控制量,从而获得光伏光热一体化系统的最大输出。Therefore, the present invention collects the direct radiation intensity of solar energy and the direct scattering intensity of solar energy, designs a BP neural network control algorithm, performs non-linear control on the dual-axis tracking double-sided photovoltaic, takes the comprehensive output capability of the system as the control target, and obtains the most optimal tracking device. The optimal control angle is obtained, so that the new photovoltaic-photothermal integrated system can output the maximum power, that is, to obtain the output variable solar altitude angular displacement control amount and solar energy azimuth displacement control amount, so as to obtain the maximum output of the photovoltaic solar-thermal integrated system.
综上所述,根据本发明实施例的光伏光热一体化装置的控制方法,通过直射辐射仪采集正面光伏处的太阳直接辐射量,并通过背面光伏采集背面光伏处的太阳散射辐射值,以及通过控制器根据太阳直接辐射量和太阳散射辐射值输出太阳能高度角和太阳能方位角,并将太阳直接辐射量和太阳散射辐射值作为输入变量,以及将太阳能高度角和太阳能方位角作为输出变量,利用BP神经网络学习算法获取输入变量和输出变量之间的非线性关系,并根据非线性关系获取光伏光热一体化装置的控制策略,以及根据控制策略对光伏光热一体化装置进行控制。由此,基于BP神经网络控制算法,对双面组件光伏发电控制装置控制,以太阳直接辐射强度和太阳散射辐射强度作为输入信号,经BP神经网络控制算法后,得到双面光伏发电组件的最佳方位角与高度角,大大提高了太阳能利用效率。To sum up, according to the control method of the photovoltaic photothermal integrated device according to the embodiment of the present invention, the direct solar radiation at the front photovoltaic is collected by the direct radiation meter, and the solar scattered radiation value at the back photovoltaic is collected by the back photovoltaic, and Through the controller, the solar altitude and solar azimuth are output according to the solar direct radiation and solar scattered radiation, and the solar direct radiation and solar scattered radiation are used as input variables, and the solar altitude and solar azimuth are used as output variables, The BP neural network learning algorithm is used to obtain the nonlinear relationship between the input variable and the output variable, and the control strategy of the photovoltaic photovoltaic integrated device is obtained according to the nonlinear relationship, and the photovoltaic photovoltaic integrated device is controlled according to the control strategy. Therefore, based on the BP neural network control algorithm, the photovoltaic power generation control device of the bifacial module is controlled, and the direct solar radiation intensity and the sun scattered radiation intensity are used as input signals. The optimal azimuth and elevation angles greatly improve the utilization efficiency of solar energy.
在本发明的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。“多个”的含义是两个或两个以上,除非另有明确具体的限定。In the description of the present invention, the terms "first" and "second" are only used for description purposes, and cannot be understood as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as "first", "second" may expressly or implicitly include one or more of that feature. "Plurality" means two or more, unless expressly specifically limited otherwise.
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。In the present invention, unless otherwise expressly specified and limited, the terms "installed", "connected", "connected", "fixed" and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal connection of the two elements or the interaction relationship between the two elements. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood according to specific situations.
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。In the present invention, unless otherwise expressly specified and limited, a first feature "on" or "under" a second feature may be in direct contact between the first and second features, or the first and second features indirectly through an intermediary touch. Also, the first feature being "above", "over" and "above" the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is level higher than the second feature. The first feature being "below", "below" and "below" the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必针对相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。In the description of this specification, description with reference to the terms "one embodiment," "some embodiments," "example," "specific example," or "some examples", etc., mean specific features described in connection with the embodiment or example , structure, material or feature is included in at least one embodiment or example of the present invention. In this specification, schematic representations of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the particular features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine the different embodiments or examples described in this specification, as well as the features of the different embodiments or examples, without conflicting each other.
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。Any description of a process or method in the flowcharts or otherwise described herein may be understood to represent a module, segment or portion of code comprising one or more executable instructions for implementing a specified logical function or step of the process , and the scope of the preferred embodiments of the invention includes alternative implementations in which the functions may be performed out of the order shown or discussed, including performing the functions substantially concurrently or in the reverse order depending upon the functions involved, which should It is understood by those skilled in the art to which the embodiments of the present invention belong.
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,“计算机可读介质”可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。The logic and/or steps represented in flowcharts or otherwise described herein, for example, may be considered an ordered listing of executable instructions for implementing the logical functions, may be embodied in any computer-readable medium, For use with, or in conjunction with, an instruction execution system, apparatus, or device (such as a computer-based system, a system including a processor, or other system that can fetch instructions from and execute instructions from an instruction execution system, apparatus, or apparatus) or equipment. For the purposes of this specification, a "computer-readable medium" can be any device that can contain, store, communicate, propagate, or transport the program for use by or in connection with an instruction execution system, apparatus, or apparatus. More specific examples (non-exhaustive list) of computer readable media include the following: electrical connections with one or more wiring (electronic devices), portable computer disk cartridges (magnetic devices), random access memory (RAM), Read Only Memory (ROM), Erasable Editable Read Only Memory (EPROM or Flash Memory), Fiber Optic Devices, and Portable Compact Disc Read Only Memory (CDROM). In addition, the computer readable medium may even be paper or other suitable medium on which the program may be printed, as the paper or other medium may be optically scanned, for example, followed by editing, interpretation, or other suitable medium as necessary process to obtain the program electronically and then store it in computer memory.
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。It should be understood that various parts of the present invention may be implemented in hardware, software, firmware or a combination thereof. In the above-described embodiments, various steps or methods may be implemented in software or firmware stored in memory and executed by a suitable instruction execution system. For example, if implemented in hardware, as in another embodiment, it can be implemented by any one or a combination of the following techniques known in the art: Discrete logic circuits, application specific integrated circuits with suitable combinational logic gates, Programmable Gate Arrays (PGA), Field Programmable Gate Arrays (FPGA), etc.
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。Those of ordinary skill in the art can understand that all or part of the steps carried by the methods of the above embodiments can be completed by instructing the relevant hardware through a program, and the program can be stored in a computer-readable storage medium, and the program is stored in a computer-readable storage medium. When executed, one or a combination of the steps of the method embodiment is included.
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。In addition, each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically alone, or two or more units may be integrated into one module. The above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. If the integrated modules are implemented in the form of software functional modules and sold or used as independent products, they may also be stored in a computer-readable storage medium.
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。The above-mentioned storage medium may be a read-only memory, a magnetic disk or an optical disk, and the like. Although the embodiments of the present invention have been shown and described above, it should be understood that the above-mentioned embodiments are exemplary and should not be construed as limiting the present invention. Embodiments are subject to variations, modifications, substitutions and variations.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111104535.XA CN113885588B (en) | 2021-09-22 | 2021-09-22 | Photovoltaic-thermal integrated device and control method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111104535.XA CN113885588B (en) | 2021-09-22 | 2021-09-22 | Photovoltaic-thermal integrated device and control method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113885588A true CN113885588A (en) | 2022-01-04 |
CN113885588B CN113885588B (en) | 2024-11-08 |
Family
ID=79010131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111104535.XA Active CN113885588B (en) | 2021-09-22 | 2021-09-22 | Photovoltaic-thermal integrated device and control method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113885588B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4238707A (en) * | 1978-01-20 | 1980-12-09 | Thomson-Csf | Power supply system for a semiconductor light source |
CN201467010U (en) * | 2008-12-09 | 2010-05-12 | 张家港三得利新能源科技有限公司 | Solar tracking device for installing solar photovoltaic component |
CN110784163A (en) * | 2019-11-11 | 2020-02-11 | 苏师大半导体材料与设备研究院(邳州)有限公司 | A detection linkage type multi-angle beam photovoltaic power generation panel |
CN110868149A (en) * | 2019-12-12 | 2020-03-06 | 湖南铁路科技职业技术学院 | Self-adaptive photovoltaic support with intelligent light following and active wind shielding functions |
CN215932460U (en) * | 2021-09-22 | 2022-03-01 | 南京机电职业技术学院 | Photovoltaic and thermal integrated device |
-
2021
- 2021-09-22 CN CN202111104535.XA patent/CN113885588B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4238707A (en) * | 1978-01-20 | 1980-12-09 | Thomson-Csf | Power supply system for a semiconductor light source |
CN201467010U (en) * | 2008-12-09 | 2010-05-12 | 张家港三得利新能源科技有限公司 | Solar tracking device for installing solar photovoltaic component |
CN110784163A (en) * | 2019-11-11 | 2020-02-11 | 苏师大半导体材料与设备研究院(邳州)有限公司 | A detection linkage type multi-angle beam photovoltaic power generation panel |
CN110868149A (en) * | 2019-12-12 | 2020-03-06 | 湖南铁路科技职业技术学院 | Self-adaptive photovoltaic support with intelligent light following and active wind shielding functions |
CN215932460U (en) * | 2021-09-22 | 2022-03-01 | 南京机电职业技术学院 | Photovoltaic and thermal integrated device |
Also Published As
Publication number | Publication date |
---|---|
CN113885588B (en) | 2024-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110568865A (en) | A kind of intelligent optimization method and intelligent tracking system of double-sided module tracking angle | |
Rustemli et al. | The analysis on sun tracking and cooling systems for photovoltaic panels | |
Tina et al. | Case study of a grid connected with a battery photovoltaic system: V-trough concentration vs. single-axis tracking | |
WO2022105446A1 (en) | Single-axis angle tracking method and system for intelligent photovoltaic module | |
CN106371466B (en) | A Solar Tracking Method Based on Bifacial Cell Array | |
CN110533230B (en) | A Position Optimization Method for Photovoltaic Array Irradiance Sensors | |
KR100328187B1 (en) | Method and apparatus for estimating generated energy of solar cell | |
CN107340785A (en) | A kind of double side photovoltaic battery component tracks method and controller based on intelligentized control method | |
Tao et al. | Parameterizing mismatch loss in bifacial photovoltaic modules with global deployment: A comprehensive study | |
CN106527504B (en) | Photovoltaic output power self-regulating device | |
CN111736467B (en) | Heliostat field focusing strategy optimization method for tower type solar thermal power station | |
CN211044024U (en) | Double-sided photovoltaic tracking universal controller | |
CN215932460U (en) | Photovoltaic and thermal integrated device | |
CN119148765B (en) | A design method and system for a double-sided photovoltaic tracking system based on fuzzy control | |
CN102624284A (en) | Solar cell photovoltaic array adjustment output control method | |
Wu et al. | Coupled optical-electrical-thermal analysis of a semi-transparent photovoltaic glazing façade under building shadow | |
CN109724269A (en) | Solar full-spectrum cogeneration system and energy storage configuration method | |
Chen et al. | Exergy analysis of a high concentration photovoltaic and thermal system for comprehensive use of heat and electricity | |
CN113885588A (en) | Photovoltaic photothermal integrated device and control method thereof | |
Sanyal et al. | Development of a dual-axis solar tracker for efficient sun energy harvesting | |
Al‐Zareer et al. | Performance improvement study of an integrated photovoltaic system for offshore power production | |
Tibebu | Design, construction and evaluation of performance of solar dryer for drying fruit | |
CN118625858A (en) | Photovoltaic panel rotation control method and related equipment based on multivariate data fusion analysis | |
CN207490841U (en) | A kind of array self-test tracks stent | |
CN112541152B (en) | Calculation method for working temperature of double-sided photovoltaic module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |