[go: up one dir, main page]

CN113871461B - Superlattice VLSI - Google Patents

Superlattice VLSI Download PDF

Info

Publication number
CN113871461B
CN113871461B CN202111131224.2A CN202111131224A CN113871461B CN 113871461 B CN113871461 B CN 113871461B CN 202111131224 A CN202111131224 A CN 202111131224A CN 113871461 B CN113871461 B CN 113871461B
Authority
CN
China
Prior art keywords
layer
superlattice
type
ohmic contact
twenty
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111131224.2A
Other languages
Chinese (zh)
Other versions
CN113871461A (en
Inventor
林和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202111131224.2A priority Critical patent/CN113871461B/en
Publication of CN113871461A publication Critical patent/CN113871461A/en
Application granted granted Critical
Publication of CN113871461B publication Critical patent/CN113871461B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/81Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials of structures exhibiting quantum-confinement effects, e.g. single quantum wells; of structures having periodic or quasi-periodic potential variation
    • H10D62/815Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials of structures exhibiting quantum-confinement effects, e.g. single quantum wells; of structures having periodic or quasi-periodic potential variation of structures having periodic or quasi-periodic potential variation, e.g. superlattices or multiple quantum wells [MQW]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D1/00Resistors, capacitors or inductors
    • H10D1/40Resistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D1/00Resistors, capacitors or inductors
    • H10D1/40Resistors
    • H10D1/43Resistors having PN junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D1/00Resistors, capacitors or inductors
    • H10D1/60Capacitors
    • H10D1/62Capacitors having potential barriers
    • H10D1/64Variable-capacitance diodes, e.g. varactors 
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D10/00Bipolar junction transistors [BJT]
    • H10D10/40Vertical BJTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D10/00Bipolar junction transistors [BJT]
    • H10D10/60Lateral BJTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/701IGFETs having ferroelectric gate insulators, e.g. ferroelectric FETs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/81Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials of structures exhibiting quantum-confinement effects, e.g. single quantum wells; of structures having periodic or quasi-periodic potential variation
    • H10D62/815Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials of structures exhibiting quantum-confinement effects, e.g. single quantum wells; of structures having periodic or quasi-periodic potential variation of structures having periodic or quasi-periodic potential variation, e.g. superlattices or multiple quantum wells [MQW]
    • H10D62/8171Doping structures, e.g. doping superlattices or nipi superlattices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D89/00Aspects of integrated devices not covered by groups H10D84/00 - H10D88/00
    • H10D89/10Integrated device layouts

Landscapes

  • Bipolar Transistors (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

本发明提供了一种超晶格超大规模集成电路,包括:衬底;过渡层,设置在所述衬底上方;元器件层,设置在所述过渡层上方,元器件层为利用基于超晶格集成电路二维电子气与二维空穴气的特殊性能设计的器件来构建超晶格集成电路。在过渡层上方利用基于超晶格集成电路二维电子气与二维空穴气的特殊性能设计的器件来构建超晶格集成电路,设计成超晶格超大规模集成电路(MDMFSL‑ULSI:Multi‑Dimension Multi‑Functional Superlattice Ultra‑Large Scale Integrated Circuit)是以二维电子气与二维空穴气超晶格与量子井为基础并具有超高速高可靠抗辐射抗高低温等特征,而且设计效率高,制造工艺周期短,成本低,将极大地改进以上传统硅与化合物集成电路的不足之处。

The invention provides a superlattice ultra-large-scale integrated circuit, which includes: a substrate; a transition layer, which is arranged above the substrate; and a component layer, which is arranged above the transition layer. The component layer is based on supercrystalline Superlattice integrated circuits can be constructed by designing devices based on the special properties of two-dimensional electron gas and two-dimensional hole gas in lattice integrated circuits. Above the transition layer, devices designed based on the special properties of the two-dimensional electron gas and two-dimensional hole gas of the superlattice integrated circuit are used to construct the superlattice integrated circuit, and the design is called a superlattice ultra-large-scale integrated circuit (MDMFSL‑ULSI:Multi ‑Dimension Multi‑Functional Superlattice Ultra‑Large Scale Integrated Circuit) is based on two-dimensional electron gas and two-dimensional hole gas superlattice and quantum well and has the characteristics of ultra-high speed, high reliability, radiation resistance, high and low temperature resistance, and design efficiency High, short manufacturing process cycle and low cost will greatly improve the above shortcomings of traditional silicon and compound integrated circuits.

Description

超晶格超大规模集成电路Superlattice VLSI

技术领域Technical field

本发明涉及集成电路技术领域,特别涉及一种超晶格超大规模集成电路。The present invention relates to the technical field of integrated circuits, and in particular to a superlattice ultra-large-scale integrated circuit.

背景技术Background technique

目前,以硅材料为基础的超大规模集成电路元器件与工艺已经接近量子极限,不仅是器件性能受到限制,而且制造工艺十分复杂并且造价高昂。高速发展的大数据,人工智能及全面数据化智能化市场急需高可靠并具有可接受成本的新型超大规模集成电路。更重要的是硅超大规模集成电路元器件已经越来越难以满足人工智能及太空时代对超高速,抗高低温,抗辐射等特殊要求。At present, very large-scale integrated circuit components and processes based on silicon materials are approaching the quantum limit. Not only are device performance limited, but the manufacturing process is also very complex and expensive. The rapidly developing big data, artificial intelligence and comprehensive digital intelligence markets are in urgent need of new VLSI circuits with high reliability and acceptable cost. What's more important is that silicon VLSI components have become increasingly difficult to meet the special requirements of artificial intelligence and the space age for ultra-high speed, high and low temperature resistance, and radiation resistance.

发明内容Contents of the invention

本发明提供一种超晶格超大规模集成电路(MDMFSL-ULSI: Multi-DimensionMulti-Functional Superlattice Ultra-Large Scale Integrated Circuit)是以二维电子气与二维空穴气超晶格与量子阱为基础并具有超高速高可靠抗辐射抗高低温等特征,而且设计效率高,制造工艺周期短,成本低,将极大地改进以上传统硅与化合物集成电路的不足之处。The invention provides a superlattice ultra-large scale integrated circuit (MDMFSL-ULSI: Multi-DimensionMulti-Functional Superlattice Ultra-Large Scale Integrated Circuit) which is based on two-dimensional electron gas and two-dimensional hole gas superlattice and quantum wells. It has the characteristics of ultra-high speed, high reliability, radiation resistance and high and low temperature resistance, high design efficiency, short manufacturing process cycle and low cost, which will greatly improve the above shortcomings of traditional silicon and compound integrated circuits.

本发明提供一种超晶格超大规模集成电路,包括:The invention provides a superlattice ultra-large-scale integrated circuit, which includes:

衬底;substrate;

过渡层,设置在所述衬底上方;a transition layer disposed above the substrate;

元器件层,设置在所述过度层上方,元器件层为利用基于超晶格集成电路二维电子气与二维空穴气的特殊性能设计的器件来构建超晶格集成电路。其中, 元器件层既可用同质超晶格层构造,如本征氮化镓(GaN),N型氮化镓(GaN),P型氮化镓(GaN)等,也可用采用异质超晶格层构造,如本征氮铝化镓Ga(x)Al(1-x)N,N型氮铝化镓Ga(x)Al(1-x)N,P型氮铝化镓Ga(x)Al(1-x)N等。The component layer is arranged above the transition layer. The component layer is a device designed based on the special properties of the two-dimensional electron gas and the two-dimensional hole gas of the superlattice integrated circuit to construct the superlattice integrated circuit. Among them, the component layer can be constructed with either a homogeneous superlattice layer, such as intrinsic gallium nitride (GaN), N-type gallium nitride (GaN), P-type gallium nitride (GaN), etc., or a heterogeneous superlattice layer. Lattice layer structure, such as intrinsic gallium aluminum nitride Ga(x)Al(1-x)N, N-type gallium aluminum nitride Ga(x)Al(1-x)N, P-type gallium aluminum nitride Ga( x)Al(1-x)N etc.

在一个实施例中,衬底采用硅,锗或化合物半导体。In one embodiment, the substrate is silicon, germanium or a compound semiconductor.

在一个实施例中,过渡层采用二氧化硅、氮化硅和化合物半导体层其中一种。In one embodiment, the transition layer uses one of silicon dioxide, silicon nitride, and a compound semiconductor layer.

在一个实施例中,元器件层为利用基于超晶格集成电路二维电子气与二维空穴气的特殊性能设计的器件来构建超晶格集成电路。In one embodiment, the component layer is a superlattice integrated circuit constructed using devices designed based on the special properties of the two-dimensional electron gas and the two-dimensional hole gas of the superlattice integrated circuit.

在一个实施例中,基于超晶格集成电路二维电子气与二维空穴气的特殊性能设计的器件包括P型超晶格场效应晶体管、N型超晶格场效应晶体管、NPN型超晶格双极型晶体管、PNP型超晶格双极型晶体管、超晶格闪存存储器、超晶格电容与变容器、超晶格电阻与变阻器和超晶格电感与变感器其中一种或多种结合。In one embodiment, devices designed based on the special properties of two-dimensional electron gas and two-dimensional hole gas in superlattice integrated circuits include P-type superlattice field-effect transistors, N-type superlattice field-effect transistors, and NPN-type superlattice field-effect transistors. One or Various combinations.

在一个实施例中,衬底底部均匀分布有多个通孔。In one embodiment, a plurality of through holes are evenly distributed on the bottom of the substrate.

超晶格超大规模集成电路的多维结构将按照器件性能的需要以沟道绝缘层隔离每一个特殊功能块并采用特殊工艺(如离子注入及快速高温热退火等工艺)以形成多个载流子(电子或空穴)通道。The multi-dimensional structure of the superlattice VLSI circuit will isolate each special functional block with a channel insulating layer according to the needs of device performance and use special processes (such as ion implantation and rapid high-temperature thermal annealing) to form multiple carriers (electron or hole) channel.

在一个实施例中,N型超晶格场效应晶体管包括:In one embodiment, the N-type superlattice field effect transistor includes:

第一超晶格本征层,设置于所述过渡层上方;A first superlattice intrinsic layer is provided above the transition layer;

超晶格N-型层,设置在所述第一超晶格本征层上方;A superlattice N-type layer disposed above the first superlattice intrinsic layer;

第二超晶格本征层,设置在所述超晶格N-型层的上方;A second superlattice intrinsic layer is disposed above the superlattice N-type layer;

第一超晶格P型层,设置在所述第二超晶格本征层上方;A first superlattice P-type layer is disposed above the second superlattice intrinsic layer;

第一栅极绝缘层,设置在所述第一超晶格P型层的上方;A first gate insulating layer disposed above the first superlattice P-type layer;

第一N+导电层,从所述第一超晶格P型层的上表面并向垂直于所述第一超晶格P型层的方向向下贯穿至所述第一超晶格本征层的下表面;The first N+ conductive layer penetrates from the upper surface of the first superlattice P-type layer and downward to the first superlattice intrinsic layer in a direction perpendicular to the first superlattice P-type layer. the lower surface;

第一沟道绝缘层,为环形,从所述第一超晶格P型层的上表面并向垂直于所述第一超晶格P型层的方向向下贯穿至所述第一超晶格本征层的下表面,所述第一N+导电层设置在所述第一沟道绝缘层内;The first channel insulating layer is annular, penetrating from the upper surface of the first superlattice P-type layer and downward to the first superlattice P-type layer in a direction perpendicular to the first superlattice P-type layer. The lower surface of the lattice intrinsic layer, the first N+ conductive layer is disposed in the first channel insulating layer;

第一欧姆接触层,设置在所述第一N+导电层上方并与所述第一N+导电层接触;A first ohmic contact layer disposed above the first N+ conductive layer and in contact with the first N+ conductive layer;

第二欧姆接触层,设置在所述第一栅极绝缘层上方并与所述第一栅极绝缘层接触,a second ohmic contact layer disposed above the first gate insulating layer and in contact with the first gate insulating layer,

第一介电保护层,设置在所述第一欧姆接触层和第二欧姆接触层之间;A first dielectric protective layer disposed between the first ohmic contact layer and the second ohmic contact layer;

第二介电保护层,设置所述第一欧姆接触层外侧。A second dielectric protective layer is provided outside the first ohmic contact layer.

上述器件构造仅是N型超晶格场效应晶体管多种组合中的一种简单组合。The above device structure is only a simple combination among various combinations of N-type superlattice field effect transistors.

在一个实施例中,P型超晶格场效应晶体管包括:In one embodiment, a P-type superlattice field effect transistor includes:

第三超晶格本征层,设置于所述过渡层上方;A third superlattice intrinsic layer is provided above the transition layer;

超晶格P-型层,设置在所述第三超晶格本征层上方;A superlattice P-type layer disposed above the third superlattice intrinsic layer;

第四超晶格本征层,设置在所述超晶格P-型层的上方;A fourth superlattice intrinsic layer is provided above the superlattice P-type layer;

第一超晶格N型层,设置在所述第四超晶格本征层上方;The first superlattice N-type layer is disposed above the fourth superlattice intrinsic layer;

第二栅极绝缘层,设置在所述第一超晶格N型层的上方;A second gate insulating layer disposed above the first superlattice N-type layer;

第一P+导电层,从所述第一超晶格N型层的上表面并向垂直于所述第一超晶格N型层的方向向下贯穿至所述第三超晶格本征层的下表面;The first P+ conductive layer penetrates from the upper surface of the first superlattice N-type layer downward to the third superlattice intrinsic layer in a direction perpendicular to the first superlattice N-type layer. the lower surface;

第二沟道绝缘层,为器件隔离所需形状,包括:矩形、环形,等闭合形状。从所述第一超晶格N型层的上表面并向垂直于所述第一超晶格N型层的方向向下贯穿至所述第三超晶格本征层的下表面,所述第一P+导电层设置在所述第二沟道绝缘层内;The second channel insulating layer has the shape required for device isolation, including: rectangular, ring, and other closed shapes. From the upper surface of the first superlattice N-type layer and downward in a direction perpendicular to the first superlattice N-type layer to the lower surface of the third superlattice intrinsic layer, the The first P+ conductive layer is disposed in the second channel insulating layer;

第三欧姆接触层,设置在所述第一P+导电层上方并与所述第一P+导电层接触;A third ohmic contact layer is disposed above the first P+ conductive layer and in contact with the first P+ conductive layer;

第四欧姆接触层,设置在所述第二栅极绝缘层上方并与所述第二栅极绝缘层接触,a fourth ohmic contact layer disposed above the second gate insulating layer and in contact with the second gate insulating layer,

第三介电保护层,设置在所述第三欧姆接触层和第四欧姆接触层之间;A third dielectric protective layer disposed between the third ohmic contact layer and the fourth ohmic contact layer;

第四介电保护层,设置所述第三欧姆接触层外侧。A fourth dielectric protective layer is provided outside the third ohmic contact layer.

以上器件构造仅是P型超晶格场效应晶体管多种组合中的一种简单组合。The above device structure is only a simple combination among the various combinations of P-type superlattice field effect transistors.

在一个实施例中,PNP型超晶格双极晶体管分为超晶格平面型P-N-P双极晶体管和超晶格垂直型P-N-P双极晶体管;In one embodiment, PNP superlattice bipolar transistors are divided into superlattice planar P-N-P bipolar transistors and superlattice vertical P-N-P bipolar transistors;

其中,超晶格垂直型P-N-P双极晶体管包括:Among them, superlattice vertical P-N-P bipolar transistors include:

超晶格集电极P型层,设置在所述过渡层上方;A superlattice collector P-type layer is provided above the transition layer;

超晶格基极N型层,设置在所述超晶格集电极P型层上方;A superlattice base N-type layer is arranged above the superlattice collector P-type layer;

超晶格发射极P型层,设置在所述超晶格基极N型层上方;A superlattice emitter P-type layer is arranged above the superlattice base N-type layer;

第二P+导电层和第二N+导电层,从所述超晶格发射极P型层的上表面并向垂直于所述超晶格发射极P型层的方向向下贯穿至所述超晶格集电极P型层的下表面;The second P+ conductive layer and the second N+ conductive layer penetrate from the upper surface of the superlattice emitter P-type layer and downward to the superlattice emitter P-type layer in a direction perpendicular to the superlattice emitter P-type layer. The lower surface of the P-type layer of the grid collector;

第三沟道绝缘层,为器件隔离所需形状,如矩形,环形,等;从所述超晶格发射极P型层的上表面并向垂直于所述超晶格发射极P型层的方向向下贯穿至所述超晶格集电极P型层的下表面,所述第二P+导电层和第二N+导电层设置在所述第三沟道绝缘层内;The third channel insulating layer has the shape required for device isolation, such as rectangle, ring, etc.; from the upper surface of the superlattice emitter P-type layer to the direction perpendicular to the superlattice emitter P-type layer The direction penetrates downward to the lower surface of the P-type layer of the superlattice collector, and the second P+ conductive layer and the second N+ conductive layer are provided in the third channel insulating layer;

第五欧姆接触层,设置在所述第二P+导电层上方并与所述第二P+导电层接触;A fifth ohmic contact layer is disposed above the second P+ conductive layer and in contact with the second P+ conductive layer;

第六欧姆接触层,设置在所述第二N+导电层上方并与所述第二N+导电层接触;a sixth ohmic contact layer disposed above the second N+ conductive layer and in contact with the second N+ conductive layer;

第七欧姆接触层,设置在所述超晶格发射极P型层上方并与所述超晶格发射极P型层接触,a seventh ohmic contact layer disposed above the superlattice emitter P-type layer and in contact with the superlattice emitter P-type layer,

第五介电保护层,设置在所述第七欧姆接触层和第五欧姆接触层、所述第七欧姆接触层和第六欧姆接触层之间;A fifth dielectric protective layer, disposed between the seventh ohmic contact layer and the fifth ohmic contact layer, and the seventh ohmic contact layer and the sixth ohmic contact layer;

第六介电保护层,设置所述第五欧姆接触层、第六欧姆接触层外侧。A sixth dielectric protective layer is provided outside the fifth ohmic contact layer and the sixth ohmic contact layer.

第七介电保护层,设置在所述超晶格发射极P型层和所述第二N+导电层、所述超晶格发射极P型层和所述第二P+导电层之间;A seventh dielectric protective layer, disposed between the superlattice emitter P-type layer and the second N+ conductive layer, the superlattice emitter P-type layer and the second P+ conductive layer;

其中,超晶格平面型P-N-P双极晶体管包括:Among them, superlattice planar P-N-P bipolar transistors include:

超晶格平面型P-N-P双极晶体管包括:Superlattice planar P-N-P bipolar transistors include:

超晶格发射极P型区,为圆柱型,设置在所述过渡层上方;The superlattice emitter P-type region is cylindrical and is arranged above the transition layer;

超晶格基极N型区46,为环形,设置在所述过渡层上方且套设在所述超晶格发射极P型区外侧;The superlattice base N-type region 46 is annular, arranged above the transition layer and sleeved outside the superlattice emitter P-type region;

超晶格集电极P型区,为环形,设置在所述过渡层上方且套设在设置在所述超晶格基极N型区46外侧;The superlattice collector P-type region is annular, arranged above the transition layer and nested outside the superlattice base N-type region 46;

第四沟道绝缘层,为环形,套设在设置在所述超晶格基极P型区外侧,并且,所述第四沟道绝缘层设置在所述过渡层上方或者设置在所述过渡层上方且贯穿所述过渡层后嵌入所述衬底内;The fourth channel insulating layer is annular and is arranged outside the P-type region of the superlattice base, and the fourth channel insulating layer is arranged above the transition layer or is arranged on the transition layer. above the transition layer and embedded in the substrate after passing through the transition layer;

第八欧姆接触层为圆形,设置在所述超晶格发射极P型区上方并与所述超晶格发射极P型区接触;The eighth ohmic contact layer is circular, disposed above the P-type region of the superlattice emitter and in contact with the P-type region of the superlattice emitter;

第九欧姆接触层为环形,设置在所述超晶格基极N型区46上方并与所述超晶格基极N型区46接触;The ninth ohmic contact layer is annular and is disposed above the superlattice base N-type region 46 and in contact with the superlattice base N-type region 46;

第十欧姆接触层为环形,设置在所述超晶格集电极P型区上方并与所述超晶格集电极P型区接触;The tenth ohmic contact layer is annular, disposed above the P-type region of the superlattice collector and in contact with the P-type region of the superlattice collector;

第八介电保护层,为环形,设置在所述第八欧姆接触层和第九欧姆接触层之间;An eighth dielectric protective layer is annular and is provided between the eighth ohmic contact layer and the ninth ohmic contact layer;

第九介电保护层,为环形,设置所述第九欧姆接触层和第十欧姆接触层之间;A ninth dielectric protective layer is annular and is provided between the ninth ohmic contact layer and the tenth ohmic contact layer;

第十介电保护层,为环形,设置在所述第十欧姆接触层的外侧。The tenth dielectric protection layer is annular and is disposed outside the tenth ohmic contact layer.

在一个实施例中,NPN型超晶格双极晶体管分为超晶格垂直型N-P-N双极晶体管和超晶格平面型N-P-N双极晶体管;In one embodiment, NPN superlattice bipolar transistors are divided into superlattice vertical N-P-N bipolar transistors and superlattice planar N-P-N bipolar transistors;

其中,超晶格垂直型N-P-N双极晶体管包括:Among them, superlattice vertical N-P-N bipolar transistors include:

超晶格集电极N型层,设置在所述过渡层上方;A superlattice collector N-type layer is provided above the transition layer;

超晶格基极P型层,设置在所述超晶格集电极N型层上方;A superlattice base P-type layer is arranged above the superlattice collector N-type layer;

超晶格发射极N型层,设置在所述超晶格基极P型层上方;A superlattice emitter N-type layer is arranged above the superlattice base P-type layer;

第三P+导电层和第三N+导电层,从所述超晶格发射极N型层的上表面并向垂直于所述超晶格发射极N型层的方向向下贯穿至所述超晶格集电极N型层的下表面;The third P+ conductive layer and the third N+ conductive layer penetrate from the upper surface of the superlattice emitter N-type layer and downward to the superlattice emitter N-type layer in a direction perpendicular to the superlattice emitter N-type layer. The lower surface of the N-type layer of the grid collector;

第五沟道绝缘层,为器件隔离所需形状,如矩形,环形,等,从所述超晶格发射极N型层的上表面并向垂直于所述超晶格发射极N型层的方向向下贯穿至所述超晶格集电极N型层的下表面,所述第三P+导电层和第三N+导电层设置在所述第五沟道绝缘层内;The fifth channel insulating layer has a shape required for device isolation, such as rectangular, annular, etc., extending from the upper surface of the superlattice emitter N-type layer to the direction perpendicular to the superlattice emitter N-type layer. The direction penetrates downward to the lower surface of the N-type layer of the superlattice collector, and the third P+ conductive layer and the third N+ conductive layer are provided in the fifth channel insulating layer;

第十一欧姆接触层,设置在所述第三P+导电层上方并与所述第三P+导电层接触;An eleventh ohmic contact layer is disposed above the third P+ conductive layer and in contact with the third P+ conductive layer;

第十二欧姆接触层,设置在所述第三N+导电层上方并与所述第三N+导电层接触;A twelfth ohmic contact layer, disposed above the third N+ conductive layer and in contact with the third N+ conductive layer;

第十三欧姆接触层,设置在所述超晶格发射极N型层上方并与所述超晶格发射极N型层接触,a thirteenth ohmic contact layer, disposed above the superlattice emitter N-type layer and in contact with the superlattice emitter N-type layer,

第十一介电保护层,设置在所述第十三欧姆接触层和第十一欧姆接触层、所述第十三欧姆接触层和第十二欧姆接触层之间;An eleventh dielectric protective layer is provided between the thirteenth ohmic contact layer and the eleventh ohmic contact layer, and between the thirteenth ohmic contact layer and the twelfth ohmic contact layer;

第十二介电保护层,设置所述第十一欧姆接触层、第十二欧姆接触层外侧。A twelfth dielectric protective layer is provided outside the eleventh ohmic contact layer and the twelfth ohmic contact layer.

第十三介电保护层,设置在所述超晶格发射极N型层和所述第三N+导电层、所述超晶格发射极N型层和所述第三P+导电层之间;A thirteenth dielectric protective layer, disposed between the superlattice emitter N-type layer and the third N+ conductive layer, the superlattice emitter N-type layer and the third P+ conductive layer;

其中,超晶格平面型N-P-N双极晶体管包括:Among them, superlattice planar N-P-N bipolar transistors include:

超晶格发射极N型区,为圆柱型,设置在所述过渡层上方;The superlattice emitter N-type region is cylindrical and is arranged above the transition layer;

超晶格基极P型区,为环形,设置在所述过渡层上方且套设在所述超晶格发射极N型区外侧;The superlattice base P-type region is annular, arranged above the transition layer and nested outside the superlattice emitter N-type region;

超晶格集电极N型区,为环形,设置在所述过渡层上方且套设在设置在所述超晶格基极P型区外侧;The superlattice collector N-type region is annular, arranged above the transition layer and nested outside the superlattice base P-type region;

第六沟道绝缘层,为环形,套设在设置在所述超晶格集电极N型区外侧,并且,所述第六沟道绝缘层设置在所述过渡层上方或者设置在所述过渡层上方且贯穿所述过渡层后嵌入所述衬底内;The sixth channel insulating layer is annular and is arranged outside the N-type region of the superlattice collector, and the sixth channel insulating layer is arranged above the transition layer or is arranged on the transition layer. above the transition layer and embedded in the substrate after passing through the transition layer;

第十四欧姆接触层为圆形,设置在所述超晶格发射极N型区上方并与所述超晶格发射极N型区接触;The fourteenth ohmic contact layer is circular, disposed above the N-type region of the superlattice emitter and in contact with the N-type region of the superlattice emitter;

第十五欧姆接触层为环形,设置在所述超晶格基极P型区上方并与所述超晶格基极P型区接触;The fifteenth ohmic contact layer is annular, disposed above the P-type region of the superlattice base and in contact with the P-type region of the superlattice base;

第十六欧姆接触层为环形,设置在所述超晶格集电极N型区上方并与所述超晶格集电极N型区接触;The sixteenth ohmic contact layer is annular, disposed above the N-type region of the superlattice collector and in contact with the N-type region of the superlattice collector;

第十四介电保护层,为环形,设置在所述第十四欧姆接触层和第十五欧姆接触层之间;A fourteenth dielectric protective layer is annular and is provided between the fourteenth ohmic contact layer and the fifteenth ohmic contact layer;

第十五介电保护层,为环形,设置所述第十五欧姆接触层和第十六欧姆接触层之间;A fifteenth dielectric protective layer is annular and is disposed between the fifteenth ohmic contact layer and the sixteenth ohmic contact layer;

第十六介电保护层,为环形,设置在所述第十六欧姆接触层的外侧。A sixteenth dielectric protective layer is annular and is disposed outside the sixteenth ohmic contact layer.

在一个实施例中,超晶格电容与变容器包括:In one embodiment, the superlattice capacitor and varactor include:

第五超晶格本征层,设置于所述过渡层上方;A fifth superlattice intrinsic layer is provided above the transition layer;

第二超晶格P型层,设置在所述第五超晶格本征层上方;The second superlattice P-type layer is disposed above the fifth superlattice intrinsic layer;

第六超晶格本征层,设置在所述第二超晶格P型层的上方;A sixth superlattice intrinsic layer is provided above the second superlattice P-type layer;

第一超晶格低阻N型层,设置在所述第六超晶格本征层上方;The first superlattice low-resistance N-type layer is disposed above the sixth superlattice intrinsic layer;

第四P+导电层和第四N+导电层从所述第一超晶格低阻N型层的上表面并向垂直于所述第一超晶格低阻N型层的方向向下贯穿至所述第五超晶格本征层的下表面;The fourth P+ conductive layer and the fourth N+ conductive layer penetrate from the upper surface of the first superlattice low-resistance N-type layer and downward in a direction perpendicular to the first superlattice low-resistance N-type layer. The lower surface of the fifth superlattice intrinsic layer;

第七沟道绝缘层,为器件隔离所需形状,如矩形,环形,等,从所述第一超晶格低阻N型层的上表面并向垂直于所述第一超晶格低阻N型层的方向向下贯穿至所述第五超晶格本征层的下表面,所述第四P+导电层和第四N+导电层设置在所述第七沟道绝缘层内;The seventh channel insulating layer has a shape required for device isolation, such as rectangular, annular, etc., extending from the upper surface of the first superlattice low-resistance N-type layer to perpendicular to the first superlattice low-resistance The direction of the N-type layer penetrates downward to the lower surface of the fifth superlattice intrinsic layer, and the fourth P+ conductive layer and the fourth N+ conductive layer are provided in the seventh channel insulating layer;

第十七欧姆接触层,设置在所述第一超晶格低阻N型层上方并与所述第一超晶格低阻N型层接触;A seventeenth ohmic contact layer, disposed above the first superlattice low-resistance N-type layer and in contact with the first superlattice low-resistance N-type layer;

第十八欧姆接触层,设置在所述第四N+导电层上方并与所述第四N+导电层接触;An eighteenth ohmic contact layer, disposed above the fourth N+ conductive layer and in contact with the fourth N+ conductive layer;

第十九欧姆接触层,设置在所述第四P+导电层上方并与所述第四P+导电层接触;A nineteenth ohmic contact layer is disposed above the fourth P+ conductive layer and in contact with the fourth P+ conductive layer;

第十七介电保护层,设置在所述第十七欧姆接触层和第十八欧姆接触层、第十七欧姆接触层和第十九欧姆接触层之间;A seventeenth dielectric protective layer is provided between the seventeenth ohmic contact layer and the eighteenth ohmic contact layer, the seventeenth ohmic contact layer and the nineteenth ohmic contact layer;

第十八介电保护层,设置所述第十八欧姆接触层、第十九欧姆接触层外侧。An eighteenth dielectric protective layer is provided outside the eighteenth ohmic contact layer and the nineteenth ohmic contact layer.

在一个实施例中,超晶格电阻与变阻器包括:In one embodiment, the superlattice resistor and varistor include:

第七超晶格本征层,设置于所述过渡层上方;A seventh superlattice intrinsic layer is provided above the transition layer;

第三超晶格P型层,设置在所述第七超晶格本征层上方;A third superlattice P-type layer is provided above the seventh superlattice intrinsic layer;

第八超晶格本征层,设置在所述第三超晶格P型层的上方;The eighth superlattice intrinsic layer is provided above the third superlattice P-type layer;

第二超晶格低阻N型层,设置在所述第八超晶格本征层上方;The second superlattice low-resistance N-type layer is disposed above the eighth superlattice intrinsic layer;

第五P+导电层和第五N+导电层从所述第二超晶格低阻N型层的上表面并向垂直于所述第二超晶格低阻N型层的方向向下贯穿至所述第七超晶格本征层的下表面;The fifth P+ conductive layer and the fifth N+ conductive layer penetrate from the upper surface of the second superlattice low-resistance N-type layer and downward to the direction perpendicular to the second superlattice low-resistance N-type layer. The lower surface of the seventh superlattice intrinsic layer;

第八沟道绝缘层,为器件隔离所需形状,如矩形,环形,等,从所述第二超晶格低阻N型层的上表面并向垂直于所述第二超晶格低阻N型层的方向向下贯穿至所述第七超晶格本征层的下表面,所述第五P+导电层和第五N+导电层设置在所述第八沟道绝缘层内;The eighth channel insulating layer has a shape required for device isolation, such as rectangular, annular, etc., extending from the upper surface of the second superlattice low-resistance N-type layer to perpendicular to the second superlattice low-resistance The direction of the N-type layer penetrates downward to the lower surface of the seventh superlattice intrinsic layer, and the fifth P+ conductive layer and the fifth N+ conductive layer are provided in the eighth channel insulating layer;

一个第二十欧姆接触层、一个第二十一欧姆接触层和一个第二十二欧姆接触层为一组,共有两组;A 20th ohm contact layer, a 21st ohm contact layer and a 22nd ohm contact layer are one group, and there are two groups in total;

第二十欧姆接触层,设置在所述第二超晶格低阻N型层上方并与所述第二超晶格低阻N型层接触;A twentieth ohmic contact layer is disposed above the second superlattice low-resistance N-type layer and in contact with the second superlattice low-resistance N-type layer;

第二十一欧姆接触层,设置在所述第五N+导电层上方并与所述第五N+导电层接触;A twenty-first ohmic contact layer is disposed above the fifth N+ conductive layer and in contact with the fifth N+ conductive layer;

第二十二欧姆接触层,设置在所述第五P+导电层上方并与所述第五P+导电层接触;A twenty-second ohmic contact layer is disposed above the fifth P+ conductive layer and in contact with the fifth P+ conductive layer;

第十九介电保护层,设置在所述第二十欧姆接触层和第二十一欧姆接触层、第二十欧姆接触层和第二十二欧姆接触层之间;A nineteenth dielectric protective layer is provided between the twentieth ohmic contact layer and the twenty-first ohmic contact layer, the twentieth ohmic contact layer and the twenty-second ohmic contact layer;

第二十介电保护层,设置所述第二十一欧姆接触层、第二十二欧姆接触层外侧。The twentieth dielectric protective layer is provided outside the twenty-first ohmic contact layer and the twenty-second ohmic contact layer.

在一个实施例中,超晶格电感与变感器包括:In one embodiment, the superlattice inductor and inductor include:

第九超晶格本征层,设置于所述过渡层上方;A ninth superlattice intrinsic layer is provided above the transition layer;

第四超晶格P型层,设置在所述第九超晶格本征层上方;A fourth superlattice P-type layer is provided above the ninth superlattice intrinsic layer;

第十超晶格本征层,设置在所述第四超晶格P型层的上方;The tenth superlattice intrinsic layer is provided above the fourth superlattice P-type layer;

第三超晶格低阻N型层,设置在所述第十超晶格本征层上方;The third superlattice low-resistance N-type layer is provided above the tenth superlattice intrinsic layer;

第六P+导电层和第六N+导电层从所述第三超晶格低阻N型层的上表面并向垂直于所述第三超晶格低阻N型层的方向向下贯穿至所述第九超晶格本征层的下表面;The sixth P+ conductive layer and the sixth N+ conductive layer penetrate from the upper surface of the third superlattice low-resistance N-type layer and downward in a direction perpendicular to the third superlattice low-resistance N-type layer. The lower surface of the ninth superlattice intrinsic layer;

第九沟道绝缘层,为器件隔离所需形状,如矩形,环形,等,从所述第三超晶格低阻N型层的上表面并向垂直于所述第三超晶格低阻N型层的方向向下贯穿至所述第九超晶格本征层的下表面,所述第六P+导电层和第六N+导电层设置在所述第九沟道绝缘层内;The ninth channel insulating layer has a shape required for device isolation, such as rectangular, annular, etc., extending from the upper surface of the third superlattice low-resistance N-type layer to perpendicular to the third superlattice low-resistance The direction of the N-type layer penetrates downward to the lower surface of the ninth superlattice intrinsic layer, and the sixth P+ conductive layer and the sixth N+ conductive layer are provided in the ninth channel insulating layer;

一个第二十三欧姆接触层、一个第二十四欧姆接触层和一个第二十五欧姆接触层为一组,共有两组;A 23rd ohm contact layer, a 24th ohm contact layer and a 25th ohm contact layer are one group, and there are two groups in total;

第二十三欧姆接触层,设置在所述第三超晶格低阻N型层上方并与所述第三超晶格低阻N型层接触;A twenty-third ohmic contact layer is disposed above the third superlattice low-resistance N-type layer and in contact with the third superlattice low-resistance N-type layer;

第二十四欧姆接触层,设置在所述第六N+导电层上方并与所述第六N+导电层接触;A twenty-fourth ohmic contact layer is disposed above the sixth N+ conductive layer and in contact with the sixth N+ conductive layer;

第二十五欧姆接触层,设置在所述第六P+导电层上方并与所述第六P+导电层接触;A twenty-fifth ohmic contact layer is disposed above the sixth P+ conductive layer and in contact with the sixth P+ conductive layer;

第二十一介电保护层,设置在所述第二十三欧姆接触层和第二十四欧姆接触层、第二十三欧姆接触层和第二十四欧姆接触层之间;A twenty-first dielectric protective layer is provided between the twenty-third ohmic contact layer and the twenty-fourth ohmic contact layer, and between the twenty-third ohmic contact layer and the twenty-fourth ohmic contact layer;

第二十二介电保护层,设置所述第二十四欧姆接触层、第二十五欧姆接触层外侧。A twenty-second dielectric protective layer is provided outside the twenty-fourth ohmic contact layer and the twenty-fifth ohmic contact layer.

在一个实施例中,超晶格闪存存储器包括:包括由掺杂P通道n-i-p-i超晶格场效应铁电晶体管或掺杂N通道n-i-p-i超晶格场效应铁电晶体管;In one embodiment, the superlattice flash memory includes: a doped P-channel n-i-p-i superlattice field-effect ferroelectric transistor or a doped N-channel n-i-p-i superlattice field-effect ferroelectric transistor;

其中,P通道n-i-p-i超晶格场效应铁电晶体管包括:Among them, P-channel n-i-p-i superlattice field effect ferroelectric transistors include:

第十一超晶格本征层,设置于所述过渡层上方;The eleventh superlattice intrinsic layer is provided above the transition layer;

超晶格低阻P-型层,设置在所述第十一超晶格本征层上方;A superlattice low-resistance P-type layer, arranged above the eleventh superlattice intrinsic layer;

第十二超晶格本征层,设置在所述超晶格低阻P-型层的上方;A twelfth superlattice intrinsic layer is provided above the superlattice low-resistance P-type layer;

第二超晶格N型层,设置在所述第十二超晶格本征层上方;A second superlattice N-type layer is provided above the twelfth superlattice intrinsic layer;

第一铁电薄膜层,设置在所述第二超晶格N型层的上方;A first ferroelectric thin film layer disposed above the second superlattice N-type layer;

第七P+导电层,从所述第二超晶格N型层的上表面并向垂直于所述第二超晶格N型层的方向向下贯穿至所述第十一超晶格本征层的下表面;The seventh P+ conductive layer penetrates from the upper surface of the second superlattice N-type layer and downwards in a direction perpendicular to the second superlattice N-type layer to the eleventh superlattice intrinsic the lower surface of the layer;

第十沟道绝缘层,为器件隔离所需形状,如矩形,环形,等,从所述第二超晶格N型层的上表面并向垂直于所述第二超晶格N型层的方向向下贯穿至所述第十一超晶格本征层的下表面,所述第七P+导电层设置在所述第十沟道绝缘层内;The tenth channel insulating layer has a shape required for device isolation, such as rectangular, annular, etc., extending from the upper surface of the second superlattice N-type layer to the direction perpendicular to the second superlattice N-type layer. The direction penetrates downward to the lower surface of the eleventh superlattice intrinsic layer, and the seventh P+ conductive layer is provided in the tenth channel insulating layer;

第二十六欧姆接触层,设置在所述第一铁电薄膜层上方并与所述第一铁电薄膜层接触,A twenty-sixth ohmic contact layer is disposed above the first ferroelectric thin film layer and in contact with the first ferroelectric thin film layer,

第二十七欧姆接触层,设置在所述第七P+导电层上方并与所述第七P+导电层接触;A twenty-seventh ohmic contact layer is disposed above the seventh P+ conductive layer and in contact with the seventh P+ conductive layer;

第二十三介电保护层,设置在所述第二十六欧姆接触层和第二十七欧姆接触层之间;A twenty-third dielectric protective layer is provided between the twenty-sixth ohmic contact layer and the twenty-seventh ohmic contact layer;

第二十四介电保护层,设置所述第二十七欧姆接触层外侧;A twenty-fourth dielectric protective layer is provided outside the twenty-seventh ohmic contact layer;

其中,N通道n-i-p-i超晶格场效应铁电晶体管包括:Among them, N-channel n-i-p-i superlattice field effect ferroelectric transistors include:

第十三超晶格本征层,设置于所述过渡层上方;The thirteenth superlattice intrinsic layer is provided above the transition layer;

超晶格低阻N-型层,设置在所述第十三超晶格本征层上方;A superlattice low-resistance N-type layer, arranged above the thirteenth superlattice intrinsic layer;

第十四超晶格本征层,设置在所述超晶格低阻N-型层的上方;A fourteenth superlattice intrinsic layer, arranged above the superlattice low-resistance N-type layer;

第五超晶格P型层,设置在所述第十四超晶格本征层上方;The fifth superlattice P-type layer is provided above the fourteenth superlattice intrinsic layer;

第二铁电薄膜层,设置在所述第五超晶格P型层的上方;A second ferroelectric thin film layer is disposed above the fifth superlattice P-type layer;

第七N+导电层,从所述第五超晶格P型层的上表面并向垂直于所述第五超晶格P型层的方向向下贯穿至所述第十三超晶格本征层的下表面;The seventh N+ conductive layer penetrates from the upper surface of the fifth superlattice P-type layer and downwards in a direction perpendicular to the fifth superlattice P-type layer to the thirteenth superlattice intrinsic the lower surface of the layer;

第十一沟道绝缘层,为器件隔离所需形状,如矩形,环形,等,从所述第五超晶格P型层的上表面并向垂直于所述第五超晶格P型层的方向向下贯穿至所述第十三超晶格本征层的下表面,所述第七N+导电层设置在所述第十一沟道绝缘层内;The eleventh channel insulating layer has a shape required for device isolation, such as rectangular, annular, etc., extending from the upper surface of the fifth superlattice P-type layer to perpendicular to the fifth superlattice P-type layer. The direction penetrates downward to the lower surface of the thirteenth superlattice intrinsic layer, and the seventh N+ conductive layer is provided in the eleventh channel insulating layer;

第二十八欧姆接触层,设置在所述第二铁电薄膜层上方并与所述第二铁电薄膜层接触,A twenty-eighth ohmic contact layer, disposed above the second ferroelectric thin film layer and in contact with the second ferroelectric thin film layer,

第二十九欧姆接触层,设置在所述第七N+导电层上方并与所述第七N+导电层接触;The twenty-ninth ohmic contact layer is disposed above the seventh N+ conductive layer and in contact with the seventh N+ conductive layer;

第二十五介电保护层,设置在所述第二十八欧姆接触层和第二十九欧姆接触层之间;A twenty-fifth dielectric protective layer is provided between the twenty-eighth ohmic contact layer and the twenty-ninth ohmic contact layer;

第二十六介电保护层,设置所述第二十九欧姆接触层外侧。A twenty-sixth dielectric protective layer is provided outside the twenty-ninth ohmic contact layer.

本超晶格超大规模集成电路具有以下优点:This superlattice VLSI circuit has the following advantages:

1、超高速:比常规大规模集成电路速度高10至数百倍。可达亿兆赫兹(THz)范围。1. Ultra-high speed: 10 to hundreds of times faster than conventional large-scale integrated circuits. Up to the terahertz (THz) range.

2. 可充分利用各种场效应晶体管,双极晶体管(垂直型与平面型)以及特殊功能器件,如:超晶格闪存存储器,超晶格电容与变容器,超晶格电阻与变阻器与超晶格电感与变感器等设计不同的集成电路。2. Can make full use of various field effect transistors, bipolar transistors (vertical and planar) and special functional devices, such as: superlattice flash memory, superlattice capacitors and varactor, superlattice resistors and rheostat and super Integrated circuits with different designs such as lattice inductors and inductors.

3. 高可靠:抗高低温与抗辐射性能大大的优于传统的硅与化合物集成电路。3. High reliability: High and low temperature resistance and radiation resistance are much better than traditional silicon and compound integrated circuits.

4. 设计灵活性:利用超晶格集成电路二维电子气与二维空穴气的特殊性能及特殊器件,可设计制造各种集成电路,如线性集成电路,模拟集成电路,线性与模拟混合集成电路,中央处理器(CPU),等。4. Design flexibility: Utilizing the special properties and special devices of the two-dimensional electron gas and two-dimensional hole gas of superlattice integrated circuits, various integrated circuits can be designed and manufactured, such as linear integrated circuits, analog integrated circuits, and linear and analog hybrids. Integrated circuits, central processing units (CPUs), etc.

5. 工艺简化,生产周期短,成本合理:由于利用了超晶格集成电路二维电子气与二维空穴气的特殊性能来设计工业应用所需的集成电路元器件,工艺步骤可大大简化,如光刻模板数及相应工艺步骤可减少百分之三十,以至生产周期与成本都可大幅度优化。5. Simplified process, short production cycle, and reasonable cost: Because the special properties of the two-dimensional electron gas and two-dimensional hole gas of superlattice integrated circuits are used to design integrated circuit components required for industrial applications, the process steps can be greatly simplified. , for example, the number of photolithography templates and corresponding process steps can be reduced by 30%, so that the production cycle and cost can be greatly optimized.

本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。Additional features and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention. The objectives and other advantages of the invention may be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.

下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。The technical solution of the present invention will be further described in detail below through the accompanying drawings and examples.

附图说明Description of drawings

附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:The drawings are used to provide a further understanding of the present invention and constitute a part of the specification. They are used to explain the present invention together with the embodiments of the present invention and do not constitute a limitation of the present invention. In the attached picture:

图1为本发明实施例中一种超晶格超大规模集成电路的示意图;Figure 1 is a schematic diagram of a superlattice VLSI circuit in an embodiment of the present invention;

图2为本发明实施例中一种N型超晶格场效应晶体管的截面示意图;Figure 2 is a schematic cross-sectional view of an N-type superlattice field effect transistor in an embodiment of the present invention;

图3为本发明实施例中一种P型超晶格场效应晶体管的截面示意图;Figure 3 is a schematic cross-sectional view of a P-type superlattice field effect transistor in an embodiment of the present invention;

图4为本发明实施例中一种超晶格垂直型P-N-P双极晶体管的截面示意图;Figure 4 is a schematic cross-sectional view of a superlattice vertical P-N-P bipolar transistor in an embodiment of the present invention;

图5为本发明实施例中一种超晶格平面型P-N-P双极晶体管的截面示意图;Figure 5 is a schematic cross-sectional view of a superlattice planar P-N-P bipolar transistor in an embodiment of the present invention;

图6为本发明实施例中一种超晶格平面型P-N-P双极晶体管的俯视图;Figure 6 is a top view of a superlattice planar P-N-P bipolar transistor in an embodiment of the present invention;

图7为本发明实施例中一种超晶格垂直型N-P-N双极晶体管的截面示意图;Figure 7 is a schematic cross-sectional view of a superlattice vertical N-P-N bipolar transistor in an embodiment of the present invention;

图8为本发明实施例中一种超晶格平面型N-P-N双极晶体管的截面示意图;Figure 8 is a schematic cross-sectional view of a superlattice planar N-P-N bipolar transistor in an embodiment of the present invention;

图9为本发明实施例中一种超晶格平面型N-P-N双极晶体管的俯视图;Figure 9 is a top view of a superlattice planar N-P-N bipolar transistor in an embodiment of the present invention;

图10为本发明实施例中一种超晶格电容与变容器的截面示意图;Figure 10 is a schematic cross-sectional view of a superlattice capacitor and a varactor in an embodiment of the present invention;

图11为本发明实施例中一种超晶格电阻与变阻器的截面示意图;Figure 11 is a schematic cross-sectional view of a superlattice resistor and a varistor in an embodiment of the present invention;

图12为本发明实施例中一种超晶格电阻与变阻器的俯视图;Figure 12 is a top view of a superlattice resistor and a varistor in an embodiment of the present invention;

图13为本发明实施例中一种超晶格电感与变感器的截面示意图;Figure 13 is a schematic cross-sectional view of a superlattice inductor and transformer in an embodiment of the present invention;

图14为本发明实施例中一种超晶格电感与变感器的俯视图;Figure 14 is a top view of a superlattice inductor and transformer in an embodiment of the present invention;

图15为本发明实施例中一种P通道n-i-p-i超晶格场效应铁电晶体管的截面示意图;Figure 15 is a schematic cross-sectional view of a P-channel n-i-p-i superlattice field effect ferroelectric transistor in an embodiment of the present invention;

图16为本发明实施例中一种N通道n-i-p-i超晶格场效应铁电晶体管的截面示意图;Figure 16 is a schematic cross-sectional view of an N-channel n-i-p-i superlattice field effect ferroelectric transistor in an embodiment of the present invention;

图17为本发明实施例中一种自主降温绝缘层的示意图Figure 17 is a schematic diagram of an autonomous cooling insulation layer in an embodiment of the present invention.

图18为本发明实施例中一种隔绝绝缘层的示意图。Figure 18 is a schematic diagram of an isolation insulating layer in an embodiment of the present invention.

具体实施方式Detailed ways

以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。The preferred embodiments of the present invention will be described below with reference to the accompanying drawings. It should be understood that the preferred embodiments described here are only used to illustrate and explain the present invention, and are not intended to limit the present invention.

本发明实施例提供了超晶格超大规模集成电路,如图1所示,包括:Embodiments of the present invention provide a superlattice VLSI circuit, as shown in Figure 1, including:

衬底1;substrate1;

过渡层2,设置在所述衬底1上方;Transition layer 2, arranged above the substrate 1;

元器件层3,设置在所述过度层2上方,元器件层3为利用基于超晶格集成电路二维电子气与二维空穴气的特殊性能设计的器件来构建超晶格集成电路。The component layer 3 is provided above the transition layer 2. The component layer 3 is a device designed based on the special properties of the two-dimensional electron gas and the two-dimensional hole gas of the superlattice integrated circuit to construct the superlattice integrated circuit.

上述超晶格超大规模集成电路的工作原理及有益效果:The working principle and beneficial effects of the above-mentioned superlattice VLSI circuit:

在过渡层上方利用基于超晶格集成电路二维电子气与二维空穴气的特殊性能设计的器件来构建超晶格集成电路,设计成超晶格超大规模集成电路(MDMFSL-ULSI: Multi-Dimension Multi-Functional Superlattice Ultra-Large Scale Integrated Circuit)是以二维电子气与二维空穴气超晶格与量子阱为基础并具有高速高可靠抗辐射抗高低温等特征,而且设计效率高,制造工艺周期短,成本低,将极大地改进以上传统硅与化合物集成电路的不足之处。 Above the transition layer, devices designed based on the special properties of the two-dimensional electron gas and two-dimensional hole gas of the superlattice integrated circuit are used to construct a superlattice integrated circuit, and the design is a superlattice ultra-large-scale integrated circuit (MDMFSL-ULSI: Multi -Dimension Multi-Functional Superlattice Ultra-Large Scale Integrated Circuit) is based on two-dimensional electron gas and two-dimensional hole gas superlattice and quantum well and has the characteristics of high speed, high reliability, radiation resistance, high and low temperature resistance, and high design efficiency , the manufacturing process cycle is short and the cost is low, which will greatly improve the above shortcomings of traditional silicon and compound integrated circuits.

在一个实施例中,衬底采用硅或锗或化合物半导体。In one embodiment, the substrate is silicon or germanium or a compound semiconductor.

在一个实施例中,过渡层采用二氧化硅、氮化硅和化合物半导体层其中一种。In one embodiment, the transition layer uses one of silicon dioxide, silicon nitride, and a compound semiconductor layer.

为实现元器件层构成超晶格超大规模集成电路,在一个实施例中,基于超晶格集成电路二维电子气与二维空穴气的特殊性能设计的器件包括P型超晶格场效应晶体管、N型超晶格场效应晶体管、NPN型超晶格双极晶体管、PNP型超晶格双极晶体管、超晶格闪存存储器、超晶格电容与变容器、超晶格电阻与变阻器和超晶格电感与变感器其中一种或多种结合。In order to realize the component layer to form a superlattice VLSI circuit, in one embodiment, the device designed based on the special properties of the two-dimensional electron gas and the two-dimensional hole gas of the superlattice integrated circuit includes P-type superlattice field effect Transistors, N-type superlattice field effect transistors, NPN-type superlattice bipolar transistors, PNP-type superlattice bipolar transistors, superlattice flash memories, superlattice capacitors and varactors, superlattice resistors and varistors, and Superlattice inductors are combined with one or more types of transformers.

为使散热更加快速,在一个实施例中,衬底底部均匀分布有多个通孔。通过密布的小孔,使电路运行产生的热量更快的散发。In order to dissipate heat more quickly, in one embodiment, a plurality of through holes are evenly distributed on the bottom of the substrate. Through the densely distributed small holes, the heat generated by the circuit operation is dissipated faster.

在一个实施例中,如图2所示,N型超晶格场效应晶体管包括:In one embodiment, as shown in Figure 2, the N-type superlattice field effect transistor includes:

第一超晶格本征层11,设置于所述过渡层2上方;The first superlattice intrinsic layer 11 is provided above the transition layer 2;

超晶格N-型层12,设置在所述第一超晶格本征层11上方;Superlattice N-type layer 12 is provided above the first superlattice intrinsic layer 11;

第二超晶格本征层13,设置在所述超晶格N-型层12的上方;The second superlattice intrinsic layer 13 is provided above the superlattice N-type layer 12;

第一超晶格P型层14,设置在所述第二超晶格本征层13上方;The first superlattice P-type layer 14 is provided above the second superlattice intrinsic layer 13;

第一栅极绝缘层15,设置在所述第一超晶格P型层14的上方;The first gate insulating layer 15 is provided above the first superlattice P-type layer 14;

第一N+导电层20,从所述第一超晶格P型层14的上表面并向垂直于所述第一超晶格P型层14的方向向下贯穿至所述第一超晶格本征层11的下表面;The first N+ conductive layer 20 penetrates from the upper surface of the first superlattice P-type layer 14 downward to the first superlattice in a direction perpendicular to the first superlattice P-type layer 14 The lower surface of the intrinsic layer 11;

第一沟道绝缘层19,为器件隔离所需形状,如矩形,环形,等,从所述第一超晶格P型层14的上表面并向垂直于所述第一超晶格P型层14的方向向下贯穿至所述第一超晶格本征层11的下表面,所述第一N+导电层20设置在所述第一沟道绝缘层19的内侧;The first channel insulating layer 19 has a shape required for device isolation, such as rectangular, annular, etc., extending from the upper surface of the first superlattice P-type layer 14 to perpendicular to the first superlattice P-type layer 14 . The direction of layer 14 penetrates downward to the lower surface of the first superlattice intrinsic layer 11, and the first N+ conductive layer 20 is disposed inside the first channel insulating layer 19;

第一欧姆接触层18,设置在所述第一N+导电层20上方并与所述第一N+导电层20接触;The first ohmic contact layer 18 is disposed above the first N+ conductive layer 20 and in contact with the first N+ conductive layer 20;

第二欧姆接触层17,设置在所述第一栅极绝缘层15上方并与所述第一栅极绝缘层15接触,The second ohmic contact layer 17 is disposed above the first gate insulating layer 15 and in contact with the first gate insulating layer 15,

第一介电保护层16,设置在所述第一欧姆接触层18和第二欧姆接触层17之间;A first dielectric protective layer 16 is provided between the first ohmic contact layer 18 and the second ohmic contact layer 17;

第二介电保护层21,设置所述第一欧姆接触层18外侧。The second dielectric protective layer 21 is provided outside the first ohmic contact layer 18 .

其中,第一N+导电层可以设置为一个环形带状也可以设置为两块或多块独立的其他形状的N+导电层;当第一N+导电层为一个环形带状时,第一欧姆接触层可以同步设置为环形带状,也可以设置为两块或多块独立的其他形状的N+导电层。Wherein, the first N+ conductive layer can be arranged in the shape of an annular strip or can be arranged in two or more independent N+ conductive layers of other shapes; when the first N+ conductive layer is in the shape of an annular strip, the first ohmic contact layer It can be set in an annular strip shape simultaneously, or it can be set as two or more independent N+ conductive layers of other shapes.

上述N型超晶格场效应晶体管的原理及有益效果为:The principles and beneficial effects of the above-mentioned N-type superlattice field effect transistor are:

N型超晶格场效应晶体管由掺杂超晶格的本征层(第一超晶格本征层),掺杂超晶格的N型层(超晶格N-型层),超晶格的本征层(第二超晶格本征层),掺杂超晶格的P型层(第一超晶格P型层),第一N+导电层等组成。为达到集成电路的性能要求,可设计更多层的重复结构,如p-i-n-i-p-i-n-i-p-i。。。。。。,不仅可采用同质超晶格层,如硅,氮化镓(GaN),鉮化镓(GaAs),也可采用异质超晶格层,如氮鉮化镓Ga(x)As(1-x)N,氮铝化镓Ga(x)Al(1-x)N,氮磷化镓Ga(x)Ps(1-x)N,等,利用不同禁带宽度形成特殊量子阱以提升器件性能。用低能离子注入技术形成P+导电层,欧姆电极用等离子体溅射技术形成,但等离子体溅射材料将依据超晶格半导体层的材料而定,如对氮化镓材料,一般可用钛铝合金,等。栅极绝缘层可用氮化硅等。器件之间需要用绝缘层隔离(第一沟道绝缘层)。沟道绝缘层可用特殊沟道离子刻蚀工艺并加上绝缘材料离子溅射而后化学机械抛光形成。沟道绝缘层也可采用离子注入形成PN结型沟道绝缘层,如有需要,可在同一超晶格集成电路上采用多种隔离方式已达到最大性能优化。The N-type superlattice field effect transistor consists of a doped superlattice intrinsic layer (first superlattice intrinsic layer), a doped superlattice N-type layer (superlattice N-type layer), and a supercrystalline It consists of the intrinsic layer of the lattice (the second superlattice intrinsic layer), the P-type layer of the doped superlattice (the first superlattice P-type layer), the first N+ conductive layer, etc. In order to meet the performance requirements of integrated circuits, more layers of repeating structures can be designed, such as p-i-n-i-p-i-n-i-p-i. . . . . . , not only can homogeneous superlattice layers be used, such as silicon, gallium nitride (GaN), gallium arsonide (GaAs), but also heterogeneous superlattice layers, such as gallium nitride Ga(x)As(1 -x)N, gallium aluminum nitride Ga(x)Al(1-x)N, gallium nitride phosphide Ga(x)Ps(1-x)N, etc., use different forbidden band widths to form special quantum wells to improve device performance. The P+ conductive layer is formed using low-energy ion implantation technology, and the ohmic electrode is formed using plasma sputtering technology. However, the plasma sputtering material will depend on the material of the superlattice semiconductor layer. For example, for gallium nitride materials, titanium-aluminum alloy can generally be used. ,wait. The gate insulating layer can be silicon nitride or the like. The devices need to be isolated by an insulating layer (first channel insulating layer). The channel insulating layer can be formed by a special channel ion etching process followed by ion sputtering of insulating material and then chemical mechanical polishing. The channel insulating layer can also be formed by ion implantation to form a PN junction type channel insulating layer. If necessary, multiple isolation methods can be used on the same superlattice integrated circuit to achieve maximum performance optimization.

如图3所示,所述P型超晶格场效应晶体管包括:As shown in Figure 3, the P-type superlattice field effect transistor includes:

第三超晶格本征层22,设置于所述过渡层2上方;The third superlattice intrinsic layer 22 is provided above the transition layer 2;

超晶格P-型层23,设置在所述第三超晶格本征层22上方;Superlattice P-type layer 23 is provided above the third superlattice intrinsic layer 22;

第四超晶格本征层24,设置在所述超晶格P-型层23的上方;The fourth superlattice intrinsic layer 24 is provided above the superlattice P-type layer 23;

第一超晶格N型层25,设置在所述第四超晶格本征层24上方;The first superlattice N-type layer 25 is provided above the fourth superlattice intrinsic layer 24;

第二栅极绝缘层26,设置在所述第一超晶格N型层25的上方;The second gate insulating layer 26 is provided above the first superlattice N-type layer 25;

第一P+导电层27,从所述第一超晶格N型层25的上表面并向垂直于所述第一超晶格N型层25的方向向下贯穿至所述第三超晶格本征层22的下表面;The first P+ conductive layer 27 penetrates from the upper surface of the first superlattice N-type layer 25 downward to the third superlattice in a direction perpendicular to the first superlattice N-type layer 25 the lower surface of intrinsic layer 22;

第二沟道绝缘层28,为矩形或环形,从所述第一超晶格N型层25的上表面并向垂直于所述第一超晶格N型层25的方向向下贯穿至所述第三超晶格本征层22的下表面,所述第一P+导电层27设置在所述第二沟道绝缘层28内;The second channel insulating layer 28 is rectangular or annular, penetrating downward from the upper surface of the first superlattice N-type layer 25 to the direction perpendicular to the first superlattice N-type layer 25 . On the lower surface of the third superlattice intrinsic layer 22, the first P+ conductive layer 27 is provided in the second channel insulating layer 28;

第三欧姆接触层30,设置在所述第一P+导电层27上方并与所述第一P+导电层27接触;The third ohmic contact layer 30 is disposed above the first P+ conductive layer 27 and in contact with the first P+ conductive layer 27;

第四欧姆接触层32,设置在所述第二栅极绝缘层26上方并与所述第二栅极绝缘层26接触,The fourth ohmic contact layer 32 is disposed above the second gate insulating layer 26 and in contact with the second gate insulating layer 26,

第三介电保护层31,设置在所述第三欧姆接触层30和第四欧姆接触层32之间;A third dielectric protective layer 31 is provided between the third ohmic contact layer 30 and the fourth ohmic contact layer 32;

第四介电保护层29,设置所述第三欧姆接触层30外侧。The fourth dielectric protection layer 29 is provided outside the third ohmic contact layer 30 .

上述P型超晶格场效应晶体管的原理及有益效果为:The principles and beneficial effects of the above-mentioned P-type superlattice field effect transistor are:

由掺杂超晶格的本征层(第三超晶格本征层),掺杂超晶格的P型层(超晶格P-型层),超晶格本征层(第四超晶格本征层),掺杂超晶格的N型层(第一超晶格N型层),第一P+导电层等组成。为达到集成电路的性能要求,可设计更多层的重复结构,如n-i-p-i--n-i-p-i-n-i。。。。。。,不仅可采用同质超晶格层,如硅,氮化镓(GaN),鉮化镓(GaAs),也可采用异质超晶格层,如氮鉮化镓Ga(x)As(1-x)N,氮铝化镓Ga(x)Al(1-x)N,氮磷化镓Ga(x)Ps(1-x)N等,利用不同禁带宽度形成特殊量子阱以提升器件性能。用低能离子注入技术形成P+导电层,欧姆电极用等离子体溅射技术形成,但等离子体溅射材料将依据超晶格半导体层的材料而定,如对氮化镓材料,一般可用钛铝合金等。栅极绝缘层可用氮化硅等。器件之间需要用绝缘层隔离。沟道绝缘层可用特殊沟道离子刻蚀工艺并加上绝缘材料离子溅射淀积而后化学机械抛光形成。沟道绝缘层也可采用离子注入形成PN结型沟道绝缘层,如有需要,可在同一超晶格集成电路上采用多种隔离方式以达到最大性能优化。It consists of a doped superlattice intrinsic layer (the third superlattice intrinsic layer), a doped superlattice P-type layer (superlattice P-type layer), and a superlattice intrinsic layer (the fourth superlattice intrinsic layer). It consists of the lattice intrinsic layer), the doped superlattice N-type layer (the first superlattice N-type layer), the first P+ conductive layer, etc. In order to meet the performance requirements of integrated circuits, more layers of repeating structures can be designed, such as n-i-p-i--n-i-p-i-n-i. . . . . . , not only can homogeneous superlattice layers be used, such as silicon, gallium nitride (GaN), gallium arsonide (GaAs), but also heterogeneous superlattice layers, such as gallium nitride Ga(x)As(1 -x)N, gallium aluminum nitride Ga(x)Al(1-x)N, gallium nitride phosphide Ga(x)Ps(1-x)N, etc., use different bandgap widths to form special quantum wells to improve devices performance. The P+ conductive layer is formed using low-energy ion implantation technology, and the ohmic electrode is formed using plasma sputtering technology. However, the plasma sputtering material will depend on the material of the superlattice semiconductor layer. For example, for gallium nitride materials, titanium-aluminum alloy can generally be used. wait. The gate insulating layer can be silicon nitride or the like. Devices need to be separated by an insulating layer. The channel insulating layer can be formed by a special channel ion etching process, ion sputtering deposition of insulating material, and then chemical mechanical polishing. The channel insulating layer can also be formed by ion implantation to form a PN junction type channel insulating layer. If necessary, multiple isolation methods can be used on the same superlattice integrated circuit to achieve maximum performance optimization.

PNP型超晶格双极晶体管分为超晶格平面型P-N-P双极晶体管和超晶格垂直型P-N-P双极晶体管,NPN型超晶格双极晶体管分为超晶格垂直型N-P-N双极晶体管和超晶格平面型N-P-N双极晶体管。PNP superlattice bipolar transistors are divided into superlattice planar P-N-P bipolar transistors and superlattice vertical P-N-P bipolar transistors. NPN superlattice bipolar transistors are divided into superlattice vertical N-P-N bipolar transistors and superlattice vertical N-P-N bipolar transistors. Superlattice planar N-P-N bipolar transistor.

如图4所示,超晶格垂直型P-N-P双极晶体管包括:As shown in Figure 4, superlattice vertical P-N-P bipolar transistors include:

超晶格集电极P型层33,设置在所述过渡层2上方;Superlattice collector P-type layer 33 is provided above the transition layer 2;

超晶格基极N型层34,设置在所述超晶格集电极P型层33上方;The superlattice base N-type layer 34 is provided above the superlattice collector P-type layer 33;

超晶格发射极P型层35,设置在所述超晶格基极N型层34上方;The superlattice emitter P-type layer 35 is provided above the superlattice base N-type layer 34;

第二P+导电层37和第二N+导电层36,从所述超晶格发射极P型层35的上表面并向垂直于所述超晶格发射极P型层35的方向向下贯穿至所述超晶格集电极P型层33的下表面;The second P+ conductive layer 37 and the second N+ conductive layer 36 penetrate from the upper surface of the superlattice emitter P-type layer 35 and downward in a direction perpendicular to the superlattice emitter P-type layer 35. The lower surface of the superlattice collector P-type layer 33;

第三沟道绝缘层38,为矩形或环形,从所述超晶格发射极P型层35的上表面并向垂直于所述超晶格发射极P型层35的方向向下贯穿至所述超晶格集电极P型层33的下表面,所述第二P+导电层37和第二N+导电层36设置在所述第三沟道绝缘层38内;The third channel insulating layer 38 is rectangular or annular, penetrating from the upper surface of the superlattice emitter P-type layer 35 downward to the direction perpendicular to the superlattice emitter P-type layer 35 . On the lower surface of the superlattice collector P-type layer 33, the second P+ conductive layer 37 and the second N+ conductive layer 36 are provided in the third channel insulating layer 38;

第五欧姆接触层39,设置在所述第二P+导电层37上方并与所述第二P+导电层3接触;The fifth ohmic contact layer 39 is disposed above the second P+ conductive layer 37 and in contact with the second P+ conductive layer 3;

第六欧姆接触层40,设置在所述第二N+导电层36上方并与所述第二N+导电层36接触;The sixth ohmic contact layer 40 is disposed above the second N+ conductive layer 36 and in contact with the second N+ conductive layer 36;

第七欧姆接触层41,设置在所述超晶格发射极P型层35上方并与所述超晶格发射极P型层35接触,The seventh ohmic contact layer 41 is disposed above the superlattice emitter P-type layer 35 and in contact with the superlattice emitter P-type layer 35,

第五介电保护层42,设置在所述第七欧姆接触层41和第五欧姆接触层39、所述第七欧姆接触层41和第六欧姆接触层40之间;The fifth dielectric protective layer 42 is disposed between the seventh ohmic contact layer 41 and the fifth ohmic contact layer 39, and the seventh ohmic contact layer 41 and the sixth ohmic contact layer 40;

第六介电保护层43,设置所述第五欧姆接触层39、第六欧姆接触层40外侧。The sixth dielectric protective layer 43 is provided outside the fifth ohmic contact layer 39 and the sixth ohmic contact layer 40 .

第七介电保护层44,设置在所述超晶格发射极P型层35和所述第二N+导电层36、所述超晶格发射极P型层35和所述第二P+导电层37之间。The seventh dielectric protective layer 44 is provided on the superlattice emitter P-type layer 35 and the second N+ conductive layer 36, the superlattice emitter P-type layer 35 and the second P+ conductive layer. between 37.

超晶格垂直型P-N-P双极晶体管由掺杂超晶格的集电极P型层(超晶格集电极P型层),掺杂超晶格的基极N型层(超晶格基极N型层),掺杂超晶格的发射极P型层(超晶格发射极P型层),第二P+导电层及第二N+导电层等组成。为达到双极晶体管集成电路的性能要求,可设计更多层的结构,如p-i-n-i-p。。。。。。,不仅可采用同质超晶格层,如硅,氮化镓(GaN),鉮化镓(GaAs),也可采用异质超晶格层,如氮鉮化镓Ga(x)As(1-x)N,氮铝化镓Ga(x)Al(1-x)N,氮磷化镓Ga(x)Ps(1-x)N,等,利用不同禁带宽度形成特殊量子阱以提升器件性能。用低能离子注入技术分别形成N+以及P+导电层,欧姆电极用等离子体溅射技术形成,但等离子体溅射材料将依据超晶格半导体层的材料而定,如对氮化镓材料,一般可用钛铝合金,等。栅极绝缘层可用氮化硅等。器件之间需要用绝缘层隔离。沟道绝缘层可用特殊沟道离子刻蚀工艺并加上绝缘材料离子溅射而后化学机械抛光形成。沟道绝缘层也可采用离子注入形成PN结型沟道绝缘层,如有需要,可在同一超晶格集成电路上采用多种隔离方式已达到最大性能优化。The superlattice vertical P-N-P bipolar transistor consists of a superlattice-doped collector P-type layer (superlattice collector P-type layer) and a superlattice-doped base N-type layer (superlattice base N-type layer). Type layer), a doped superlattice emitter P-type layer (superlattice emitter P-type layer), a second P+ conductive layer and a second N+ conductive layer. In order to meet the performance requirements of bipolar transistor integrated circuits, more layers of structures can be designed, such as p-i-n-i-p. . . . . . , not only can homogeneous superlattice layers be used, such as silicon, gallium nitride (GaN), gallium arsonide (GaAs), but also heterogeneous superlattice layers, such as gallium nitride Ga(x)As(1 -x)N, gallium aluminum nitride Ga(x)Al(1-x)N, gallium nitride phosphide Ga(x)Ps(1-x)N, etc., use different bandgap widths to form special quantum wells to improve device performance. N+ and P+ conductive layers are formed using low-energy ion implantation technology. The ohmic electrode is formed using plasma sputtering technology. However, the plasma sputtering material will depend on the material of the superlattice semiconductor layer. For example, for gallium nitride materials, it is generally available. Titanium aluminum alloy, etc. The gate insulating layer can be silicon nitride or the like. Devices need to be separated by an insulating layer. The channel insulating layer can be formed by a special channel ion etching process followed by ion sputtering of insulating material and then chemical mechanical polishing. The channel insulating layer can also be formed by ion implantation to form a PN junction type channel insulating layer. If necessary, multiple isolation methods can be used on the same superlattice integrated circuit to achieve maximum performance optimization.

如图5和图6所示,超晶格平面型P-N-P双极晶体管包括:As shown in Figures 5 and 6, superlattice planar P-N-P bipolar transistors include:

超晶格发射极P型区45,为圆柱型,设置在所述过渡层上方;The superlattice emitter P-type region 45 is cylindrical and is arranged above the transition layer;

超晶格基极N型区46,为环形,设置在所述过渡层上方且套设在所述超晶格发射极P型区45外侧;The superlattice base N-type region 46 is annular, arranged above the transition layer and sleeved outside the superlattice emitter P-type region 45;

超晶格集电极P型区47,为环形,设置在所述过渡层上方且套设在设置在所述超晶格基极N型区46外侧;The superlattice collector P-type region 47 is annular, arranged above the transition layer and sleeved outside the superlattice base N-type region 46;

第四沟道绝缘层48,为环形,套设在设置在所述超晶格基极P型区外侧,并且,所述第四沟道绝缘层48设置在所述过渡层上方或者设置在所述过渡层上方且贯穿所述过渡层后嵌入所述衬底内;The fourth channel insulating layer 48 is annular and is arranged outside the P-type region of the superlattice base, and the fourth channel insulating layer 48 is arranged above the transition layer or on the embedded in the substrate above and through the transition layer;

第八欧姆接触层49为圆形,设置在所述超晶格发射极P型区45上方并与所述超晶格发射极P型区45接触;The eighth ohmic contact layer 49 is circular, disposed above the superlattice emitter P-type region 45 and in contact with the superlattice emitter P-type region 45;

第九欧姆接触层51为环形,设置在所述超晶格基极N型区46上方并与所述超晶格基极N型区46接触;The ninth ohmic contact layer 51 is annular and is disposed above the superlattice base N-type region 46 and in contact with the superlattice base N-type region 46;

第十欧姆接触层53为环形,设置在所述超晶格集电极P型区47上方并与所述超晶格集电极P型区47接触;The tenth ohmic contact layer 53 is annular and is disposed above the superlattice collector P-type region 47 and in contact with the superlattice collector P-type region 47;

第八介电保护层50,为环形,设置在所述第八欧姆接触层49和第九欧姆接触层51之间;The eighth dielectric protective layer 50 is annular and is disposed between the eighth ohmic contact layer 49 and the ninth ohmic contact layer 51;

第九介电保护层52,为环形,设置所述第九欧姆接触层51和第十欧姆接触层53之间;The ninth dielectric protective layer 52 is annular and is disposed between the ninth ohmic contact layer 51 and the tenth ohmic contact layer 53;

第十介电保护层54,为环形,设置在所述第十欧姆接触层53的外侧。The tenth dielectric protection layer 54 is annular and is disposed outside the tenth ohmic contact layer 53 .

超晶格平面型P-N-P双极晶体管由掺杂超晶格的集电极P型区(超晶格集电极P型区),掺杂超晶格的基极N型区(超晶格基极N型区46),掺杂超晶格发射极的P型区(超晶格发射极P型区),P型及N型欧姆接触层等组成。为达到双极晶体管集成电路的性能要求,可设计更多层的结构,如p-i-n-i-p。。。。。。,不仅可采用同质超晶格层,如硅,氮化镓(GaN),鉮化镓(GaAs),也可采用异质超晶格层,如氮鉮化镓Ga(x)As(1-x)N,氮铝化镓Ga(x)Al(1-x)N,氮磷化镓Ga(x)Ps(1-x)N,等,利用不同禁带宽度形成特殊量子阱以提升器件性能。用低能离子注入技术分别形成超晶格集电极P型区,掺杂超晶格基极N型区46,掺杂超晶格发射极P型区等。欧姆电极用等离子体溅射技术形成,但等离子体溅射材料将依据超晶格半导体层的材料而定,如对氮化镓材料,一般可用钛铝合金,等。栅极绝缘层可用氮化硅等。器件之间需要用绝缘层隔离。沟道绝缘层可用特殊沟道离子刻蚀工艺并加上绝缘材料离子溅射而后化学机械抛光形成。沟道绝缘层也可采用离子注入形成PN结型沟道绝缘层,如有需要,可在同一超晶格集成电路上采用多种隔离方式已达到最大性能优化。The superlattice planar P-N-P bipolar transistor consists of a superlattice-doped collector P-type region (superlattice collector P-type region) and a superlattice-doped base N-type region (superlattice base N-type region). Type region 46), P-type region doped with superlattice emitter (superlattice emitter P-type region), P-type and N-type ohmic contact layers, etc. In order to meet the performance requirements of bipolar transistor integrated circuits, more layers of structures can be designed, such as p-i-n-i-p. . . . . . , not only can homogeneous superlattice layers be used, such as silicon, gallium nitride (GaN), gallium arsonide (GaAs), but also heterogeneous superlattice layers, such as gallium nitride Ga(x)As(1 -x)N, gallium aluminum nitride Ga(x)Al(1-x)N, gallium nitride phosphide Ga(x)Ps(1-x)N, etc., use different forbidden band widths to form special quantum wells to improve device performance. Low-energy ion implantation technology is used to form the superlattice collector P-type region, the doped superlattice base N-type region 46, the doped superlattice emitter P-type region, and the like. The ohmic electrode is formed by plasma sputtering technology, but the plasma sputtering material will depend on the material of the superlattice semiconductor layer. For example, for gallium nitride materials, titanium-aluminum alloy can generally be used, etc. The gate insulating layer can be silicon nitride or the like. Devices need to be separated by an insulating layer. The channel insulating layer can be formed by a special channel ion etching process followed by ion sputtering of insulating material and then chemical mechanical polishing. The channel insulating layer can also be formed by ion implantation to form a PN junction type channel insulating layer. If necessary, multiple isolation methods can be used on the same superlattice integrated circuit to achieve maximum performance optimization.

如图7所示,超晶格垂直型N-P-N双极晶体管包括:As shown in Figure 7, superlattice vertical N-P-N bipolar transistors include:

超晶格集电极N型层65,设置在所述过渡层2上方;Superlattice collector N-type layer 65 is provided above the transition layer 2;

超晶格基极P型层66,设置在所述超晶格集电极N型层65上方;The superlattice base P-type layer 66 is disposed above the superlattice collector N-type layer 65;

超晶格发射极N型层67,设置在所述超晶格基极P型层66上方;The superlattice emitter N-type layer 67 is provided above the superlattice base P-type layer 66;

第三P+导电层68和第三N+导电层69,从所述超晶格发射极N型层67的上表面并向垂直于所述超晶格发射极N型层67的方向向下贯穿至所述超晶格集电极N型层65的下表面;The third P+ conductive layer 68 and the third N+ conductive layer 69 penetrate from the upper surface of the superlattice emitter N-type layer 67 and downward in a direction perpendicular to the superlattice emitter N-type layer 67. The lower surface of the superlattice collector N-type layer 65;

第五沟道绝缘层70,为环形,从所述超晶格发射极N型层67的上表面并向垂直于所述超晶格发射极N型层67的方向向下贯穿至所述超晶格集电极N型层65的下表面,所述第三P+导电层68和第三N+导电层69设置在所述第五沟道绝缘层70内;The fifth channel insulating layer 70 is annular, penetrating from the upper surface of the superlattice emitter N-type layer 67 and downward to the superlattice emitter N-type layer 67 in a direction perpendicular to the superlattice emitter N-type layer 67 . On the lower surface of the lattice collector N-type layer 65, the third P+ conductive layer 68 and the third N+ conductive layer 69 are provided in the fifth channel insulating layer 70;

第十一欧姆接触层72,设置在所述第三P+导电层68上方并与所述第三P+导电层68接触;The eleventh ohmic contact layer 72 is disposed above the third P+ conductive layer 68 and in contact with the third P+ conductive layer 68;

第十二欧姆接触层71,设置在所述第三N+导电层69上方并与所述第三N+导电层69接触;A twelfth ohmic contact layer 71 is disposed above the third N+ conductive layer 69 and in contact with the third N+ conductive layer 69;

第十三欧姆接触层73,设置在所述超晶格发射极N型层67上方并与所述超晶格发射极N型层67接触,The thirteenth ohmic contact layer 73 is disposed above the superlattice emitter N-type layer 67 and in contact with the superlattice emitter N-type layer 67,

第十一介电保护层74,设置在所述第十三欧姆接触层73和第十一欧姆接触层72、所述第十三欧姆接触层73和第十二欧姆接触层71之间;An eleventh dielectric protective layer 74 is provided between the thirteenth ohmic contact layer 73 and the eleventh ohmic contact layer 72, and between the thirteenth ohmic contact layer 73 and the twelfth ohmic contact layer 71;

第十二介电保护层75,设置所述第十一欧姆接触层72、第十二欧姆接触层71外侧。A twelfth dielectric protective layer 75 is provided outside the eleventh ohmic contact layer 72 and the twelfth ohmic contact layer 71 .

第十三介电保护层76,设置在所述超晶格发射极N型层67和所述第三N+导电层69、所述超晶格发射极N型层67和所述第三P+导电层68之间。The thirteenth dielectric protective layer 76 is provided on the superlattice emitter N-type layer 67 and the third N+ conductive layer 69, the superlattice emitter N-type layer 67 and the third P+ conductive layer. between layers 68.

超晶格垂直型N-P-N双极晶体管由掺杂超晶格的集电极N型层(超晶格集电极N型层),掺杂超晶格的基极P型层(超晶格基极P型层),掺杂超晶格的发射极N型层(超晶格发射极N型层),第三P+导电层及第三N+导电层等组成。为达到双极晶体管集成电路的性能要求,可设计更多层的结构,如n-i-p-i-n。。。。。。,不仅可采用同质超晶格层,如硅,氮化镓(GaN),鉮化镓(GaAs),也可采用异质超晶格层,如氮鉮化镓Ga(x)As(1-x)N,氮铝化镓Ga(x)Al(1-x)N,利用不同禁带宽度形成特殊量子阱以提升器件性能。用低能离子注入技术分别形成N+以及P+导电层,欧姆电极用等离子体溅射技术形成,但等离子体溅射材料将依据超晶格半导体层的材料而定,如对氮化镓材料,一般可用钛铝合金,等。栅极绝缘层可用氮化硅等。器件之间需要用绝缘层隔离。沟道绝缘层可用特殊沟道离子刻蚀工艺并加上绝缘材料离子溅射而后化学机械抛光形成。The superlattice vertical N-P-N bipolar transistor consists of a superlattice-doped collector N-type layer (superlattice collector N-type layer) and a superlattice-doped base P-type layer (superlattice base P-type layer). It is composed of a doped superlattice emitter N-type layer (superlattice emitter N-type layer), a third P+ conductive layer and a third N+ conductive layer. In order to meet the performance requirements of bipolar transistor integrated circuits, more layers of structures can be designed, such as n-i-p-i-n. . . . . . , not only can homogeneous superlattice layers be used, such as silicon, gallium nitride (GaN), gallium arsonide (GaAs), but also heterogeneous superlattice layers, such as gallium nitride Ga(x)As(1 -x)N, gallium aluminum nitride Ga(x)Al(1-x)N, uses different bandgaps to form special quantum wells to improve device performance. N+ and P+ conductive layers are formed using low-energy ion implantation technology. The ohmic electrode is formed using plasma sputtering technology. However, the plasma sputtering material will depend on the material of the superlattice semiconductor layer. For example, for gallium nitride materials, it is generally available. Titanium aluminum alloy, etc. The gate insulating layer can be silicon nitride or the like. Devices need to be separated by an insulating layer. The channel insulating layer can be formed by a special channel ion etching process followed by ion sputtering of insulating material and then chemical mechanical polishing.

沟道绝缘层也可采用离子注入形成PN结型沟道绝缘层,如有需要,可在同一超晶格集成电路上采用多种隔离方式已达到最大性能优化。The channel insulating layer can also be formed by ion implantation to form a PN junction type channel insulating layer. If necessary, multiple isolation methods can be used on the same superlattice integrated circuit to achieve maximum performance optimization.

如图8和图9所示,超晶格平面型N-P-N双极晶体管包括:As shown in Figures 8 and 9, superlattice planar N-P-N bipolar transistors include:

超晶格发射极N型区55,为圆柱型,设置在所述过渡层2上方;The superlattice emitter N-type region 55 is cylindrical and is arranged above the transition layer 2;

超晶格基极P型区56,为环形,设置在所述过渡层2上方且套设在所述超晶格发射极N型区55外侧;The superlattice base P-type region 56 is annular, arranged above the transition layer 2 and nested outside the superlattice emitter N-type region 55;

超晶格集电极N型区57,为环形,设置在所述过渡层2上方且套设在设置在所述超晶格基极P型区56外侧;The superlattice collector N-type region 57 is annular, arranged above the transition layer 2 and nested outside the superlattice base P-type region 56;

第六沟道绝缘层58,为环形,套设在设置在所述超晶格集电极N型区57外侧,并且,所述第六沟道绝缘层58设置在所述过渡层2上方或者设置在所述过渡层2上方且贯穿所述过渡层2后嵌入所述衬底内;The sixth channel insulating layer 58 is annular and is arranged outside the superlattice collector N-type region 57, and the sixth channel insulating layer 58 is arranged above the transition layer 2 or Embedding in the substrate above and through the transition layer 2;

第十四欧姆接触层59为圆形,设置在所述超晶格发射极N型区55上方并与所述超晶格发射极N型区55接触;The fourteenth ohmic contact layer 59 is circular, disposed above the superlattice emitter N-type region 55 and in contact with the superlattice emitter N-type region 55;

第十五欧姆接触层61为环形,设置在所述超晶格基极P型区56上方并与所述超晶格基极P型区56接触;The fifteenth ohmic contact layer 61 is annular and is disposed above the superlattice base P-type region 56 and in contact with the superlattice base P-type region 56;

第十六欧姆接触层63为环形,设置在所述超晶格集电极N型区57上方并与所述超晶格集电极N型区57接触;The sixteenth ohmic contact layer 63 is annular and is disposed above the superlattice collector N-type region 57 and in contact with the superlattice collector N-type region 57;

第十四介电保护层60,为环形,设置在所述第十四欧姆接触层59和第十五欧姆接触层61之间;The fourteenth dielectric protective layer 60 is annular and is disposed between the fourteenth ohmic contact layer 59 and the fifteenth ohmic contact layer 61;

第十五介电保护层62,为环形,设置所述第十五欧姆接触层61和第十六欧姆接触层63之间;The fifteenth dielectric protective layer 62 is annular and is disposed between the fifteenth ohmic contact layer 61 and the sixteenth ohmic contact layer 63;

第十六介电保护层64,为环形,设置在所述第十六欧姆接触层63的外侧。The sixteenth dielectric protection layer 64 is annular and is disposed outside the sixteenth ohmic contact layer 63 .

超晶格平面型N-P-N双极晶体管由掺杂超晶格的集电极N型区(超晶格集电极N型区),掺杂超晶格的基极P型区(超晶格基极P型区),掺杂超晶格的发射极N型区(超晶格发射极N型区),欧姆接触层等组成。为达到双极晶体管集成电路的性能要求,可设计更多层的结构,如n-i-p-i-n。。。。。。,不仅可采用同质超晶格层,如硅,氮化镓(GaN),鉮化镓(GaAs),也可采用异质超晶格层,如氮鉮化镓Ga(x)As(1-x)N,氮铝化镓Ga(x)Al(1-x)N,氮磷化镓Ga(x)Ps(1-x)N等,利用不同禁带宽度形成特殊量子阱以提升器件性能。用低能离子注入技术分别形成超晶格集电极N型区,掺杂超晶格基极P型区,掺杂超晶格发射极N型区,等。欧姆电极用等离子体溅射技术形成,但等离子体溅射材料将依据超晶格半导体层的材料而定,如对氮化镓材料,一般可用钛铝合金,等。栅极绝缘层可用氮化硅等。器件之间需要用绝缘层隔离。沟道绝缘层可用特殊沟道离子刻蚀工艺并加上绝缘材料离子溅射而后化学机械抛光形成。沟道绝缘层也可采用离子注入形成PN结型沟道绝缘层,如有需要,可在同一超晶格集成电路上采用多种隔离方式已达到最大性能优化。The superlattice planar N-P-N bipolar transistor consists of a superlattice-doped collector N-type region (superlattice collector N-type region) and a superlattice base P-type region (superlattice base P-type region). Composed of doped superlattice emitter N-type region (superlattice emitter N-type region), ohmic contact layer, etc. In order to meet the performance requirements of bipolar transistor integrated circuits, more layers of structures can be designed, such as n-i-p-i-n. . . . . . , not only can homogeneous superlattice layers be used, such as silicon, gallium nitride (GaN), gallium arsonide (GaAs), but also heterogeneous superlattice layers, such as gallium nitride Ga(x)As(1 -x)N, gallium aluminum nitride Ga(x)Al(1-x)N, gallium nitride phosphide Ga(x)Ps(1-x)N, etc., use different bandgap widths to form special quantum wells to improve devices performance. Low-energy ion implantation technology is used to form the superlattice collector N-type region, the doped superlattice base P-type region, the doped superlattice emitter N-type region, etc. The ohmic electrode is formed by plasma sputtering technology, but the plasma sputtering material will depend on the material of the superlattice semiconductor layer. For example, for gallium nitride materials, titanium-aluminum alloy can generally be used, etc. The gate insulating layer can be silicon nitride or the like. Devices need to be separated by an insulating layer. The channel insulating layer can be formed by a special channel ion etching process followed by ion sputtering of insulating material and then chemical mechanical polishing. The channel insulating layer can also be formed by ion implantation to form a PN junction type channel insulating layer. If necessary, multiple isolation methods can be used on the same superlattice integrated circuit to achieve maximum performance optimization.

如图10所示,所述超晶格电容与变容器包括:As shown in Figure 10, the superlattice capacitor and varactor include:

第五超晶格本征层77,设置于所述过渡层2上方;The fifth superlattice intrinsic layer 77 is provided above the transition layer 2;

第二超晶格P型层78,设置在所述第五超晶格本征层77上方;The second superlattice P-type layer 78 is provided above the fifth superlattice intrinsic layer 77;

第六超晶格本征层79,设置在所述第二超晶格P型层78的上方;The sixth superlattice intrinsic layer 79 is provided above the second superlattice P-type layer 78;

第一超晶格低阻N型层80,设置在所述第六超晶格本征层79上方;The first superlattice low-resistance N-type layer 80 is provided above the sixth superlattice intrinsic layer 79;

第四P+导电层81和第四N+导电层82从所述第一超晶格低阻N型层80的上表面并向垂直于所述第一超晶格低阻N型层80的方向向下贯穿至所述第五超晶格本征层77的下表面;The fourth P+ conductive layer 81 and the fourth N+ conductive layer 82 extend from the upper surface of the first superlattice low-resistance N-type layer 80 to the direction perpendicular to the first superlattice low-resistance N-type layer 80 . Penetrating downward to the lower surface of the fifth superlattice intrinsic layer 77;

第七沟道绝缘层83,为环形,从所述第一超晶格低阻N型层80的上表面并向垂直于所述第一超晶格低阻N型层80的方向向下贯穿至所述第五超晶格本征层77的下表面,所述第四P+导电层81和第四N+导电层82设置在所述第七沟道绝缘层83内;The seventh channel insulating layer 83 is annular and penetrates downward from the upper surface of the first superlattice low-resistance N-type layer 80 in a direction perpendicular to the first superlattice low-resistance N-type layer 80 To the lower surface of the fifth superlattice intrinsic layer 77, the fourth P+ conductive layer 81 and the fourth N+ conductive layer 82 are provided in the seventh channel insulating layer 83;

第十七欧姆接触层84,设置在所述第一超晶格低阻N型层80上方并与所述第一超晶格低阻N型层80接触;The seventeenth ohmic contact layer 84 is disposed above the first superlattice low-resistance N-type layer 80 and in contact with the first superlattice low-resistance N-type layer 80;

第十八欧姆接触层85,设置在所述第四N+导电层82上方并与所述第四N+导电层82接触;The eighteenth ohmic contact layer 85 is disposed above the fourth N+ conductive layer 82 and in contact with the fourth N+ conductive layer 82;

第十九欧姆接触层86,设置在所述第四P+导电层81上方并与所述第四P+导电层81接触;The nineteenth ohmic contact layer 86 is disposed above the fourth P+ conductive layer 81 and in contact with the fourth P+ conductive layer 81;

第十七介电保护层87,设置在所述第十七欧姆接触层84和第十八欧姆接触层85、第十七欧姆接触层84和第十九欧姆接触层86之间;The seventeenth dielectric protective layer 87 is provided between the seventeenth ohmic contact layer 84 and the eighteenth ohmic contact layer 85, and the seventeenth ohmic contact layer 84 and the nineteenth ohmic contact layer 86;

第十八介电保护层88,设置所述第十八欧姆接触层85、第十九欧姆接触层86外侧。The eighteenth dielectric protection layer 88 is provided outside the eighteenth ohmic contact layer 85 and the nineteenth ohmic contact layer 86 .

超晶格n-i-p-i二极管及PN结电容变容器(超晶格电容与变容器)由超晶格本征层(第五超晶格本征层),掺杂超晶格的基极P型层(第二超晶格P型层),超晶格本征层(第六超晶格本征层),掺杂超晶格的N型层(第一超晶格低阻N型层),第四P+导电层及第四N+导电层等组成。为达到双极晶体管集成电路的性能要求,可设计更多层的结构,如n-i-p-i-n。。。。。。,不仅可采用同质超晶格层,如硅,氮化镓(GaN),鉮化镓(GaAs),也可采用异质超晶格层,如氮鉮化镓Ga(x)As(1-x)N,氮铝化镓Ga(x)Al(1-x)N,氮磷化镓Ga(x)Ps(1-x)N等,利用不同禁带宽度形成特殊量子阱以提升器件性能。用低能离子注入技术分别形成N+以及P+导电层,欧姆电极用等离子体溅射技术形成,但等离子体溅射材料将依据超晶格半导体层的材料而定,如对氮化镓材料,一般可用钛铝合金,等。栅极绝缘层可用氮化硅等。器件之间需要用绝缘层隔离。沟道绝缘层可用特殊沟道离子刻蚀工艺并加上绝缘材料离子溅射而后化学机械抛光形成。沟道绝缘层也可采用离子注入形成PN结型沟道绝缘层,如有需要,可在同一超晶格集成电路上采用多种隔离方式已达到最大性能优化。Superlattice n-i-p-i diodes and PN junction capacitance varactors (superlattice capacitors and varactors) are composed of a superlattice intrinsic layer (the fifth superlattice intrinsic layer) and a base P-type layer doped with the superlattice ( Second superlattice P-type layer), superlattice intrinsic layer (sixth superlattice intrinsic layer), doped superlattice N-type layer (first superlattice low-resistance N-type layer), It is composed of four P+ conductive layers and a fourth N+ conductive layer. In order to meet the performance requirements of bipolar transistor integrated circuits, more layers of structures can be designed, such as n-i-p-i-n. . . . . . , not only can homogeneous superlattice layers be used, such as silicon, gallium nitride (GaN), gallium arsonide (GaAs), but also heterogeneous superlattice layers, such as gallium nitride Ga(x)As(1 -x)N, gallium aluminum nitride Ga(x)Al(1-x)N, gallium nitride phosphide Ga(x)Ps(1-x)N, etc., use different bandgap widths to form special quantum wells to improve devices performance. N+ and P+ conductive layers are formed using low-energy ion implantation technology. The ohmic electrode is formed using plasma sputtering technology. However, the plasma sputtering material will depend on the material of the superlattice semiconductor layer. For example, for gallium nitride materials, it is generally available. Titanium aluminum alloy, etc. The gate insulating layer can be silicon nitride or the like. Devices need to be separated by an insulating layer. The channel insulating layer can be formed by a special channel ion etching process followed by ion sputtering of insulating material and then chemical mechanical polishing. The channel insulating layer can also be formed by ion implantation to form a PN junction type channel insulating layer. If necessary, multiple isolation methods can be used on the same superlattice integrated circuit to achieve maximum performance optimization.

如图11所示,所述超晶格电阻与变阻器包括:As shown in Figure 11, the superlattice resistor and varistor include:

第七超晶格本征层89,设置于所述过渡层2上方;The seventh superlattice intrinsic layer 89 is provided above the transition layer 2;

第三超晶格P型层90,设置在所述第七超晶格本征层89上方;The third superlattice P-type layer 90 is provided above the seventh superlattice intrinsic layer 89;

第八超晶格本征层91,设置在所述第三超晶格P型层90的上方;The eighth superlattice intrinsic layer 91 is provided above the third superlattice P-type layer 90;

第二超晶格低阻N型层92,设置在所述第八超晶格本征层91上方;The second superlattice low-resistance N-type layer 92 is provided above the eighth superlattice intrinsic layer 91;

所述第五P+导电层93和第五N+导电层94从所述第二超晶格低阻N型层92的上表面并向垂直于所述第二超晶格低阻N型层92的方向向下贯穿至所述第七超晶格本征层89的下表面;The fifth P+ conductive layer 93 and the fifth N+ conductive layer 94 extend from the upper surface of the second superlattice low-resistance N-type layer 92 toward the direction perpendicular to the second superlattice low-resistance N-type layer 92 The direction penetrates downward to the lower surface of the seventh superlattice intrinsic layer 89;

第八沟道绝缘层95,为矩形或环形,从所述第二超晶格低阻N型层92的上表面并向垂直于所述第二超晶格低阻N型层92的方向向下贯穿至所述第七超晶格本征层89的下表面,所述第五P+导电层93和第五N+导电层94设置在所述第八沟道绝缘层95内;The eighth channel insulating layer 95 is rectangular or annular, extending from the upper surface of the second superlattice low-resistance N-type layer 92 in a direction perpendicular to the second superlattice low-resistance N-type layer 92 . Penetrating downward to the lower surface of the seventh superlattice intrinsic layer 89, the fifth P+ conductive layer 93 and the fifth N+ conductive layer 94 are provided in the eighth channel insulating layer 95;

一个第二十欧姆接触层96、一个第二十一欧姆接触层97和一个第二十二欧姆接触层98为一组,共有两组;A 20th ohm contact layer 96, a 21st ohm contact layer 97 and a 22nd ohm contact layer 98 are one group, and there are two groups in total;

第二十欧姆接触层96,设置在所述第二超晶格低阻N型层92上方并与所述第二超晶格低阻N型层92接触;The twentieth ohmic contact layer 96 is disposed above the second superlattice low-resistance N-type layer 92 and in contact with the second superlattice low-resistance N-type layer 92;

第二十一欧姆接触层97,设置在所述第五N+导电层94上方并与所述第五N+导电层94接触;The twenty-first ohmic contact layer 97 is disposed above the fifth N+ conductive layer 94 and in contact with the fifth N+ conductive layer 94;

第二十二欧姆接触层98,设置在所述第五P+导电层93上方并与所述第五P+导电层93接触;The twenty-second ohmic contact layer 98 is disposed above the fifth P+ conductive layer 93 and in contact with the fifth P+ conductive layer 93;

第十九介电保护层99,设置在所述第二十欧姆接触层96和第二十一欧姆接触层97、第二十欧姆接触层96和第二十二欧姆接触层98之间;The nineteenth dielectric protective layer 99 is provided between the twentieth ohmic contact layer 96 and the twenty-first ohmic contact layer 97, the twentieth ohmic contact layer 96 and the twenty-second ohmic contact layer 98;

第二十介电保护层100,设置所述第二十一欧姆接触层97、第二十二欧姆接触层98外侧。The twentieth dielectric protective layer 100 is provided outside the twenty-first ohmic contact layer 97 and the twenty-second ohmic contact layer 98 .

如图12所示,在一个实施例中,超晶格电阻与变阻器包括两组第二十欧姆接触层96、第二十一欧姆接触层97和第二十二欧姆接触层98。其中第八沟道绝缘层95为留有工型空缺的环形;在工型空缺的两端分别设置一组第二十欧姆接触层96、第二十一欧姆接触层97和第二十二欧姆接触层98。As shown in FIG. 12 , in one embodiment, the superlattice resistor and varistor includes two groups of 20th ohm contact layer 96 , 21st ohm contact layer 97 and 22nd ohm contact layer 98 . The eighth channel insulating layer 95 is annular with an I-shaped vacancy; a set of 20th ohm contact layer 96, 21st ohm contact layer 97 and 22nd ohm contact layer are respectively provided at both ends of the I-shaped vacancy. Contact layer 98.

超晶格n-i-p-i电阻及变阻器(超晶格电阻与变阻器)由超晶格本征层(第七超晶格本征层),掺杂超晶格的基极P型层(第三超晶格P型层),超晶格本征层(第八超晶格本征层),掺杂超晶格的N型层(第二超晶格低阻N型层),第五P+导电层及第五N+导电层等组成。为达到双极晶体管集成电路的性能要求,可设计更多层的结构,如n-i-p-i-n。。。。。。,不仅可采用同质超晶格层,如硅,氮化镓(GaN),鉮化镓(GaAs),也可采用异质超晶格层,如氮鉮化镓Ga(x)As(1-x)N,氮铝化镓Ga(x)Al(1-x)N,氮磷化镓Ga(x)Ps(1-x)N等,利用不同禁带宽度形成特殊量子阱以提升器件性能。用低能离子注入技术分别形成N+以及P+导电层,欧姆电极用等离子体溅射技术形成,但等离子体溅射材料将依据超晶格半导体层的材料而定,如对氮化镓材料,一般可用钛铝合金,等。栅极绝缘层可用氮化硅等。器件之间需要用绝缘层隔离。沟道绝缘层可用特殊沟道离子刻蚀工艺并加上绝缘材料离子溅射而后化学机械抛光形成。沟道绝缘层也可采用离子注入形成PN结型沟道绝缘层,如有需要,可在同一超晶格集成电路上采用多种隔离方式已达到最大性能优化。Superlattice n-i-p-i resistors and varistors (superlattice resistors and varistors) are composed of a superlattice intrinsic layer (the seventh superlattice intrinsic layer) and a base P-type layer of doped superlattice (the third superlattice P-type layer), superlattice intrinsic layer (eighth superlattice intrinsic layer), doped superlattice N-type layer (second superlattice low-resistance N-type layer), fifth P+ conductive layer and The fifth N+ conductive layer is composed of other components. In order to meet the performance requirements of bipolar transistor integrated circuits, more layers of structures can be designed, such as n-i-p-i-n. . . . . . , not only can homogeneous superlattice layers be used, such as silicon, gallium nitride (GaN), gallium arsonide (GaAs), but also heterogeneous superlattice layers, such as gallium nitride Ga(x)As(1 -x)N, gallium aluminum nitride Ga(x)Al(1-x)N, gallium nitride phosphide Ga(x)Ps(1-x)N, etc., use different bandgap widths to form special quantum wells to improve devices performance. N+ and P+ conductive layers are formed using low-energy ion implantation technology. The ohmic electrode is formed using plasma sputtering technology. However, the plasma sputtering material will depend on the material of the superlattice semiconductor layer. For example, for gallium nitride materials, it is generally available. Titanium aluminum alloy, etc. The gate insulating layer can be silicon nitride or the like. Devices need to be separated by an insulating layer. The channel insulating layer can be formed by a special channel ion etching process followed by ion sputtering of insulating material and then chemical mechanical polishing. The channel insulating layer can also be formed by ion implantation to form a PN junction type channel insulating layer. If necessary, multiple isolation methods can be used on the same superlattice integrated circuit to achieve maximum performance optimization.

如图13所示,所述超晶格电感与变感器包括:As shown in Figure 13, the superlattice inductor and transformer include:

第九超晶格本征层101,设置于所述过渡层2上方;The ninth superlattice intrinsic layer 101 is provided above the transition layer 2;

第四超晶格P型层102,设置在所述第九超晶格本征层101上方;The fourth superlattice P-type layer 102 is provided above the ninth superlattice intrinsic layer 101;

第十超晶格本征层103,设置在所述第四超晶格P型层102的上方;The tenth superlattice intrinsic layer 103 is provided above the fourth superlattice P-type layer 102;

第三超晶格低阻N型层104,设置在所述第十超晶格本征层103上方;The third superlattice low-resistance N-type layer 104 is provided above the tenth superlattice intrinsic layer 103;

所述第六P+导电层105和第六N+导电层106从所述第三超晶格低阻N型层104的上表面并向垂直于所述第三超晶格低阻N型层104的方向向下贯穿至所述第九超晶格本征层101的下表面;The sixth P+ conductive layer 105 and the sixth N+ conductive layer 106 extend from the upper surface of the third superlattice low-resistance N-type layer 104 toward the direction perpendicular to the third superlattice low-resistance N-type layer 104 The direction penetrates downward to the lower surface of the ninth superlattice intrinsic layer 101;

第九沟道绝缘层107,为矩形或环形,从所述第三超晶格低阻N型层104的上表面并向垂直于所述第三超晶格低阻N型层104的方向向下贯穿至所述第九超晶格本征层101的下表面,所述第六P+导电层105和第六N+导电层106设置在所述第九沟道绝缘层107内;The ninth channel insulating layer 107 is rectangular or annular, extending from the upper surface of the third superlattice low-resistance N-type layer 104 to a direction perpendicular to the third superlattice low-resistance N-type layer 104 . Penetrating downward to the lower surface of the ninth superlattice intrinsic layer 101, the sixth P+ conductive layer 105 and the sixth N+ conductive layer 106 are provided in the ninth channel insulating layer 107;

一个第二十三欧姆接触层108、一个第二十四欧姆接触层109和一个第二十五欧姆接触层110为一组,共有两组;A twenty-third ohm contact layer 108, a twenty-fourth ohm contact layer 109 and a twenty-fifth ohm contact layer 110 are one group, and there are two groups in total;

第二十三欧姆接触层108,设置在所述第三超晶格低阻N型层104上方并与所述第三超晶格低阻N型层104接触;The twenty-third ohmic contact layer 108 is disposed above the third superlattice low-resistance N-type layer 104 and in contact with the third superlattice low-resistance N-type layer 104;

第二十四欧姆接触层109,设置在所述第六N+导电层106上方并与所述第六N+导电层106接触;The twenty-fourth ohmic contact layer 109 is disposed above the sixth N+ conductive layer 106 and in contact with the sixth N+ conductive layer 106;

第二十五欧姆接触层110,设置在所述第六P+导电层105上方并与所述第六P+导电层105接触;The twenty-fifth ohmic contact layer 110 is disposed above the sixth P+ conductive layer 105 and in contact with the sixth P+ conductive layer 105;

第二十一介电保护层111,设置在所述第二十三欧姆接触层108和第二十四欧姆接触层109、第二十三欧姆接触层108和第二十四欧姆接触层109之间;The twenty-first dielectric protective layer 111 is provided between the twenty-third ohmic contact layer 108 and the twenty-fourth ohmic contact layer 109, the twenty-third ohmic contact layer 108 and the twenty-fourth ohmic contact layer 109. between;

第二十二介电保护层112,设置所述第二十四欧姆接触层109、第二十五欧姆接触层110外侧。The twenty-second dielectric protective layer 112 is provided outside the twenty-fourth ohmic contact layer 109 and the twenty-fifth ohmic contact layer 110 .

如图14所示,在一个实施例中,超晶格电感与变感器包括两组第二十三欧姆接触层108、第二十四欧姆接触层109和第二十五欧姆接触层110。其中第九沟道绝缘层107为留有S型空缺的环形;在S型空缺的两端分别设置一组第二十三欧姆接触层108、第二十四欧姆接触层109和第二十五欧姆接触层110。As shown in FIG. 14 , in one embodiment, the superlattice inductor and inductor include two sets of twenty-third ohm contact layer 108 , twenty-fourth ohm contact layer 109 , and twenty-fifth ohm contact layer 110 . The ninth channel insulating layer 107 is annular with an S-shaped vacancy; a set of 23rd ohm contact layer 108, 24th ohm contact layer 109 and 25th ohm contact layer are respectively provided at both ends of the S-shaped vacancy. Ohmic contact layer 110 .

超晶格n-i-p-i电感及变感器(超晶格电感与变感器)由超晶格本征层(第九超晶格本征层),掺杂超晶格的基极P型层(第四超晶格P型层),超晶格本征层(第十超晶格本征层),掺杂超晶格的N型层(第三超晶格低阻N型层),第六P+导电层及第六N+导电层等组成。为达到集成电路的性能要求,可设计更多层的结构,如n-i-p-i-n。。。。。。,不仅可采用同质超晶格层,如硅,氮化镓(GaN),鉮化镓(GaAs),也可采用异质超晶格层,如氮鉮化镓Ga(x)As(1-x)N,氮铝化镓Ga(x)Al(1-x)N,氮磷化镓Ga(x)Ps(1-x)N等,利用不同禁带宽度形成特殊量子阱以提升器件性能。用低能离子注入技术分别形成N+以及P+导电层,欧姆电极用等离子体溅射技术形成,但等离子体溅射材料将依据超晶格半导体层的材料而定,如对氮化镓材料,一般可用钛铝合金,等。栅极绝缘层可用氮化硅等。器件之间需要用绝缘层隔离。沟道绝缘层可用特殊沟道离子刻蚀工艺并加上绝缘材料离子溅射而后化学机械抛光形成。沟道绝缘层也可采用离子注入形成PN结型沟道绝缘层,如有需要,可在同一超晶格集成电路上采用多种隔离方式已达到最大性能优化。Superlattice n-i-p-i inductors and inductors (superlattice inductors and inductors) are composed of a superlattice intrinsic layer (the ninth superlattice intrinsic layer) and a base P-type layer doped with the superlattice (the ninth superlattice intrinsic layer). The fourth superlattice P-type layer), the superlattice intrinsic layer (the tenth superlattice intrinsic layer), the doped superlattice N-type layer (the third superlattice low-resistance N-type layer), the sixth It is composed of a P+ conductive layer and a sixth N+ conductive layer. In order to meet the performance requirements of integrated circuits, more layers of structures can be designed, such as n-i-p-i-n. . . . . . , not only can homogeneous superlattice layers be used, such as silicon, gallium nitride (GaN), gallium arsonide (GaAs), but also heterogeneous superlattice layers, such as gallium nitride Ga(x)As(1 -x)N, gallium aluminum nitride Ga(x)Al(1-x)N, gallium nitride phosphide Ga(x)Ps(1-x)N, etc., use different bandgap widths to form special quantum wells to improve devices performance. N+ and P+ conductive layers are formed using low-energy ion implantation technology. The ohmic electrode is formed using plasma sputtering technology. However, the plasma sputtering material will depend on the material of the superlattice semiconductor layer. For example, for gallium nitride materials, it is generally available. Titanium aluminum alloy, etc. The gate insulating layer can be silicon nitride or the like. Devices need to be separated by an insulating layer. The channel insulating layer can be formed by a special channel ion etching process followed by ion sputtering of insulating material and then chemical mechanical polishing. The channel insulating layer can also be formed by ion implantation to form a PN junction type channel insulating layer. If necessary, multiple isolation methods can be used on the same superlattice integrated circuit to achieve maximum performance optimization.

n-i-p-i超晶格闪存存储器(超晶格闪存存储器)包括由掺杂P通道n-i-p-i超晶格场效应铁电晶体管或掺杂N通道n-i-p-i超晶格场效应铁电晶体管。n-i-p-i superlattice flash memory (superlattice flash memory) includes doped P-channel n-i-p-i superlattice field-effect ferroelectric transistors or doped N-channel n-i-p-i superlattice field-effect ferroelectric transistors.

如图15所示,其中P通道n-i-p-i超晶格场效应铁电晶体管包括:As shown in Figure 15, the P-channel n-i-p-i superlattice field effect ferroelectric transistor includes:

第十一超晶格本征层113,设置于所述过渡层2上方;The eleventh superlattice intrinsic layer 113 is provided above the transition layer 2;

超晶格低阻P-型层114,设置在所述第十一超晶格本征层113上方;Superlattice low-resistance P-type layer 114 is provided above the eleventh superlattice intrinsic layer 113;

第十二超晶格本征层115,设置在所述超晶格低阻P-型层114的上方;A twelfth superlattice intrinsic layer 115 is provided above the superlattice low-resistance P-type layer 114;

第二超晶格N型层116,设置在所述第十二超晶格本征层115上方;The second superlattice N-type layer 116 is provided above the twelfth superlattice intrinsic layer 115;

第一铁电薄膜层117,设置在所述第二超晶格N型层116的上方;The first ferroelectric thin film layer 117 is provided above the second superlattice N-type layer 116;

第七P+导电层118,从所述第二超晶格N型层116的上表面并向垂直于所述第二超晶格N型层116的方向向下贯穿至所述第十一超晶格本征层113的下表面;The seventh P+ conductive layer 118 penetrates from the upper surface of the second superlattice N-type layer 116 downward to the eleventh superlattice N-type layer 116 in a direction perpendicular to the second superlattice N-type layer 116 The lower surface of the lattice intrinsic layer 113;

第十沟道绝缘层119,为矩形或环形,从所述第二超晶格N型层116的上表面并向垂直于所述第二超晶格N型层116的方向向下贯穿至所述第十一超晶格本征层113的下表面,所述第七P+导电层118设置在所述第十沟道绝缘层119内;The tenth channel insulating layer 119 is rectangular or annular, penetrating downward from the upper surface of the second superlattice N-type layer 116 to the direction perpendicular to the second superlattice N-type layer 116 . On the lower surface of the eleventh superlattice intrinsic layer 113, the seventh P+ conductive layer 118 is provided in the tenth channel insulating layer 119;

第二十六欧姆接触层120,设置在所述第一铁电薄膜层117上方并与所述第一铁电薄膜层117接触,The twenty-sixth ohmic contact layer 120 is disposed above the first ferroelectric thin film layer 117 and in contact with the first ferroelectric thin film layer 117,

第二十七欧姆接触层121,设置在所述第七P+导电层118上方并与所述第七P+导电层118接触;The twenty-seventh ohmic contact layer 121 is disposed above the seventh P+ conductive layer 118 and in contact with the seventh P+ conductive layer 118;

第二十三介电保护层123,设置在所述第二十六欧姆接触层120和第二十七欧姆接触层121之间;The twenty-third dielectric protective layer 123 is provided between the twenty-sixth ohmic contact layer 120 and the twenty-seventh ohmic contact layer 121;

第二十四介电保护层124,设置所述第二十七欧姆接触层121外侧。The twenty-fourth dielectric protection layer 124 is provided outside the twenty-seventh ohmic contact layer 121 .

掺杂P通道n-i-p-i超晶格场效应铁电晶体管(P通道n-i-p-i超晶格场效应铁电晶体管)由铁电薄膜层,掺杂超晶格的本征层(第十一超晶格本征层),掺杂超晶格的P型层(超晶格低阻P-型层),超晶格本征层(第十二超晶格本征层),掺杂超晶格的N型层(第二超晶格N型层),第七P+导电层等组成。为达到集成电路的性能要求,可设计不同厚度的超晶格薄膜层。不仅可采用同质超晶格层,如硅,氮化镓(GaN),鉮化镓(GaAs),也可采用异质超晶格层,如氮鉮化镓Ga(x)As(1-x)N,氮铝化镓Ga(x)Al(1-x)N,氮磷化镓Ga(x)Ps(1-x)N等,利用不同禁带宽度形成特殊量子阱以提升器件性能。用低能离子注入技术形成P+导电层,欧姆电极用等离子体溅射技术形成,但等离子体溅射材料将依据超晶格半导体层的材料而定,如对氮化镓材料,一般可用钛铝合金,等。栅极绝缘层可用氮化硅等。器件之间需要用绝缘层隔离。沟道绝缘层可用特殊沟道离子刻蚀工艺并加上绝缘材料离子溅射而后化学机械抛光形成。沟道绝缘层也可采用离子注入形成PN结型沟道绝缘层,如有需要,可在同一超晶格集成电路上采用多种隔离方式已达到最大性能优化。Doped P-channel n-i-p-i superlattice field-effect ferroelectric transistor (P-channel n-i-p-i superlattice field-effect ferroelectric transistor) consists of a ferroelectric thin film layer and a doped superlattice intrinsic layer (eleventh superlattice intrinsic layer) layer), doped superlattice P-type layer (superlattice low-resistance P-type layer), superlattice intrinsic layer (twelfth superlattice intrinsic layer), doped superlattice N-type layer layer (the second superlattice N-type layer), the seventh P+ conductive layer, etc. In order to meet the performance requirements of integrated circuits, superlattice thin film layers of different thicknesses can be designed. Not only can homogeneous superlattice layers be used, such as silicon, gallium nitride (GaN), and gallium arsonide (GaAs), but also heterogeneous superlattice layers can be used, such as gallium arsonide nitride Ga(x)As(1- x)N, gallium aluminum nitride Ga(x)Al(1-x)N, gallium nitride phosphide Ga(x)Ps(1-x)N, etc., use different bandgap widths to form special quantum wells to improve device performance . The P+ conductive layer is formed using low-energy ion implantation technology, and the ohmic electrode is formed using plasma sputtering technology. However, the plasma sputtering material will depend on the material of the superlattice semiconductor layer. For example, for gallium nitride materials, titanium-aluminum alloy can generally be used. ,wait. The gate insulating layer can be silicon nitride or the like. Devices need to be separated by an insulating layer. The channel insulating layer can be formed by a special channel ion etching process followed by ion sputtering of insulating material and then chemical mechanical polishing. The channel insulating layer can also be formed by ion implantation to form a PN junction type channel insulating layer. If necessary, multiple isolation methods can be used on the same superlattice integrated circuit to achieve maximum performance optimization.

同样,也可设计与制造掺杂N通道n-i-p-i超晶格场效应铁电晶体管。其原理十分相似,只是在铁电薄膜上加同方向的电压时,如加上负电压时,掺杂P通道n-i-p-i超晶格场效应铁电晶体管将处于开启状态,而掺杂N通道n-i-p-i超晶格场效应铁电晶体管将处于关闭开状态;Similarly, doped N-channel n-i-p-i superlattice field-effect ferroelectric transistors can also be designed and manufactured. The principle is very similar, except that when a voltage in the same direction is applied to the ferroelectric film, such as when a negative voltage is applied, the doped P-channel n-i-p-i superlattice field-effect ferroelectric transistor will be in the on state, while the doped N-channel n-i-p-i super lattice field effect ferroelectric transistor will be in the on state. The lattice field effect ferroelectric transistor will be in the off-on state;

如图16所示,其中N通道n-i-p-i超晶格场效应铁电晶体管包括:As shown in Figure 16, the N-channel n-i-p-i superlattice field effect ferroelectric transistor includes:

第十三超晶格本征层125,设置于所述过渡层2上方;The thirteenth superlattice intrinsic layer 125 is provided above the transition layer 2;

超晶格低阻N-型层126,设置在所述第十三超晶格本征层125上方;The superlattice low-resistance N-type layer 126 is provided above the thirteenth superlattice intrinsic layer 125;

第十四超晶格本征层127,设置在所述超晶格低阻N-型层126的上方;The fourteenth superlattice intrinsic layer 127 is provided above the superlattice low-resistance N-type layer 126;

第五超晶格P型层128,设置在所述第十四超晶格本征层127上方;The fifth superlattice P-type layer 128 is provided above the fourteenth superlattice intrinsic layer 127;

第二铁电薄膜层129,设置在所述第五超晶格P型层128的上方;The second ferroelectric thin film layer 129 is provided above the fifth superlattice P-type layer 128;

第七N+导电层130,从所述第五超晶格P型层128的上表面并向垂直于所述第五超晶格P型层128的方向向下贯穿至所述第十三超晶格本征层125的下表面;The seventh N+ conductive layer 130 penetrates from the upper surface of the fifth superlattice P-type layer 128 downward to the thirteenth superlattice P-type layer 128 in a direction perpendicular to the fifth superlattice P-type layer 128 The lower surface of the lattice intrinsic layer 125;

第十一沟道绝缘层131,从所述第五超晶格P型层128的上表面并向垂直于所述第五超晶格P型层128的方向向下贯穿至所述第十三超晶格本征层125的下表面,所述第七N+导电层130设置在所述第十一沟道绝缘层131内;The eleventh channel insulating layer 131 penetrates from the upper surface of the fifth superlattice P-type layer 128 downward to the thirteenth channel in a direction perpendicular to the fifth superlattice P-type layer 128 On the lower surface of the superlattice intrinsic layer 125, the seventh N+ conductive layer 130 is provided in the eleventh channel insulating layer 131;

第二十八欧姆接触层132,设置在所述第二铁电薄膜层129上方并与所述第二铁电薄膜层129接触,The twenty-eighth ohmic contact layer 132 is disposed above the second ferroelectric thin film layer 129 and in contact with the second ferroelectric thin film layer 129,

第二十九欧姆接触层133,设置在所述第七N+导电层130上方并与所述第七N+导电层130接触;The twenty-ninth ohmic contact layer 133 is disposed above the seventh N+ conductive layer 130 and in contact with the seventh N+ conductive layer 130;

第二十五介电保护层134,设置在所述第二十八欧姆接触层132和第二十九欧姆接触层133之间;The twenty-fifth dielectric protective layer 134 is provided between the twenty-eighth ohmic contact layer 132 and the twenty-ninth ohmic contact layer 133;

第二十六介电保护层135,设置所述第二十九欧姆接触层133外侧。The twenty-sixth dielectric protection layer 135 is provided outside the twenty-ninth ohmic contact layer 133 .

上述第一沟道绝缘层至第十一沟道绝缘层为自主降温绝缘层。The above-mentioned first to eleventh channel insulating layers are autonomous cooling insulating layers.

如图17所示,自主降温绝缘层202包括:As shown in Figure 17, the autonomous cooling insulation layer 202 includes:

降温物质容置腔201,设置在所述自主降温绝缘层202内,The cooling substance containing cavity 201 is provided in the autonomous cooling insulation layer 202,

第一毛细管路203,设置在所述自主降温绝缘层202内,一端与所述降温物质容置腔201连接,另一端连通至所述自主降温绝缘层202的上表面;The first capillary tube 203 is provided in the autonomous cooling insulation layer 202, with one end connected to the cooling substance containing cavity 201, and the other end connected to the upper surface of the autonomous cooling insulation layer 202;

在自主降温绝缘层202上方的介电保护层204内,也设置有第二毛细管路205,该第二毛细管路205与自主降温绝缘层202的第一毛细管路203连通并且该第二毛细管路205靠近所述介电保护层204的上表面部分设置为弯曲状,使第二毛细管路205在上表面的出口与上表面呈一定角度(可以是15度),这样使降温材料在升温发生相变化时,从第二毛细管路205出口出来后流到欧姆接触层上。从而进行降温。A second capillary tube 205 is also provided in the dielectric protective layer 204 above the self-cooling insulating layer 202. The second capillary tube 205 is connected to the first capillary tube 203 of the self-cooling insulating layer 202 and the second capillary tube 205 The upper surface portion close to the dielectric protective layer 204 is set in a curved shape so that the outlet of the second capillary tube 205 on the upper surface is at a certain angle (can be 15 degrees), so that the cooling material undergoes a phase change when the temperature rises. When, it flows out from the outlet of the second capillary pipe 205 and flows onto the ohmic contact layer. Thereby cooling down.

通过设置自主降温绝缘层,当该元器件短路后烧毁时发热时,自主降温绝缘层内的降温物质受热发生相位变化,从而吸收热量,更进一步发生相位变化时降温物质的体积增大,从毛细管路中喷出,喷到烧毁的元器件上,进而对烧毁的元器件进一步降温;这样可以防止其对附近完好的元器件的破坏,从而降低损失。By setting up an autonomous cooling insulating layer, when the component generates heat when burned out after a short circuit, the cooling material in the autonomous cooling insulating layer undergoes a phase change when heated, thereby absorbing heat. When the phase change occurs further, the volume of the cooling material increases, and the cooling material in the self-cooling insulating layer increases from the capillary tube. It is sprayed out on the road and sprayed onto the burned components, thereby further cooling the burned components; this can prevent damage to nearby intact components, thereby reducing losses.

上述第一沟道绝缘层至第十一沟道绝缘层为隔绝绝缘层:The above-mentioned first to eleventh channel insulating layers are isolation insulating layers:

如图18所示,所述隔绝绝缘层211内部设置有空腔212;所述空腔212内设置有降温物质。As shown in FIG. 18 , a cavity 212 is provided inside the insulating layer 211 , and a cooling substance is provided in the cavity 212 .

通过设置隔绝绝缘层,当该元器件短路后烧毁时发热时,隔绝绝缘层的外层绝缘层烧毁后释放出降温物质,降温物质受热发生相位变化,从而吸收热量,更进一步发生相位变化时降温物质的体积增大,从而使烧毁的元器件与外部的完好的元器件隔绝开来;这样可以防止其对 附近完好的元器件的破坏,从而降低损失。By setting up an isolation insulating layer, when the component generates heat when burned out after a short circuit, the outer insulating layer of the isolation insulating layer burns out and releases a cooling substance. The cooling substance undergoes a phase change when heated, thereby absorbing heat and further cooling when the phase change occurs. The volume of the material increases, thereby isolating the burned components from the intact external components; this prevents damage to nearby intact components, thereby reducing losses.

如图18所示,在一个实施例中,所述空腔212内设置有至少一个连接体213,所述连接体213一端与空腔212左侧壁连接,另一端与所述空腔212右侧壁连接;所述连接体213中部直径小于两端直径。As shown in Figure 18, in one embodiment, at least one connector 213 is provided in the cavity 212. One end of the connector 213 is connected to the left side wall of the cavity 212, and the other end is connected to the right side of the cavity 212. Side wall connection; the diameter of the middle part of the connecting body 213 is smaller than the diameter of both ends.

通过设置连接体,支撑起空腔内的空间,使空腔结构更加牢固;通过设置成中间直径小于两端,是使在降温物质受热膨胀时,连接体的断裂位置位于中间部位,放置膨胀时对旁边完好的元器件的拉扯,从而避免拉扯造成的元器件损坏。By arranging the connector, the space in the cavity is supported, making the cavity structure stronger; by arranging the middle diameter to be smaller than the two ends, when the cooling material expands due to heat, the fracture position of the connector is located in the middle. Pull the intact components next to them to avoid component damage caused by pulling.

更进一步的,在降温物质中掺杂荧光物质,当电路烧毁时,可以采用检验绝缘层的荧光物质的图像从而更快判断电路损坏的部位与程度。Furthermore, the cooling material is doped with fluorescent material. When the circuit burns out, the image of the fluorescent material in the insulating layer can be inspected to more quickly determine the location and extent of circuit damage.

显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。Obviously, those skilled in the art can make various changes and modifications to the present invention without departing from the spirit and scope of the invention. In this way, if these modifications and variations of the present invention fall within the scope of the claims of the present invention and equivalent technologies, the present invention is also intended to include these modifications and variations.

Claims (5)

1. A superlattice ultra-large scale integrated circuit, comprising:
a substrate;
a transition layer disposed over the substrate;
the component layer is arranged above the transition layer and is a superlattice integrated circuit constructed by a device containing two-dimensional electron gas and two-dimensional hole gas;
The device comprises: superlattice resistance and varistors;
from a cross-sectional perspective, the superlattice resistor and varistor comprises:
a seventh superlattice intrinsic layer disposed above the transition layer;
a third superlattice P-type layer disposed over the seventh superlattice intrinsic layer;
an eighth superlattice intrinsic layer disposed above the third superlattice P-type layer;
the second superlattice low-resistance N-type layer is arranged above the eighth superlattice intrinsic layer;
the fifth P+ conductive layer and the fifth N+ conductive layer penetrate downwards from the upper surface of the second superlattice low-resistance N-type layer to the lower surface of the seventh superlattice intrinsic layer in a direction perpendicular to the second superlattice low-resistance N-type layer;
an eighth channel insulating layer penetrating from the upper surface of the second superlattice low-resistance N-type layer and downwards to the lower surface of the seventh superlattice intrinsic layer in a direction perpendicular to the second superlattice low-resistance N-type layer, wherein the fifth p+ conductive layer and the fifth n+ conductive layer are arranged in the eighth channel insulating layer;
a twenty-first ohmic contact layer, a twenty-second ohmic contact layer, and a twenty-first ohmic contact layer;
The twenty-first ohmic contact layer is arranged above the first superlattice low-resistance N-type layer and is in contact with the first superlattice low-resistance N-type layer;
a twenty-first ohmic contact layer disposed over and in contact with the fifth n+ conductive layer;
a twenty-second ohmic contact layer disposed over and in contact with the fifth p+ conductive layer;
a nineteenth dielectric protective layer disposed between the twenty-first ohmic contact layer and the twenty-first ohmic contact layer, and the twenty-second ohmic contact layer;
a twenty-first ohmic contact layer and a twenty-second ohmic contact layer are arranged on the outer sides of the twenty-first and twenty-second dielectric protective layers;
from the perspective of overlooking and perspective, the eighth channel insulating layer is annular with an I-shaped vacancy; and a twenty-first ohmic contact layer, a twenty-second ohmic contact layer and a twenty-first ohmic contact layer are respectively arranged at two ends of the I-shaped gap.
2. The superlattice ultra-large scale integrated circuit as recited in claim 1, wherein said substrate is silicon, germanium or a compound semiconductor.
3. The superlattice ultra-large scale integrated circuit as recited in claim 1, wherein said transition layer is one of a silicon dioxide, silicon nitride, and compound semiconductor layer.
4. The superlattice ultra-large scale integrated circuit as recited in claim 1, wherein the plurality of through holes are uniformly distributed in the bottom of the substrate.
5. The superlattice very large scale integrated circuit as recited in claim 1, wherein said third superlattice P-type layer and said second superlattice low-resistance N-type layer are either homogeneous semiconductor superlattice layers or heterogeneous semiconductor superlattice layers.
CN202111131224.2A 2019-05-06 2019-05-06 Superlattice VLSI Active CN113871461B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111131224.2A CN113871461B (en) 2019-05-06 2019-05-06 Superlattice VLSI

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910372092.9A CN110085665B (en) 2019-05-06 2019-05-06 Superlattice VLSI
CN202111131224.2A CN113871461B (en) 2019-05-06 2019-05-06 Superlattice VLSI

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201910372092.9A Division CN110085665B (en) 2019-05-06 2019-05-06 Superlattice VLSI

Publications (2)

Publication Number Publication Date
CN113871461A CN113871461A (en) 2021-12-31
CN113871461B true CN113871461B (en) 2023-09-12

Family

ID=67418777

Family Applications (6)

Application Number Title Priority Date Filing Date
CN202111129571.1A Active CN113871457B (en) 2019-05-06 2019-05-06 Superlattice very large scale integrated circuit
CN202111131222.3A Active CN113871460B (en) 2019-05-06 2019-05-06 Superlattice VLSI
CN202111131217.2A Active CN113871459B (en) 2019-05-06 2019-05-06 Superlattice very large scale integrated circuit
CN202111131216.8A Active CN113871458B (en) 2019-05-06 2019-05-06 Superlattice very large scale integrated circuit
CN201910372092.9A Active CN110085665B (en) 2019-05-06 2019-05-06 Superlattice VLSI
CN202111131224.2A Active CN113871461B (en) 2019-05-06 2019-05-06 Superlattice VLSI

Family Applications Before (5)

Application Number Title Priority Date Filing Date
CN202111129571.1A Active CN113871457B (en) 2019-05-06 2019-05-06 Superlattice very large scale integrated circuit
CN202111131222.3A Active CN113871460B (en) 2019-05-06 2019-05-06 Superlattice VLSI
CN202111131217.2A Active CN113871459B (en) 2019-05-06 2019-05-06 Superlattice very large scale integrated circuit
CN202111131216.8A Active CN113871458B (en) 2019-05-06 2019-05-06 Superlattice very large scale integrated circuit
CN201910372092.9A Active CN110085665B (en) 2019-05-06 2019-05-06 Superlattice VLSI

Country Status (1)

Country Link
CN (6) CN113871457B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02130933A (en) * 1988-11-11 1990-05-18 Nec Corp Field effect transistor
US5357119A (en) * 1993-02-19 1994-10-18 Board Of Regents Of The University Of California Field effect devices having short period superlattice structures using Si and Ge
CN101438415A (en) * 2006-05-05 2009-05-20 梅尔斯科技公司 Semiconductor device including a floating gate memory cell with a superlattice channel and associated methods
CN103811542A (en) * 2013-12-04 2014-05-21 华南师范大学 Tin compound superlattice barrier semiconductor transistor
CN105874613A (en) * 2013-09-23 2016-08-17 量子半导体有限公司 Superlattice materials and applications

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6473773A (en) * 1987-09-16 1989-03-20 Fujitsu Ltd High electron mobility transistor
US4972246A (en) * 1988-03-22 1990-11-20 International Business Machines Corp. Effective narrow band gap base transistor
US20040266116A1 (en) * 2003-06-26 2004-12-30 Rj Mears, Llc Methods of fabricating semiconductor structures having improved conductivity effective mass
CN101273460A (en) * 2005-07-15 2008-09-24 梅尔斯科技公司 Semiconductor device including a strained superlattice between at least one pair of spaced apart stress regions and associated methods
CN104051523A (en) * 2014-07-04 2014-09-17 苏州能讯高能半导体有限公司 Semiconductor device with low ohmic contact resistance and manufacturing method thereof
US10923584B2 (en) * 2016-07-01 2021-02-16 Intel Corporation Graded channels for high frequency III-N transistors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02130933A (en) * 1988-11-11 1990-05-18 Nec Corp Field effect transistor
US5357119A (en) * 1993-02-19 1994-10-18 Board Of Regents Of The University Of California Field effect devices having short period superlattice structures using Si and Ge
CN101438415A (en) * 2006-05-05 2009-05-20 梅尔斯科技公司 Semiconductor device including a floating gate memory cell with a superlattice channel and associated methods
CN105874613A (en) * 2013-09-23 2016-08-17 量子半导体有限公司 Superlattice materials and applications
CN103811542A (en) * 2013-12-04 2014-05-21 华南师范大学 Tin compound superlattice barrier semiconductor transistor

Also Published As

Publication number Publication date
CN113871460A (en) 2021-12-31
CN113871460B (en) 2023-09-12
CN113871458B (en) 2023-09-12
CN113871459A (en) 2021-12-31
CN110085665B (en) 2021-10-22
CN113871461A (en) 2021-12-31
CN113871457B (en) 2023-08-22
CN110085665A (en) 2019-08-02
CN113871459B (en) 2023-09-12
CN113871457A (en) 2021-12-31
CN113871458A (en) 2021-12-31

Similar Documents

Publication Publication Date Title
CN108183101B (en) Non-Hysteresis-Effect Silicon Controlled Rectifier Type ESD Protection Structure and Its Realization Method
US20150236116A1 (en) Method of forming a fin-like bjt
US9780003B2 (en) Bipolar junction transistor formed on fin structures
CN102867857B (en) Semiconductor device and method for manufacturing the same
CN108091650B (en) Non-Hysteresis-Effect Silicon Controlled Rectifier Type ESD Protection Structure and Its Realization Method
CN101937925A (en) Semiconductor device with a plurality of transistors
Dai et al. Latchup in bulk FinFET technology
CN104282739B (en) Bipolar transistor and the method for manufacturing bipolar transistor
CN106257629B (en) Bipolar junction transistor with double tapered emitter fingers
CN105448907A (en) An integrated circuit, an electrostatic discharge apparatus and an integrated circuit manufacture method
CN113871461B (en) Superlattice VLSI
CN109065541B (en) Bidirectional transient voltage suppressor and preparation method thereof
CN105097514A (en) Semiconductor device and manufacturing method thereof
CN103515450A (en) Groove charge compensation Schottky semiconductor device and manufacturing method thereof
CN112510664B (en) ESD protection structure design and preparation method based on diode and protection circuit
US12211910B2 (en) Bipolar junction transistor (BJT) and fabricating method thereof
CN103400860B (en) N type longitudinal silicon carbide MOS (metal oxide semiconductor) tube with high breakdown voltage
CN212412058U (en) Electronic device product
CN103515449A (en) Schottky semiconductor device with charge compensation groove and preparing method thereof
CN102738141A (en) Semiconductor structure and manufacturing method and operating method thereof
CN107046028A (en) Electrostatic discharge protector
CN112103286A (en) Trigger voltage adjustable bidirectional ESD protection device and preparation method thereof
CN102956631A (en) Semiconductor structure and manufacturing method thereof
CN117410323A (en) Semiconductor device and manufacturing method thereof
CN102842596A (en) Semiconductor structure and manufacturing method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant