CN113881934A - Zinc-based phosphating solution with less slag and ash - Google Patents
Zinc-based phosphating solution with less slag and ash Download PDFInfo
- Publication number
- CN113881934A CN113881934A CN202111298668.5A CN202111298668A CN113881934A CN 113881934 A CN113881934 A CN 113881934A CN 202111298668 A CN202111298668 A CN 202111298668A CN 113881934 A CN113881934 A CN 113881934A
- Authority
- CN
- China
- Prior art keywords
- percent
- zinc
- less
- phosphating solution
- slag
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002893 slag Substances 0.000 title claims abstract description 41
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 title claims abstract description 38
- 229910052725 zinc Inorganic materials 0.000 title claims abstract description 38
- 239000011701 zinc Substances 0.000 title claims abstract description 38
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims abstract description 48
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims abstract description 42
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims abstract description 42
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 claims abstract description 42
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims abstract description 21
- 239000011787 zinc oxide Substances 0.000 claims abstract description 21
- 239000008367 deionised water Substances 0.000 claims abstract description 17
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 17
- URDCARMUOSMFFI-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]ethyl-(2-hydroxyethyl)amino]acetic acid Chemical compound OCCN(CC(O)=O)CCN(CC(O)=O)CC(O)=O URDCARMUOSMFFI-UHFFFAOYSA-N 0.000 claims abstract description 10
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 claims abstract description 10
- QMOVDAKHFMFOJZ-UHFFFAOYSA-N (10z)-10-diazo-9h-phenanthrene Chemical compound C1=CC=C2C(=[N+]=[N-])CC3=CC=CC=C3C2=C1 QMOVDAKHFMFOJZ-UHFFFAOYSA-N 0.000 claims description 11
- -1 1.3 percent of 1 Chemical compound 0.000 claims description 11
- OUDSFQBUEBFSPS-UHFFFAOYSA-N ethylenediaminetriacetic acid Chemical compound OC(=O)CNCCN(CC(O)=O)CC(O)=O OUDSFQBUEBFSPS-UHFFFAOYSA-N 0.000 claims description 10
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 abstract description 12
- 229910000831 Steel Inorganic materials 0.000 abstract description 12
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 12
- 239000011574 phosphorus Substances 0.000 abstract description 12
- 239000010959 steel Substances 0.000 abstract description 12
- 230000000694 effects Effects 0.000 abstract description 8
- 238000000034 method Methods 0.000 abstract description 6
- 230000000052 comparative effect Effects 0.000 description 16
- 229910000975 Carbon steel Inorganic materials 0.000 description 9
- 239000010962 carbon steel Substances 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 8
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 7
- 238000012360 testing method Methods 0.000 description 6
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 4
- YNPNZTXNASCQKK-UHFFFAOYSA-N Phenanthrene Natural products C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 3
- 238000010622 cold drawing Methods 0.000 description 3
- 238000005536 corrosion prevention Methods 0.000 description 3
- 238000011056 performance test Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002367 phosphate rock Substances 0.000 description 2
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 2
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/07—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
- C23C22/08—Orthophosphates
- C23C22/12—Orthophosphates containing zinc cations
- C23C22/17—Orthophosphates containing zinc cations containing also organic acids
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Treatment Of Metals (AREA)
- Detergent Compositions (AREA)
Abstract
A zinc phosphating solution with less slag and less ash relates to the technical field of phosphating solutions, and comprises the following components in percentage by mass: 16-17% of phosphoric acid, 4-5% of zinc oxide, 26.5-27.5% of zinc nitrate, 1.5-5% of N-hydroxyethyl ethylenediamine triacetic acid, 0.5-2% of 1, 10-phenanthroline, 0.5-2.5% of hydrogen peroxide and 44-50% of deionized water. The invention can reduce the phosphorus ash and slag generated on the surface of the steel pipe in the phosphorization process, improve the phosphorization effect and improve the quality of a phosphorization film.
Description
Technical Field
The invention relates to the technical field of phosphating solutions, in particular to a zinc phosphating solution with less slag and less ash.
Background
The zinc phosphating solution is one of important materials for corrosion prevention of metal materials, and aims to provide corrosion prevention protection for base metals, prime before paint spraying, improve the adhesive force and corrosion prevention capability of a coating layer, play a role in friction reduction and lubrication in metal processing and the like.
The zinc phosphating solution is usually used in the cold drawing operation of the common steel pipe, but phosphorous slag and phosphorous ash can be generated in the using process. In the later stage of using the phosphating solution, the situation is particularly serious, a large amount of phosphorus slag or phosphorus ash can cover the steel pipe, on one hand, the thickness of a phosphating film on the surface of the steel pipe is uneven, because the wall thickness of the pulled pipe is uneven due to uneven pulling force in the drawing process of the steel pipe, and then due to the coverage of a large amount of phosphorus slag and phosphorus ash, patches or stripes can be more easily formed on the surface of the pipe, the appearance and the quality of the steel pipe are influenced, and the mould is damaged by uneven friction resistance; on the other hand, a large amount of phosphorus slag and phosphorus ash not only increase the work load of workers for removing slag and ash, but also lead to the reduction of the service life of the phosphating solution due to the gradual deterioration of the stability of the phosphating solution, so the consumption is correspondingly increased, and the cost of environmental protection and treatment is increased.
Disclosure of Invention
The invention aims to provide a zinc phosphating solution with less slag and less ash, which reduces the generation of phosphorite and phosphorite slag on the surface of a steel pipe in the phosphating process, improves the phosphating effect and improves the quality of a phosphating film.
In order to solve the technical problems, the invention adopts the following technical scheme: a zinc phosphating solution with less slag and less ash comprises the following components in percentage by mass: 16-17% of phosphoric acid, 4-5% of zinc oxide, 26.5-27.5% of zinc nitrate, 1.5-5% of N-hydroxyethyl ethylenediamine triacetic acid, 0.5-2% of 1, 10-phenanthroline, 0.5-2.5% of hydrogen peroxide and 44-50% of deionized water.
Preferably, the zinc phosphating solution with less slag and less ash comprises the following components in percentage by mass: 16.4 percent of phosphoric acid, 4.3 percent of zinc oxide, 26.8 percent of zinc nitrate, 3.6 percent of N-ethoxyl ethylene diamine triacetic acid, 1.3 percent of 1, 10-diazophenanthrene, 2 percent of hydrogen peroxide and 45.6 percent of deionized water.
Wherein the phosphoric acid is 85% phosphoric acid; the zinc oxide is 98% pure zinc oxide; the zinc nitrate is 98% pure zinc nitrate; the hydrogen peroxide is hydrogen peroxide with the concentration of 30 percent.
The invention has the beneficial effects that: the zinc phosphating solution provided by the invention is used in the cold drawing operation process of the steel pipe, so that the generation of phosphorus slag and phosphorus ash can be reduced to a great extent, the phosphating effect can be improved, and the quality of a phosphating film formed on the surface of the steel pipe is improved.
Detailed Description
The present invention will be further described with reference to the following examples for facilitating understanding of those skilled in the art, and the description of the embodiments is not intended to limit the present invention.
Example 1
A zinc phosphating solution with less slag and less ash comprises the following components in percentage by mass: 16.4% of phosphoric acid, 4.3% of zinc oxide, 26.8% of zinc nitrate, 1.5% of N-hydroxyethyl ethylenediamine triacetic acid, 1.3% of 1, 10-diazophenanthrene, 2% of hydrogen peroxide and 47.7% of deionized water.
Example 2
A zinc phosphating solution with less slag and less ash comprises the following components in percentage by mass: 16.4 percent of phosphoric acid, 4.3 percent of zinc oxide, 26.8 percent of zinc nitrate, 3.6 percent of N-ethoxyl ethylene diamine triacetic acid, 1.3 percent of 1, 10-diazophenanthrene, 2 percent of hydrogen peroxide and 45.6 percent of deionized water.
Example 3
A zinc phosphating solution with less slag and less ash comprises the following components in percentage by mass: 16.4% of phosphoric acid, 4.3% of zinc oxide, 26.8% of zinc nitrate, 4.6% of N-hydroxyethyl ethylenediamine triacetic acid, 1.3% of 1, 10-diazophenanthrene, 2% of hydrogen peroxide and 44.6% of deionized water.
Comparative example 1
A zinc phosphating solution with less slag and less ash comprises the following components in percentage by mass: 16.4% of phosphoric acid, 4.3% of zinc oxide, 26.8% of zinc nitrate, 1, 10-phenanthroline, 2% of hydrogen peroxide and 49.2% of deionized water.
The component data comparative ratios of the above examples and comparative examples are shown in table 1 below.
TABLE 1 comparison of component data for examples 1-3 and comparative example 1
Performance testing
The zinc phosphating solutions of the examples and the comparative examples were subjected to performance tests, specifically, the zinc phosphating solution with a total acidity of 20 points was placed in a 500ml beaker, then a common carbon steel water pipe was taken and placed in the beaker, phosphating was performed at a phosphating temperature of 70 ℃ for 20 minutes, then the carbon steel water pipe after phosphating was taken out and tested, and the obtained data are shown in table 2 below.
TABLE 2 Performance of carbon steel water pipe after phosphating of examples 1-3 and comparative example 1
As shown in the test results in Table 2, the addition of N-hydroxyethylethylene diamine triacetic acid (HEDTA) can significantly inhibit the production of phosphorous slag, and the inhibition effect is better when the amount is 4.6%, but in practical production application, the person skilled in the art can choose to use N-hydroxyethylethylene diamine triacetic acid (HEDTA) in the amount of 3.6% in the formulation according to the consideration of production cost.
Example 4
A zinc phosphating solution with less slag and less ash comprises the following components in percentage by mass: 16.4 percent of phosphoric acid, 4.3 percent of zinc oxide, 26.8 percent of zinc nitrate, 3.6 percent of N-ethoxyl ethylene diamine triacetic acid, 0.5 percent of 1, 10-diazophenanthrene, 2 percent of hydrogen peroxide and 46.4 percent of deionized water.
Example 5
A zinc phosphating solution with less slag and less ash comprises the following components in percentage by mass: 16.4 percent of phosphoric acid, 4.3 percent of zinc oxide, 26.8 percent of zinc nitrate, 3.6 percent of N-ethoxyl ethylene diamine triacetic acid, 1.3 percent of 1, 10-diazophenanthrene, 2 percent of hydrogen peroxide and 45.6 percent of deionized water.
Example 6
A zinc phosphating solution with less slag and less ash comprises the following components in percentage by mass: 16.4 percent of phosphoric acid, 4.3 percent of zinc oxide, 26.8 percent of zinc nitrate, 3.6 percent of N-ethoxyl ethylene diamine triacetic acid, 1.8 percent of 1, 10-diazophenanthrene, 2 percent of hydrogen peroxide and 45.1 percent of deionized water.
Comparative example 2
A zinc phosphating solution with less slag and less ash comprises the following components in percentage by mass: 16.4% of phosphoric acid, 4.3% of zinc oxide, 26.8% of zinc nitrate, 3.6% of N-hydroxyethyl ethylenediamine triacetic acid, 2% of hydrogen peroxide and 46.9% of deionized water.
The component data comparison ratios of the above examples and comparative examples are shown in table 3 below.
TABLE 3 comparison of component data for examples 4-6 and comparative example 2
Performance testing
The zinc phosphating solutions of the examples and the comparative examples were subjected to performance tests, specifically, the zinc phosphating solution with a total acidity of 20 points was placed in a 500ml beaker, then a common carbon steel water pipe was taken and placed in the beaker, phosphating was performed at a phosphating temperature of 70 ℃ for 20 minutes, and then the carbon steel water pipe after phosphating was taken out and tested, and the obtained data are shown in table 4 below.
TABLE 4 Performance of phosphatized carbon steel water pipes of examples 4-6 and comparative example 2
From the test results in table 4, it can be seen that the addition of 1, 10-phenanthroline (phen) has a great influence on ferrous iron in the solution and also on the quality of the phosphating film, and it can be seen that the addition of 1, 10-phenanthroline (phen) can reduce the content of ferrous iron in the phosphating solution, so as to improve the quality of the phosphating film, and the effect is better when the amount is 1.8%, but because the effect when the amount is 1.3% is not much different from that, in practical production application, a person skilled in the art can select 1.3% 1, 10-phenanthroline (phen) to be used in the formulation according to the consideration of production cost.
Example 7
A zinc phosphating solution with less slag and less ash comprises the following components in percentage by mass: 16.4 percent of phosphoric acid, 4.3 percent of zinc oxide, 26.8 percent of zinc nitrate, 3.6 percent of N-ethoxyl ethylene diamine triacetic acid, 1.3 percent of 1, 10-diazophenanthrene, 0.5 percent of hydrogen peroxide and 47.7 percent of deionized water.
Example 8
A zinc phosphating solution with less slag and less ash comprises the following components in percentage by mass: 16.4 percent of phosphoric acid, 4.3 percent of zinc oxide, 26.8 percent of zinc nitrate, 3.6 percent of N-ethoxyl ethylene diamine triacetic acid, 1.3 percent of 1, 10-diazophenanthrene, 2 percent of hydrogen peroxide and 45.6 percent of deionized water.
Example 9
A zinc phosphating solution with less slag and less ash comprises the following components in percentage by mass: 16.4 percent of phosphoric acid, 4.3 percent of zinc oxide, 26.8 percent of zinc nitrate, 3.6 percent of N-ethoxyl ethylene diamine triacetic acid, 1.3 percent of 1, 10-diazophenanthrene, 2.5 percent of hydrogen peroxide and 44.6 percent of deionized water.
Comparative example 3
A zinc phosphating solution with less slag and less ash comprises the following components in percentage by mass: 16.4 percent of phosphoric acid, 4.3 percent of zinc oxide, 26.8 percent of zinc nitrate, 3.6 percent of N-ethoxyl ethylene diamine triacetic acid, 1.3 percent of 1, 10-diazocine and 49.2 percent of deionized water.
The component data of each of the above examples and comparative examples are shown in table 5 below.
TABLE 5 comparison of component data for examples 7-9 and comparative example 3
Performance testing
The zinc phosphating solutions of the examples and the comparative examples were subjected to performance tests, specifically, the zinc phosphating solution with a total acidity of 20 points was placed in a 500ml beaker, then a common carbon steel water pipe was taken and placed in the beaker, phosphating was performed at a phosphating temperature of 70 ℃ for 20 minutes, and then the carbon steel water pipe after phosphating was taken out and tested, and the obtained data are shown in table 6 below.
TABLE 6 properties of carbon steel water pipes of examples 7 to 9 and comparative example 3 after phosphating
The test results in table 6 show that the addition of sufficient hydrogen peroxide is also helpful for reducing the generation of phosphorous slag, and actually, the hydrogen peroxide mainly oxidizes ferrous iron in the solution into ferric iron, so that the phosphorous slag is separated out conveniently, and the phosphorous ash on the surface of the steel pipe is reduced to improve the quality of the phosphorous coating. But the dosage of the hydrogen peroxide is not too much, otherwise, the generation of a phosphating film is influenced, so that the effect is better when the dosage of the hydrogen peroxide is 2 percent.
The zinc-based phosphating solution with less slag and ash provided by the embodiment is applied to actual steel pipe cold-drawing production operation, the achieved phosphating effect is better, the adhesion of a phosphating film is stronger, the phosphorus slag generated in the phosphating process is less, the phosphorus ash on the surface of the steel pipe is less, and on the other hand, the slag and ash cleaning workload of workers is reduced to a great extent. And because the ferrous content in the phosphating solution is reduced, the phosphorus slag is easier to separate out, so the stability of the phosphating solution is improved to a certain extent, the waste caused by poor stability of the phosphating solution like the common zinc phosphating solution is avoided, the consumption of the production process is increased, the production cost is reduced, and the cost of environmental protection treatment can be reduced. In conclusion, the zinc phosphating solution with less slag and less ash provided by the invention can well solve the problems of the conventional common zinc phosphating solution and has better use value and prospect.
The above embodiments are preferred implementations of the present invention, and the present invention can be implemented in other ways without departing from the spirit of the present invention.
Some descriptions of the present invention have been simplified to facilitate understanding of the improvement of the present invention over the prior art by those of ordinary skill in the art, and some other elements have been omitted from this document for clarity, and those omitted elements should be recognized by those of ordinary skill in the art to constitute the content of the present invention.
Claims (6)
1. The zinc phosphating solution with less slag and less ash is characterized by comprising the following components in percentage by mass: 16-17% of phosphoric acid, 4-5% of zinc oxide, 26.5-27.5% of zinc nitrate, 1.5-5% of N-hydroxyethyl ethylenediamine triacetic acid, 0.5-2% of 1, 10-phenanthroline, 0.5-2.5% of hydrogen peroxide and 44-50% of deionized water.
2. The zinc-based phosphating solution with less slag and less ash according to claim 1, which is characterized by comprising the following components in percentage by mass: 16.4 percent of phosphoric acid, 4.3 percent of zinc oxide, 26.8 percent of zinc nitrate, 3.6 percent of N-ethoxyl ethylene diamine triacetic acid, 1.3 percent of 1, 10-diazophenanthrene, 2 percent of hydrogen peroxide and 45.6 percent of deionized water.
3. The zinc-based phosphating solution with less slag and less ash according to claim 1, which is characterized in that: the phosphoric acid is 85% phosphoric acid.
4. The zinc-based phosphating solution with less slag and less ash according to claim 1, which is characterized in that: the zinc oxide is 98% pure zinc oxide.
5. The zinc-based phosphating solution with less slag and less ash according to claim 1, which is characterized in that: the zinc nitrate is 98% pure zinc nitrate.
6. The zinc-based phosphating solution with less slag and less ash according to claim 1, which is characterized in that: the hydrogen peroxide is hydrogen peroxide with the concentration of 30 percent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111298668.5A CN113881934B (en) | 2021-11-04 | 2021-11-04 | Zinc phosphating solution with less slag and ash |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111298668.5A CN113881934B (en) | 2021-11-04 | 2021-11-04 | Zinc phosphating solution with less slag and ash |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113881934A true CN113881934A (en) | 2022-01-04 |
CN113881934B CN113881934B (en) | 2023-04-21 |
Family
ID=79016786
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111298668.5A Active CN113881934B (en) | 2021-11-04 | 2021-11-04 | Zinc phosphating solution with less slag and ash |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113881934B (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8919200D0 (en) * | 1988-08-24 | 1989-10-04 | Ardrox Pyrene Ltd | Phosphating process |
SU1520145A1 (en) * | 1988-02-01 | 1989-11-07 | Буйский Химический Завод | Composition for phosphatizing a metal surface |
CN1057681A (en) * | 1991-06-29 | 1992-01-08 | 中科院近代物理研究所新技术实验工厂 | Phosphating solution at room temperature and compound method thereof |
CN102677034A (en) * | 2012-05-25 | 2012-09-19 | 衡阳市金化科技有限公司 | Medium-temperature low-sediment zinc phosphorizing solution |
CN103726039A (en) * | 2013-11-30 | 2014-04-16 | 常熟市东鑫钢管有限公司 | Steel pipe alramenting technology |
CN106906461A (en) * | 2016-04-18 | 2017-06-30 | 佛山瑞箭体育器材有限公司 | A kind of Phosphating Solution and preparation method thereof |
CN107523818A (en) * | 2017-09-19 | 2017-12-29 | 江山海维科技有限公司 | A kind of preparation method of low-temperature metal phosphorizing liquid |
CN107743421A (en) * | 2015-06-11 | 2018-02-27 | 宝洁公司 | Apparatus and method for applying a composition to a surface |
CN108505025A (en) * | 2018-07-03 | 2018-09-07 | 湖南金化科技集团有限公司 | A kind of manganese phosphating liquor and its application |
-
2021
- 2021-11-04 CN CN202111298668.5A patent/CN113881934B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1520145A1 (en) * | 1988-02-01 | 1989-11-07 | Буйский Химический Завод | Composition for phosphatizing a metal surface |
GB8919200D0 (en) * | 1988-08-24 | 1989-10-04 | Ardrox Pyrene Ltd | Phosphating process |
US5152849A (en) * | 1988-08-24 | 1992-10-06 | Metallgesellschaft Aktiengesellschaft | Phosphating process |
CN1057681A (en) * | 1991-06-29 | 1992-01-08 | 中科院近代物理研究所新技术实验工厂 | Phosphating solution at room temperature and compound method thereof |
CN102677034A (en) * | 2012-05-25 | 2012-09-19 | 衡阳市金化科技有限公司 | Medium-temperature low-sediment zinc phosphorizing solution |
CN103726039A (en) * | 2013-11-30 | 2014-04-16 | 常熟市东鑫钢管有限公司 | Steel pipe alramenting technology |
CN107743421A (en) * | 2015-06-11 | 2018-02-27 | 宝洁公司 | Apparatus and method for applying a composition to a surface |
CN106906461A (en) * | 2016-04-18 | 2017-06-30 | 佛山瑞箭体育器材有限公司 | A kind of Phosphating Solution and preparation method thereof |
CN107523818A (en) * | 2017-09-19 | 2017-12-29 | 江山海维科技有限公司 | A kind of preparation method of low-temperature metal phosphorizing liquid |
CN108505025A (en) * | 2018-07-03 | 2018-09-07 | 湖南金化科技集团有限公司 | A kind of manganese phosphating liquor and its application |
Non-Patent Citations (2)
Title |
---|
许峻豪等: "高温锰系磷化液中络合稳定剂的研究" * |
雷作鍼等编译, 机械工业出版社 * |
Also Published As
Publication number | Publication date |
---|---|
CN113881934B (en) | 2023-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102002698A (en) | Anti-rust treating agent for nickel-plated battery steel shell and using method thereof | |
CN101205609B (en) | Composition for magnesium alloy surface activation | |
KR101355863B1 (en) | Neutral detergent and how to configure a process at the continuous painting line | |
CN104562042A (en) | Efficient and environment-friendly molybdenum-series steel corrosion inhibitor in running water medium | |
CN107904605A (en) | A kind of environment-friendly type acid pickling and rust removing antirust agent | |
JP5309651B2 (en) | Surface-treated steel sheet and manufacturing method thereof | |
CN112342537A (en) | Neutral environment-friendly stainless steel passivator and preparation method thereof | |
CN113881934A (en) | Zinc-based phosphating solution with less slag and ash | |
CN114075663B (en) | Water-based treating agent for carbon steel surface, well corrosion-resistant carbon steel and preparation method thereof | |
CN103243321B (en) | Phosphating solution for oil casing couplings | |
CN110759491A (en) | Compound scale and corrosion inhibitor and preparation method and application thereof | |
CN113789507A (en) | Zinc-calcium-manganese phosphating solution and preparation method thereof | |
CN114657545A (en) | Ecological descaling type rapid sedimentation passivation solution and preparation process thereof | |
CN103468350A (en) | Phosphated metal rust-proof oil and preparation method thereof | |
CN111172523A (en) | Water-based rust converting agent and preparation method and technology thereof | |
JP5114850B2 (en) | Cold rolled steel sheet and method for producing the same | |
CN110872152B (en) | Composite scale inhibitor for blast furnace gas washing water and preparation and use methods thereof | |
CN113755844A (en) | Vapor phase corrosion inhibitor suitable for carbon steel in marine atmospheric environment and preparation method thereof | |
CN114107971A (en) | Polyaniline type normal-temperature blackening agent and preparation method and application thereof | |
CN106435549A (en) | Steel and iron surface passivating treatment liquid | |
JP5114834B2 (en) | Cold rolled steel sheet and method for producing the same | |
CN104451720A (en) | Surface cleaning agent for sensor zinc-plating shell | |
CN112375613A (en) | Preparation method of environment-friendly water-based temporary antirust agent used after pickling of ESP strip steel | |
CN112301340B (en) | Stainless steel passivation solution and method for improving corrosion resistance of stainless steel wire drawing floor drain | |
CN108468021A (en) | A kind of anti-oxidation treatment process of metal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |