CN113861642B - PLA/PBF/POE-g-GMA/ZnO composite material for antibacterial food packaging and preparation thereof - Google Patents
PLA/PBF/POE-g-GMA/ZnO composite material for antibacterial food packaging and preparation thereof Download PDFInfo
- Publication number
- CN113861642B CN113861642B CN202111174584.0A CN202111174584A CN113861642B CN 113861642 B CN113861642 B CN 113861642B CN 202111174584 A CN202111174584 A CN 202111174584A CN 113861642 B CN113861642 B CN 113861642B
- Authority
- CN
- China
- Prior art keywords
- pla
- pbf
- gma
- poe
- zno
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 98
- 238000002360 preparation method Methods 0.000 title claims abstract description 49
- 230000000844 anti-bacterial effect Effects 0.000 title claims abstract description 48
- 235000013305 food Nutrition 0.000 title claims abstract description 35
- 238000004806 packaging method and process Methods 0.000 title claims abstract description 35
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims abstract description 298
- 239000011787 zinc oxide Substances 0.000 claims abstract description 182
- 239000006087 Silane Coupling Agent Substances 0.000 claims abstract description 32
- 238000000034 method Methods 0.000 claims abstract description 10
- 238000002156 mixing Methods 0.000 claims abstract description 7
- 239000000155 melt Substances 0.000 claims abstract description 3
- RSKGMYDENCAJEN-UHFFFAOYSA-N hexadecyl(trimethoxy)silane Chemical compound CCCCCCCCCCCCCCCC[Si](OC)(OC)OC RSKGMYDENCAJEN-UHFFFAOYSA-N 0.000 claims description 29
- 239000000243 solution Substances 0.000 claims description 16
- 238000010992 reflux Methods 0.000 claims description 15
- -1 polytetrafluoroethylene Polymers 0.000 claims description 14
- 239000006185 dispersion Substances 0.000 claims description 12
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 11
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 11
- 238000003756 stirring Methods 0.000 claims description 11
- 239000002904 solvent Substances 0.000 claims description 10
- 238000001035 drying Methods 0.000 claims description 7
- 238000003475 lamination Methods 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical group ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 208000034530 PLAA-associated neurodevelopmental disease Diseases 0.000 claims description 4
- 238000009210 therapy by ultrasound Methods 0.000 claims description 4
- 239000011259 mixed solution Substances 0.000 claims description 2
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 claims 1
- 235000011299 Brassica oleracea var botrytis Nutrition 0.000 abstract description 20
- 235000017647 Brassica oleracea var italica Nutrition 0.000 abstract description 20
- 240000003259 Brassica oleracea var. botrytis Species 0.000 abstract description 20
- 230000000694 effects Effects 0.000 abstract description 20
- 229920000642 polymer Polymers 0.000 abstract description 7
- 239000004594 Masterbatch (MB) Substances 0.000 abstract description 4
- 239000005003 food packaging material Substances 0.000 abstract description 4
- 238000012856 packing Methods 0.000 abstract 1
- 239000004626 polylactic acid Substances 0.000 description 103
- 229920000747 poly(lactic acid) Polymers 0.000 description 102
- 239000010408 film Substances 0.000 description 64
- 230000000052 comparative effect Effects 0.000 description 27
- 239000002245 particle Substances 0.000 description 24
- 239000000463 material Substances 0.000 description 16
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 15
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 14
- 238000012360 testing method Methods 0.000 description 14
- 229930002875 chlorophyll Natural products 0.000 description 13
- 235000019804 chlorophyll Nutrition 0.000 description 13
- 238000002474 experimental method Methods 0.000 description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- 238000010586 diagram Methods 0.000 description 10
- 239000007787 solid Substances 0.000 description 10
- 239000000047 product Substances 0.000 description 9
- 230000008859 change Effects 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 239000000725 suspension Substances 0.000 description 8
- 241000894006 Bacteria Species 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 230000001953 sensory effect Effects 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 229920001817 Agar Polymers 0.000 description 5
- 239000008272 agar Substances 0.000 description 5
- 238000004062 sedimentation Methods 0.000 description 5
- 238000009864 tensile test Methods 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 241000588724 Escherichia coli Species 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 238000002835 absorbance Methods 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- 210000000170 cell membrane Anatomy 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 230000001954 sterilising effect Effects 0.000 description 4
- 238000004659 sterilization and disinfection Methods 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 241000196324 Embryophyta Species 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 238000004321 preservation Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical group [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 229920000704 biodegradable plastic Polymers 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 229960001701 chloroform Drugs 0.000 description 2
- 229930002868 chlorophyll a Natural products 0.000 description 2
- 229930002869 chlorophyll b Natural products 0.000 description 2
- NSMUHPMZFPKNMZ-VBYMZDBQSA-M chlorophyll b Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C=O)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 NSMUHPMZFPKNMZ-VBYMZDBQSA-M 0.000 description 2
- 210000003763 chloroplast Anatomy 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 239000007822 coupling agent Substances 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000003203 everyday effect Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 239000002985 plastic film Substances 0.000 description 2
- 229920006255 plastic film Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000013441 quality evaluation Methods 0.000 description 2
- SCPYDCQAZCOKTP-UHFFFAOYSA-N silanol Chemical compound [SiH3]O SCPYDCQAZCOKTP-UHFFFAOYSA-N 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 238000004627 transmission electron microscopy Methods 0.000 description 2
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical group CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 239000001888 Peptone Substances 0.000 description 1
- 108010080698 Peptones Proteins 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 229910007933 Si-M Inorganic materials 0.000 description 1
- 229910008318 Si—M Inorganic materials 0.000 description 1
- 241000191967 Staphylococcus aureus Species 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- HMXMMJPZSULYFL-UHFFFAOYSA-N [C].CCCCCCCCCCCCCCCC Chemical group [C].CCCCCCCCCCCCCCCC HMXMMJPZSULYFL-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 239000011246 composite particle Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000002354 daily effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000011978 dissolution method Methods 0.000 description 1
- 230000000546 effect on cell death Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 235000012055 fruits and vegetables Nutrition 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- 229920001112 grafted polyolefin Polymers 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 238000010169 landfilling Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012092 media component Substances 0.000 description 1
- 239000012533 medium component Substances 0.000 description 1
- 239000013028 medium composition Substances 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 235000019319 peptone Nutrition 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 239000003348 petrochemical agent Substances 0.000 description 1
- 239000013520 petroleum-based product Substances 0.000 description 1
- 238000005375 photometry Methods 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 230000005476 size effect Effects 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- RNWHGQJWIACOKP-UHFFFAOYSA-N zinc;oxygen(2-) Chemical class [O-2].[Zn+2] RNWHGQJWIACOKP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2367/04—Polyesters derived from hydroxy carboxylic acids, e.g. lactones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2451/00—Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
- C08J2451/06—Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2467/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2467/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2296—Oxides; Hydroxides of metals of zinc
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
- C08K9/06—Ingredients treated with organic substances with silicon-containing compounds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W90/00—Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
- Y02W90/10—Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
Abstract
本发明涉及高分子复合材料和食品包装材料领域,具体涉及一种抗菌食品包装复合材料和制备方法及其应用。包括以下步骤:(1)用硅烷偶联剂对纳米氧化锌进行改性;(2)将改性后的纳米氧化锌通过母料法与PLA混合得到母料;(3)通过熔融共混法将PLA、PBF、POE‑g‑GMA和母料均匀混合,制备PLA/PBF/POE‑g‑GMA/ZnO复合材料。同时可将本发明制备的PLA/PBF/POE‑g‑GMA/ZnO复合材料用真空压膜机压成薄膜并用于抗菌食品包装。本发明制备的复合材料具有优良的力学性能,用其制备的复合薄膜具有优异的抗菌效果,尤其在包装西蓝花时能起到优异的保鲜效果,并有望成为一种成本低廉、制备简单、性能良好的可生物降解食品包装材料。The invention relates to the fields of polymer composite materials and food packaging materials, in particular to an antibacterial food packaging composite material, a preparation method and an application thereof. The method includes the following steps: (1) modifying nano zinc oxide with a silane coupling agent; (2) mixing the modified nano zinc oxide with PLA to obtain a master batch through a master batch method; (3) using a melt blending method PLA, PBF, POE‑g‑GMA and masterbatch were uniformly mixed to prepare PLA/PBF/POE‑g‑GMA/ZnO composites. At the same time, the PLA/PBF/POE-g-GMA/ZnO composite material prepared by the present invention can be pressed into a film with a vacuum laminator and used for antibacterial food packaging. The composite material prepared by the invention has excellent mechanical properties, and the composite film prepared by it has excellent antibacterial effect, especially can play an excellent fresh-keeping effect when packing broccoli, and is expected to become a low-cost, simple to prepare, Biodegradable food packaging material with good performance.
Description
技术领域technical field
本发明属于高分子复合材料和食品包装材料领域,具体涉及一种用于抗菌食品包装的PLA/PBF/POE-g-GMA/ZnO复合材料和制备方法及其应用。The invention belongs to the field of polymer composite materials and food packaging materials, and in particular relates to a PLA/PBF/POE-g-GMA/ZnO composite material for antibacterial food packaging, a preparation method and an application thereof.
背景技术Background technique
国内现有技术生产的塑料均是以聚乙烯、聚氯乙烯、聚丙烯和聚乙烯醇等石油化工产品为原料制成。由于产品的不降解,造成了“白色污染”。而且随着石油的匮乏,油价一升再升,由石油化工生产的塑料也一再涨价。聚乳酸(PLA)是由玉米等植物中提取的淀粉经过发酵获得的乳酸聚合而成的,是一种生物基来源的,可以完全生物降解的生物塑料。废弃的聚乳酸材料,其大分子骨架结构会被微生物水解或酶解成小的链段,最后降解成水和二氧化碳。聚乳酸材料在生产过程中的能耗只有石油基产品的20%~50%,降解后生成的CO2更是只有后者的一半,因此受到了各界的广泛关注,尤其在包装材料、服装、汽车工业或电器等领域。从性能角度上看,聚乳酸主要有三方面的缺陷限制其工业化发展:韧性差;结晶速率慢,结晶度低;熔体强度低。因此,对聚乳酸进行改性是提升其性能的必要手段。The plastics produced by the domestic prior art are all made of petrochemical products such as polyethylene, polyvinyl chloride, polypropylene and polyvinyl alcohol as raw materials. Due to the non-degradation of the product, "white pollution" is caused. And with the shortage of oil, the price of oil has risen again and again, and the price of plastics produced by petrochemicals has also risen again and again. Polylactic acid (PLA) is polymerized from lactic acid obtained by fermentation of starch extracted from corn and other plants. It is a bio-based source and can be completely biodegradable bioplastics. The macromolecular skeleton structure of discarded polylactic acid materials will be hydrolyzed or enzymatically decomposed into small chain segments by microorganisms, and finally degraded into water and carbon dioxide. The energy consumption of polylactic acid materials in the production process is only 20% to 50% of that of petroleum-based products, and the CO2 generated after degradation is only half of the latter. Therefore, it has received extensive attention from all walks of life, especially in packaging materials, clothing, Automotive industry or electrical appliances and other fields. From the performance point of view, polylactic acid has three main defects that limit its industrial development: poor toughness; slow crystallization rate, low crystallinity; low melt strength. Therefore, modification of polylactic acid is a necessary means to improve its performance.
在食品包装领域,大多数食品包装材料的抗菌性能有限,且难以被降解,填埋在土壤中严重破坏了土地资源的可持续利用,倾倒在海洋中破坏了海洋的生态平衡。随着当代人们保护环境、节约资源的意识逐渐增强,扩大聚乳酸等生物降解塑料在生活中的应用范围是我们亟待解决的当务之急。In the field of food packaging, most food packaging materials have limited antibacterial properties and are difficult to degrade. Landfilling in the soil seriously damages the sustainable use of land resources, and dumping in the ocean destroys the ecological balance of the ocean. As contemporary people's awareness of protecting the environment and saving resources is gradually increasing, expanding the application range of biodegradable plastics such as polylactic acid in daily life is an urgent task to be solved.
发明内容Contents of the invention
针对现有技术中存在的问题和不足,本发明的目的在于提供一种用于抗菌食品包装的PLA/PBF/POE-g-GMA/ZnO复合材料和制备方法。Aiming at the problems and deficiencies in the prior art, the object of the present invention is to provide a PLA/PBF/POE-g-GMA/ZnO composite material and a preparation method for antibacterial food packaging.
为实现发明目的,本发明采用的技术方案如下:For realizing the purpose of the invention, the technical scheme adopted in the present invention is as follows:
本发明第一方面提供了一种用于抗菌食品包装的PLA/PBF/POE-g-GMA/ZnO复合材料的制备方法,包括以下步骤:The first aspect of the present invention provides a kind of preparation method of the PLA/PBF/POE-g-GMA/ZnO composite material that is used for antibacterial food packaging, comprises the following steps:
(1)将纳米氧化锌用硅烷偶联剂进行改性,得到改性纳米氧化锌;(1) modifying nano-zinc oxide with a silane coupling agent to obtain modified nano-zinc oxide;
(2)采用PLA和步骤(1)得到的改性纳米氧化锌制备PLA/ZnO膜,将得到的PLA/ZnO膜粉碎、备用;(2) adopt PLA and the modified nano-zinc oxide that step (1) obtains to prepare PLA/ZnO film, the PLA/ZnO film that will obtain is pulverized, standby;
(3)将PLA、PBF、POE-g-GMA和步骤(2)制备的PLA/ZnO膜进行熔融共混,得到PLA/PBF/POE-g-GMA/ZnO复合材料。(3) Melt blending PLA, PBF, POE-g-GMA and the PLA/ZnO film prepared in step (2) to obtain PLA/PBF/POE-g-GMA/ZnO composite material.
更加优选地,所述PLA、PBF、POE-g-GMA均进行过干燥处理。More preferably, the PLA, PBF and POE-g-GMA have all been dried.
优选地,所述PBF的加入量为PLA/PBF/POE-g-GMA/ZnO复合材料质量的5%~30%。Preferably, the added amount of the PBF is 5%-30% of the mass of the PLA/PBF/POE-g-GMA/ZnO composite material.
优选地,所述硅烷偶联剂为十六烷基三甲氧基硅烷。Preferably, the silane coupling agent is hexadecyltrimethoxysilane.
优选地,所述十六烷基三甲氧基硅烷的加入量为改性纳米氧化锌的质量的2.5%~10%。Preferably, the added amount of the cetyltrimethoxysilane is 2.5%-10% of the mass of the modified nano zinc oxide.
优选地,所述步骤(2)中所述改性纳米氧化锌的加入量为所述PLA/PBF/POE-g-GMA/ZnO复合材料质量的0.5%~2%。Preferably, the added amount of the modified nano zinc oxide in the step (2) is 0.5%-2% of the mass of the PLA/PBF/POE-g-GMA/ZnO composite material.
优选地,所述步骤(2)中PLA/ZnO膜的制备方法为:Preferably, the preparation method of PLA/ZnO film in described step (2) is:
1)将干燥后的PLA加入溶剂中溶解,得到PLA溶液;1) adding the dried PLA to a solvent for dissolution to obtain a PLA solution;
2)将步骤(1)中得到的改性纳米氧化锌加入PLA溶液中,分散均匀,得到PLA/ZnO混合液;2) adding the modified nano-zinc oxide obtained in step (1) into the PLA solution, and dispersing evenly to obtain a PLA/ZnO mixed solution;
3)将PLA/ZnO混合液转移到聚四氟乙烯模具中,待溶剂挥发后干燥,得到PLA/ZnO膜。3) Transfer the PLA/ZnO mixture to a polytetrafluoroethylene mold, and dry it after the solvent evaporates to obtain a PLA/ZnO film.
优选地,所述步骤(3)中熔融共混温度为180℃。Preferably, the melt blending temperature in the step (3) is 180°C.
更加优选地,所述步骤(3)中使用转矩流变仪对物料进行熔融共混,设置转矩流变仪的三段温度均为180℃,转速为60rpm;机器预热的时间为10min。More preferably, in the step (3), a torque rheometer is used to melt and blend the materials, and the temperature of the three sections of the torque rheometer is set to be 180°C, and the rotating speed is 60rpm; the time for machine preheating is 10min .
更加优选地,所述干燥温度均为80℃。More preferably, the drying temperatures are both 80°C.
更加优选地,所述步骤(1)中改性纳米氧化锌的制备方法为:More preferably, the preparation method of modified nano zinc oxide in the step (1) is:
(a)将纳米氧化锌均匀分散于溶剂中,40℃下回流1h后超声分散20min;(a) uniformly disperse the nano-zinc oxide in the solvent, reflux at 40°C for 1 hour, and then ultrasonically disperse for 20 minutes;
(b)加入水并将溶液pH调至2,回流1h后加入硅烷偶联剂,40℃下搅拌回流1h,调节pH至10后回流2h,得到回流产物;(b) adding water and adjusting the pH of the solution to 2, adding a silane coupling agent after reflux for 1 hour, stirring and reflux at 40° C. for 1 hour, adjusting the pH to 10 and then reflux for 2 hours to obtain a reflux product;
(c)将回流产物取出后离心,去上清液,取离心产物置于聚四氟乙烯模具中,80℃下干燥整夜后得到改性纳米氧化锌。(c) Centrifuging the reflux product after taking it out, removing the supernatant, taking the centrifuged product and placing it in a polytetrafluoroethylene mold, drying at 80° C. overnight to obtain the modified nano-zinc oxide.
更加优选地,所述步骤(a)中溶剂为无水乙醇。More preferably, the solvent in the step (a) is absolute ethanol.
优选地,所述步骤1)中溶剂为三氯甲烷,溶解方式为加热溶解,加热温度为40~60℃;所述步骤2)中分散方式为搅拌和超声波处理,搅拌时间为15~30min,超声波处理时间为10~15min;所述步骤3)中干燥时间为12~24h。Preferably, the solvent in the step 1) is trichloromethane, the dissolution method is heating and dissolving, and the heating temperature is 40-60°C; the dispersion method in the step 2) is stirring and ultrasonic treatment, and the stirring time is 15-30min. The ultrasonic treatment time is 10-15 minutes; the drying time in the step 3) is 12-24 hours.
本发明第二方面提供了一种利用所述制备方法制备的PLA/PBF/POE-g-GMA/ZnO复合材料。The second aspect of the present invention provides a PLA/PBF/POE-g-GMA/ZnO composite material prepared by the preparation method.
本发明第三方面提供了一种所述的PLA/PBF/POE-g-GMA/ZnO复合材料在抗菌食品包装中的应用。The third aspect of the present invention provides an application of the PLA/PBF/POE-g-GMA/ZnO composite material in antibacterial food packaging.
优选地,利用所述PLA/PBF/POE-g-GMA/ZnO复合材料应用于抗菌食品包装的具体操作为:将制备的PLA/PBF/POE-g-GMA/ZnO复合材料进行真空压膜处理,得到PLA/PBF/POE-g-GMA/ZnO复合薄膜。Preferably, the specific operation of using the PLA/PBF/POE-g-GMA/ZnO composite material for antibacterial food packaging is: vacuum pressing the prepared PLA/PBF/POE-g-GMA/ZnO composite material , to obtain PLA/PBF/POE-g-GMA/ZnO composite film.
更加优选地,所述真空压膜处理的具体操作为:将制备的PLA/PBF/POE-g-GMA/ZnO复合材料铺在两层聚四氟乙烯薄膜之间,将两层聚四氟乙烯薄膜及其内铺的复合材料转入真空压膜机中压膜,压膜结束后,去除上下两层聚四氟乙烯薄膜,得到PLA/PBF/POE-g-GMA/ZnO复合薄膜。More preferably, the specific operation of the vacuum lamination treatment is: laying the prepared PLA/PBF/POE-g-GMA/ZnO composite material between two layers of polytetrafluoroethylene films, and placing the two layers of polytetrafluoroethylene The film and its inner composite material are transferred to a vacuum lamination machine for lamination. After lamination, the upper and lower layers of polytetrafluoroethylene film are removed to obtain a PLA/PBF/POE-g-GMA/ZnO composite film.
优选地,所述PLA/PBF/POE-g-GMA/ZnO复合薄膜厚度为70μm。Preferably, the thickness of the PLA/PBF/POE-g-GMA/ZnO composite film is 70 μm.
与现有技术相比,本发明的有益效果如下:Compared with the prior art, the beneficial effects of the present invention are as follows:
(1)本发明制备的PLA/PBF/POE-g-GMA/ZnO复合材料中的主要成分PLA和呋喃基聚酯(聚2,5-呋喃二甲酸丁二醇酯,PBF)都属于生物可降解材料,且PBF属于“强而韧”的材料类型。将PBF加入PLA中,可使复合材料在具有较高断裂伸长率的同时,拉伸强度和弹性模量下降较小,进而表现出优良的力学性能。当复合材料中改性氧化锌(m-ZnO)添加量为0.5wt%时,复合材料的断裂伸长率达到了132.1%,约是PLA的5倍,同时拉伸强度为77.4MPa,杨氏模量为1167.1MPa,力学性能良好,达到了刚性和韧性的平衡。(1) The main components PLA and furyl polyester (
(2)本发明通过对比两种硅烷偶联剂,最终选取硅烷偶联剂十六烷基三甲氧基硅烷(HDTMS)对纳米氧化锌进行改性,制得的改性纳米氧化锌具有良好的疏水亲油性,且在有机溶剂中能达到纳米级别的分散效果,然后结合母料法将改性纳米氧化锌在复合材料中获得良好的分散。同时,本发明制备的PLA/PBF/POE-g-GMA/ZnO复合材料结晶度显著增大,相较于PLA材料来说球晶数量增多,气体阻隔性能显著增强。(2) The present invention finally selects silane coupling agent hexadecyltrimethoxysilane (HDTMS) to modify nano-zinc oxide by comparing two kinds of silane coupling agents, and the modified nano-zinc oxide obtained has good Hydrophobic and lipophilic, and can achieve nano-level dispersion effect in organic solvents, and then combine the masterbatch method to obtain good dispersion of modified nano-zinc oxide in composite materials. At the same time, the crystallinity of the PLA/PBF/POE-g-GMA/ZnO composite material prepared by the invention is significantly increased, the number of spherulites is increased compared with the PLA material, and the gas barrier performance is significantly enhanced.
(3)本发明制备的PLA/PBF/POE-g-GMA/ZnO复合薄膜具有显著的抗菌效果。在改性纳米氧化锌添加量为1wt%时,PLA/PBF/POE-g-GMA/ZnO复合薄膜对金黄色葡萄球菌和枯草杆菌的抗菌率分别达到99.9%和99.5%,大肠杆菌有较低存活率。在改性纳米氧化锌添加量为1.5wt%时,PLA/PBF/POE-g-GMA/ZnO复合薄膜对这三种细菌的抗菌率分别达到了分别达到99.2%、100%和99.9%。(3) The PLA/PBF/POE-g-GMA/ZnO composite film prepared by the present invention has remarkable antibacterial effect. When the amount of modified nano-zinc oxide was 1wt%, the antibacterial rates of PLA/PBF/POE-g-GMA/ZnO composite films against Staphylococcus aureus and Bacillus subtilis reached 99.9% and 99.5%, respectively, and Escherichia coli had a lower survival rate. When the amount of modified nano-zinc oxide was 1.5wt%, the antibacterial rates of PLA/PBF/POE-g-GMA/ZnO composite films against these three bacteria reached 99.2%, 100% and 99.9%, respectively.
(4)本发明的制备的PLA/PBF/POE-g-GMA/ZnO复合薄膜可用于食品包装。加入纳米氧化锌后,PLA/PBF/POE-g-GMA/ZnO复合薄膜包装的西蓝花感官品质评价更好,质量损失率更低,相对电导率和叶绿素含量变化更小,能达到对西蓝花的保鲜效果。(4) The PLA/PBF/POE-g-GMA/ZnO composite film prepared by the present invention can be used for food packaging. After adding nano-zinc oxide, the sensory quality evaluation of broccoli packaged in PLA/PBF/POE-g-GMA/ZnO composite film is better, the mass loss rate is lower, and the relative conductivity and chlorophyll content change are smaller, which can reach the western blue flower. Fresh-keeping effect of blue flowers.
附图说明Description of drawings
图1为改性前后纳米氧化锌的悬浮液沉降对比图,其中,a为5wt%HDTMS的m-ZnO悬浮液,b为un-ZnO悬浮液;Fig. 1 is the comparison diagram of the suspension sedimentation of nano-zinc oxide before and after modification, wherein, a is the m-ZnO suspension of 5wt% HDTMS, and b is the un-ZnO suspension;
图2为不同含量的纳米氧化锌制备的PLA/PBF/POE-g-GMA/ZnO复合薄膜对大肠杆菌抑制效果的琼脂平板图;Fig. 2 is the agar plate diagram of the PLA/PBF/POE-g-GMA/ZnO composite film prepared by different contents of nano-zinc oxide on Escherichia coli inhibitory effect;
图3为西蓝花贮藏0~5天保鲜效果曲线图,其中,a为感官品质变化曲线图,b为质量损失率变化曲线图,c为相对电导率变化曲线图,d叶绿素含量变化曲线图。Fig. 3 is a curve diagram of the preservation effect of broccoli stored for 0 to 5 days, wherein a is a curve diagram of sensory quality change, b is a curve diagram of mass loss rate change, c is a curve diagram of relative electrical conductivity change, and d is a curve diagram of chlorophyll content change .
具体实施方式Detailed ways
为使本发明的目的、技术方案及优点更加清楚明白,以下通过实施例结合附图,对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail through the following embodiments in conjunction with the accompanying drawings. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。It should be noted that, in the case of no conflict, the embodiments in the present application and the features in the embodiments can be combined with each other. The present application will be described in detail below with reference to the accompanying drawings and embodiments.
实施例1Example 1
一种用于抗菌食品包装的PLA/PBF/POE-g-GMA/ZnO复合薄膜的制备方法,包括以下步骤:A preparation method for a PLA/PBF/POE-g-GMA/ZnO composite film for antibacterial food packaging, comprising the following steps:
1、改性纳米氧化锌的制备1. Preparation of modified nano zinc oxide
(a)将10g纳米氧化锌均匀分散于100mL无水乙醇溶剂中,超声震荡约15min,再于40℃下回流1h后超声分散20min。(a) Evenly disperse 10 g of nano-zinc oxide in 100 mL of absolute ethanol solvent, ultrasonically oscillate for about 15 min, reflux at 40° C. for 1 h, and then ultrasonically disperse for 20 min.
(b)加入适量水,再用0.1mol/LHCl溶液调节pH=2,然后40℃下回流1h后逐滴加入十六烷基三甲氧基硅烷(HDTMS)于烧瓶中,在40℃下搅拌回流约1h后再用NaOH调节pH=10,40℃下回流2h,得到回流产物。(b) Add appropriate amount of water, then use 0.1mol/L HCl solution to adjust pH=2, then reflux at 40°C for 1 hour, then add hexadecyltrimethoxysilane (HDTMS) dropwise into the flask, stir and reflux at 40°C After about 1 hour, the pH was adjusted to 10 with NaOH, and the product was refluxed at 40° C. for 2 hours to obtain the refluxed product.
(c)将回流产物取出后离心5min,去上清液,取离心产物置于聚四氟乙烯模具中,在80℃烘箱中干燥整夜,得到改性后的纳米氧化锌(m-ZnO)。改性后的纳米氧化锌中,HDTMS的含量为5wt%。(c) Centrifuge the reflux product for 5 minutes after taking it out, remove the supernatant, take the centrifuged product and place it in a polytetrafluoroethylene mold, and dry it in an oven at 80°C overnight to obtain the modified nano-zinc oxide (m-ZnO) . In the modified nano zinc oxide, the content of HDTMS is 5wt%.
2、PLA/ZnO薄膜的制备2. Preparation of PLA/ZnO thin film
1)将PLA在80℃下进行干燥,取10g干燥后的PLA溶解于100mL三氯甲烷中,40℃加热搅拌至PLA全部溶解,得到PLA溶液。1) Dry the PLA at 80°C, take 10g of the dried PLA and dissolve it in 100mL of chloroform, heat and stir at 40°C until all the PLA is dissolved to obtain a PLA solution.
2)将0.4g步骤1制备的改性纳米氧化锌加入PLA溶液中,搅拌15min,待溶液呈现均匀的白色后冷却至室温,超声分散15min,得到PLA/ZnO混合液。2) Add 0.4 g of the modified nano-zinc oxide prepared in
3)将PLA/ZnO混合液转移到聚四氟乙烯模具中,在通风橱中挥发整夜后置于80℃烘箱中干燥12h,得到PLA/ZnO膜。3) The PLA/ZnO mixture was transferred to a polytetrafluoroethylene mold, volatilized in a fume hood overnight, and then dried in an oven at 80° C. for 12 hours to obtain a PLA/ZnO film.
3、PLA/PBF/POE-g-GMA/ZnO复合材料的制备3. Preparation of PLA/PBF/POE-g-GMA/ZnO composites
(Ⅰ)打开转矩流变仪(型号:CTR-300),设置转矩流变仪的三段温度均为180℃,转速为60rpm;机器预热的时间为10min。待转矩流变仪预热结束且转速稳定后,将80℃下干燥后的22gPLA、8gPBF(生产厂家:宁波市吉塑新材料科技有限公司)、2g POE-g-GMA(甲基丙烯酸缩水甘油酯接枝聚烯烃弹性体,生产厂家:佳易容聚合物上海有限公司)加入转矩流变仪料口。(I) Turn on the torque rheometer (model: CTR-300), set the temperature of the three stages of the torque rheometer to 180°C, and the rotation speed to 60 rpm; the machine warm-up time is 10 minutes. After the torque rheometer is preheated and the rotation speed is stable, 22g PLA, 8gPBF (manufacturer: Ningbo Jisu New Material Technology Co., Ltd.), 2g POE-g-GMA (methacrylic acid shrink Glyceride grafted polyolefin elastomer (manufacturer: Jiayirong Polymer Shanghai Co., Ltd.) was added to the feed port of the torque rheometer.
(Ⅱ)待转矩流变仪转速稳定后,将步骤2制备的PLA/ZnO膜剪碎加入转矩流变仪料口。(II) After the rotational speed of the torque rheometer is stable, chop the PLA/ZnO film prepared in
(Ⅲ)待扭矩平衡后,将转矩流变仪内共混得到的物料取出,剪碎,得到PLA/PBF/POE-g-GMA/ZnO复合材料,所述复合材料为复合物颗粒。(Ⅲ) After the torque is balanced, the material obtained by blending in the torque rheometer is taken out and shredded to obtain a PLA/PBF/POE-g-GMA/ZnO composite material, which is a composite particle.
4、PLA/PBF/POE-g-GMA/ZnO复合薄膜的制备4. Preparation of PLA/PBF/POE-g-GMA/ZnO composite film
取步骤3制备的复合材料铺在两层聚四氟乙烯薄膜中间,在不使用模具的情况下将两层聚四氟乙烯薄膜及其内铺的复合材料直接放在两层铁板中间,转入真空压膜机中压膜。压膜结束后,取下两层聚四氟乙烯薄膜,得到70μm的PLA/PBF/POE-g-GMA/ZnO复合薄膜。Take the composite material prepared in
实施例2Example 2
一种用于抗菌食品包装的PLA/PBF/POE-g-GMA/ZnO复合薄膜的制备方法内容与实施例1的基本相同,其不同之处在于:步骤1得到的改性纳米氧化锌中,HDTMS的含量为2.5wt%。A preparation method of PLA/PBF/POE-g-GMA/ZnO composite film for antibacterial food packaging is basically the same as in Example 1, except that in the modified nano-zinc oxide obtained in
实施例3Example 3
一种用于抗菌食品包装的PLA/PBF/POE-g-GMA/ZnO复合薄膜的制备方法内容与实施例1的基本相同,其不同之处在于:步骤1得到的改性纳米氧化锌中,HDTMS的含量为7.5wt%。A preparation method of PLA/PBF/POE-g-GMA/ZnO composite film for antibacterial food packaging is basically the same as in Example 1, except that in the modified nano-zinc oxide obtained in
实施例4Example 4
一种用于抗菌食品包装的PLA/PBF/POE-g-GMA/ZnO复合薄膜的制备方法内容与实施例1的基本相同,其不同之处在于:步骤1得到的改性纳米氧化锌中,HDTMS的含量为10wt%。A preparation method of PLA/PBF/POE-g-GMA/ZnO composite film for antibacterial food packaging is basically the same as in Example 1, except that in the modified nano-zinc oxide obtained in
实施例5Example 5
一种用于抗菌食品包装的PLA/PBF/POE-g-GMA/ZnO复合薄膜的制备方法内容与实施例1的基本相同,其不同之处在于:步骤2)中改性纳米氧化锌加入量为0.2g。A kind of preparation method content of the PLA/PBF/POE-g-GMA/ZnO composite film that is used for antibacterial food packaging is basically the same as that of Example 1, and its difference is: step 2) in the modified nano zinc oxide addition 0.2g.
实施例6Example 6
一种用于抗菌食品包装的PLA/PBF/POE-g-GMA/ZnO复合薄膜的制备方法内容与实施例1的基本相同,其不同之处在于:步骤2)中改性纳米氧化锌加入量为0.6g。A kind of preparation method content of the PLA/PBF/POE-g-GMA/ZnO composite film that is used for antibacterial food packaging is basically the same as that of Example 1, and its difference is: step 2) in the modified nano zinc oxide addition 0.6g.
实施例7Example 7
一种用于抗菌食品包装的PLA/PBF/POE-g-GMA/ZnO复合薄膜的制备方法内容与实施例1的基本相同,其不同之处在于:步骤2)中改性纳米氧化锌加入量为0.8g。A kind of preparation method content of the PLA/PBF/POE-g-GMA/ZnO composite film that is used for antibacterial food packaging is basically the same as that of Example 1, and its difference is: step 2) in the modified nano zinc oxide addition 0.8g.
实施例8Example 8
一种用于抗菌食品包装的PLA/PBF/POE-g-GMA/ZnO复合薄膜的制备方法内容与实施例1的基本相同,其不同之处在于:步骤1)中加热温度为50℃;步骤2)中搅拌时间为20min,超声时间为12min;步骤3)中干燥18h。A preparation method of PLA/PBF/POE-g-GMA/ZnO composite film for antibacterial food packaging is basically the same as in Example 1, except that the heating temperature is 50°C in step 1); The stirring time in 2) is 20 minutes, and the ultrasonic time is 12 minutes; the drying in step 3) is 18 hours.
实施例9Example 9
一种用于抗菌食品包装的PLA/PBF/POE-g-GMA/ZnO复合薄膜的制备方法内容与实施例1的基本相同,其不同之处在于:步骤1)中加热温度为60℃;步骤2)中搅拌时间为30min,超声时间为10min;步骤3)中干燥24h。A preparation method of PLA/PBF/POE-g-GMA/ZnO composite film for antibacterial food packaging is basically the same as in Example 1, except that the heating temperature is 60°C in step 1); In 2), the stirring time is 30 min, and the ultrasonic time is 10 min; in step 3), the drying time is 24 h.
对比例1Comparative example 1
一种用于抗菌食品包装的PLA/PBF/POE-g-GMA/ZnO复合薄膜的制备方法内容与实施例1的基本相同,其不同之处在于:不进行步骤1和步骤2的制备;步骤(Ⅰ)中PLA加入量为38g,PBF加入量为2g,不进行步骤(Ⅱ)的制备。A kind of preparation method content of the PLA/PBF/POE-g-GMA/ZnO composite film that is used for antibacterial food packaging is basically the same as that of Example 1, and its difference is: do not carry out the preparation of
对比例2Comparative example 2
一种用于抗菌食品包装的PLA/PBF/POE-g-GMA/ZnO复合薄膜的制备方法内容与实施例1的基本相同,其不同之处在于:不进行步骤1和步骤2的制备;步骤(Ⅰ)中PLA加入量为36g,PBF加入量为4g,不进行步骤(Ⅱ)的制备。A kind of preparation method content of the PLA/PBF/POE-g-GMA/ZnO composite film that is used for antibacterial food packaging is basically the same as that of Example 1, and its difference is: do not carry out the preparation of
对比例3Comparative example 3
一种用于抗菌食品包装的PLA/PBF/POE-g-GMA/ZnO复合薄膜的制备方法内容与实施例1的基本相同,其不同之处在于:不进行步骤1和步骤2的制备;步骤(Ⅰ)中PLA加入量为32g,PBF加入量为8g,不进行步骤(Ⅱ)的制备。A kind of preparation method content of the PLA/PBF/POE-g-GMA/ZnO composite film that is used for antibacterial food packaging is basically the same as that of Example 1, and its difference is: do not carry out the preparation of
对比例4Comparative example 4
一种用于抗菌食品包装的PLA/PBF/POE-g-GMA/ZnO复合薄膜的制备方法内容与实施例1的基本相同,其不同之处在于:不进行步骤1和步骤2的制备;步骤(Ⅰ)中PLA加入量为28g,PBF加入量为12g,不进行步骤(Ⅱ)的制备。A kind of preparation method content of the PLA/PBF/POE-g-GMA/ZnO composite film that is used for antibacterial food packaging is basically the same as that of Example 1, and its difference is: do not carry out the preparation of
对比例5Comparative example 5
一种用于抗菌食品包装的PLA/PBF/POE-g-GMA/ZnO复合薄膜的制备方法内容与实施例1的基本相同,其不同之处在于:步骤(b)中不使用硅烷偶联剂,即不添加硅烷偶联剂进行改性;步骤(c)中得到未改性纳米氧化锌(un-ZnO);步骤2)中使用未改性的纳米氧化锌制备PLA/ZnO薄膜。A preparation method of PLA/PBF/POE-g-GMA/ZnO composite film for antibacterial food packaging is basically the same as in Example 1, except that no silane coupling agent is used in step (b) , that is, modify without adding a silane coupling agent; obtain unmodified nano zinc oxide (un-ZnO) in step (c); use unmodified nano zinc oxide in step 2) to prepare PLA/ZnO film.
对比例6Comparative example 6
一种用于抗菌食品包装的PLA/PBF/POE-g-GMA/ZnO复合薄膜的制备方法内容与实施例1的基本相同,其不同之处在于:步骤(b)中使用的硅烷偶联剂为γ-氨丙基三乙氧基硅烷(KH-550),改性后的纳米氧化锌中,硅烷偶联剂的含量为5wt%。A kind of preparation method content of the PLA/PBF/POE-g-GMA/ZnO composite film that is used for antibacterial food packaging is basically the same as that of Example 1, and its difference is: the silane coupling agent used in step (b) It is gamma-aminopropyltriethoxysilane (KH-550), and the content of the silane coupling agent in the modified nano-zinc oxide is 5 wt%.
对比例7Comparative example 7
一种用于抗菌食品包装的PLA/PBF/POE-g-GMA/ZnO复合薄膜的制备方法内容与实施例1的基本相同,其不同之处在于:步骤(b)中使用的硅烷偶联剂为KH-550;改性后的纳米氧化锌中,硅烷偶联剂的含量为7.5wt%。A kind of preparation method content of the PLA/PBF/POE-g-GMA/ZnO composite film that is used for antibacterial food packaging is basically the same as that of Example 1, and its difference is: the silane coupling agent used in step (b) It is KH-550; in the modified nanometer zinc oxide, the content of silane coupling agent is 7.5wt%.
对比例8Comparative example 8
一种用于抗菌食品包装的PLA/PBF/POE-g-GMA/ZnO复合薄膜的制备方法内容与实施例1的基本相同,其不同之处在于:不进行步骤1和步骤2的制备;步骤3中PLA的加入量为32g,不进行步骤(Ⅱ)的制备。A kind of preparation method content of the PLA/PBF/POE-g-GMA/ZnO composite film that is used for antibacterial food packaging is basically the same as that of Example 1, and its difference is: do not carry out the preparation of
对比例9Comparative example 9
一种用于抗菌食品包装的PLA/PBF/POE-g-GMA/ZnO复合薄膜的制备方法内容与实施例1的基本相同,其不同之处在于:不进行步骤1和步骤2的制备;步骤(Ⅰ)中未加入PBF和POE-g-GMA,且PLA用量为40g,不进行步骤(Ⅱ)的制备。A kind of preparation method content of the PLA/PBF/POE-g-GMA/ZnO composite film that is used for antibacterial food packaging is basically the same as that of Example 1, and its difference is: do not carry out the preparation of
(一)PBF用量的探讨(1) Discussion on the dosage of PBF
为了探讨PBF含量对复合材料力学性能的影响,发明人分别对比例1~4中制备的PLA/PBF/POE-g-GMA/ZnO复合材料为测试样品,其对应的PBF含量分别为5wt%、10wt%、20wt%、30wt%,做了以下拉伸和冲击试验:将测试样品用真空压膜机压成哑铃型样条(拉伸样条,规格为2×35×0.5mm)和矩形样条(冲击样条,规格为75×20×1mm),在万能拉伸试验机上进行拉伸测试,试验方案为塑料-薄膜拉伸,拉伸速度为5mm/min。每个样条选3处测厚度取平均值,每组做5次平行实验。先用缺口制样机在冲击样条一侧磨出4mm深的45°V型缺口,在悬臂梁摆锤冲击测量仪上测量其冲击强度。结果如表1所示。实验结果表明,对比例3的力学性能最好,优先选择PBF加入量为20wt%时对复合材料进行后续制备。In order to explore the influence of PBF content on the mechanical properties of composite materials, the inventors used the PLA/PBF/POE-g-GMA/ZnO composite materials prepared in Comparative Examples 1 to 4 as test samples, and the corresponding PBF contents were 5wt%, 5wt%, 10wt%, 20wt%, 30wt%, did the following tensile and impact tests: the test sample was pressed into a dumbbell-shaped sample with a vacuum laminator (tensile sample, the specification is 2 * 35 * 0.5mm) and a rectangular sample Strips (impact splines, specification 75×20×1mm) were subjected to a tensile test on a universal tensile testing machine. The test program was plastic-film stretching, and the tensile speed was 5mm/min. Each spline was selected to measure the thickness at 3 places and the average value was taken, and 5 parallel experiments were performed for each group. Grind a 4mm-deep 45° V-shaped notch on one side of the impact bar with a notch prototyping machine, and measure its impact strength on a cantilever beam pendulum impact measuring instrument. The results are shown in Table 1. The experimental results show that Comparative Example 3 has the best mechanical properties, and it is preferable to select the PBF addition amount of 20wt% for the subsequent preparation of the composite material.
表1 PBF用量对复合材料力学性能的影响Table 1 Effect of PBF content on mechanical properties of composites
(二)硅烷偶联剂的选取(2) Selection of silane coupling agent
为了探讨硅烷偶联剂种类及用量对纳米氧化锌亲水性和亲油性的影响,发明人分别采用实施例1、实施例2、实施例3、对比例5、对比例6、对比例7中制备的改性纳米氧化锌为测试样品,其对应的硅烷偶联剂种类及含量分别为HDTMS 5wt%、HDTMS 2.5wt%、HDTMS7.5wt%、0wt%、KH-5505wt%、KH-5507.5wt%,做了以下实验:通过静态接触角测试仪测定水-空气接触角,反映样品表面的亲疏水性;通过亲油化度实验测试样品的亲油化度。结果如表2所示。In order to investigate the impact of the type and amount of silane coupling agent on the hydrophilicity and lipophilicity of nano-zinc oxide, the contriver adopts Example 1, Example 2, Example 3, Comparative Example 5, Comparative Example 6, and Comparative Example 7 to prepare The modified nano zinc oxide is the test sample, and the corresponding silane coupling agent types and contents are HDTMS 5wt%, HDTMS 2.5wt%, HDTMS7.5wt%, 0wt%, KH-5505wt%, KH-5507.5wt%, The following experiments were done: the water-air contact angle was measured by a static contact angle tester to reflect the hydrophilicity and hydrophobicity of the sample surface; the lipophilicity of the sample was tested by the lipophilicity test. The results are shown in Table 2.
表2硅烷偶联剂种类及用量对纳米氧化锌亲水性和亲油性的影响Table 2 The effect of the type and amount of silane coupling agent on the hydrophilicity and lipophilicity of nano-zinc oxide
硅烷偶联剂通式为RSiX3,式中R代表与聚合物分子有反应能力或亲和力的活性官能团。研究过程中我们发现,硅烷偶联剂在材料当中可起到“分子桥”的作用:硅烷基团水解后产生羟基可与粉体表面的官能团发生反应;同时还有另一部分基团可与有机高聚物发生物理缠绕或化学反应,将无机粉体填料与高分子连接起来从而实现偶联。在进行偶联时,X先水解形成硅醇,再与无机粉体颗粒表面上的羟基反应,形成氢键并缩合成Si—M共价键(M表示无机粉体颗粒表面)。同时,硅烷各分子中的硅醇又相互缔合齐聚形成网状结构的膜覆盖在粉体颗粒表面,使无机粉体表面有机化。The general formula of silane coupling agent is RSiX 3 , where R represents an active functional group that has the ability to react or has affinity with polymer molecules. During the research process, we found that the silane coupling agent can act as a "molecular bridge" in the material: after the silane group is hydrolyzed, the hydroxyl group can react with the functional group on the surface of the powder; at the same time, another part of the group can interact with the organic The polymer undergoes physical entanglement or chemical reaction, and the inorganic powder filler is connected with the polymer to achieve coupling. During coupling, X is first hydrolyzed to form silanol, and then reacts with hydroxyl groups on the surface of inorganic powder particles to form hydrogen bonds and condense into Si—M covalent bonds (M represents the surface of inorganic powder particles). At the same time, the silanol in each molecule of silane associates with each other and oligomerizes to form a film of network structure covering the surface of the powder particles, making the surface of the inorganic powder organic.
由表2可知,un-ZnO由于表面富含羟基故亲水性较强,接触角为25.5°,不利于在聚合物中均匀分散并且配伍性差。当硅烷偶联剂为HDTMS时,纳米氧化锌的接触角和亲油化度随着HDTMS含量的增加有先增大后不变的趋势,在HDTMS添加量为5%时达到平衡,意味着此时粉体表面的硅烷偶联剂数目已经达到饱和。这是因为纳米氧化锌表面的羟基因为空间位阻的缘故并不能完全与硅烷偶联剂发生缔合反应,会先在氧化锌表面形成单分子层的物理吸附,再形成表面胶团。而KH-550的改性效果明显低于HDTMS,经过KH-550改性的m-ZnO与un-ZnO的接触角相比变化不大,是因为HDTMS为十六烷烃碳链,与含两个烷烃的KH-550相比,疏水性更强。因此,用HDTMS对纳米氧化锌改性,且用量为5wt%时能达到较好的亲油疏水效果。It can be seen from Table 2 that because the surface of un-ZnO is rich in hydroxyl groups, it has strong hydrophilicity and a contact angle of 25.5°, which is not conducive to uniform dispersion in polymers and has poor compatibility. When the silane coupling agent is HDTMS, the contact angle and lipophilicity of nano-zinc oxide tend to increase first and then remain unchanged with the increase of HDTMS content, and reach equilibrium when the HDTMS addition is 5%, which means that at this time The number of silane coupling agents on the powder surface has reached saturation. This is because the hydroxyl groups on the surface of nano-zinc oxide cannot completely associate with the silane coupling agent due to steric hindrance, and will first form a monomolecular layer of physical adsorption on the surface of zinc oxide, and then form surface micelles. However, the modification effect of KH-550 is significantly lower than that of HDTMS. Compared with un-ZnO, the contact angle of m-ZnO modified by KH-550 has little change, because HDTMS is a hexadecane carbon chain, and contains two Compared with the KH-550 of alkanes, the hydrophobicity is stronger. Therefore, when HDTMS is used to modify nano-zinc oxide, and the dosage is 5wt%, a good lipophilic and hydrophobic effect can be achieved.
(三)硅烷偶联剂用量的探讨(3) Discussion on the amount of silane coupling agent
为了探讨硅烷偶联剂用量对纳米氧化锌分散效果的影响,发明人分别做了以下实验:In order to investigate the impact of the amount of silane coupling agent on the dispersion effect of nano-zinc oxide, the inventors did the following experiments respectively:
分别采用实施例1、实施例2、实施例3、实施例4、对比例5中制备的改性纳米氧化锌为测试样品,其对应的硅烷偶联剂含量分别为5wt%、2.5wt%、7.5wt%、10wt%、0wt%;分别取0.1g纳米氧化锌样品,加入适量乙醇分散液,置于四通比色皿中,超声震荡约15min,至微粒均匀分散且分散液呈半透明状,然后采用激光粒度仪对纳米氧化锌的粒径进行测试。结果如表3所示。The modified nano-zinc oxide prepared in Example 1, Example 2, Example 3, Example 4, and Comparative Example 5 is respectively used as a test sample, and its corresponding silane coupling agent content is respectively 5wt%, 2.5wt%, 7.5wt%, 10wt%, 0wt%; respectively take 0.1g nano-zinc oxide sample, add appropriate amount of ethanol dispersion, place in a four-way cuvette, ultrasonically oscillate for about 15min, until the particles are evenly dispersed and the dispersion is translucent , and then use a laser particle size analyzer to test the particle size of nano-zinc oxide. The results are shown in Table 3.
分别采用实施例1、对比例5中制备的改性纳米氧化锌为测试样品,采用悬浮液沉降和透射电子显微镜进行表观测试,结果如图1所示。在使用透射电子显微镜进行表观测试时,取少量纳米氧化锌样品于透明样品瓶中,加入乙醇后超声10min使其分散,使用微量注射器移取2μL悬浮液于铜网上,再用透射电镜观察记录微观形貌图。The modified nano-zinc oxide prepared in Example 1 and Comparative Example 5 were respectively used as test samples, and the suspension sedimentation and transmission electron microscopy were used to carry out appearance tests, and the results are shown in FIG. 1 . When using a transmission electron microscope for appearance testing, take a small amount of nano-zinc oxide sample in a transparent sample bottle, add ethanol and ultrasonically disperse it for 10 minutes, use a micro-syringe to pipette 2 μL of the suspension on the copper grid, and then use a transmission electron microscope to observe and record Microscopic topography.
表3硅烷偶联剂用量对纳米氧化锌平均粒径的影响The impact of the dosage of table 3 silane coupling agent on the average particle size of nanometer zinc oxide
由于纳米氧化锌的小尺寸效应和表面效应,其具有较大的比表面积和表面势能,微粒容易团聚而使得尺寸增大。改性前纳米氧化锌粒径主要分布在90~460nm之间,粒径200nm左右的微粒数量最多(如表2中un-ZnO的平均粒径为205.02nm)。由表3可知,随着HDTMS含量增大,m-ZnO粒径先减小后增大,粒径100nm左右的微粒数量最多。其中,5%HDTMS粒径分布在尺寸更小的区域,由软件计算可得,其平均粒径为90.47nm,符合纳米粒子尺寸在1~100nm之间的要求。这是由于硅烷偶联剂包覆在氧化锌表面减少互相之间的团聚导致的。随着偶联剂加入量的增加,偶联剂层层包覆反而使得粒径增大。Due to the small size effect and surface effect of nano zinc oxide, it has a large specific surface area and surface potential energy, and the particles are easy to agglomerate to increase the size. Before modification, the nano-zinc oxide particle size is mainly distributed between 90-460nm, and the number of particles with a particle size of about 200nm is the largest (for example, the average particle size of un-ZnO in Table 2 is 205.02nm). It can be seen from Table 3 that as the content of HDTMS increases, the particle size of m-ZnO first decreases and then increases, and the number of particles with a particle size of about 100nm is the largest. Among them, the particle size of 5% HDTMS is distributed in a smaller size area, which can be calculated by software, and its average particle size is 90.47nm, which meets the requirement that the size of nanoparticles is between 1 and 100nm. This is because the silane coupling agent is coated on the surface of zinc oxide to reduce mutual agglomeration. With the increase of the amount of coupling agent added, the layer-by-layer coating of coupling agent makes the particle size increase instead.
改性前后纳米氧化锌的悬浮液沉降对比图如图1所示。图1中a为5%HDTMS的m-ZnO悬浮液在静置3h后,依然肉眼可见m-ZnO在乙醇中呈均匀分散,且由于亲油性良好而出现沾杯现象,总体表现为基本不沉降,由公式计算可得m-ZnO的分散度达到了99%以上。图1中b表示un-ZnO在乙醇中的分散情况,表现出un-ZnO的沉降速度相对较快,底部出现颗粒沉积现象,顶端悬浮液呈现半透明状态,由公式计算可得m-ZnO的分散度为60%。这是由于微粒之间碰撞团聚使得纳米氧化锌粒径增大,从而重力变大引起微粒下沉。The comparison diagram of the suspension sedimentation of nano-zinc oxide before and after modification is shown in Fig. 1. In Figure 1, a is the m-ZnO suspension of 5% HDTMS. After standing for 3 hours, the m-ZnO can still be seen to be uniformly dispersed in ethanol with the naked eye, and there is a cupping phenomenon due to its good lipophilicity. The overall performance is basically no sedimentation , calculated by the formula, the dispersion degree of m-ZnO can reach more than 99%. In Figure 1, b shows the dispersion of un-ZnO in ethanol, which shows that the sedimentation speed of un-ZnO is relatively fast, the particle deposition phenomenon appears at the bottom, and the suspension at the top is translucent. The formula can be used to calculate the concentration of m-ZnO The degree of dispersion was 60%. This is because the collision and agglomeration of the particles increases the particle size of the nano-zinc oxide, which causes the particles to sink due to the increased gravity.
为了从微观角度佐证硅烷偶联剂HDTMS对纳米氧化锌的改性效果,使用透射电子显微镜对样品的微观形貌进行观察,发现改性后的纳米氧化锌团聚大颗粒被打开,聚集现象得到了明显的改善。In order to prove the modification effect of silane coupling agent HDTMS on nano-zinc oxide from a microscopic point of view, the microscopic morphology of the sample was observed by transmission electron microscopy, and it was found that the modified nano-zinc oxide aggregated large particles were opened, and the aggregation phenomenon was obtained. Visible improvement.
综上,HDTMS用量为5wt%时能达到较好的分散效果。In summary, when the amount of HDTMS is 5wt%, a better dispersion effect can be achieved.
(四)性能测试(4) Performance test
1、PLA/PBF/POE-g-GMA/ZnO复合材料力学性能的分析1. Analysis of mechanical properties of PLA/PBF/POE-g-GMA/ZnO composites
为了探讨纳米氧化锌用量对PLA/PBF/POE-g-GMA/ZnO复合材料力学性能的影响,发明人分别采用实施例1、实施例5、实施例6、实施例7、对比例5、对比例8、对比例9中制备的复合材料为测试样品,其对应的纳米氧化锌用量分别为m-ZnO 0.4g、m-ZnO 0.2g、m-ZnO0.6g、m-ZnO 0.8g、un-ZnO 0.4g、未用纳米氧化锌、未用纳米氧化锌(纯PLA材料),做了以下实验:将测试样品用真空压膜机压成哑铃型样条(拉伸样条,规格为2×35×0.5mm)和矩形样条(冲击样条,规格为75×20×1mm),在万能拉伸试验机上进行拉伸测试,试验方案为塑料-薄膜拉伸,拉伸速度为5mm/min。每个样条选3处测厚度取平均值,每组做5次平行实验。先用缺口制样机在冲击样条一侧磨出4mm深的45°V型缺口,在悬臂梁摆锤冲击测量仪上测量其冲击强度。结果如表4所示。In order to investigate the effect of the amount of nano-zinc oxide on the mechanical properties of PLA/PBF/POE-g-GMA/ZnO composites, the inventors adopted Example 1, Example 5, Example 6, Example 7, Comparative Example 5, and Comparative Example respectively. The composite materials prepared in Example 8 and Comparative Example 9 are test samples, and the corresponding nano zinc oxide dosages are m-ZnO 0.4g, m-ZnO 0.2g, m-ZnO0.6g, m-ZnO 0.8g, un- ZnO 0.4g, unused nano-zinc oxide, unused nano-zinc oxide (pure PLA material), did the following experiments: the test sample was pressed into a dumbbell-shaped spline with a vacuum laminator (stretched spline, the specification is 2× 35×0.5mm) and rectangular splines (impact splines, the specification is 75×20×1mm), the tensile test is carried out on a universal tensile testing machine, the test program is plastic-film stretching, and the tensile speed is 5mm/min . Each spline was selected to measure the thickness at 3 places and the average value was taken, and 5 parallel experiments were performed for each group. First, a 4mm-deep 45° V-shaped notch was ground on one side of the impact bar with a notch prototyping machine, and its impact strength was measured on a cantilever beam pendulum impact measuring instrument. The results are shown in Table 4.
表4纳米氧化锌用量对PLA/PBF/POE-g-GMA/ZnO复合材料力学性能的影响Table 4 Effect of the amount of nano-zinc oxide on the mechanical properties of PLA/PBF/POE-g-GMA/ZnO composites
由表4可知,随着氧化锌含量增加,复合材料的结晶度逐渐增大。复合物结晶度增大会导致断裂伸长率及冲击强度降低,材料有由韧转脆的趋势。但相比纯PLA材料而言,PLA/PBF/POE-g-GMA/ZnO复合材料断裂伸长率和冲击强度都有了明显的提升,材料呈现出“强而韧”的有益效果。且当改性纳米氧化锌添加量为1wt%时,能使PLA/PBF/POE-g-GMA/ZnO复合材料达到较好的“强而韧”性能。It can be seen from Table 4 that as the zinc oxide content increases, the crystallinity of the composite material increases gradually. The increase of the crystallinity of the composite will lead to the decrease of the elongation at break and the impact strength, and the material tends to change from tough to brittle. However, compared with the pure PLA material, the elongation at break and impact strength of the PLA/PBF/POE-g-GMA/ZnO composite material have been significantly improved, and the material shows the beneficial effect of "strong and tough". And when the added amount of modified nano-zinc oxide is 1wt%, the PLA/PBF/POE-g-GMA/ZnO composite material can achieve better "strong and tough" performance.
2、PLA/PBF/POE-g-GMA/ZnO复合薄膜抗菌性能的分析2. Analysis of antibacterial performance of PLA/PBF/POE-g-GMA/ZnO composite film
为了探讨纳米氧化锌用量对PLA/PBF/POE-g-GMA/ZnO复合薄膜抗菌效果的影响,发明人分别采用实施例1、实施例5、实施例6、实施例7、对比例5、对比例9中制备的复合薄膜为测试样品,其对应的纳米氧化锌用量分别为m-ZnO 0.4g、m-ZnO 0.2g、m-ZnO 0.6g、m-ZnO0.8g、un-ZnO 0.4g、未用纳米氧化锌(纯PLA材料),做了以下实验:利用平板计数法通过细菌的琼脂平板图计算复合薄膜对大肠杆菌的抗菌率,实验所有操作步骤都在无菌环境下进行。其中,本实验先将菌液在样品表面培养,然后进行洗脱处理,再将洗脱液在固体培养基上涂布、培养、计数,其中,固/液体培养基成分表如表5所示。整个测试过程分四天进行,具体操作步骤如下:In order to investigate the impact of the amount of nano-zinc oxide on the antibacterial effect of PLA/PBF/POE-g-GMA/ZnO composite film, the inventors adopted Example 1, Example 5, Example 6, Example 7, Comparative Example 5, and Comparative Example 5 respectively. The composite film prepared in Example 9 is the test sample, and the corresponding dosages of nano zinc oxide are m-ZnO 0.4g, m-ZnO 0.2g, m-ZnO 0.6g, m-ZnO 0.8g, un-ZnO 0.4g, Nano-zinc oxide (pure PLA material) was not used, and the following experiment was done: the antibacterial rate of the composite film against Escherichia coli was calculated by using the plate counting method through the agar plate diagram of the bacteria, and all the operating steps of the experiment were carried out in a sterile environment. Among them, in this experiment, the bacterial liquid was first cultivated on the surface of the sample, and then eluted, and then the eluate was coated, cultivated, and counted on the solid medium. Among them, the composition of the solid/liquid medium is shown in Table 5 . The whole test process is divided into four days, and the specific operation steps are as follows:
第一天:按照表4中配方配制固体培养基于锥形瓶中,放到灭菌箱中灭菌,随后趁热倒入培养皿中,待琼脂慢慢凝固。从冰箱中取出含有细菌的锥形瓶,滴加几滴培养液于固基中,用消毒后的涂布杆涂抹均匀后置于37℃培养箱中培养24h。The first day: according to the formula in Table 4, prepare the solid culture base in the Erlenmeyer flask, put it in the sterilization box for sterilization, and then pour it into the petri dish while it is hot, and wait for the agar to solidify slowly. Take out the Erlenmeyer flask containing the bacteria from the refrigerator, add a few drops of culture solution to the solid base, smear it evenly with a sterilized coating rod, and then place it in a 37°C incubator for 24 hours.
第二天:按照表4中配方配制液体培养基放到灭菌箱中灭菌,取出后在紫外灯下冷却避免杂菌污染,并分装在几个培养皿中。用消毒后的接种环从第一天制备的固基中刮出适量细菌转移到刚配好的液基中,摇匀后吸取适量菌液稀释1000倍。分别将样品表面滴加等量稀释的菌液,随后贴上消毒过的PE膜,再将样品放入做好标记的空培养皿中,于37℃培养箱中培养24h。The next day: Prepare the liquid medium according to the formula in Table 4, put it in a sterilization box for sterilization, take it out, cool it under an ultraviolet lamp to avoid contamination by bacteria, and divide it into several petri dishes. Use a sterilized inoculation loop to scrape an appropriate amount of bacteria from the solid base prepared on the first day and transfer it to the freshly prepared liquid base. After shaking well, absorb an appropriate amount of bacterial liquid to dilute 1000 times. The same amount of diluted bacterial solution was added dropwise to the surface of the sample, and then a sterilized PE film was pasted on it, and then the sample was placed in a marked empty Petri dish and incubated in a 37°C incubator for 24 hours.
第三天:配置固体培养基,用生理盐水将第二天在样品表面生长的细菌洗脱,移取适量洗脱液滴入固体培养基中,用消毒后的涂布杆均匀涂抹,放入37℃培养箱中培养24h。Day 3: Prepare a solid medium, elute the bacteria that grew on the surface of the sample the next day with normal saline, pipette an appropriate amount of eluent and drop it into the solid medium, spread it evenly with a sterilized coating rod, and put it in Incubate in a 37°C incubator for 24 hours.
第四天:观察固体培养基表面细菌生长情况并拍照记录。PLA/PBF/POE-g-GMA/ZnO复合薄膜的抗菌率如表6所示。Day 4: Observe the growth of bacteria on the surface of the solid medium and take pictures for records. The antibacterial rates of PLA/PBF/POE-g-GMA/ZnO composite films are shown in Table 6.
表5固/液体培养基成分表Table 5 Solid/liquid medium composition table
表6纳米氧化锌用量对PLA/PBF/POE-g-GMA/ZnO复合薄膜抗菌效果的影响Table 6 Effect of the amount of nano-zinc oxide on the antibacterial effect of PLA/PBF/POE-g-GMA/ZnO composite film
由表6可知,改性后的纳米氧化锌明显比未改性纳米氧化锌的抗菌效果好,这可能是因为改性后的纳米氧化锌分散性更好,其抗菌率得到有效提高。PLA/PBF/POE-g-GMA/ZnO复合薄膜随着改性纳米氧化锌加入量的增加,其抗菌效果也得到了有效提高,且在改性纳米氧化锌加入量为0.4g(即1wt%m-ZnO)时其抗菌效果近饱和状态。其中图2为PLA/PBF/GPOE/ZnO复合薄膜对大肠杆菌的琼脂平板图。因此,当改性纳米氧化锌添加量为1wt%时,就能使PLA/PBF/POE-g-GMA/ZnO复合薄膜达到较好的抗菌效果。It can be seen from Table 6 that the antibacterial effect of the modified nano-zinc oxide is obviously better than that of the unmodified nano-zinc oxide, which may be because the modified nano-zinc oxide has better dispersibility and its antibacterial rate has been effectively improved. PLA/PBF/POE-g-GMA/ZnO composite film along with the increase of modified nano zinc oxide addition, its antibacterial effect has also been effectively improved, and in modified nano zinc oxide addition is 0.4g (i.e. 1wt% m-ZnO), its antibacterial effect is nearly saturated. Wherein Fig. 2 is the agar plate diagram of PLA/PBF/GPOE/ZnO composite film to Escherichia coli. Therefore, when the added amount of modified nano zinc oxide is 1wt%, the PLA/PBF/POE-g-GMA/ZnO composite film can achieve a better antibacterial effect.
3、PLA/PBF/POE-g-GMA/ZnO复合薄膜对西蓝花的保鲜效果分析3. Analysis of the preservation effect of PLA/PBF/POE-g-GMA/ZnO composite film on broccoli
为了探讨纳米氧化锌用量对PLA/PBF/POE-g-GMA/ZnO复合薄膜对西蓝花的保鲜效果影响,发明人分别采用实施例1、实施例5、实施例6、实施例7、对比例5、对比例8、对比例9中制备的复合薄膜为测试样品,其对应的纳米氧化锌用量分别为m-ZnO 0.4g、m-ZnO 0.2g、m-ZnO 0.6g、m-ZnO 0.8g、un-ZnO 0.4g、未用纳米氧化锌、未用纳米氧化锌(纯PLA材料),做了以下实验,结果如图3所示。In order to investigate the effect of the amount of nano-zinc oxide on the fresh-keeping effect of PLA/PBF/POE-g-GMA/ZnO composite film on broccoli, the inventor adopts
(1)感官品质评价:根据国家农业标准NY/T941-2006,在西兰花贮藏期间(0~5天)内,每天将纸胶带撕去,取出西兰花样品观察,并根据其色泽气味等进行打分,取5人打分的平均值作为感官品质评价分数。(1) Evaluation of sensory quality: According to the national agricultural standard NY/T941-2006, during the broccoli storage period (0-5 days), the paper tape is torn off every day, and the broccoli samples are taken out for observation, and according to its color, smell, etc. Scoring, taking the average of 5 people's scoring as the sensory quality evaluation score.
(2)质量损失率变化:每日用分析天平称量西兰花质量,根据式(1)计算质量损失率(失重率)。(2) Change in mass loss rate: Weigh the mass of broccoli with an analytical balance every day, and calculate the mass loss rate (weight loss rate) according to formula (1).
(3)相对电导率:首先从样品中切1g薄片,放入称量瓶中加入20mL去离子水,震荡5min,静置3h,测量此时的电导率记为γ1;将液体转移到小烧杯中,于140℃油浴锅中煮沸以杀死果蔬组织,取出冷却至室温,测量此时的电导率γ2。相对电导率(γe)的计算公式见式(2)。(3) Relative conductivity: first cut 1g thin slices from the sample, put it into a weighing bottle and add 20mL deionized water, shake for 5min, let stand for 3h, measure the conductivity at this time as γ 1 ; transfer the liquid to a small In a beaker, boil in an oil bath at 140°C to kill the fruit and vegetable tissue, take it out and cool it to room temperature, and measure the conductivity γ 2 at this time. The calculation formula of relative conductivity (γ e ) is shown in formula (2).
(4)叶绿素含量:用紫外分光光度计测定从西兰花中提取的叶绿素丙酮溶液的吸光度,其中,叶绿素a和b的丙酮提取液最大吸收峰在波长645nm和663nm处。采用光度测量模式,将叶绿素倒入比色皿中,以丙酮为参照,测量不同波长下的吸光度,根据式(3)和式(4)计算叶绿素含量。(4) Chlorophyll content: measure the absorbance of the chlorophyll acetone solution extracted from broccoli with a UV spectrophotometer, wherein the maximum absorption peaks of the acetone extracts of chlorophyll a and b are at wavelengths 645nm and 663nm. Using the photometric measurement mode, pour chlorophyll into a cuvette, measure the absorbance at different wavelengths with acetone as a reference, and calculate the chlorophyll content according to formula (3) and formula (4).
ρT=ρa+ρb=20.29A645+8.05A663 (3)ρ T =ρ a +ρ b =20.29A 645 +8.05A 663 (3)
式(3)中:ρa(mg/L)和ρb(mg/L)分别表示叶绿素a和b的质量浓度。A663和A645指的是样品在波长663nm和645nm处的吸光度值。具体操作步骤为:撕去纸胶带,从西蓝花中切1g,加入到玛瑙研钵中,加2mL丙酮细细研磨至样品呈浆状。倒入烧杯中,加入丙酮至20mL,由于叶绿素吸光故放于暗处静置约24h。再用丙酮润洗砂芯漏斗,将滤液过滤到玻璃样品瓶中,标记名称。最后用紫外分光光度计测量样品在波长663nm和645nm处的吸光度,扣除丙酮空白。In formula (3): ρ a (mg/L) and ρ b (mg/L) represent the mass concentrations of chlorophyll a and b, respectively. A 663 and A 645 refer to the absorbance values of the samples at wavelengths of 663nm and 645nm. The specific operation steps are: tear off the paper tape, cut 1g from the broccoli, add it to an agate mortar, add 2mL of acetone and grind it finely until the sample is in the form of a slurry. Pour it into a beaker, add acetone to 20mL, and place it in a dark place for about 24 hours due to the light absorption of chlorophyll. Then rinse the sand core funnel with acetone, filter the filtrate into a glass sample bottle, and mark the name. Finally, measure the absorbance of the sample at wavelengths of 663 nm and 645 nm with an ultraviolet spectrophotometer, and subtract the acetone blank.
图3为上述4中保鲜评定实验结果的曲线图。如图3中a和b所示,随着西蓝花贮存时间变长,西蓝花色泽气味等感官品质呈下降趋势,且下降趋势先慢后快;质量损失呈先增大后不变的趋势。且随着改性纳米氧化锌在复合薄膜中含量的升高,西蓝花的感官品质下降的更慢,而且下降的比例较小;质量损失的更小,且含量越高损失越小。但是un-ZnO 0.4g、未用纳米氧化锌、未用纳米氧化锌(PLA材料)的复合薄膜包装的西蓝花感官品质下降程度以及质量损失率都很大。Fig. 3 is a graph showing the results of the fresh-keeping evaluation experiment in the above-mentioned 4. As shown in a and b in Figure 3, as the storage time of broccoli becomes longer, the sensory qualities such as color and smell of broccoli show a downward trend, and the decline trend is slow at first and then fast; the quality loss increases first and then remains unchanged trend. And with the increase of the content of the modified nano zinc oxide in the composite film, the sensory quality of the broccoli decreased more slowly, and the proportion of the decline was smaller; the mass loss was smaller, and the higher the content, the smaller the loss. But un-ZnO 0.4g, no nano-zinc oxide, no nano-zinc oxide (PLA material) packaged broccoli sensory quality degradation and mass loss rate are very large.
相对电导率和叶绿素含量能表现出植物细胞膜透性的一项基本指标,即当细胞膜遭到破坏,细胞膜透性增大,从而使细胞内电解质和叶绿素外渗,以至植物细胞浸提液的电导率增大,细胞内叶绿素含量减少。当细胞死亡后,叶绿素即从叶绿体内游离出来,游离叶绿体很不稳定,光、酸、碱、氧、氧化剂等都会使其分解。因此,实验测得的相对电导率越大,叶绿素含量越低,则说明细胞膜透性越大,细胞死亡率越高。如图3中c所示,随着西蓝花贮存时间变长,西蓝花相对电导率有增大的趋势,但含纳米氧化锌的复合薄膜明显减缓了这种趋势,这说明添加纳米氧化锌的复合薄膜对细胞的死亡具有一定的减缓效果。如图3中d所示,随着西蓝花贮存时间变长,西蓝花内叶绿素含量逐渐减小,且随着改性纳米氧化锌在复合薄膜中含量的增加,该复合薄膜对西蓝花的保鲜效果有增强趋势。综上,该PLA/PBF/POE-g-GMA/ZnO复合薄膜对西蓝花的保鲜起到了良好效果。Relative conductivity and chlorophyll content can show a basic indicator of plant cell membrane permeability, that is, when the cell membrane is damaged, the cell membrane permeability increases, so that intracellular electrolytes and chlorophyll are extravasated, and the conductivity of the plant cell extract The rate increased, and the chlorophyll content in the cells decreased. When the cell dies, chlorophyll is freed from the chloroplast, and the free chloroplast is very unstable, and it will be decomposed by light, acid, alkali, oxygen, and oxidant. Therefore, the greater the relative conductivity measured in the experiment and the lower the chlorophyll content, the greater the permeability of the cell membrane and the higher the cell death rate. As shown in c in Figure 3, as the storage time of broccoli becomes longer, the relative conductivity of broccoli tends to increase, but the composite film containing nano-zinc oxide obviously slows down this trend, which shows that adding nano-zinc oxide The zinc composite film has a certain slowing effect on cell death. As shown in Figure 3 d, as the broccoli storage time becomes longer, the chlorophyll content in the broccoli gradually decreases, and with the increase of the content of the modified nano-zinc oxide in the composite film, the composite film has no effect on broccoli. The fresh-keeping effect of flowers tends to increase. In summary, the PLA/PBF/POE-g-GMA/ZnO composite film has a good effect on the preservation of broccoli.
综上所述,本发明有效克服了现有技术中的不足,且具高度产业利用价值。上述实施例的作用在于说明本发明的实质性内容,但并不以此限定本发明的保护范围。本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和保护范围。To sum up, the present invention effectively overcomes the deficiencies in the prior art, and has high industrial application value. The purpose of the above-mentioned embodiments is to illustrate the substantive content of the present invention, but not to limit the protection scope of the present invention. Those skilled in the art should understand that the technical solution of the present invention can be modified or equivalently replaced without departing from the essence and protection scope of the technical solution of the present invention.
Claims (7)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2021110890175 | 2021-09-16 | ||
CN202111089017 | 2021-09-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113861642A CN113861642A (en) | 2021-12-31 |
CN113861642B true CN113861642B (en) | 2023-06-16 |
Family
ID=79002023
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111174584.0A Active CN113861642B (en) | 2021-09-16 | 2021-10-09 | PLA/PBF/POE-g-GMA/ZnO composite material for antibacterial food packaging and preparation thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113861642B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118085444B (en) * | 2024-04-29 | 2024-06-21 | 杭州星点包装材料有限公司 | Antibacterial sealing film and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018117885A1 (en) * | 2016-12-21 | 2018-06-28 | S.C. Institutul De Cercetari Produse Auxiliare Organice S.A. | Pla - based active and degradable biocomposites for food packaging |
CN111185170A (en) * | 2020-01-17 | 2020-05-22 | 广东红树林新材料科技有限公司 | Preparation method of nano-silver antibacterial composite material wrapped by nano-zinc oxide |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104292782B (en) * | 2014-05-13 | 2016-03-30 | 浙江大学 | Fully bio-based biodegradable polylactic acid composition and preparation method thereof |
CN108659482A (en) * | 2017-03-27 | 2018-10-16 | 中国科学院宁波材料技术与工程研究所 | Biological poly furandicarboxylic acid butanediol ester polydactyl acid alloy and its application |
CN108864929B (en) * | 2018-07-27 | 2019-11-08 | 武汉理工大学 | A kind of waterborne low surface energy resin/nanometer zinc oxide composite antifouling coating and preparation method thereof |
CN109768205A (en) * | 2019-01-28 | 2019-05-17 | 中国科学院兰州化学物理研究所 | A kind of preparation method of super-hydrophobic/super-electrophilic lithium battery separator |
-
2021
- 2021-10-09 CN CN202111174584.0A patent/CN113861642B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018117885A1 (en) * | 2016-12-21 | 2018-06-28 | S.C. Institutul De Cercetari Produse Auxiliare Organice S.A. | Pla - based active and degradable biocomposites for food packaging |
CN111185170A (en) * | 2020-01-17 | 2020-05-22 | 广东红树林新材料科技有限公司 | Preparation method of nano-silver antibacterial composite material wrapped by nano-zinc oxide |
Also Published As
Publication number | Publication date |
---|---|
CN113861642A (en) | 2021-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | Effects of nano-ZnO and nano-SiO2 particles on properties of PVA/xylan composite films | |
Li et al. | Transparent and ultra-tough PVA/alkaline lignin films with UV shielding and antibacterial functions | |
Li et al. | Mechanical and antibacterial properties of modified nano‐ZnO/high‐density polyethylene composite films with a low doped content of nano‐ZnO | |
Yu et al. | Fabrication, characterization, and antibacterial properties of citric acid crosslinked PVA electrospun microfibre mats for active food packaging | |
Wu et al. | Strong, thermal-stable, flexible, and transparent films by self-assembled TEMPO-oxidized bacterial cellulose nanofibers | |
Alhussain et al. | Recent progress in enhanced optical, mechanical, thermal properties, and antibacterial activity of the chitosan/polyvinylalcohol/Co3O4 nanocomposites for optoelectronics and biological applications | |
Muthulakshmi et al. | Experimental investigation of cellulose/silver nanocomposites using in situ generation method | |
Ma et al. | In situ formed active and intelligent bacterial cellulose/cotton fiber composite containing curcumin | |
Li et al. | Corn straw core/cellulose nanofibers composite for food packaging: Improved mechanical, bacteria blocking, ultraviolet and water vapor barrier properties | |
Yun et al. | Preparation of chitosan/polyvinyl alcohol blended films containing sulfosuccinic acid as the crosslinking agent using UV curing process | |
Zamanian et al. | Barrier properties of PVA/TiO 2/MMT mixed-matrix membranes for food packaging | |
CN112239590B (en) | High-performance polylactic acid nano composite material and preparation method thereof | |
Ge et al. | Barrier performance and biodegradability of antibacterial poly (butylene adipate-co-terephthalate) nanocomposites reinforced with a new MWCNT-ZnO nanomaterial | |
Indriyati et al. | Development of bacterial cellulose/chitosan films: structural, physicochemical and antimicrobial properties | |
Shanmugam et al. | Mechanical, barrier, adhesion and antibacterial properties of pullulan/graphene bio nanocomposite coating on spray coated nanocellulose film for food packaging applications | |
Ramji et al. | Influence of NiO supported silica nanoparticles on mechanical, barrier, optical and antibacterial properties of polylactic acid (PLA) bio nanocomposite films for food packaging applications | |
Abdel Ghaffar et al. | Effect of gamma radiation on the properties of crosslinked chitosan nano-composite film | |
de Souza et al. | The effect of ZnO nanoparticles as Ag-carrier in PBAT for antimicrobial films | |
CN1296417C (en) | Cellulose and nanometer titania composite material, preparation and use thereof | |
Ju et al. | Designing robust, breathable, and antibacterial multifunctional porous membranes by a nanofluids templated strategy | |
CN113861642B (en) | PLA/PBF/POE-g-GMA/ZnO composite material for antibacterial food packaging and preparation thereof | |
Ahari et al. | Synthesis of the silver nanoparticle by chemical reduction method and preparation of nanocomposite based on AgNPS | |
Wang et al. | Design of antibacterial cellulose nanofibril film by the incorporation of guanidine-attached lignin nanoparticles | |
CN106633161A (en) | Preparation method of sericin-polyvinyl alcohol blended antibacterial film loaded with nano-silver, and product and application of antibacterial film | |
CN104531583B (en) | A kind of pseudomonad and the microbial flocculant obtained in it ferments |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |